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ABSTRACT

In this paper, we present a method for detecting malicious ac-
tivity within networks of interest. We leverage prior commu-
nity detection work by propagating threat probabilities across
graph nodes, given an initial set of known malicious nodes.
We enhance prior work by employing constraints which re-
move the adverse effect of cyclic propagation that is a byprod-
uct of current methods. We demonstrate the effectiveness of
Probabilistic Threat Propagation on the task of detecting ma-
licious web destinations.

Index Terms— Graph algorithms, community detection,
network security, blacklist

1. INTRODUCTION

In the domain of network security analysis, detection of ma-
licious activity is of critical concern for network defenders.
In many circumstances, network defenders have been able
to identify nodes of known maliciousness through provided
blacklists [1, 2]. While this strategy is a great tool for de-
fending networks, it is limited by the things that are known
to be malicious [3]. In many circumstances, domains appear
on blacklists several days after the domain began serving ma-
licious content. Using blacklisted sites as tips, analysis can
be performed on network traffic to identify additional nodes
associated with these known malicious nodes. Previous work
has shown that malicious activity is highly localized in net-
work spaces [4, 5], forming communities of maliciousness.

The task of identifying members of a group from a net-
work topology has been proposed in several community de-
tection algorithms [6]. Certain methods have leveraged mod-
ularity [7] applied to local structures with tip nodes both iter-
atively [8, 9] and through eigenspace analysis [10]. These
methods require the communities of interest to be densely
populated, which often is untrue for many applications pro-
ducing sparse and/or bi-partite graphs.

Recent methods [11, 12, 13] take an iterative approach
in which ‘threat’ is initialized at the tip nodes and iteratively
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Fig. 1. Illustrative communication network with tip node A.
Probability (dashed lines) propagates fromA→ B, then from
B → C. Propagation from C → B is undesirable because
P (C) is entirely dependent on P (B).

propagated throughout the graph. These methods have proven
promising, yet suffer from what we deem as direct feedback,
in which a node’s threat level can increase solely based on the
threat it had previously propagated to neighbors. This is be-
cause the methods propagate threat without consideration of
the provenance of the threat at each node. The light illustra-
tion in Fig. 1 demonstrates the false inference performed on
node B because probability is fed back from node C.

In this paper, we present a method for finding activity
based communities in a graph given tips of known actors.
Our method builds upon prior work [11] using an iterative
threat propagation approach. However we avoid the issues
of direct feedback by considering threat provenance; devel-
oping a method that yields probabilistic outputs rather than
simple rank ordered lists. We refer to our method as Prob-
abilistic Threat Propagation (PTP), and apply it towards the
application of detecting malicious web domains and expand-
ing blacklists. We show that it results in better performance
than prior methods that suffer from direct feedback.

1.1. Related Work

Markov Random Fields (MRF) [14] model random vari-
ables as nodes in an undirected graph in which two non-
neighboring nodes are conditionally independent from one
another given the neighborhood of either node. When given
an observation of a random variable, or a tip, the problem
becomes a Conditional Random Field (CRF) [15]. Despite
the assortment of traditional inference algorithms available
for CRFs [16, 17], such algorithms are insufficiently general.
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Specifically, these algorithms are applicable to CRFs only
in cases where the interaction between adjacent nodes is the
same irrespective of message flow direction. In applications
where ‘threat’ is being passed between nodes, the flow direc-
tion should affect the beliefs about nodes in the graph. The
tip nodes serve as the source of the threat flows. Without
knowing the tips in advance, potential functions for a CRF
cannot be defined to yield the desired results.

In attempts to remedy the issue of direct feedback, previ-
ous methods have employed a dampening factor [11] or edge
weights [12] less than unity, which exponentially decrease
the propagated threat level of any given node such that all
connected nodes will not converge to the same value. As a
byproduct of this dampening, however, the results are merely
a rank-ordered list of threat levels that have no probabilistic
meaning. In problem domains such as threat prioritization, a
rank ordered list is sufficient. However, there are many sce-
narios in which an operator only wants an alert if some output
score exceeds a threshold. This is difficult in prior methods as
the scale is relatively meaningless except with respect to other
nodes in the graph; this can continuously change as the graph
topology evolves. Conversely, having an output measure of
an actual probability makes both thresholding and explana-
tion easier, and enables combining with outputs from other
probabilistic detectors.

Previous methods have approached this task of identifying
malicious domains by analyzing many features of the domain
itself [18] or the activity observed by members of the same
sub-network [5]. Our work is agnostic to both the domain
features and activities, relying only on associations between
domain name and IP address.

2. PROBABILISTIC THREAT PROPAGATION

For the purposes of this paper, we define two communities of
interest for the detection problem: malicious and benign. We
define the probability of being in the malicious community as
P (x), for which the probability of being in the benign com-
munity is 1−P (x); this notation intentionally allows ‘partial’
community membership. Given that this can be interpreted as
the “threat level” of a particular node, we utilize the term in-
terchangeably with “threat probability”.

The intuition behind Probabilistic Threat Propagation
(PTP) is that the level of threat at each node is equal to the
weighted sum of the threat of neighboring nodes, discount-
ing the level of threat those nodes received from the node
of interest. Mathematically speaking, we define the graph
G = (X,E), where X represents the set of nodes and E is
the set of edges representing some quantifiable direct rela-
tionship between nodes. We compute threat on node xi as the
probability of maliciousness, defined as:

P (xi;G) =
∑

j∈N (xi)

wijP (xj |xi = 0;G), (1)

whereN (xi) is the neighborhood of xi – those nodes xj such
that eij ∈ E – andwij is the weight of the edge eij1. Note that
this formulation is very similar to [11]. The difference, while
minor, is significant; by conditioning on the current node be-
ing equal to 0, we compute the probability of neighboring
nodes in the absence of the node of interest. This guaran-
tees that any increased probability on node xj directly due to
xi will not in turn increase the probability of xi. For ease
of notation, we define P (xi) = P (xi;G), as all probabili-
ties are recursively defined through the parameterized graph
G, with weightings wij pre-defined and incorporated into the
full graph structure.

We note that graphs with cycles have the potential to in-
crease threat due to indirect relationships stemming from a
direct relationship with a tip node; an example of such is the
‘square’ X = {A,B,C,D}, E = {eAB , eBC , eBD, eCD},
and {tips} = A. Accounting for these types of cycles in gen-
eral is not tractable due to the exponential increase in memory
and message passing required, and in practice has minimal
impact on the result due to the intrinsic exponentially reduced
value of the threat passed.

Given that the probabilities are generally unknown, we
solve Eq. (1) iteratively. We initialize PTP with the set {tips},
those nodes which are known to be malicious, and assign
them a priori probabilities P (x ∈ {tips}) = γ, where γ ∈
[0, 1] relays the confidence in the tip. All other nodes are ini-
tialized to priors of P (x /∈ {tips}) = 0. At each iteration,
we compute the new probabilities using Eq. (1), and reassign
P (x ∈ {tips}) = γ, such that tip nodes remain constant.
This process continues until convergence of P (xi),∀i.

2.1. Approximate Inference

Exact inference of Eq. (1) requires P (xj |xi = 0) be com-
puted for all pairs of nodes in the graph, an O(N2) opera-
tion which is generally intractable for large graphs. This in-
tractability is exacerbated when the graph G contains cycles,
which is generally the case for cyber networks. Hence, we
develop an efficient approximation to Eq. (1) which leverages
our recursively defined probabilities. As opposed to comput-
ing the weighted sum of conditional probabilities, we com-
pute the weighted sum of the marginal probabilities P (xj),
and subtract the contribution that node xi had on node xj in
the previous iteration. Mathematically, we now solve itera-
tively over k:

P k(xi) =
∑

j∈N (xi)

wij(P
k−1(xj)− Ck−1(xi, xj)), (2)

where P k(x) is the probability of x at iteration k, and
Ck−1(xi, xj) is the portion of P k−1(xj) which was directly
computed from xi in the previous iteration. This achieves

1We utilize undirected graphs such that eij ∈ E =⇒ eji ∈ E.
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Algorithm 1 Probabilistic Threat Propagation
Require: W , {tips}, γ
P ← 0N , P ({tips})← γ, C ← 0N×N

repeat
T ←W ⊗ PT

C ← T −W ◦ CT

P ←< C, 1̄ >
C({tips}, ·)← 0
P ({tips})← γ

until P has converged
return P

our desire of removing the direct influence xi has on xj from
feeding back to xi.

We are able to efficiently solve Eq. (2) using linear alge-
bra. Given a set ofN nodes, let us define the node threat prob-
ability vector P ∈ RN such that P (i) = P (xi), the weight
matrix W ∈ RN×N such that W (i, j) = wij , the transfer
matrix T ∈ RN×N such that T (i, j) = W (i, j) ∗ P (j), and
the contribution matrix C ∈ RN×N , which we initialize to
zeros. At each iteration, we assign C = T −W ◦ CT , where
A ◦B denotes the Hadamard product (e.g. A(i, j) ∗B(i, j)).
This equation is the interior of the sum in Eq. (2), which com-
putes each node’s contribution to each other node, subtracting
off the contribution from the previous iteration. To compute
the node probabilities, we simply sum the elements of the
newly computed C,

P =< C, 1̄ >, (3)

where 1̄ is the N element vector of ones and < ·, · > repre-
sents the inner product. Algorithm 1 details the full compu-
tation performed by PTP; our empirical results on over 100k
node graphs typically converge in less than 50 iterations and
on the order of seconds with commodity hardware.

2.2. Assigning Weights

The weight matrix W can be computed generically via the
function wij = f(xi, xj). Specifically, the function f(·, ·)
can be defined in several ways, depending on the desired
properties of the system, which we generically describe as

f(xi, xj) =
1∑

k g(xi, xk)
g(xi, xj), eij ∈ E, (4)

for some function g(xi, xj), which measures the interaction
between nodes xi and xj . For example, in a social network,
g(·, ·) could measure the number of times two persons com-
municated. In [11], kernels are proposed as weighting func-
tions based on the temporal aspects of the edge. In order to
maintain the probabilistic nature of our algorithms, it is im-
portant to normalize such that

∑
j f(xi, xj) = 1. For the

remainder of this paper, we define g(xi, xj) = 1,∀eij ∈ E,
yielding a final weight for each edge eij proportional to de-
gree of node xi.

3. MALICIOUS DOMAIN ANALYSIS

We now show that PTP can be used to detect malicious web
domains, leveraging the fact that a single IP may host nu-
merous malicious domains, and a single malicious domain
may resolve to multiple IP addresses. However, web hosting
services make it such that a single IP may host thousands of
websites, with the vast majority of them being benign. Simply
blacklisting any IP address that is associated with a malicious
domain would yield an extremely high false positive rate.

For example, we observed one blacklisted site that re-
solved to the same web hosting IP address as 13 other sites,
none of which were on the blacklist. These included sites
such as HBAMA.COM, which is for the Home Builders As-
sociation of Massachusetts. Had we simply blacklisted the IP
address, sites such as these would be unnecessarily blocked as
well. On the other hand, the PTP output was P (x) = 0.0714,
which is far below any reasonable threshold for alerting.

3.1. Data

We create a bipartite graph with edges connecting domains
and IP addresses, specifically eij ∈ E ⇐⇒ ‘domain i re-
solves to IP address j’. To populate this graph, we leveraged
the web proxy logs obtained from a medium-sized enterprise
network. The proxy server on this network employed the
McAfee TrustedSource Web Database [19] to validate web
requests and appropriately label some of these as Trusted, Ma-
licious, or Suspicious. Using these labels, we create a black-
list (and whitelist) from 65 days of web requests, focusing
specifically on the fully-qualified domain name (FQDN) of
the URL, generating {tips} such that P (x ∈ Malicious) =
1, P (x ∈ Suspicious) = 0.5, and P (x ∈ Trusted) = 0.
This is to be used as the foreground graph (e.g. ground truth).
We captured all traffic for the 65th day to use as background.
Our final data set contains 77,813 domain nodes and 48,921
IP nodes, which contain the subset 2,100 and 2,186 black-
listed domains and associated IP addresses, respectively. We
note that there is overlap between the blacklist and the cap-
tured background data.

3.2. Malicious Detection

The goal of this experiment is to determine, given a partial
blacklist, how much of the full blacklist can be recovered
while keeping false alarms low. Operationally, this is equiva-
lent to expanding a blacklist given one that is available, help-
ing to identify additional sources of malicious activity that
have not yet been detected by the blacklist providers.

Over a 20-fold cross validation, we randomly select 50%
of the blacklisted nodes as training tips, keeping their P (x)
constant, and select as a test set any domain that is reach-
able within the foreground graph (e.g. ground truth) from any
of the tip nodes. The test set contained an average of 205
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Fig. 2. Performance comparison of PTP and DMP for de-
tecting malicious domains. The vertical line highlights the
performance gap in the low PFA regime.

nodes. After adding the training and test data to the back-
ground graph, we apply PTP and alert on any domain with
P (x) ≥ τ, for some threshold τ . When computing detec-
tion probability, PD, and false alarm probability, PFA, any
domain that is not in the blacklist is considered to be benign.

In Fig. 2 we plot Receiver Operating Characteristic (ROC)
curve by varying τ , showing that PTP is able to detect 87%
of the malicious domains with a false alarm rate of 0.035%.
On average, that performance corresponds to 178 newly de-
tected malicious domains and 30 false alarms for that day. As
expected, PTP does a very good job of detecting malicious
domains while generating very low false positives; this is due
to the intuition that malicious infrastructure is shared.

For comparison, we ran the same experiment using dy-
namic membership propagation (DMP) [11], selecting param-
eters which yielded optimal performance. We plot the results
in Fig. 2 as well, showing that PTP significantly outperforms
DMP in the low false-positive regime. When limiting to the
same PFA = 0.00035, DMP was only able to detect 53.26%
of the domains (109 on average). To maintain the same level
of PD = 0.87, running DMP would require a false alarm rate
of PFA = 0.0017, yielding an average of 129 false positives,
nearly 100 more than PTP. Recall once again that the sole dif-
ferentiating factor between PTP and DMP as parameterized
is the direct feedback suffered by DMP. Hence, the modifica-
tions presented in this paper are indeed significant; not only
does direct feedback produce an output that needs to be in-
terpreted with respect to other nodes (e.g. rank-ordered list),
the detection performance is negatively impacted as well. We
note that the sharp increase in PD observed in each method
occurs when τ covers graphs with exactly 2 domains, one of
which is in {tips}, mapping to the same IP (e.g. τ = 0.5 for
PTP).

3.3. Malicious Prediction

While the results presented in Fig. 2 are with respect to the
known malicious domains, the fact remains that blacklists are
imperfect observations. Many sites reach a blacklist long after
they’ve been originally stood up and visited by unsuspecting
victims. Indeed, the primary motivation behind this work is
to identify malicious domains before they reach a blacklist.
Hence, our false positive rate presented in previous experi-
ments is an upper bound, as assuredly there is some chance
that our ‘false’ detections are indeed malicious.

We now apply PTP on the same IP–domain graph as
previously studied, only this time we utilize the entire black-
list as {tips}. We select the same operating point as in our
previous experiment (τ = 0.49), and detect 63 potentially
malicious domains. Many detections were common typos,
such as WWW.USATODYA.COM, WWW.YOTUBE.COM, and
JETBLU.COM; these domains clearly are not false positives.
This is a tactic used by malicious actors to obtain credentials
or park a domain for ad revenue. Adding to the certainty
is that a domain such as WWW.USATODYA.COM resolves to
the same IP address as FIEDELITY.COM and AMERICANEXS-
PRESS.COM – both of which were on the blacklist.

Other detected sites are more difficult to assess from
the FQDN, such as CHANNEL-SURVEY-CENTER.COM and
WW35.MYSPORTSCLUB.COM. We note that both of these
sites, as well as WWW.YOTUBE.COM and many other detec-
tions, ended up being blacklisted by the same service [19]
weeks and even months after we were able to detect them
with PTP. While anecdotal, this demonstrates the power of
our method. During operation, an analyst can assess each
detection and determine whether or not it should be added
to the blacklist. This type of human-in-the-loop inference
increases the fidelity of the model by adding more labeled
data. This task becomes easier as time passes, as detections
are likely to persist.

4. CONCLUSIONS

We have presented a graph analysis technique which deter-
mines the statistical probability that a node in an observed
network is part of an activity-based community. PTP oper-
ates by taking tip nodes that are known to be in the community
and associating observed relationships to obtain a probability
value at each unknown node. We have shown that it is criti-
cal to consider threat provenance in this iterative process. We
demonstrated the use of PTP by showing the ability to recover
large portions of a blacklist and predict additional malicious
domains, while yielding low false positives.

In future work, we will analyze different edge weight-
ing functions [11] and see how our method fits with non-
iterative solutions [13]. Finally, we will apply PTP towards
non-malicious communities, propagating ‘trust’ as an exam-
ple, or even multiple communities of interest.
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