
An Expectation Maximization Approach to Detecting Compromised Remote
Access Accounts

Kevin Gold, Ben Priest, and Kevin M. Carter
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420

Abstract

We present a method for detecting when a user’s remote ac-
cess account has been compromised in such a way that an
attacker model can be learned during operations. A Naive
Bayes model is built for each user that stores the likelihood
for each remote session based on a variety of features avail-
able in the access logs. During operation, we leverage Ex-
pectation Maximization on new data to update both the user
and attacker models, based on the likelihood of the observed
session, and perform a model comparison to test for compro-
mise. The system scales linearly with the number of users
in computation and memory. We present experimental results
on a medium-sized enterprise network of over two thousand
users, performing “masquerade detection” in which the activ-
ity of one user is discovered within another user’s logs.

Introduction
Just as credit-card companies are able to detect aberrant
transactions on a customer’s credit card, it would be use-
ful to have methods that could automatically detect when a
user’s login credentials for Virtual Private Network (VPN)
access have been compromised. A compromised VPN ac-
count is dangerous because it allows an adversary to slip past
the network firewall, allowing remote adversaries to attack
the network as if they were insiders. In cases where standard
methods such as physical tokens have been compromised –
as in the recent RSA security breach (Coviello 2012) – it can
be useful to have tools that determine the likelihood that an
account has been compromised based on its activity alone.
We present here a novel method for detecting that a VPN ac-
count has been compromised, in a manner that bootstraps a
model of the second unauthorized user. Since we do not have
records of actual breaches, we model the problem as deter-
mining when a user’s activity logs have been mixed with the
logs of another user.

Several challenges lie in the way of using machine learn-
ing to detect account compromise (Sommer and Paxson
2010). First, security professionals expect an extremely low
false positive rate from any practical network security tool
– hence the popularity of “whitelist” and “blacklist” ap-
proaches, which do not generalize well. When scaled to an
enterprise of two thousand users, a 1% daily false alarm rate

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by user translates to 20 false alarms a day, resulting in a tool
that will soon be ignored.

Second, when an account is compromised, compromised
logins are typically sparse and mixed with good behavior,
in such a way that an algorithm or human operator may
miss bad behavior amongst the preponderance of good lo-
gins. The Expectation Maximization (EM) approach pre-
sented here handles this problem by treating the compro-
mised model as a two-user model, in which sessions may
either be produced by the original user or a new user; the
particular approach used here causes benign sessions to fall
out of the likelihood calculations, so that they do not sway
a mix of good and bad sessions toward being evaluated as
good overall. (We define a “session” as a successful login
that ends with either logout or timeout, and a “bad” session
is any session in which the user logging in is not the person
to whom the account belongs.)

Third, it is easy to detect the presence of threats from
known malicious sources, but difficult to defend against new
threats. Researchers studying “masquerade detection,” or the
detection of one user on another user’s account, can use an
agglomeration of the other users in the training set as an at-
tacker model, then test whether the injection of a specific
user’s activity can be detected using such a model (Maxion
and Townsend 2002; Maxion 2003); but this is a much easier
problem than detecting attackers from novel sources, about
whom nothing is known a priori. We tackle a harder problem
than this prior work by not allowing attacker information to
leak into the training data.

Fourth, machine learning algorithms typically assume
draws of features from a static distribution, but attackers
can change their behavior to emulate good users. Ideally,
anomaly detection methods should make it difficult to evade
detection even when the algorithm is known to the adver-
sary. Our model makes it difficult for an attacker to emulate
a user because doing so would increase the likelihood that
an attacker logs in at the same time as the target user, which
itself triggers an alarm in the model.

Fifth, rarely is the question of scalability addressed in
machine learning applied to masquerade detection; tests on
small samples of users can not only hide the intractability
of an algorithm at large scales, but can also fool researchers
into overfitting their models to their data.

This is not only the first published study of masquerade

detection for VPN, but to our knowledge it is also the first
work using the masquerade detection methodology run on a
user base in the thousands, with machine learning and ex-
perimentation methodologies that scale to this number of
users. It is the first paper to suggest and implement the EM
methodology for extracting attacker models from test data,
in a way that bootstraps both the attacker model and the
compromised sessions. We evaluate the contributions of the
features that can be used to identify users, itself a novel con-
tribution that can aid the design of future login compromise
detection schemes. And finally, we report results in a practi-
cal sub-1% false positive range.

Related Work
Statistical intrusion detection was introduced as a subject of
inquiry in (Denning 1987), which suggested using Cheby-
shev bounds that detected when user statistics fell outside
a standard operating range. “Masquerade detection,” or de-
tecting when one user’s data had been substituted for an-
other, was introduced in (Schonlau et al. 2001) as a proxy
for intrusion detection, with a focus on characterizing users
by command line activity. We follow a variant of the mas-
querade detection evaluation methodology established in
(Schonlau et al. 2001), using real users’ activity logs as a
proxy for attacker compromise.

Probabilistic methods have been used with some suc-
cess in other masquerade detection and anomaly detec-
tion domains, such as command line masquerade detection
(Schonlau et al. 2001; Yeung and Ding 2003; Maxion and
Townsend 2002; Maxion 2003), web behavior anomaly de-
tection (Xie and Yu 2006), and traffic anomaly detection
(Min and Shun-Zheng 2006). In many domains, a common
approach is to treat the sequence of observed behavior as a
Markov model or hidden Markov model, in which a given
event’s properties are conditioned on the previous event in
the sequence (Schonlau et al. 2001; Min and Shun-Zheng
2006; Xie and Yu 2006). Expectation Maximization (Demp-
ster, Laird, and Rubin 1977) is a general strategy for boot-
strapping model parameters in a variety of model structures,
though our particular application of it is novel.

Our idea of using Autonomous System Numbers (ASNs)
to generalize across user IP addresses for masquerade detec-
tion is from (Borders and Oehler 2012). Overlap and session
length have been found to be useful in other fraud detection
schemes (Bolton and Hand 2002).

Algorithm
The method consists of performing Expectation Maximiza-
tion (EM) on a set of untrustworthy data to pull out the most
likely two-user model, where the user models are Naive
Bayes models, as well as probabilities that each session be-
longs to each user. The likelihood of this two-user model is
then compared to the likelihood of a single-user model. We
shall go into detail about the Naive Bayes features used first,
then describe the EM process.

Naive Bayes Features
Time of day and day of the week: We bin time by hour
and estimate P (Hour|User) and P (Day|User) by simply

counting occurrences in the data, following “Laplace’s Law”
of adding one for smoothing (Manning and Schütze 1999).

Overlap probabilities: VPN sessions that overlap are
rare enough in the data to be a reasonably reliable signal of
compromise. Like the time of day and day of week, we can
estimate the probability of detecting an overlapping session
from a user by counting how often it occurs in the training
data, adding one, and dividing by N + 1, where N is the
number of sessions in the training data. This is almost al-
ways simply 1/(N + 1).

Bytes read: Inspection of the distribution of individual
users’ “bytes read” for a session revealed an exponential-
like distribution, with many values near 0 and a decreasing
probability of session sizes thereafter, with some outliers in
the tens of gigabytes. We model this with an exponential dis-
tribution of mean 1/λ, and take the cumulative distribution
function (CDF) to the right the number of bytes b, e−bλ, to
be the likelihood of the feature for a session. In other words,
our feature is having “at least as many” bytes as what is ob-
served, so that we alarm on bytes read that are extreme, and
have a likelihood of 1 for this feature when the observed
bytes read are close to 0. The CDF is floored at ε = 10−10

to avoid having outliers dominate the likelihood calculation.
Each distribution is initialized with one pseudovalue corre-
sponding to 1 megabyte.

IP address and ASN: A user’s ISP may assign a differ-
ent IP address to a user on a regular basis; however, users
logging in from home are likely to be coming from the same
Autonomous System, a subnetwork that can be determined
by looking up the IP address in a database. We used the pub-
licly available MaxMind1 database to determine which Au-
tonomous Systems own which blocks of IP addresses.

We model IP address as conditionally dependent on ASN
in the following manner. For each user U , we first calculate
P (ASN |U) using the IP addresses in the user’s training data
and a lookup table; “unknown” is treated as a special ASN.

We also reserve some probability mass α for unseen
ASNs that increases with the number of ASNs observed
from a user, and maintain separate estimates for the prob-
ability that a new ASN is seen depending on whether it
is in the same geographic region – in the United States,
the same state – as the enterprise location. (This is ob-
tainable from the “region” field of the Maxmind database.)
P (ASN = “new in-state”) = α = γ|A| + ε, with |A|
the number of unique ASNs seen from within the same
geographic state and smoothing parameter γ = 0.01, and
P (ASN = “new out-of-state”) = β = γ|B| + ε, where
|B| is the number of unique out-of-state or unidentifiable
ASNs seen for this user. (The epsilons create a very small but
nonzero likelihood if the user has never been out-of-state, or
more rarely, never in-state.) Then

P (ASN = aj |User) =

|ASN=aj |

α+β+
∑

i |ASN=ai| if aj ∈ A,
α

α+β+
∑

i |ASN=ai| if new local ASN,
β

α+β+
∑

i |ASN=ai|otherwise.
(1)

1http://www.maxmind.com/

Given an ASN, the frequency with which an ASN as-
signs a particular IP address can be used to calculate
P (IP |ASN,U) for each IP address in the training data.
Like ASN, a small probability mass within each ASN is re-
served for unseen IP addresses from the same ASN, and this
probability mass β = γ|Ia| is proportional to the total num-
ber of unique IP addresses Ia that the ASN a has assigned
to the user. Let a(s) be the ASN produced on IP address s
on lookup, while A remains the set of unique ASNs.

P (IP = s|ASN = a) =

{ |IP=s|
|ASN=a(s)|+γ|a(s)| if s ∈ Ia,
γ|a(s)|

|ASN=a(s)| if s /∈ Ia.
(2)

The total contribution from these features to a Naive
Bayes calculation of likelihood is then

P (IP = s) = P (IP |ASN = a(s))P (ASN = a(s)) (3)

with conditioning on the user implicit.

Naive Bayes summary
The probability of a session being produced by a particu-
lar user U is proportional to the product of the probabilities
described above:

P (U) ∝ P (A)P (I|A)P (D)P (H)P (O)P (S) (4)

where A is the ASN, I is the IP address, D is the day of
the week,H is the hour of day,O is boolean overlap feature,
and S is the size of the data, and the features are conditioned
in the usual manner on the identity of the user.

Expectation Maximization
Given the framework established above, we could perform
direct comparisons on sessions to determine which user is
more likely to have generated them – but our target use case
is identifying when a novel user has injected sessions into
a benign user’s activity pattern. The following method uses
Expectation Maximization to infer the probability that each
session is compromised from the session features. The pro-
cedure alternates between estimating user and attacker pa-
rameters, and re-estimating the likelihood that each session
is compromised. The resulting two-user model is then com-
pared in likelihood to the single-user model (Figure 1).

We wish to decide whether a sequence of session activ-
ity contains injected activity from a different user from the
account’s intended user. Let P (Bt) denote the probability
that session t in the data is “bad” – that is, it belongs to a
different user from the one we trained on for this account.
We initialize P (Bt) = 0.1 for all sessions in the unlabeled
test data, while P (Bt) = 0 implicitly for all sessions in the
training data.

Now we re-estimate the original user’s model and also
create an attacker model, using P (Gt) = 1 − P (Bt) as a
weight on the new data for the “good” user and P (Bt) as
the weight for the attacker model. In the Naive Bayes calcu-
lations, all event counts become weighted sums, where the

E

M

Figure 1: EM bootstraps and “clarifies” the attacker model at
runtime by alternating between the E and M steps. E step. A
user and attacker model are inferred from the user’s training
data (left) and sessions of uncertain trustworthiness (right),
producing a revised user model and a new attacker model. M
step. Probability of compromise is revised for each session
based on the new models.

weights are the probabilities of session trustworthiness. We
use the notation PB(X) as shorthand for P (X|Attacker),
with X an arbitrary variable. The weighted equations are:

PB(Hour = h) =
1 +

∑
t:Hour=hBt

24 +
∑
tBt

(5)

PB(ASN = a) =

∑
t:ASN=aBt

α+ β +
∑
tBt

(6)

The equations are similar for IP address, day, bytes read,
and overlaps: observations are weighted by the likelihood
they belong to the attacker, and the smoothing parameters
remain calculated in the same manner as the unweighted
case. The counts of unique IP addresses per ASN |Ia| and
ASNs |A| for the attacker are over the sessions such that
P (Bt) > ε. The user’s model is also updated in the same
way, treating the weights on the training data as 1 and the
weights on the novel test data as 1− P (Bt).

With a new attacker and defender model, the likelihood
of each novel session belonging to one or the other classifi-
cation can be recalculated. The session likelihood is calcu-
lated for the attacker model and the defender model for each
session, using the Naive Bayes features and a prior P (B)
estimated from the test data:

P (B) =

∑
tBt
T

(7)

Here, T is the number of sessions in the test sequence. The
probability of a given session being compromised is then:

P (Bt) ∝ P (B)`B(t) (8)

where `B(t) is the likelihood of the data according to the
attacker’s inferred Naive Bayes model. A similar calculation
is made for the original user to calculate likelihood `G(t),
and the two probabilities are scaled to sum to 1:

P (Bt) =
P (B)`B(t)

P (B)`B(t) + (1− P (B))`G(t)
(9)

This process is repeated for each session in the test se-
quence.

This process can now be repeated: the new likelihoods are
used to reweight the data, and the models are again retrained.
The retrained models are used to estimate the likelihood that
each session is compromised, and so on. Each EM pass gen-
erally increases the log likelihood of the test sequence until
convergence.

The likelihood of each session under this two user model
is the weighted sum of its likelihood given the session is
benign, and its likelihood given the session is compromised:

`compt = Bt`B(t) + (1−Bt)`G(t) (10)
The log likelihood of the sequence is then the sum of the

individual log likelihoods:

log `comp1...T =
∑
t

log `compt (11)

This likelihood calculation serves two purposes. First, if
the log likelihood compared to the last EM iteration is ei-
ther worse or within a small threshold (we used 1.0) of the
last log likelihood, iteration has converged and the EM pro-
cess stops. Second, this log likelihood can be used as the
overall likelihood of the hypothesis that there exists some
compromised data within the sequence. This can then be
compared to the null hypothesis log likelihood, log `null =∑
t log `nullt , which is simply the log likelihood under the

assumption that only the benign user is producing the data,
with an alarm raised if the log likelihood is greater by more
than a threshold.

Key to the success of the method is the fact that the com-
ponents of `comp that have a very high probability of being
benign are also terms in `null. If EM has assigned probabil-
ities PG(t) close to 1 to the clearly benign sessions, those
sessions will drop out of the equation, leaving the terms cor-
responding to the sessions with a non-negligible chance of
being compromised. As mentioned in the introduction, this
prevents a situation in which large amounts of benign user
activity could conceal a few malicious logins, which would
occur for most Markov methods. If (10) were instead simply
`compt = `B(t), a compromised sequence with many benign
sessions would overall produce a lower log likelihood for the
benign model than the attacker model.

Though the idea of iterating until convergence as a test
procedure may seem alarming, in practice, this usually re-
quires no more than a few passes and a few milliseconds on
commodity hardware.

Complexity
Each EM pass, including initial training, requires only
counting, hashing, and database lookups for each session,
and the number of passes required can be bounded by a
low constant without loss of performance (the expectation
is roughly 5). Running the analysis on the full user base is
therefore O(US), where U is the number of users and S
is the maximum number of sessions. We point out that the
problem is itself Ω(US) if the administrator wishes to check
each user and each session for evidence of compromise, so
our algorithm is tight at Θ(US).

The memory required for the algorithm is also O(US),
which is not tight, and there is probably room for improve-
ment in the information sharing between user models. How-
ever, space was not particularly an issue in practice – the
Java implementation ran at default memory settings, with
the user model IP/ASN hash tables requiring only 20-30 en-
tries in the usual case.

Rules
Besides the Naive Bayes approach, we evaluate the contri-
bution of two rules that an operator might naturally impose
to solve the problem. If the test data contains only known
IPs for a user in the sequence, it is considered benign (the
“whitelist” rule); and if the data contains an overlap, it is as-
sumed that a compromise exists in the sequence (the “over-
lap” rule). Note that the second rule does not make the con-
tribution of the overlap feature irrelevant, because the ab-
sence of overlap can provide some evidence that a session
or sequence of sessions is good.

These rules naturally exclude certain compromise cases
from analysis altogether, but not unreasonably. The whitelist
prohibits the algorithm from detecting logins from a trusted
machine that is compromised – but if a user’s machine is
compromised, even a normal login will expose the network,
and intrusion detection is beside the point. The “no overlaps”
rule requires enforcing a policy from normal users that no
more than one machine can VPN in at a time, but this seems
a minor annoyance in exchange for a heuristic that can weed
out many compromise cases.

Experiment: Masquerade
Methodology
The following experiment used a corpus of VPN log mes-
sages for all 2197 VPN users of an enterprise environ-
ment from June 14, 2011 to May 3, 2012. The experiment
was run on a single processor of an Intel Xeon X5675
CPU (3.07GHz). The logs contained data from 20 different
time zones, reflecting the diversity of remote locations from
which users could log in; these were a mix of employees
permanently working remotely and employees traveling. A
sliding window of 261 training days followed by 7 test days
was run for each of 64 runs of the experiment.

We used Hadoop2 to parallelize the regular-expression-
based parsing that turned hundreds of thousands of VPN
event messages into Accumulo3 tables of event descriptions,
indexed by user id. Once the data had been ingested in this
way, it was small enough to run on a single machine.

For each run, the first 100 users in the database with at
least five logins during the test week were selected to em-
ulate “intruders” in the other users’ data. All users with at
least one login during the training period and at least one
login during the test week were used as benign users. 100
mixed logs were created for each benign user by taking the
union of the events recorded for the original user and the
“intruder.” The mixed logs did not necessarily contain any

2http://hadoop.apache.org/
3http://accumulo.apache.org/

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

ROC Curve, Week

False Alarm Probability

D
e

te
c
ti
o

n
 P

ro
b

a
b

ili
ty

normal method
no bytes
no EM
no IP
no overlaps
no rules
no time

Figure 2: Average true and false alarm rates for the 0-5%
false alarm range when detecting injected user activity over a
week, compared to performance of the method with various
features or steps omitted.

sessions that directly overlapped; in fact, this was relatively
uncommon, since most logs were sparse. The EM procedure
described above was then performed on each artificial test
log, using the trained model for the original user, to calculate
an overall likelihood of intrusion for the test period. The sys-
tem was blind to the injected user’s training data during each
test, and was only allowed to bootstrap a tentative model for
the injected user from the mixed test period data. The num-
ber of successful conclusions of compromise determined the
true positive rate.

To determine the relative importance of the features, the
same experiment was repeated with each feature in turn re-
moved from the calculations. We also experimented with us-
ing a flat attacker model and no EM, with uniform probabil-
ity of login time and day, a byte distribution mirroring the
user, an extremely low (10−11) probability of matching the
user’s IP, a probability matching the user probability for the
same ASN and a new IP, and the rest of the IP/ASN proba-
bility mass divided evenly between the “out-of-vocabulary”
symbols.

Results
A ROC curve for performance is presented in Figure 2 (note
the labels on the axes, as we concentrate on the practical
region of the curve). The alarm rates are not on a per-session
basis, but per-user, with an alarm reported if the algorithm
reports any intrusion within the target time period; and they
are per-week. Thus, a 1% false alarm rate means that in a
week of operation, it is expected that 1 in 100 benign and
active users will trigger an alarm. With roughly 1000 users
active in any given week, this corresponds to 10 users falsely
flagged in any given week.

When the prior is not weighted toward believing users are
benign at all (log likelihood threshold of 0), the algorithm
achieves 94% true positive rate for a 12% false positive rate

(not shown). For a more practical 1% false positive rate,
the method achieves at most a 59% true alarm rate. For a
very conservative false positive rate of 0.1%, the algorithm
still achieves a 44% true alarm rate. The lowest false alarm
rate we tested was 40.5% true alarm rate for a 0.095% false
alarm rate. (The true alarm rate here is the same as the recall,
whereas the precision is one minus the false alarm rate; i.e.,
44% recall is achieved for a 99.9% precision.)

The most useful feature appeared to be the detection of
overlapping activity between users. As a followup to deter-
mine whether overlaps were doing the bulk of the work in
detection, we measured how many overlaps would be de-
tected in a sample day (March 1), and found that 16% of the
alarms could be sounded through overlap alone. Thus, while
it is the most useful feature, it is not solely responsible for
our true alarms.

The two rules – whitelist known IPs, and alarm on over-
laps – appear to provide a useful function above and beyond
their use as Naive Bayes features, especially for achieving
extremely low false alarm rates. These rules can be seen
as asserting that some events have zero probability, an as-
sertion that usually does not work well in log likelihood
methods because one can’t take the log of 0. Removing the
whitelist and overlap rules, we achieve only 50% true alarms
at 1% false positives, and only 16% at 0.1% false positives.
Thus, removing our two assumptions (no users allowed to
have multiple sessions, no compromise of user machines in-
stead of credentials) has only slight impact when there are
some false positives allowed, but extremely high precision
requires these assumptions for good performance.

The EM method appears most useful for achieving very
low false positive rates, and in that range is nearly as useful
as IP address. It appears to become less useful as the operat-
ing point is more forgiving of false positives, at which point
a flat attacker model works as well or better. This suggests
the importance of testing intrusion detection methods on the
sub-1% false positive operating range, since this strictness
can change the evaluation of whether a technique is useful.

Bytes read and IP appear roughly equally useful in the
sub-1% false positive operating range, while time of day and
day of the week appear to be relatively unhelpful.

Discussion
Masquerade detection is in general a hard problem; though
we know of no prior VPN masquerade work to which we
can compare our results, when masquerade detection is per-
formed on command line traces, most reported results fall
below 70% true alarm rates (Salem and Stolfo 2011). Be-
nign and “malicious” activity simply may not look very dif-
ferent, because in fact there is nothing inherently suspicious
about the injected activity except that it may not look like the
user’s normal pattern. We believe that the results we present
here are reasonably strong given the demographics of the
user base, who for the most part log in from very similar lo-
cations at very similar hours, and yet occasionally will log in
from some never-seen-before location as the result of travel.
Examination of a sample day revealed 18% of the 661 users
with any activity for that day logged in from an IP address
that they had not used during the previous 261 days (our

training window size), and 11% of the 661 users logged in
from a novel city. Perfect performance is not to be expected
under such conditions.

The number of users logging in from novel IP addresses
and novel ASNs on an arbitrary day in the VPN traffic was
surprising to us, and made achieving sub-1% false alarm
rates very challenging. For extremely low false alarm rates,
using IP addresses as information can apparently cause more
harm than good. We also found that the extreme variability
of the natural activity levels of users meant there were many
cases in which a very infrequent user was injected into the
trace of a very active user, prompting us to develop the EM
method for extracting these needles in the haystack.

One possible attack on this method would have the at-
tacker slowly shifting the good user’s model away from
its true values – a “frog-boiling attack” (Chan-Tin et al.
2011). The overlap detection is our principal defense in this
model against this kind of attack; a malicious user attempt-
ing to look very much like the real user should eventually be
caught by virtue of logging in at the same time.

While tackling this problem, it became clear that training
a mixture of users as an adversary model leaks an unrealistic
amount of information about the attacker. Our original re-
sults on a 30 user sample with that approach produced 98%
true positives and no false positives. As we scaled, perfor-
mance dropped, and it became clear that the detection was
benefitting from having already seen the attackers. Had we
not performed the experiment at scale, we would not have
caught this methodological error, and it calls into question
any other masquerade work that uses mixtures of users as
the attacker model. We re-emphasize that our attacker model
is now learned on the fly during testing.

We have discovered that achieving very low false posi-
tive rates on detecting account masquerade is possible, but
user variability makes this an extremely challenging prob-
lem when attempting to scale; problems can appear in the
sub-1% false alarm rate that are not at all apparent from
small sample sizes, and seemingly reasonable methodology
can prove flawed when scaling to realistic user bases. Focus-
ing on any one feature to characterize a user seems unlikely
to succeed. Nevertheless, the problem of detecting likely
compromised sessions and accounts remains an important
challenge for network security, and our work suggests that
a human operator attempting to judge whether sessions are
anomalous from source location and time alone is likely to
have a still higher false alarm rate.

Acknowledgments

The authors thank Charles Wright, Bill Streilein, Gabe
Wachman, and Josh Haines for their valuable comments
and suggestions, and Kevin Borders and Michael Oehler
for graciously sharing their unpublished manuscript. This
work is sponsored by the Department of Defense under
Air Force Contract FA8721-05-C-0002. Opinions, interpre-
tations, conclusions and recommendations are those of the
author and are not necessarily endorsed by the United States
Government.

References
Bolton, R. J., and Hand, D. J. 2002. Statistical fraud detec-
tion: A review. Statistical Science 17(3).
Borders, K., and Oehler, M. 2012. Detecting hijacked cre-
dentials for internet services. Unpublished manuscript.
Chan-Tin, E.; Heorhiadi, V.; Hopper, N.; and Kim, Y. 2011.
The frog-boiling attack: Limitations of secure network co-
ordinate systems. ACM Transactions on Information and
System Security (TISSEC) 14(3).
Coviello, A. 2012. Open letter to RSA cus-
tomers. http://www.rsa.com/node.aspx?id=3872, retrieved
4/18/2012.
Dempster, A. P.; Laird, N. M.; and Rubin, D. 1977. Maxi-
mum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society, B 39(1):1–38.
Denning, D. E. 1987. An intrusion-detection model. IEEE
Transactions on Software Engineering 13(2).
Manning, C., and Schütze, H. 1999. Foundations of Statis-
tical Natural Language Processing. Cambridge, MA: MIT
Press.
Maxion, R., and Townsend, T. 2002. Masquerade detection
using truncated command lines. In International Conference
on Dependable Systems and Networks.
Maxion, R. 2003. Masquerade detection using enriched
command lines. In International Conference on Dependable
Systems and Networks. IEEE.
Min, L., and Shun-Zheng, Y. 2006. A network-wide traffic
anomaly detection method based on HSMM. In Commu-
nications, Circuits and Systems Proceedings, 2006 Interna-
tional Conference on, volume 3, 1636 –1640.
Salem, M. B., and Stolfo, S. J. 2011. Modeling user search
behavior for masquerade detection. In Recent Advances in
Intrusion Detection, volume 6961 of Lecture Notes on Com-
puter Science. Springer.
Schonlau, M.; Dumouchel, W.; Ju, W.; Karr, A. F.; Theus,
M.; and Vardi, Y. 2001. Computer intrusion: detecting mas-
querades. Statistical science 16:58–74.
Sommer, R., and Paxson, V. 2010. Outside the closed world:
On using machine learning for network intrusion detection.
In IEEE Symposium on Security and Privacy. IEEE.
Xie, Y., and Yu, S.-Z. 2006. A dynamic anomaly detection
model for web user behavior based on HsMM. In Computer
Supported Cooperative Work in Design, 2006. CSCWD ’06.
10th International Conference on, 1 –6.
Yeung, D.-Y., and Ding, Y. 2003. Host-based intrusion de-
tection using dynamic and static behavioral models. Pattern
recognition 36(1).

