
Strategic Evolution of Adversaries Against Temporal Platform Diversity Active
Cyber Defenses

Michael L. Winterrose and Kevin M. Carter
MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02421, USA

{michael.winterrose, kevin.carter}@ll.mit.edu

Keywords: cyber security, genetic algorithm, moving target,
learning

Abstract
Adversarial dynamics are a critical facet within the cyber se-
curity domain, in which there exists a co-evolution between
attackers and defenders in any given threat scenario. While
defenders leverage capabilities to minimize the potential im-
pact of an attack, the adversary is simultaneously developing
countermeasures to the observed defenses. In this study, we
develop a set of tools to model the adaptive strategy formu-
lation of an intelligent actor against an active cyber defen-
sive system. We encode strategies as binary chromosomes
representing finite state machines that evolve according to
Holland’s genetic algorithm. We study the strategic consid-
erations including overall actor reward balanced against the
complexity of the determined strategies. We present a series
of simulation results demonstrating the ability to automati-
cally search a large strategy space for optimal resultant fitness
against a variety of counter-strategies. 1

1. INTRODUCTION
Adversarial dynamics are at the heart of many important

security challenges. The central issue in this problem class is
the existence of an intelligent, adaptable adversary able to ac-
tively counter defensive moves. Models developed to increase
understanding in these areas must include adaptive learning
as a central component if they aim to capture the adversar-
ial dynamics observed to dominate many real-world conflict
scenarios [1].

Cyber security researchers, attempting to understand and
predictably influence the highly dynamic, noisy, and inno-
vative cyber realm, require tools that shed light on strategic
interactions that are often out of equilibrium and driven by
adaptive learning. Furthermore, the sought after techniques
should be able to account for the limited ability of real world
actors to gather and process information and the consequent
bounded nature of the rationality that characterizes real world
adversarial opponents.

1This work is sponsored by the Department of Defense under Air Force
Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and rec-
ommendations are those of the author and are not necessarily endorsed by the
United States Government.

In recent years active cyber defense techniques have been
an important area of research and development [2, 3]. A
prominent example of a family of active defense techniques
that have recently been under development is that of moving
target defenses [4, 5], which systematically vary a system’s
attack surface to diminish the inherent advantages cyber at-
tackers typically enjoy [5]. Temporal platform migration sys-
tems [6] are a class of moving target defenses that dynami-
cally change the system interface (e.g. operating system (OS),
spam filter, etc.) over time. These techniques work under the
assumption that the attacker has limited resources and gener-
ally does not have exploits for all platforms at his disposal.
As such, migrating between platforms with some frequency
reduces the ability for an attacker to maintain persistence on
a system. Additionally, it increases the uncertainty for an at-
tacker that aims to expend resources towards countermeasure
development.

Recent studies have examined the optimal scheduling pol-
icy for a temporal platform migration moving target defense.
According to [7], a uniform random scheduling of active
spam filters gave superior performance against an evolving
adversary. On the other hand, [8] found that a scheduling pol-
icy that maximizes the diversity of the platforms played in
each successive round as quantified by a measure of platform
similarity was superior. Crucially, the threat model in these
studies differed, with [8] modeling a threat that required at-
tacker persistence in the system before a payoff accrued, in
contrast to [7] which used a simple attacker model with no
requirement for persistence.

The primary aim of this study is not to formulate new
moving target defense strategies, but rather to develop a set
of modeling tools that facilitate insight into the effect these
strategies have on the potential success and strategy evolution
of a cyber attacker that is able to observe a system and react
adaptively to defensive moves. In this study we demonstrate a
tractable approach to the modeling of adaptive strategic learn-
ing by boundedly rational agents and apply the scheme for the
first time to a resource allocation problem in the cyber secu-
rity domain.

The modeling approach we employ involves the use of ge-
netic algorithms, which have been used in a number of se-
curity applications and in studies of agent strategy formula-
tion. Intrusion detection systems have incorporated genetic
algorithms [9, 10, 11, 12]. Genetic algorithms have also been

used to create active defense strategies [13] and to generate
diverse configurations in a moving target system [14, 15]. In
his pioneering work Axelrod [16] used a genetic algorithm to
explore strategy evolution in the Iterated Prisoner’s Dilemma
(IPD). Miller [17] (see below) brought together the ideas of
Axelrod with methods from automata theory [18, 19, 20] de-
veloped to model the strategic play of boundedly rational
agents. The combination of a genetic algorithm and finite
state machines allows for the tractable modeling of bound-
edly rational agents able to learn and adapt in dynamic envi-
ronments [17].

The major contributions of this work are as follows:

1. We present the first use of genetic algorithms to study
optimal attacker strategies against temporal platform di-
versity defenses

2. We quantify a strategic complexity measure to balance
the cost/benefit within resource investment

3. We study the efficacy of different defender strategies
against an evolving adversary

The paper proceeds as follows: In Section 2. we formulate
the problem and present our techniques and evaluation met-
rics. In Section 3. we present a series of experiments in which
the adaptive attacker interacts with different defender strate-
gies, finally concluding by discussing future work in Section
4.

2. PROBLEM AND METHODS
2.1. Attacker/Defender Game Scenario

We study the interaction between the attacker and de-
fender through the dynamics of a two-player game. In our
scenario the attacker observes the operating system the de-
fender, utilizing a moving target defense, activates in each
round of play. The attacker uses this information to formu-
late a strategy for resource investment, with the goal to bring
exploits (e.g. countermeasures) into existence to most effec-
tively compromise the defender’s system and maximize his
own gain.

In each match (i.e. round of play), the attacker uses any ex-
ploits it has developed against the activated platform. Success
for the attacker in a match occurs when he has an available
exploit that works against the platform activated by the de-
fender. Intuitively, the attacker gains a reward if they are able
to compromise the defender’s system during the match, and
earns nothing otherwise. One may view this as the ability for
the attacker to exfiltrate data, perform reconnaissance, steal
credentials, etc.; all attacks that benefit from system access.

Exploits are developed by cumulative attacker investment;
in each round of play the attacker invests a single resource to
the creation of a chosen exploit. The amount of investment
required to bring a given exploit into existence is randomly

determined at the beginning of each game. The attacker is
not informed a priori of the number of resources that will
be required to bring a given exploit into existence, instead
discovering this fact only after having successfully created
the exploit through the required allocation of resources. This
uncertainty matches reality in that a real-world attacker is not
in general able to predict a priori the level of effort that will
be required to develop new exploits against a given system.
Without loss of generality, in this initial version of the game,
there exists one possible exploit for each type of platform a
defender might utilize.

All exploits in this study are assumed to be zero-day ex-
ploits, meaning that they are unobserved by the defender
when used against the corresponding operating system. In-
tuitively, the defender has no detection capability against an
attack they have no knowledge of. This has ramifications in
the sense that the defender has no means or reason to change
their own defensive strategy, and hence will stick to the pre-
assigned strategy.

We note that while the agents in agent-based models typ-
ically manifest attributes such as heterogeneity, adaptation,
interaction, autonomy, and situatedness [21, 22], our current
game scenario focuses primarily on one of these attributes,
namely adaptive strategy development. Our intention in this
study is to focus on developing a powerful set of tools for
modeling adaptive strategy evolution in cyber agent systems.
These tools will be incorporated into more complete agent
contexts in future studies.

2.2. Moore Machine Strategy Encoding
A finite-state automata or finite-state machine is an abstract

machine that takes discrete inputs from an environment and
specifies a discrete output in response. An agent modeled by
a finite state machine will occupy only one state at any point
in time. Such an agent transitions between states based on
triggering events. A Moore machine [23] is one kind of finite-
state automata in which the output from the machine depends
solely on the machine’s internal state.

A Moore machine is formally defined by four components,
< Q,q0,Λ,ξ > , where Q is the set of possible internal states,
q0 ∈Q is the internal state the machine begins in, Λ is a func-
tion mapping the internal states to actions in the game being
played, and ξ is the transition function mapping an internal
state of the machine and the observed move of the opponent
into the next internal state that will become active. Moore ma-
chines provide a simple, yet rich and flexible tool with which
to encode and evolve game strategies [17].

Figure 1 shows the transition diagram for a possible strat-
egy for the game studied in this work represented as a Moore
machine. Here s marks the state the machine begins a game
in. States are labeled by Λ : Q→ Ai ∈ {E1,E2, ...En}, where
En indicates the attacker devotes his zero-day exploit cre-

Figure 1. Transition diagram for a possible attacker strategy.
In this example the attacker invests in the creation of platform
zero-day vulnerabilities with a frequency proportional to the
platforms it observes the defender to activate in the rounds of
play.

ation resource in the current round to the creation of an ex-
ploit for platform n. The transitions in Fig. 1 are labeled by
{P1,P2, ...Pn}, indicating that the attacker transitions to its
next active state based on the platform Pn it observes the de-
fender to have made active in the current round.

To summarize, the attacker makes an initial investment En
in the creation of zero-day exploit for platform n, observes the
platform type the defender has activated in the current round
of its moving target defense, and selects the next investment
in exploit creation to make based on this information.

2.3. Genetic Algorithm
The central issue this simulation model aims to address

is the efficiency and effectiveness with which an adversary
learns to counter various moving target defense strategies.
Learning and adaptation is modeled here using a genetic al-
gorithm [24]. The genetic algorithm is a robust search method
that does not require its objective function to be linear or con-
tinuous and has proven itself efficient at searching large fit-
ness landscapes. The algorithm used in this study is outlined
in Algorithm 1.

In this initial version of the study the defender chooses one
operating system to make active in each round from its sup-
ply of two operating systems. We call this initial version of
the attacker-defender contest the binary game. We denote the
operating systems available to the defender as OS-A and OS-
B. As stated previously the attacker can create a zero-day ex-
ploit effective against each operating system available to the
defender. We denote these ZD-A and ZD-B.

The Moore machine is mapped into a binary chromosome
according to the scheme described in [17]. We limit the
Moore machine representation to 16 states, following [17].
Auxiliary studies show limiting the Moore machines used in
the study to 16 states does not strongly affect strategy devel-
opment in our simple game scenario. Each state of the 16 state
Moore machine maps to 9 bits of a binary chromosome. One
of the bits specifies the exploit type that will be invested in
when the attacker occupies the state. The subsequent 8 bits
specifies the two transitions (4 bits for each transition en-

Algorithm 1 Implemented Genetic Algorithm
1) At generation g=1, randomly initialize N strategies,

i=1 to N.
2) Generate a fitness score Fi,g for each strategy based on

its success against the defender.
3) Form a new population of N structures.

a) Create 0.6N new strategies.
i) Select 2 parents using the tournament selection

algorithm (with replacement).
ii) Form 2 children from the two selected parents

through crossover.
iii) Repeat (i) (ii) until 0.6N new structures are

formed.
b) Select 0.4N strategies from the old population using

tournament selection and copy them into the
new generation.

4) Mutate (see below) the new generation of strategies
5) Increment g by 1 (next generation), and iterate (go

to Step 2).

coded in a binary representation) the attacker can make out of
the state based on its observation of the operating system the
defender makes active in the current round. This is depicted
in Fig. 2. An additional 4 bits are added to the chromosome
to specify the starting state for the machine. These factors to-
gether lead to the 148 bit chromosome used in this study to
encode the attacker strategy.

This encoding scheme has been previously used to study
strategy co-evolution in the Iterated Prisoner’s Dilemma
(IPD) [17, 25]. To the best of our knowledge, this study marks
the first application of this encoding scheme developed in the
IPD literature to a resource allocation problem, and its first
application to a cyber security problem.

A single-point crossover operation is used in this study. In
this operation, a single crossover point ζ ∈ {1,2, ...148} on
each of two parent chromosomes is selected at random. The
first child combines the first ζ bits from the first parent with all
bits after the ζ+1 chromosome position of the second parent
to form a new chromosome. The second child takes all bits
after the ζ+1 chromosome position from the first parent and
combines it with the first ζ bits of parent two’s chromosome
to form a new strategy.

The mutation operation is implemented here such that each
chromosomal position on each of the strategy population
members has a low probability of mutation in each genera-
tion, with the probability being specified by a mutation rate
parameter in the model. The mutation rate is selected in our
study such that on average half of the chromosomes experi-
ence a single bit flip in each generation.

Figure 2. Chromosomal structure for an attacker strategy
consisting of a single state. Chromosome bits are represented
by # ∈ {0,1}. Each attacker state is represented in the chro-
mosome by 9 bits, 1 bit for the action specification, and 4
bits each for the two transition states in this example. Binary
encoding is used throughout.

2.4. Model for Attacker Fitness
Attacker fitness determination takes into account three as-

pects of the attacker’s play against the defender. These are
game play success (G), exploit creation success (C), and
strategic complexity costs (S). In generation g attacker i has a
fitness function of the form,

Fi,g = Gi,g +Ci,g−Si,g. (1)

Game payoff for attacker i in generation g is expressed in
terms of the attacker’s success (Φi, j) in compromising the
system with its created zero-day exploits in the course of play
against defender j,

Gi,g =
Tg

∑
j=1

Φi, j, (2)

with Φi, j set to 1 if the attacker successfully compromises
defender j’s system in a given match, and 0 otherwise. Tg is
the total number of matches in a given generation between
attacker i and defender j. For example, if in a 365-match
game the attacker compromises the defender’s system for 50
matches, then the Gi,g term is set to 50 in Eqt. 1.

The Ci,g term in Eqt. 1 models the notion that each exploit
created brings an intrinsic reward, δ, to the attacker, indepen-
dent of their subsequent use in actual attacks. After examin-
ing the effect a range of possible values for δ have on attacker
strategy, we set δ equal to a value of 1 in this study. This value
encourages balanced investment by the attacker while directly
impacting overall fitness scores minimally. If Zg exploits are
created by attacker i in generation g we have,

Ci,g =
Zg

∑
k=1

δi,k. (3)

As an example, if 2 exploits are created in the course of an
attacker-defender game, we have Ci,g = 2δi = 2, using our
chosen δ value.

The third fitness criteria is the strategic complexity (Si,g) of
attacker i’s exploit investment policy. We quantify the com-
plexity cost as,

Si,g = βγτi,g. (4)

Here τi,g is the number of transitions attacker i makes between
Moore machine states in the course of its matches against
the defender in a given generation g. This is multiplied by
γ, the transition-penalty term, which we set to max[Φi, j], and
the unit strategic complexity β, ranging between 0 and 1. The
value of β can be adjusted to emphasize or de-emphasize the
importance of strategic complexity in the fitness evaluation.
The strategic complexity term in Eqt. 1 is of a similar form
to that used in [25] for characterizing complexity costs in the
IPD.

A less complex strategy is one with a simpler transition
structure [26], i.e. given a certain level of success against the
defender, a strategy that causes the Moore machine encoding
the attacker strategy to transition less often between states is
preferable. We leverage this to imitate the natural cost/benefit
analysis that any human actor factors into strategy determi-
nation; a slightly less rewarding strategy is often preferable if
it is significantly less complex. As a baseline value, we find
that setting β = 0.1 biases evolved strategies toward simplic-
ity without causing strong distortions in game play policy. We
adopt this value throughout the study. Taking this value for
β we find that an attacker that makes 30 transitions between
Moore machine states in the course of a 365-match game pays
a strategic complexity cost of 3 points, for example.

2.5. Investment Bias Metric
We define the Investment Bias, Γ, the normalized differ-

ence between the mean investment in the creation of ZD-A
versus ZD-B exploits, as a measure of the inequality in at-
tacker resource investment,

Γ =
〈IZDB〉−〈IZDA〉
〈IZDB〉+ 〈IZDA〉

, (5)

where < IZD > is the average investment in a zero-day exploit
(ZD) over a population of N attacker strategies and a number
of simulation runs carried out to account for stochasticity in
the model. Particular emphasis is placed on the investment
bias in the analysis below because attacker exploit creation
investment patterns directly reflect the learned attacker strat-
egy. Alternative measures of strategy are dependent on fac-
tors exogenous to learned attacker strategy such as exploit

0 50 100 150 200 250 300
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Resources Invested

P
ro

b
a

b
ili

ty
 o

f
E

x
p

lo
it
 C

re
a

ti
o

n

σ
2
=30

σ
2
=300

σ
2
=3000

Figure 3. Example Gamma distribution parameterizations
with µ = 100 and σ2 set as indicated.

creation cost values. Attacker investment bias offers the most
direct insight into attacker strategy.

3. EXPERIMENTS
3.1. Simulation Set-Up

For ease of interpretation, and without loss of generality,
we limit the defender to 2 platforms in this study. Each pa-
rameterization of the simulation was allowed to evolve for
100 generations, with a single generation consisting of each
of the N = 30 attacker strategies in the population playing
T = 365 matches against the defender. The 100 generation
run was repeated 100 times to account for stochasticity in
the model. Simulations were created and run in the NetLogo
modeling environment [27].

Recall that the attacker resource investment required to
bring a given zero-day exploit into existence is stochastic and
unknown to the attacker. We determine this cost by sampling
a Gamma distribution parameterized by shape parameter α

and rate parameter λ. The shape and rate parameters can be
written in terms of a mean (µ) and variance (σ2) according to
the relations,

α =
µ2

σ2 ,λ =
µ

σ2 . (6)

The parameterization of the Gamma distribution for zero-day
costs is set at the beginning of each generation of genetic al-
gorithm evolution through the choice of a mean and variance
value. The effect parameterization choices has on the result-
ing distribution of exploit creation costs is shown in Fig. 3.
For the duration of this study, we set µ = 100 and σ2 = 30 for
exploit creation.

3.2. The 1-to-1 Game
We denote by the 1-to-1 Game a series of contests in which

the attacker faces defenders that activate OS-A and OS-B
with approximately equal frequency in each contest. We use
the term contest and the term game interchangeably to de-
note a set of T matches that a single attacker plays consec-
utively against the defender. While within a game the fre-
quency of OS-A and OS-B activation is equal, the distribu-
tion of these activations among the T matches differs among
defender types within the 1-to-1 defender family.

The SingleFlip-FixedOrder defender activates OS-A in
182 consecutive matches, then switches to OS-B for the
next 183 matches. The defender denoted by SingleFlip-
RandomOrder plays a similar strategy, but instead of pre-
dictably playing OS-A for half the matches then switching
to OS-B, this defender instead decides uniformly at random
at the start of each game whether to begin play with OS-
A or OS-B. The EachMatchFlip-FixedAlternating defender
plays OS-A followed by OS-B, followed by OS-A, then
OS-B again, and so on, alternating between activating each
operating system on each consecutive match. Finally, the
EachMatchFlip-RandomOrder defender chooses at random
on each match whether to activate OS-A or OS-B.

Figure 4 shows the mean attacker fitness as well as the
strategic complexity cost and game payoff results as a func-
tion of the genetic algorithm generation. The attacker is able
to evolve more effectively against the SingleFlip defenders
in which the defender predictably activates one of the oper-
ating systems available to it during each half of match play.
Figure 5 shows the investment bias (Γ) (see Section 2.5.) for
these 1-to-1 cases. The frequency of defender OS activations
within a game strongly influences the investment bias of the
attacker’s learned strategy, with the 1-to-1 defender strategies
causing the attacker to evolve strategies with investment bias
clustered around zero, indicating balanced investment in ZD-
A and ZD-B creation over the course of a game. The devia-
tion from this pattern in Γ is for the SingleFlip-FixedOrder
defender, which causes the attacker to invest more heavily in
ZD-A.

A clearer picture of learned attacker strategy can be gained
from understanding the match-level choices the attacker is
making. We find that when the defender predictably plays a
monolithic OS-B strategy in later rounds of the game the at-
tacker quickly (generationally) learns to predict and exploit
this regularity, ignoring the defender’s early activations of
OS-A and focusing investment on the creation of ZD-B for
use in the second half of the game. Note that this learned
strategy by the attacker is also taking account for the approx-
imate cost of zero-day exploit creation in that the attacker has
learned after a few generations that it needs to begin investing
in the creation of ZD-B well before the defender begins acti-
vating OS-B in order to gain full benefit from the defender’s

Figure 4. Attacker fitness (upper), state transitions (middle),
and game payoff (lower) averaged over the 30 agent popula-
tion and 100 simulation runs for the 4 defenders playing 1-to-
1 strategies.

predictable behavior. Also note that while the attacker does
learn the approximate cost of exploit creation (the mean cost
of exploit creation is 100 units in this example), the attacker
seems to believe the cost is approximately 182 units, only
switching to invest in the creation of ZD-A after the defender
transitions from playing OS-A to OS-B at the 182nd round.

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Generation

Γ

SingleFlip−FixedOrder

SingleFlip−RandomOrder

EachMatchFlip−FixedAlternating

EachMatchFlip−UniformRandom

Figure 5. Attacker investment bias (Γ) for each of the plat-
form migration policies in the 1-to-1 defender family.

This inability of the attacker to learn to predict the true ex-
ploit creation costs was found to be a robust feature of the
learning algorithms used for the present game. We believe
this observation is related to the fact that the attacker uses
all available exploits against the defender’s system on each
match, which we speculate makes the attacker insensitive to
the precise effect the play of each individual exploit is hav-
ing on the game payoff. This is a topic we plan to revisit in
future studies which will look at other variants of evolution-
ary algorithms and game structure to understand more fully
why the current attacker consistently fails to distinguish the
true costs of exploit creation from the ratio of defender play
of said exploits.

A portion of the superior performance of the attacker
against the SingleFlip defenders can be traced to supe-
rior game-play strategies for these SingleFlip cases (Fig. 4
(lower)), and a portion can be traced to the ability of the
attacker to discover strategies of minimal complexity costs
(Fig. 4 (middle)). Future studies will examine the robustness
under β variation of strategic complexity cost differences for
attackers facing SingleFlip versus EachMatchFlip defenders.
In the case shown in Fig. 4 it makes intuitive sense that the at-
tacker requires less strategic complexity to counter a defender
that only changes its actions once during match play, as op-
posed to a defender that is executing migration policies with
structure on the scale of a few matches.

It is interesting to note the the attacker performs nearly
as well against the SingleFlip-RandomOrder defender, which
randomly chooses between two available platform migration
policies at the start of each generation, as it does against the
more predictable SingleFlip-FixedOrder defender, though the
less predictable SingleFlip defender causes a noisier attacker
response. Examining the match level structure of the attacker
response to the SingleFlip-RandomOrder defender we find

that the attacker has learned after a number of generations
to observe the defender’s move in match 1 of the game and
predict all future OS activations by the defender, thus gaining
the ability to efficiently counter the defender despite the ran-
dom element in the defender’s policy. This has implications
to other active defense techniques, such as Address Space
Layout Randomization (ASLR) [28], for which randomiza-
tion only increases the adversary’s initial uncertainty and the
entire system can be compromised given a single observation.

It is important to note that these results not only have impli-
cations to the attacker, who learns an optimal strategy against
a specified defender, but also the defender as well. By eval-
uating the optimal fitness of an attacker against differing de-
fenders, we also uncover the efficacy of different defensive
strategies. If we assume the interaction is a zero-sum game –
any gains by the attacker are losses by the defender – then the
defender’s goal should be to minimize the attacker fitness.

3.3. The 2-to-1 Game
In the 2-to-1 game the attacker faces a set of defenders that

activate OS-A at a 2-to-1 ratio to OS-B. As with the 1-to-
1 game, in the 2-to-1 case the frequency of OS-A and OS-
B activation is 2 : 1 over the 365 matches taken as a whole,
with the distribution of these activations among the matches
differing among defender types.

The evolved attacker responses to these defender poli-
cies are shown in Fig.6. Here the SingleFlip-A-FixedOrder
defender activates OS-A monolithically for the first 243
matches of a game, then switches to OS-B for the remaining
122 matches. On the other hand, the SingleFlip-B-FixedOrder
defender begins match play by activating OS-B for 122 con-
secutive matches, then switches to OS-A for the remaining
243 matches of the game. In reaction to the different mem-
bers of the 2-to-1 family of defenders we see two different
classes of responses by the attacker. The first, and simpler,
type of response has the attacker deciding to essentially only
invest in the creation of ZD-A, completely neglecting attacks
against the less activated OS-B. The attacker uses this class
of strategy against the EachMatchFlip-FixedAlternating and
EachMatchFlip-UniformRandom defenders. We note in Fig.
6 that although a priori this might seem a simple response
by the attacker to biased defender policies, the strategic com-
plexity cost is not negligible. We hypothesize that variability
in the defender’s OS activations on the scale of a few matches
is an important factor in determining the transition struc-
ture (and so the strategic complexity cost) of the evolved at-
tacker machines. This implies that a simple attacker response
to a highly dynamic migration policy might entail a greater
strategic complexity cost than would be expected from the at-
tacker’s simple actions alone. We will return to this question
in a future study.

The second class of attacker response has the attacker mak-

Figure 6. Attacker fitness (upper), state transitions (middle),
and game payoff (lower) averaged over the 30 agent popula-
tion and 100 simulation runs for the 5 defenders playing 2-to-
1 strategies.

ing predictions about future defender activation activity and
tuning resource investment accordingly. This prediction strat-
egy is most successful against the SingleFlip-B-FixedOrder
defender, where the attacker learns to ignore the activation
of OS-B in the first 122 matches of play, investing instead in
ZD-A which has been brought into existence by the time the

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Generation

Γ

SingleFlip−A−FixedOrder

SingleFlip−B−FixedOrder

SingleFlip−RandomOrder

EachMatchFlip−FixedAlternating

EachMatchFlip−UniformRandom

Figure 7. Attacker investment bias (Γ) for each of the plat-
form migration policies in the 2-to-1 defender family.

defender begins its 243 match run of OS-A activation. The
tactical outcome of this attacker strategy bears resemblance
to the simpler class of strategies discussed above in that only
the ZD-A exploit ends up significantly benefiting the attacker,
but the strategy underlying this result is quite different in the
present case as evidenced by the distinctive investment bias
result for the attacker facing the SingleFlip-B-FixedOrder de-
fender in Fig. 7.

The attacker attempts a similarly intricate investment
scheme when facing the SingleFlip-A-FixedOrder defender,
but to diminished success due primarily to the earlier noted
inability to discern the true costs of exploit creation. When
facing the SingleFlip-A-FixedOrder defender the attacker
learns to begin with focused investment in ZD-A to capital-
ize on the defenders early monolithic play of OS-A. The at-
tacker continues investing heavily in ZD-A creation until the
defender transitions to playing OS-B late in the game, invest-
ing well beyond the resources required to bring ZD-A into
existence, resulting in a suboptimal result for the attacker.
We speculate again that the learning algorithms underlying
the attacker behavior are having difficulties grasping the fact
that the attacker does not need to continue investing in an ex-
ploit after it has been created in order to benefit from its play
against the defender. Again, we will take up this issue in a
future study.

The SingleFlip-RandomOrder defender randomly switches
between the SingleFlip-A-FixedOrder and the SingleFlip-B-
FixedOrder policies in each generation. The response to this
more variable defender is similar to that in the 1-to-1 case,
in which the attacker strategy is wholly defined based on the
observations of the initial activation by the defender. The de-
fender’s choice of which migration to activate in each round
varies randomly between simulation runs, causing the aggre-
gate result shown in Fig. 6 to be noisy (and reflective of the

actual strategies being employed by the attacker only in a very
approximate sense).

4. CONCLUSION
We have developed a model of adaptive strategy formu-

lation and used it to study the choices an attacker learns to
make to overcome temporal platform migration moving tar-
get defense strategies. The attacker-defender interaction has
been modeled as a game in which a non-adaptive defender
deploys a temporal platform migration defense. Against this
active defense, a population of attackers developed strategies
specifying the temporal ordering of resource investments that
bring zero-day exploits into existence to compromise the de-
fender’s system.

We note that in this study, the attacker has often ignored the
effects of causality by learning over generations which plat-
forms the defender will play before they are actually played in
each game. This actually maps to realistic scenarios, when an
attacker is able to perform reconnaissance to learn a strategy
before engaging a system. Random strategies do not suffer
nearly as strongly as those which are predictable, suggesting
that increased uncertainty, even with a defined strategy, im-
proves defender performance.

This work has strong implications in cyber security, as it
enables defenders to understand their defensive posture with-
out having to explicitly detail an attacker. The reality is that
defenders often do not know their adversaries’ strategies, but
they do know some of their goals, which can be codified
into a fitness function. While we have demonstrated a simple
case study in this paper, the framework we have developed
is highly extensible and will be used to answer very detailed
questions. In future work, we aim to expand this study by
including complex defender strategies, numerous platforms,
and the ability for adversaries to develop exploits that work
against multiple systems.

ACKNOWLEDGMENTS
We thank William Streilein, Seth Webster, and Neal Wag-

ner of MIT Lincoln Laboratory for helpful discussions.

REFERENCES
[1] Bilar, Daniel, George Cybenko, and John Murphy. Ad-

versarial Dynamics: The Conficker Case Study. Moving
Target Defense II, 41-71, 2013.

[2] Colbaugh, Richard and Kristin Glass. Proactive Defense
for Evolving Cyber Threats. Sandia Report, SAND2012-
10177, 2012.

[3] Okhravi, Hamed, Mark Rabe, Travis Mayberry, Thomas
Hobson, David Bigelow, William Leonard, and William
Streilein, Survey of Cyber Moving Target Techniques.

MIT Lincoln Laboratory Technical Report, Number
1166, 2013.

[4] Sushil Jajodiaj, A. Ghosh, V. Swarup, C. Wang, X. S.
Wang (Eds). Moving Target Defense: Creating Asymmet-
ric Uncertainty for Cyber Threats. Springer, 2011.

[5] Sushil Jajodiaj, A. Ghosh, V. Subrahmanian, V. Swarup,
C. Wang, X. S. Wang (Eds). Moving Target Defense II:
Application of Game Theory and Adversarial Modeling.
Springer, 2013.

[6] H. Okhravi, A. Comella, E. Robinson, and J. Haines. Cre-
ating a cyber moving target for critical infrastructure ap-
plications using platform diversity. International Journal
of Critical Infrastructure Protection, 5(1):30 – 39, 2012.

[7] Colbaugh, R., and K. Glass. Predictability-Oriented De-
fense Against Adaptive Adversaries. Proceedings of the
2012 IEEE International Conference on Systems, Man,
and Cybernetics, 2012.

[8] Carter, Kevin M., Hamed Okhravi, and James Riordan.
Quantitative Analysis of Active Cyber Defenses Based
on Temporal Platform Diversity. arXiv:1401.8255, 2014.

[9] Crosbie, M. and E. Spafford. Applying Genetic Program-
ming to Intrusion Detection. Working Notes for the AAAI
Symposium on Genetic Programming. MIT Press, 1995.

[10] Dasgupta, D. and F. A. Gonzalez. An Intelligent De-
cision Support System for Intrusion Detection and Re-
sponse. Information Assurance in Computer Networks,
1-14, 2001.

[11] Pillai, M. M., J. H. Eloff, and H. S. Venter. An Ap-
proach to Implement a Network Intrusion Detection Sys-
tem Using Genetic Algorithms. Proceedings of the South
African Institute of Computer Scientists, 221, 2004.

[12] Li, Wei. Using Genetic Algorithm for Network Intru-
sion Detection. Proceedings of the United States Depart-
ment of Energy Cyber Security Group, 1-8, 2004.

[13] Caltagirone, S. Evolving Active Cyber Defense Strate-
gies. University of Idaho Technical Report. CSDS-DF-
TR-05-27, 2005.

[14] Crouse, M. and E. W. Fulp. A Moving Target Environ-
ment for Computer Configurations. IEEE Configuration
Analytics and Automation, 4:1-7, 2011.

[15] Crouse, M., E. W. Fulp, and D. Canas. Improving the
Diversity Defense of Genetic Algorithm-Based Moving
Target Approaches. Proceedings of the National Sympo-
sium on Moving Target Research, 2012.

[16] Axelrod, R. The Evolution of Strategies in the Iterated
Prisoner’s Dilemma. Genetic Algorithms and Simulated
Annealing, 32-41, 1987.

[17] Miller, J. H. The Coevolution of Automata in the Re-
peated Prisoner’s Dilemma. Journal of Economic Behav-
ior and Organization, 29:87-112, 1996.

[18] Aumann, R. J. Survey of Repeated Games. Essays in
Game Theory and Mathematical Economics in Honor of
Oskar Morgenstern, 11-42, 1981.

[19] Rubinstein, A. Finite Automata Play the Repeated Pris-
oner’s Dilemma. Journal of Economic Theory, 39: 83-
96,1986.

[20] Abreu, D. and A. Rubinstein. The Structure of Nash
Equilibrium in Repeated Games with Finite Automata.
Econometrica, 56:1259-1281, 1988.

[21] Tolk, Andreas, and Adelinde M. Uhrmacher. Agents:
Agenthood, Agent Architectures, and Agent Tax-
onomies. Agent-Directed Simulation and Systems Engi-
neering, 75-109, 2009.

[22] Yilmaz, Levent, and Tuncer I. Ören. Agent-directed
Simulation. Agent-Directed Simulation and Systems En-
gineering, 111-143, 2009.

[23] Moore, E. F. Gedanken-experiments on Sequential Ma-
chines. Annals of Mathematical Studies. 34:129-153.
Princeton University Press, 1956.

[24] J. H. Holland, Adaptation in Natural and Artificial Sys-
tems.The University of Press, 1975.

[25] Ho, Teck-Hua. Finite automata play repeated prisoner’s
dilemma with information processing costs. Journal of
economic dynamics and control. 20:173-207, 1996.

[26] Banks, J. and R. Sundara. Repeated games, finite au-
tomata and complexity. Games and Economic Behavior,
2:97-117, 1990.

[27] Wilensky, U. 1999. NetLogo. http://ccl.northwestern.
edu/netlogo/. Center for Connected Learning and
Computer-Based Modeling, Northwestern University.
Evanston, IL.

[28] Shacham, H. and Page, M. and Pfaff, B. and Goh, E.J.
and Modadugu, N. and Boneh, D. On the Effectiveness of
Address-Space Randomization. Proceedings of the 11th
ACM Conference on Computer and Communications Se-
curity, pp. 298-307, 2004.

