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Abstract. Dynamic information flow tracking is a well-known dynamic
software analysis technique with a wide variety of applications that range
from making systems more secure, to helping developers and analysts
better understand the code that systems are executing. Traditionally,
the fine-grained analysis capabilities that are desired for the class of
these systems which operate at the binary level require tight coupling to
a specific ISA. This places a heavy burden on developers of these systems
since significant domain knowledge is required to support each ISA, and
the ability to amortize the effort expended on one ISA implementation
cannot be leveraged to support other ISAs. Further, the correctness of
the system must carefully evaluated for each new ISA.

In this paper, we present a general approach to information flow
tracking that allows us to support multiple ISAs without mastering the
intricate details of each ISA we support, and without extensive veri-
fication. Our approach leverages binary translation to an intermediate
representation where we have developed detailed, architecture-neutral
information flow models. To support advanced instructions that are typ-
ically implemented in C code in binary translators, we also present a
combined static/dynamic analysis that allows us to accurately and auto-
matically support these instructions. We demonstrate the utility of our
system in three different application settings: enforcing information flow
policies, classifying algorithms by information flow properties, and char-
acterizing types of programs which may exhibit excessive information
flow in an information flow tracking system.
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1 Introduction

Dynamic information flow tracking (also known as dynamic taint analysis) is a
well-known software analysis technique that has been shown to have wide appli-
cability in software analysis and security applications. However, since dynamic
information flow tracking systems that operate at the binary level require fine-
grained analysis capabilities to be effective, this means that they are generally
tightly coupled with the ISA of code to be analyzed.

In order to implement a fine-grained analysis capability such as information
flow tracking for an ISA of interest, an intimate knowledge of the ISA is re-
quired in order to accurately capture information flow for each instruction. This
is especially cumbersome for ISAs with many hundreds of instructions that have
complex and subtle semantics (e.g., x86). Additionally, after expending the work
required to complete such a system, the implementation only supports the sin-
gle ISA, and a similar effort is required for each additional ISA. To overcome
this challenge, we’ve elected to take a compiler-based approach by translating
architecture-specific code into an architecture-independent intermediate repre-
sentation where we can develop, reuse, and extend a single set of analyses.

In this work, we present Pirate: a Platform for Intermediate Representation-
based Analyses of Tainted Execution. Pirate decouples the tight bond between
the ISA of code under analysis and the additional instrumentation code, and
provides a general taint analysis framework that can be applied to a large number
of ISAs. Pirate leverages QEMU [4] for binary translation, and LLVM [14] as
an intermediate representation within which we can perform our architecture-
independent analyses. We show that our approach is both general enough to
be applied to multiple ISAs, and precise enough to provide the detailed kind
of information expected from a fine-grained dynamic information flow tracking
system. In our approach, we define detailed byte-level information flow models for
29 instructions in the LLVM intermediate representation which gives us coverage
of thousands of instructions that appear in translated guest code. We also apply
these models to complex guest instructions that are implemented in C code.
To the best of our knowledge, this is the first implementation of a binary level
dynamic information flow tracking system that is general enough to be applied
to multiple ISAs without requiring source code.

The contributions of this work are:

– A framework that leverages dynamic binary translation producing LLVM
intermediate representation that enables architecture-independent dynamic
analyses, and a language for precisely expressing information flow of this IR
at the byte level.

– A combined static/dynamic analysis to be applied to the C code of the binary
translator for complex ISA-specific instructions that do not fit within the IR,
enabling the automated analysis and inclusion of these instructions in our
framework.

– An evaluation of our framework for x86, x86 64, and ARM, highlighting
three security-related applications: 1) enforcing information flow policies, 2)



characterizing algorithms by information flow, and 3) diagnosing sources of
state explosion for each ISA.

The rest of this paper is organized as follows. In Section 2, we present back-
ground on information flow tracking. Sections 3 and 4 present the architectural
overview and implementation of Pirate. Section 5 presents our evaluation with
three security-related applications, while Section 6 includes some additional dis-
cussion. We review related work in Section 7, and conclude in Section 8.

2 Background

Dynamic information flow tracking is a dynamic analysis technique where data
is labeled, and subsequently tracked as it flows through a program or system.
Generally data is labeled and tracked at the byte level, but this can also hap-
pen at the bit, word, or even page level, depending on the desired granularity.
The labeling can also occur at varying granularities, where each unit of data is
also accompanied by one bit of data (tracked or not tracked), one byte of data
(accompanied by a small number), or a data structure that tracks additional
information. Tracking additional information is useful for the cases when label
sets are propagated through the system. In order to propagate the flow of data,
major components of the system need a shadow memory to keep track of where
data flows within the system. This includes CPU registers, memory, and in the
case of whole systems, the hard drive also. When information flow tracking is
implemented for binaries at a fine-grained level, this means that propagation
occurs at the level of the ISA where single instructions that result in a flow of
information are instrumented. This instrumentation updates the shadow mem-
ory accordingly when tagged information is propagated.

Information flow tracking can occur at the hardware level [7, 26, 28], or in
software through the use of source-level instrumentation [12, 15, 31], binary in-
strumentation [10, 13, 22], or the use of a whole-system emulator [9, 20, 24]. In
general, hardware-based approaches are faster, but less flexible. Software-based
approaches tend to have higher overheads, but enable more detailed dynamic
analyses. Source-level approaches tend to be both fast and flexible, but are
sometimes impractical when source code is not available. These techniques have
proven to be effective in a wide variety of applications, including detection and
prevention of exploits, malware analysis, debugging assistance, vulnerability dis-
covery, and network protocol reverse engineering.

Due to the popularity of the x86 ISA, and the tight bond of these binary
instrumentation techniques with the ISA under analysis, many of these systems
have been carefully designed to correctly propagate information flow only for
the instructions that are included in x86. This imposes a significant limitation
on dynamic information flow tracking since a significant effort is required to
support additional ISAs. Pirate solves this problem by decoupling this analysis
technique from the underlying ISA, without requiring source code or higher-level
semantics.
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3 System Overview

At a high level, Pirate works as follows. The QEMU binary translator [4] is at
the core of our system. QEMU is a versatile dynamic binary translation platform
that can translate 14 different guest architectures to 9 different host architec-
tures by using its own custom intermediate representation, which is part of the
Tiny Code Generator (TCG). In our approach, we take advantage of this transla-
tion to IR to support information flow tracking for multiple guest architectures.
However, the TCG IR consists of very simple RISC-like instructions, making it
difficult to represent complex ISA-specific instructions. To overcome this limi-
tation, the QEMU authors implement a large number of guest instructions in
helper functions, which are C implementations of these instructions. Each guest
ISA implements hundreds of instructions in helper functions, so we have devised
a mechanism to automatically track information flow to, from, and within these
helper functions.

3.1 Execution and Analysis

We perform dynamic information flow tracking on Linux binaries using the fol-
lowing approach, which is split between execution and analysis. In the execu-
tion phase, we run the program as we normally would under QEMU. We have
augmented the translation process to add an additional translation step, which
translates the TCG IR to the LLVM IR and then executes on the LLVM just-
in-time (JIT) compiler. This translation occurs at the level of basic blocks of
guest code. In Figure 1, we show the process of lowering guest code and helper
function code to the LLVM IR to be used in our analysis.

Figure 2 shows the architecture of our system. Once we have the execution
of guest code captured in the LLVM IR, we can perform our analysis over each
basic block of guest code with custom IR passes we have developed within the
LLVM infrastructure. The first part of our analysis is to derive information flow
operations to be executed on our abstract information flow processor. This is



void glue(helper_pshufw , SUFFIX) (Reg *d, Reg *s, int order){
Reg r;
r.W(0) = s->W(order & 3);
r.W(1) = s->W((order >> 2) & 3);
r.W(2) = s->W((order >> 4) & 3);
r.W(3) = s->W((order >> 6) & 3);
*d = r;

}

Fig. 3. QEMU helper function implementing the pshufw (packed shuffle word) MMX
instruction for x86 and x86 64 ISAs

an automated process that emits information flow operations that we’ve speci-
fied for each LLVM instruction. After deriving the sequence of information flow
operations for a basic block of code, we execute them on the information flow
processor to propagate tags and update the shadow memory. This allows us to
keep our shadow memory updated on the level of a guest basic block. When
we encounter system calls during our processing, we treat I/O-related calls as
sources or sinks of information flow. For example, the read() system call is a
source that we begin tracking information flow on, and a write() system call is
a sink where we may want to be notified if tagged information is written to disk.

3.2 Optimizations

QEMU has a translation block cache mechanism that allows it to keep a copy
of translated guest code, avoiding the overhead of re-translating frequently ex-
ecuted code repeatedly. This optimization permeates to our analysis phase; a
guest basic block that is cached may also be executed repeatedly in the LLVM
JIT, but it only appears once in the LLVM module that we analyze. This opti-
mization in QEMU also provides us the opportunity to cache information flow
operations. As we analyze translated guest code in the representation of basic
blocks that may be cached, we can also perform the derivation of information
flow tracking operations once, and then cache; we refer to these as taint basic
blocks. Once we derive a taint basic block for a guest basic block of code, we
deposit it into our taint basic block cache.

3.3 Static Analysis of QEMU Helper Functions

Since QEMU helper functions perform critical computations on behalf of the
guest, we need to include them in our analysis as well. To do this, we use Clang [1]
to translate helper functions to the LLVM IR. From there, we can use the ex-
act same analysis that we apply to translated guest code to derive information
flow operations. Since this is a static analysis, we can emit the corresponding
information flow operations for each helper function into a persistent cache. Fig-
ure 3 shows the helper function that implements the pshufw MMX instruction.
Automatically analyzing functions like these takes a significant burden off of
developers of information flow tracking systems.



4 Implementation

Next, we present implementation details of Pirate. The implementation con-
sists of several major components: the execution and trace collection engine, the
information flow processor which propagates tagged data, the shadow memory
which maintains tagged data, the analysis engine which performs analysis and in-
strumentation passes over the LLVM IR, and the caching mechanism that caches
information flow operations and reduces overhead. In this paper, we support in-
formation flow tracking for the x86, x86 64, and ARM ISAs on Linux binaries,
but our approach can be extended in a straightforward manner to other ISAs
that are supported by QEMU. Our system is implemented with QEMU 1.0.1
and LLVM 3.0.

4.1 Dynamic Binary Translation to LLVM IR

At the core of our approach is the translation of guest code to an ISA-neutral IR.
Much like a standard compiler, we want to perform our analyses in terms of an
IR, which allows us to decouple from the ISA-specific details. We take advantage
of the fact that QEMU’s dynamic binary translation mechanism translates guest
code to its own custom IR (TCG), but this IR is not robust enough for our
analyses. In order to bridge the gap between guest code translated to the TCG
IR and helper functions implemented in C, we chose to perform our analysis in
the LLVM IR. Since both the TCG and LLVM IR consist of simple RISC-like
instructions, we have a straightforward translation from TCG to LLVM. For
this translation, we leverage the TCG to LLVM translation module included as
part of the S2E framework [8]. LLVM also enables us to easily translate helper
functions to its IR (through the Clang front end), and it provides a rich set of
APIs for us to work with.

By performing information flow tracking in the LLVM IR, we abstract away
the intricate details of each of our target ISAs, leaving us with only 29 RISC-
like instructions that we need to understand in great detail and model correctly
for information flow analysis. These 29 LLVM instructions describe all instruc-
tions that appear in translated QEMU code, and all helper functions that we
currently support. Developing detailed information flow tracking models for this
small set of LLVM instructions that are semantically equivalent to guest code
means that our information flow tracking will also be semantically equivalent.
Additionally, since the system actually executes the translated IR, we can rely
on the correctness of the translation to give us a degree of assurance about the
completeness and correctness of our analysis. While formally verifying the trans-
lation to LLVM IR is out of scope of this work, we assume that this translation
is correct since we can execute programs on the LLVM JIT and obtain correct
outputs.

4.2 Decoupled Execution and Analysis

In Pirate, we decouple the execution and analysis of code in order to give us
flexibility in altering our analyses on a single execution. We capture a compact



Table 1. Information flow operations

Operation Semantics

label(a,l) L(a)← L(a) ∪ l

delete(a) L(a)← ∅
copy(a,b) L(b)← L(a)

compute(a,b,c) L(c)← L(a) ∪ L(b)

insn_start Bookkeeping info

call Begin processing a QEMU helper function

return Return from processing a QEMU helper function

dynamic trace of the execution in the LLVM bitcode format, along with dynamic
values from the execution that include memory access addresses, and branch
targets. We obtain these dynamic values by instrumenting the IR to log every
address of loads and stores, and every branch taken during execution. The code
we capture is in the format of an LLVM bitcode module which consists of a series
of LLVM functions, each corresponding to a basic block of guest code. We also
capture the order in which these functions are executed. Our trace is compact
in the sense that if a basic block is executed multiple times, we only need to
capture it once.

Once we’ve captured an execution, we leverage the LLVM infrastructure to
perform our analysis directly on the LLVM IR. Our analysis is applied in the
form of an LLVM analysis pass, where we specify the set of information flow
operations for each LLVM instruction in the execution. We perform this analysis
at the granularity of a guest basic block, and our analysis emits a taint basic
block. Our abstract information flow processor then processes these taint basic
blocks to update the shadow memory accordingly.

4.3 Shadow Memory, Information Flow Processor

Shadow Memory. Our shadow memory is partitioned into the following seg-
ments: virtual memory, architected registers, and LLVM registers (which includes
multiple calling scopes). The virtual memory portion of the shadow memory
keeps track of information flow through the process based on virtual addresses.
The architected state portion keeps track of general purpose registers, program
counters, and also some special purpose registers (such as MMX and XMM regis-
ters for x86 and x86 64) – this is the only architecture-specific component of our
system. The LLVM shadow registers are how we keep track of information flow
between LLVM IR instructions, which are expressed in static single assignment
form with infinite registers. Currently, our shadow memory models 2,000 ab-
stract registers, which is sufficient for our analysis. We maintain multiple scopes
of abstract LLVM registers in our shadow memory to accommodate the calling of
helper functions, which are explained in more detail in Section 4.5. The shadow
memory is configurable so data can be tracked at the binary level (tagged or
untagged), or positionally with multiple labels per address, which we refer to



as a label set. Since we are modeling the entire address space of a process in
our shadow memory, it is important that we utilize an efficient implementation.
For 32-bit ISAs, our shadow memory of the virtual address space consists of
a two-level structure that maps a directory to tables with tables that map to
pages, similar to x86 virtual addressing. For 64-bit ISAs, we instead use a five-
level structure in order to accommodate the entire 64-bit address space. To save
memory overhead, we only need to allocate shadow guest memory for memory
pages that contain tagged information.

Deriving Information Flow Operations. On our abstract information flow pro-
cessor, we execute information flow operations in order to propagate tags and
update the shadow memory. These operations specify information flow at the
byte level. An address can be a byte in memory, a byte in an architected register,
or a byte in an LLVM abstract register. The set of information flow operations
can be seen in Table 1. Here, we describe them in more detail:

– label: Associate label l with the set of labels that belong to address a.
– delete: Discard the label set associated with address a.
– copy: Copy the label set associated with address a to address b.
– compute: Address c gets the union of the label sets associated with address

a and address b.
– insn_start: Maintains dynamic information for operations. For loads and

stores, a value from the dynamic log is filled in. For branches, a value from
the dynamic log is read to see which branch was taken, and which basic
block of operations needs to be processed next.

– call: Indication to process information flow operations for a QEMU helper
function. Shift information flow processor from caller scope to callee scope,
which has a separate set of shadow LLVM registers. Retrieve information flow
operations from the persistent cache. If the helper function takes arguments,
propagate information flow of arguments from caller scope to callee scope.

– return: Indication that processing of a QEMU helper function is finished.
Shift information flow processor from callee scope to caller scope. If the
helper function returns a value, propagate information flow to shadow return
value register.

The information flow models we’ve developed allow us to derive the sequence
of information flow operations for each LLVM function using our LLVM analysis
pass. In this pass, we iterate over each LLVM instruction and populate a buffer
with the corresponding information flow operations. In Figure 4, we show se-
quences of information flow operations for the LLVM xor and load instructions.

4.4 Caching of Information Flow Tracking Operations

One of the main optimizations that QEMU implements is the translation block
cache which saves the overhead of retranslating guest code to host code for
frequently executed basic blocks. We took a similar approach for our taint basic



LLVM Instruction:

%32 = xor i32 %30, %31;

Information Flow Operations:

compute (%30[0] , %31[0] , %32[0]);
compute (%30[1] , %31[1] , %32[1]);
compute (%30[2] , %31[2] , %32[2]);
compute (%30[3] , %31[3] , %32[3]);

LLVM Instruction:

%7 = load i32* %2;

Information Flow Operations:

// get load address from dynamic
// log , and fill in next
// four operations
insn_start;

// continue processing operations
copy(addr[0], %7[0]);
copy(addr[1], %7[1]);
copy(addr[2], %7[2]);
copy(addr[3], %7[3]);

Fig. 4. Examples of byte-level information flow operations for 32-bit xor and load

LLVM instructions

blocks and developed a caching mechanism to eliminate the need to repeatedly
derive information flow operations. This means we only need to run our pass
once on a basic block, and as long as it is in our cache, we simply process the
information flow operations.

Our caching mechanism works as follows. During our analysis pass, we leave
dynamic values such as memory accesses and taken branches empty, and instead
fill them in at processing time by using our insn_start operation, as illustrated
in Figure 4. In the case of a branch, the insn_start operation tells the informa-
tion flow processor to consult the dynamic log to find which branch was taken,
and continue on to process that taint basic block. This technique enables us to
process cached information flow operations with minor preprocessing to adjust
for dynamic information.

4.5 Analysis and Processing of QEMU Helper Functions

Instrumentation and Analysis. Because important computations are carried out
in helper functions, we need some mechanism to analyze them in a detailed,
correct way. Because there are hundreds of helper functions in QEMU, this
process needs to be automated. We have modified the QEMU build process to
automatically derive information flow operations for a subset of QEMU helper
functions, and save them to a persistent cache. Here, we describe that process
in more detail:

1. Translate helper function C code to LLVM IR using Clang.
The Clang compiler [1], which is a C front end for the LLVM infrastructure,
has an option to emit a LLVM bitcode file for a compilation unit. We have
modified the QEMU build process to do this for compilation units which
contain helper functions we are interested in analyzing.

2. Run our LLVM function analysis pass on the helper function LLVM.
Once we have helper function code in the LLVM format, we can compute



information flow operations using the same LLVM analysis pass that we have
developed for use on QEMU translated code.

3. Instrument the LLVM IR to populate the dynamic log.
In order for us to perform our analysis on the helper function LLVM, we need
this code to populate the dynamic log with load, store, and branch values.
We have developed a simple code transformation pass that instruments the
helper function IR with this logging functionality.

4. Emit information flow operations into a persistent cache.
Helper function information flow operations can be emitted into a persistent
cache because they are static, and because runtime overhead will be reduced
by performing these computations at compile time. This cache is now another
by-product of the QEMU build process.

5. Compile and link the instrumented LLVM.
Since the instrumented IR should populate the dynamic log during the trace
collection, we create an object file that can be linked into QEMU. Again, we
can use Clang to translate our instrumented LLVM bitcode into an object
file, and then link that file into the QEMU executable during the QEMU
build process.

Processing. Integration of helper function analysis into Pirate works as follows.
During analysis of QEMU generated code, we see a call to a helper function,
arguments (in terms of LLVM registers, if any), and return value (in terms of
a LLVM register, if any). When we see a call instruction in our analysis pass
on translated code, we propagate the information flow of the arguments to the
callee’s scope of LLVM registers, if necessary. For example, assume in the caller’s
scope that there is a call to foo() with values %29 and %30 as arguments. In the
scope of the helper function, the arguments will be in values %0 and %1. So the
information flow of each argument gets copied to the callee’s scope, similar to
how arguments are passed to a new scope on a stack. We then insert our call
operation, which tells the information flow processor which function to process,
and the pointer to the set of corresponding taint operations that are in the cache.
The information flow processor then processes those operations until return. On
return, a helper function may or may not return a value to the previous scope.
For return, we emit a return operation to indicate that we are returning to the
caller’s scope. If a value is returned, then its information will be present in the
LLVM return value register in our shadow memory so if there are any tags on
that value, they will be propagated back to the caller’s scope correctly.

5 Evaluation

In our evaluation, we show that Pirate is decoupled from a specific ISA, bring-
ing the utility of information flow tracking to software developers and analysts
regardless of the underlying ISA they are targeting. We demonstrate the fol-
lowing three applications for x86, x86 64, and ARM: enforcing information flow
policies, algorithm characterization, and state explosion characterization. We



Table 2. Functions which operate on tagged data

Program x86 x86 64 ARM

Hello World 10/104 (9.62%) 11/93 (11.83%) 10/100 (10.00%)

Gzip Compress 17/150 (11.33%) 15/147 (10.20%) 17/150 (11.33%)

Bzip2 Compress 16/167 (9.58%) 16/153 (10.46%) 17/165 (10.30%)

Tar Archive 2/391 (0.51%) 2/372 (0.54%) 2/361 (0.55%)

OpenSSL AES Encrypt 8/674 (1.19%) 7/655 (1.07%) 7/671 (1.04%)

OpenSSL RC4 Encrypt 4/672 (0.59%) 4/653 (0.61%) 5/679 (0.73%)

Kernighan-Lin Graph Partition 29/132 (21.97%) 63/122 (51.64%) 32/134 (23.88%)

performed our evaluation on Ubuntu 64-bit Linux 3.2, and in each case, we
compiled programs with GCC 4.6 with default options for each program.

5.1 Enforcing Information Flow Policies

One important application of dynamic information flow tracking is to define
information flow policies for applications, and ensure that they are enforced
within the application. For example, one may define a policy that a certain subset
of program data is not allowed to be sent out over the network, or that user-
provided data may not be allowed to be passed to security-sensitive functions.
A universal information flow policy that most programs enforce is that user-
provided data may not be used to overwrite the program counter. However,
there is a lack of information flow tracking systems that support embedded
systems employing ARM, MIPS, PowerPC, and even x86 64, so defining and
verifying these policies without modifying source code is difficult or impossible
with existing information flow tracking systems.

Our system enables software developers to define and enforce these informa-
tion flow policies, regardless of the ISA they are developing for. In one set of
experiments, we carried out a buffer overflow exploit for a vulnerable program
and our system was able to tell us exactly which bytes from our input were
overwriting the program counter for x86, x86 64, and ARM.

In addition to telling the developer where in the program these information
flow policies are violated, Pirate can also tell the developer each function in
the program where tagged data flows. This can assist the developer in identify-
ing parts of the program that operate directly on user input so they can more
clearly identify where to focus when ensuring the security of their program. In
Table 2, we present results for the ratio of functions in several programs that
operate on tagged data. These ratios indicate the percentage of functions in the
program that operate on tagged data compared with every function executed
in the dynamic trace. For most of the programs we evaluated, these ratios are
under 25%. The exception is KL graph partition for x86 64, which shows effects
of state explosion. This is addressed in more detail in Section 5.3.

With this enhanced security capability, software developers can more easily
identify parts of their programs that may be more prone to attacks. This ca-
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Fig. 5. AES CBC mode input/output dependency graphs

pability can also be used in the context of vulnerability discovery when source
code isn’t available in binaries compiled for different ISAs.

5.2 Algorithm Characterization

Recent work has shown that dynamic analysis techniques such as information
flow tracking can help malware analysts better understand the obfuscation tech-
niques employed by malware [6, 17]. However, these approaches suffer the same
limitations as other systems, where they are tightly-coupled with a single ISA
(x86). As embedded systems are becoming increasingly relevant in the security
community, it is becoming more desirable for analysts to leverage the power of
dynamic information flow tracking for these embedded ISAs.

Here, we highlight the capability of our system to characterize encryption
algorithms based on input/output dependency graphs. We generate these graphs
by positionally labeling each byte in the buffer after the read() system call, and
tracking how each byte of the input is propagated through the encryption algo-
rithm. By subsequently interposing on the write() system call, we can inspect
each byte in the buffer to see the set of input bytes that influences each output
byte. For these experiments, we chose OpenSSL 1.0.1c [2] as a test suite for two
modes of AES block cipher encryption, and RC4 stream cipher encryption for
x86, x86 64, and ARM. The OpenSSL suite is ideal for demonstrating our capa-
bility because most of the encryption algorithms have both C implementations
and optimized handwritten assembly implementations.

AES, Cipher Block Chaining Mode. AES (Advanced Encryption Standard) is
a block encryption algorithm that operates on blocks of 128 bits of data, and
allows for key sizes of 128, 192, and 256 bits [25]. As there are a variety of



encryption modes for AES, cipher block chaining mode (CBC) is one of the
stronger modes. In CBC encryption, a block of plaintext is encrypted, and then
the resulting ciphertext is passed through an exclusive-or operation with the
subsequent block of plaintext before that plaintext is passed through the block
cipher. Inversely, in CBC decryption, a block of ciphertext is decrypted, and then
passed through an exclusive-or operation with the previous block of ciphertext
in order to retrieve the plaintext.

Figure 5 shows our input/output dependency graphs for AES encryption
and decryption. In these figures, we can visualize several main characteristics of
the AES CBC cipher: the block size (16 bytes), and the encryption mode. In
Figure 5(a), the first block of encrypted data is literally displayed as a block
indicating complicated dependencies between the first 16 bytes. We see the
chaining pattern as each subsequent block depends on all blocks before it in
the dependency graph. In Figure 5(b), we can see that each value in the output
is dependent on the second eight bytes in the input; this corresponds to the
salt value, which is an element of randomness that is included as a part of the
encrypted file. We can also see the chaining dependency characteristic of CBC
decryption, where each block of ciphertext is decrypted, and then passed through
an exclusive-or operation with the previous block of ciphertext. This series of
exclusive-or operations is manifested as the diagonal line in Figure 5(b). With
Pirate, we were able to generate equivalent dependency graphs for x86, x86 64,
and ARM, for both handwritten and C implementations.

This result highlights the versatility of our approach based on the wide vari-
ety of implementations of AES in OpenSSL. In particular, the x86 handwritten
version is implemented using instructions from the MMX SIMD instruction set.
Our automated approach for deriving information flow operations for these ad-
vanced instructions allows us to support these instructions without the manual
effort that other systems require.

AES, Electronic Code Book Mode. Electronic Code Book (ECB) mode is similar
to CBC mode, except that it performs block-by-block encryption without the
exclusive-or chaining of CBC mode [25]. The input/output dependency graphs
we’ve generated to characterize this algorithm can be seen in Figure 6. Here,
we see that our system can accurately tell us the block size and the encryption
mode, without the chaining dependencies from the previous figures. We again
see the dependence on the bytes containing the salt value in Figure 6(b).

For AES in ECB mode, we were able to generate equivalent dependency
graphs for each ISA (x86, x86 64, and ARM) and implementation (handwritten
and C implementation), with the exception of the ARM C implementation for
decryption, and the x86 handwritten assembly implementation for encryption. In
these exceptional cases, we see a similar input/output dependency graph with
some additional apparent data dependence. This highlights a design decision
of our system, where we over-approximate information flow transfer of certain
LLVM instructions in order to prevent the incorrect loss of tagged informa-
tion. This over-approximation can manifest itself as additional information flow
spread, but we’ve made the decision that it is better to be conservative rather
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Fig. 6. AES ECB mode input/output dependency graphs

than miss an exploit, especially in the context of security-critical applications of
this system.

RC4. RC4 is a stream cipher where encryption occurs through byte-by-byte
exclusive-or operations. The algorithm maintains a 256 byte state that is initial-
ized by the symmetric key [25]. Throughout the encryption, bytes in the state
are swapped pseudo-randomly to derive the next byte of the state to be passed
through an exclusive-or operation with the next byte of the plaintext.

The input/output dependency graphs for RC4 encryption can be seen in
Figure 7. Since we only track information flow of the input data and not the key,
we can see from these figures that there is a linear dependence from input to
output, based on the series of exclusive-or operations that occur for each byte in
the file. As with the previous figures for decryption, we can see the dependence
on the salt value that is in the beginning of the encrypted file in Figure 7(b). For
RC4 encryption and decryption, we were able to generate equivalent dependency
graphs for encryption and decryption for each ISA (x86, x86 64, and ARM)
and implementation (handwritten and C implementation) with the exception of
x86 64 encryption and decryption handwritten implementations. For these cases,
we see an equivalent dependency with additional information, again due to the
conservative approach we take in terms of information flow tracking.

5.3 Diagnosing State Explosion

One limitation of information flow tracking systems is that they are subject to
state explosion where tagged data spreads (i.e., grows) uncontrollably, increasing
the amount of data that needs to be tracked as it flows through the system. This
is especially true when pointers are tracked in the same way as data [23]. Despite
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Fig. 7. RC4 input/output dependency graphs

this limitation, it is necessary to track pointers to detect and prevent certain
kinds of attacks, such as those involved in read or write overflows but where
no control flow divergence occurs [7], or those that log keyboard input which is
passed through lookup tables [9]. In Pirate, we’ve implemented tagged pointer
tracking as a configurable option. When this option is turned on, we propagate
information for loads and stores not only from the addresses that are accessed,
but also from the values that have been used to calculate those addresses. Pirate
allows us to evaluate the effects of state explosion between CISC and RISC ISAs
since we support x86, x86 64, and ARM. It also allows us to evaluate the rate of
state explosion for different software implementations of the same application.

To perform this evaluation, we’ve experimentally measured the amount of
tagged information throughout executions of four programs that make exten-
sive use of pointer manipulations with our tagged pointer tracking turned on.
These programs are bzip2, gzip, AES CBC encryption, and the Kernighan-Lin
(KL) graph partitioning tool (obtained from the pointer-intensive benchmark
suite [3]). The bzip2 and gzip programs make extensive use of pointers in their
compression algorithms. Part of the AES encryption algorithm requires lookups
into a static table, known as the S-box. For these three programs, tagged pointer
tracking is required to accurately track information flow through the program,
or else this tagged information is lost due to the indirect memory accesses that
occur through pointer and array arithmetic and table lookups. In addition, the
KL algorithm implementation utilizes data structures like arrays and linked lists
extensively for graph representation.

The measurements of information spread for pointer-intensive workloads can
be seen in Figure 8 for x86, x86 64, and ARM. Figures 8(a), 8(b), and 8(c) show
similar results for each ISA in terms of the number of tagged bytes in memory,
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Fig. 8. Tagged information spread throughout execution

but we can see offsets in instruction counts that highlights one of the differences
of these CISC vs. RISC implementations. Figures 8(a) and 8(b) show the results
of compressing the same file, which was approximately 300 bytes. These figures
show the extent of information spread for these workloads; the peak number of
tagged bytes reaches 14x the original file size for bzip2 on average across each
ISA, and 6x the original file size for gzip on average across each ISA. For bzip2,
the drastic growth in tagged data occurs as soon as the block sorting starts in
the algorithm. For gzip, there is a more gradual increase in tagged data as soon
as the compression function begins compressing the data. These patterns are
indicative of the complex manipulations that are made on files as the tagged
data flows through these compression algorithms. On the contrary, while many
complex manipulations occur on files through AES encryption, Figure 8(c) shows
that the amount of tagged data increases just over 2x for each ISA. Overall, these
three pointer-intensive algorithms show similar patterns of state explosion for
information flow tracking, regardless of the underlying ISAs that we’ve evaluated.

Figure 8(d) on the other hand shows major discrepancies in the amount of
tagged information across the various ISAs. For this experiment, we processed
a file of size 1260 bytes. For x86 and ARM, we can see an initial increase of
tagged information followed by a gradual increase up to a maximum of 1.5x



and 4.1x the original tagged data, respectively. For x86 64, it is clear that a
form of state explosion occurs causing the amount of tagged information to
spread dramatically, reaching 11x the amount of original tagged data. Looking
more closely at the x86 64 instance, we found that this initial explosion occurs
inside of C library functions. One reason for this state explosion is that tagged
data propagated to a global variable or base pointer, resulting in subsequent
propagation with every access of that variable or base pointer. The fact that
this explosion occurs inside of the C library implementation explains why we see
the discrepancies across ISAs.

6 Discussion

Currently, our system provides the capability to perform dynamic information
flow tracking for several of the major ISAs supported by the QEMU binary
translator. It is straightforward to support more of these ISAs since we already
have the ability to translate from the TCG IR to the LLVM IR. Additional work
required for this involves properly tracking changes to CPU state (architecture-
specific general purpose registers), and modeling those registers in the shadow
memory. We plan to support more of the ISAs included in QEMU as future
work.

We also plan to extend our decoupled execution and analysis approach to
work with systems at runtime. This will enable us to perform dynamic detection
and prevention of exploits, as well as other active defenses. Additionally, having
a runtime system will allow us to perform a detailed performance evaluation,
identify major sources of overhead, and optimize accordingly. Developing opti-
mization passes over information flow operations is one way that we hope will
help to improve performance.

One limitation of the QEMU user mode emulator is that there is limited
support for multi-threaded programs. To deal with this, we plan to extend our
system to support the QEMU whole-system emulator. With this enhancement,
we will have the ability to perform detailed security analyses for entire operating
systems, regardless of the ISA that they are compiled to run on. This will en-
able studies in the area of operating system security, including exploit detection
and vulnerability discovery. Our architecture-independent approach will allow
us to perform important analyses for embedded systems ISAs, where support
for dynamic information flow tracking is limited.

7 Related Work

Dynamic information flow tracking has been shown to have a wide variety of real
world applications, including the detection and prevention of exploits for binary
programs [7, 20, 31] and web applications [27]. Applications to malware analysis
include botnet protocol reverse engineering [6, 30], and identifying cryptographic
primitives in malware [17]. For debugging and testing assistance, dynamic infor-
mation flow tracking can be used to visualize where information flows in complex



systems [18], or to improve code coverage during testing [15]. Additionally, this
technique can be used for automated software vulnerability discovery [12, 29].

Information flow tracking has been implemented in a variety of ways, includ-
ing at the hardware level [26, 28], in software through the use of source-level
instrumentation [12, 15, 31], binary instrumentation [10, 13, 22], or the use of a
whole-system emulator [9, 20, 24]. Additionally, it can also be implemented at
the Java VM layer [11]. Between all of these different implementations, the most
practical approach for analyzing real-world software (malicious and benign) when
source code is not available is to perform information flow tracking at the binary
level. Pirate is the first information flow tracking system that operates at the
binary level, supports multiple ISAs, and can be extended in a straightforward
manner to at least a dozen ISAs.

Existing systems that are the most similar to ours are Argos [20], Bit-
Blaze [24], Dytan [10], and Libdft [13]. These systems have contributed to signifi-
cant results in the area of dynamic information flow tracking. Argos and BitBlaze
are implemented with QEMU [4], while Dytan and Libdft are implemented with
Pin [16]. Even though QEMU and Pin support multiple guest ISAs, each of
these information flow tracking systems are tightly coupled with x86, limiting
their applicability to other ISAs.

Intermediate representations have been shown to be useful not only in compil-
ers, but also in software analyses. Valgrind [19] employs an intermediate represen-
tation, but it is also limited to user-level programs which would prevent us from
extending our work to entire operating systems. Valgrind also employs a shadow
memory, but no tools exist that perform information flow tracking with the detail
that we do in an architecture-neutral way. BAP [5] defines an intermediate rep-
resentation for software analysis, but that system currently can only analyze x86
and ARM programs, and it doesn’t have x86 64 support. CodeSurfer/x86 [21]
shows how x86 binaries can be statically lifted to an intermediate representation
enabling various static analyses on x86 binaries.

8 Conclusion

In this paper, we have presented Pirate, an architecture-independent informa-
tion flow tracking framework that enables dynamic information flow tracking
at the binary level for several different ISAs. In addition, our combined static
and dynamic analysis of helper function C code enables us to track information
that flows through these complex instructions for each ISA. Pirate enables us
to decouple all of the useful applications of dynamic information flow tracking
from specific ISAs without requiring source code of the programs we are inter-
ested in analyzing. To demonstrate the utility of our system, we have applied
it in three security-related contexts; enforcing information flow policies, charac-
terizing algorithms, and diagnosing sources of state explosion. Using Pirate,
we can continue to build on the usefulness of dynamic information flow tracking
by bringing these security applications to a multitude of ISAs without requiring



extensive domain knowledge of each ISA, and without the extensive implemen-
tation time required to support each ISA.
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