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ABSTRACT

Recent work on signal detection in graph-based data focuses on clas-
sical detection when the signal and noise are both in the form of
discrete entities and their relationships. In practice, the relation-
ships of interest may not be directly observable, or may be observed
through a noisy mechanism. The effects of imperfect observations
add another layer of difficulty to the detection problem, beyond the
effects of typical random fluctuations in the background graph. This
paper analyzes the impact on detection performance of several er-
ror and corruption mechanisms for graph data. In relatively simple
scenarios, the change in signal and noise power is analyzed, and
this is demonstrated empirically in more complicated models. It is
shown that, with enough side information, it is possible to fully re-
cover performance equivalent to working with uncorrupted data us-
ing a Bayesian approach, and a simpler cost-optimization approach
is shown to provide a substantial benefit as well.

Index Terms— Graph theory, signal detection theory, spectral
analysis, subgraph detection, data error and corruption

1. INTRODUCTION

In numerous applications, entities and the relationships between
them are of interest, and the detection of anomalous behavior within
some subset of the entities is frequently an important problem. This
capability could be used, for example, to find strange traffic patterns
in a computer network or unlikely connections in a social network.

Across these varied applications, the data of interest are usually
encoded in a graph. A graph G = (V,E) is a mathematical object
used to represent relational data. It consists of a pair of sets: a set
of vertices, V , denoting the entities, and a set of edges E that repre-
sent the relationships of interest. While this structure is ubiquitous
and intuitive, applying traditional detection theory to graphs can be
difficult, as they are combinatorial objects and optimal signal detec-
tion may require solving an NP-hard problem. Thus, spectral meth-
ods have a computational advantage over combinatorial solutions, as
demonstrated in [1, 2].

In practice, perfect knowledge of the network structure is of-
ten not possible. Observations may be obtained through imperfect
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mechanisms, with sensor noise corrupting measurements. In other
situations, the network may not be observable at all, and we may
have to rely on proxies for the true relationships of interest. Un-
derstanding how these phenomena alter subgraph detection perfor-
mance is important, and in this paper we demonstrate the effects of
several models for error on simulated networks.

Previous work on subgraph detection (e.g., [2, 3]) has focused
primarily on detection in the presence of random fluctuations in the
background graph and the signal subgraph, and have not addressed
the problem of additional data corruption. Errors in sampling real-
world social networks have been studied in the social science litera-
ture [4], as they have in the study of massive social network analysis
[5]. Recently, work on the impact of noise and error on the statis-
tics of graphs has been a topic of interest in the community [6, 7],
including work on trading off the quantity of observations with the
fidelity of the data [8]. In this paper, we add to this line of research,
analyzing the effect that observation error has on spectral methods
for the detection of anomalous subgraphs.

The remainder of this paper is organized as follows. In Section
2, we review the subgraph detection problem model and propose
various models for observation errors. Section 3 provides analytical
insight into the impact that some of these models have on detection
performance, and empirical results in a simulated setting. In Section
4, we discuss methods for fusion of multiple observations, and ana-
lyze the empirical improvement in detection performance. In Section
5, we conclude and outline future research directions.

2. PROBLEM MODEL

2.1. The Subgraph Detection Problem

The subgraph detection problem, as studied in [2, 9, 3], is a classical
detection problem with a graph as the observation. The objective is
to resolve the binary hypothesis test(

H0 : The observed graph is “noise” GB

H1 : The observed graph is “signal+noise” GB ∪GS .

Here the observation is a graph G = (V,E), and the union of
two graphs GB = (VB , EB) and GS = (VS , ES) is defined as
GB ∪GS = (VB ∪ VS , EB ∪ ES). Under the null hypothesis, H0,
the observed graph is generated entirely by some distribution that
dictates typical behavior. Under the alternative hypothesis, H1, a
subgraph is added to the normal background activity. In this paper,
we focus on the case where the subgraph vertices are all part of the
background graph, i.e., VS ⊂ VB .

The analysis framework originally proposed in [2] is based on
spectral analysis of graph residuals, which requires the use of ma-
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trix representations of a graph. The adjacency matrix A of a graph
is a |V | × |V | matrix in which entry in the ith row and jth column
is nonzero only if there is an edge from vertex i to vertex j (this
requires an arbitrary labeling of vertices with integers). Residuals
analysis is performed by considering the distribution of the back-
ground graph and computing the eigendecomposition of the differ-
ence between the observation and its expected value, i.e., computing

UΛUT = B := A− E [A] ,

whereB is known as the modularity matrix in the community detec-
tion literature [1].

2.2. Error Models

This paper focuses on analyzing the performance of the spectral
detection framework when errors are present in the data. We will
denote by A the adjacency matrix of the latent (true) graph, andbA = {âij} will denote the adjacency matrix of the observed (cor-
rupted) graph. We consider the effect of the following error models
on subgraph detection.
Uniform deletion. Each edge in the latent graph has a fixed prob-

ability p of being observed, but no false edges are observed.
Thus, Pr(âij = 1|aij = 1) = p and Pr(âij = 1|aij = 0) =
0. This model may approximate mechanisms such as random
sensor dropouts.

Uniform corruption. For all pairs of vertices, the observed re-
lationship is incorrect with uniform probability p, yielding
Pr(âij = 1|aij = 1) = (1− p) and Pr(âij = 1|aij = 0) =
p. This may simulate incorrect observations due to sensor
noise.

Degree-based corruption. Similar to uniform corruption, but the
expected number of errors associated with a given vertex is
proportional to its degree. In this case, the probability of an
incorrect edge appearing, or an edge being missed, is given
by αkikj/

P
m km, where α is a scaling constant and ki is

the observed degree of vertex i.
Random subgraph. Only the connections within a randomly se-

lected subset of vertices are observed. This simulates a case
in which only a subset of the population of entities is observ-
able. This is similar to egocentric sampling, mentioned in [4].

Similarity-based errors. Each vertex has associated metadata zi,
and an edge connecting to vertex i is mistakenly connected
to vertex j based on an decreasing function of some dis-
tance metric between their associated metadata, s(zj , zj).
This model simulates corruption due to clerical errors or
ambiguous data.

3. DETECTION PERFORMANCE WITH OBSERVATION
ERRORS

Some of the simpler error models enable theoretical justification for
performance loss. Here we consider the theoretical impact of several
of the models in relatively simple scenarios (specifically Chung–Lu
random backgrounds and signals consisting of small clusters), and
empirically demonstrate performance in simulation.

3.1. Theoretical Analysis

Using the spectral norm as a metric for signal and noise power, we
can derive the change in power due to the uniform deletion and ran-
dom subgraph error models. Considering the simple background of
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Fig. 1. Spectral norms of sparse Chung–Lu random graphs. As the
edge probabilities are changed, the spectral norm of the residuals
matrix scales roughly with the square root of the probability scaling
factor.

an Erdős–Rényi random graph (i.e., a graph where each possible
edge occurs with equal probability), we can leverage classic results
from random matrix theory, recently applied to planted clique detec-
tion [10]. Since the residuals matrix of an Erdős–Rényi graph has
entries with zero mean and equal variance, as |V | → ∞, the distri-
bution of its eigenvalues will tend to a semicircle centered at 0 with
radius 2

p
|V |p(1− p). Thus, if the expected number of edges is

changed by a factor of α, the spectral norm will be changed by a
factor of

p
(αp(1− αp))/(p(1− p)). When the graph is sparse, as

in many applications of interest, the (1 − p) terms can be ignored,
and the change in spectral norm will be approximately

√
α. Like-

wise, if the number of vertices is changed by a factor of α, as in
the random subgraph model, and the edge probabilities remain the
same, the spectral norm will change by a factor of

√
α. If the signal

subgraph is a small cluster with a relatively high edge probability,
subtraction of the expected value of the background will not signifi-
cantly alter the signal power, and a factor of α decrease in the num-
ber of edges or vertices will reduce the signal power—the number
of vertices times the edge probability—by a factor of α. The signal
power will decrease much more quickly than the background power,
making detection more difficult.

While other models are more complicated to analyze, we em-
pirically observe similar behavior. Fig. 1 demonstrates this with a
Chung–Lu random graph [11], i.e., a graph with a rank-1 expected
value. The given expected degree sequence of the graph follows a
powerlaw distribution, as seen in many real graphs, and is altered by
scaling factors of 0.25, 0.5 and 2. As shown in the figure, the actual
spectral norm of the residuals matrix scales closely to the square
root of the scaling factor, as the graph is quite sparse. (It has the
same expected degree sequence as the background graphs in Section
3.2, with an average degree of about 10.) Therefore, in this case, the
signal power will also decrease faster than the noise power.

With the uniform and degree-based corruption mechanisms ap-
plied to a Chung–Lu background, an edge may occur because it
exists in the latent graph and is not removed, or does not exist in
the latent graph and is added. This results in probabilities p̂ij =
pij(1− perror

ij ) + perror
ij (1− pij), yielding probability matrices

E
h bAi = wwT

„
1− 2α‖w‖21

|V |2

«
+
α‖w‖21
|V |2 1|V |×|V | (1)
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for uniform corruption and

E
h bAi = (1 + α)wwT − 2αw2w2T

,

for degree-based corruption. Here w is a vector of weights that de-
termine the edge probabilities, where the probability of vertex i and
vertex j sharing an edge is wiwj , w2 is a vector whose ith com-
ponent is w2

i , and α is a constant. In powerlaw graphs, w and w2

will typically be correlated, and the 2αw2w2T term will slightly re-
duce the noise power. Thus, the noise power will be increased by a
factor of up to (1 + α), and has a relatively minimal impact on sig-
nal power, since the signal vertices have relatively low degree. In the
case of uniform corruption, we see a “whitening” effect on the noise:
while there are more background edges, a more substantial fraction
is uniform across the graph (the 1|V |×|V | term in (1)). Therefore,
the additional error will not be correlated with the background and
will likely have a minimal effect on detection performance.

With similarity-based errors, we will consider the case in which
all vertices are equally likely to be mistaken for all other vertices.
The expected value of the corrupted graph will be„

αI +
(1− α)

N
1|V |×|V |

«
A

„
αI +

(1− α)

N
1|V |×|V |

«
.

Here (1 − α)/N is the probability that either the row or column of
the edge entry will be swapped with that of each other vertex. If the
background graph comes from a Chung–Lu model, then the expected
value of the resulting graph is given by

E
h bAi =

„
αI+

(1− α)

N
1|V |×|V |

«
wwT

„
αI+

(1− α)

N
1|V |×|V |

«
.

Thus, the expected value remains a rank-1 matrix, with the weight
vector w replaced with

ŵ = αw +
(1− α)‖w‖1

N
1|V |.

One way to interpret this change is that it makes the Chung–Lu graph
more Erdős–Rényi-like, making the expected degree sequence closer
to uniform. While this does not change the overall number of edges
in the graph, it does cause a reduction in the spectral norm as the
variance in the background becomes more evenly spread across the
graph. A cluster embedded into the background will also have a
rank-1 expected value, and if the edge probability within the sub-
graph is pS , then when the observation is corrupted, the spectral
norm of the expected corrupted subgraph is

NSpS

N

`
Nα2 + (1− α2)NS

´
,

which, assuming the number of subgraph vertices is much smaller
than the number of total vertices, is not much larger than α2NSpS ,
thus roughly reducing the signal power by a factor of α2.

3.2. Simulation Results

We ran several 10,000-trial Monte Carlo simulations to illustrate the
impact of the noted error mechanisms on detection performance. In
each experiment, the background consisted of an R-MAT stochas-
tic Kronecker graph [12] with 1024 vertices and an average degree
of approximately 10. The modularity matrix introduced in [1] was
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Fig. 2. A comparison of subgraph detection performance with each
error mechanism in place.

used for a residuals model, fitting the observed graph to a Chung–Lu
model and computing the top eigenvectors of

B = A− kkT

‖k‖1
,

where k is the observed degree vector. The mild community struc-
ture of the R-MAT background provides some mismatch from the
Chung–Lu model, yielding a more challenging problem.

In each of the simulations, a background graph was created, and
a 12-vertex cluster where each pair of vertices has 85% probability of
connection was embedded for the cases under the alternative hypoth-
esis. Each error mechanism was applied so that the average number
of edge errors (i.e., the number of incorrect edges plus the number
of missing edges) was 20% of the total number of edges in the latent
graph. For similarity-based errors, similarities were computed by
generating a 3-dimensional feature vector for each vertex, drawn in-
dependently at random from a uniform distribution over [0, 1]3. As
a detection statistic, the method introduced in [2] is used, where the
residuals are projected into their principal 2-dimensional subspace,
and a chi-squared test for independence is performed on a contin-
gency table representing the number of points falling in each quad-
rant. The statistic is maximized over rotation in the plane, so that
more radially symmetric projections have lower statistics.

Results of the experiment are shown in Fig. 2. As predicted by
our theoretical analysis, uniform corruption actually improves detec-
tion performance, since it has a decorrelating effect on the noise with
little impact on the signal. Degree-based corruption has a mildly
negative effect on detection performance, since the data corruption
is somewhat correlated with the background noise. As expected, uni-
form deletion and the random subgraph mechanism have extremely
similar performance, since both scale signal power by a factor of 0.8
and noise power by approximately

√
0.8. A less significant reduc-

tion in performance is demonstrated by the similarity-based errors.
As discussed, this is due to the “whitening” of the background noise
that occurs, making it more like an Erdős–Rényi graph.

4. MULTI-SOURCE FUSION FOR PERFORMANCE
RECOVERY

One technical area of interest is the fusion of data from multiple
diverse sources to improve detection performance. In this section,
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Fig. 3. Detection performance when recovering the original graph
via Bayesian inference.

we consider two approaches: a Bayesian inference approach and an
optimization approach.

4.1. Bayesian Approach

For the Bayesian approach, we assume knowledge of the background
model and the error model. For a given sequence of observationsbAm, we can compute the expected value of the latent graph. This is
especially tractable when the errors are independent, i.e., an error re-
garding the observation of one edge does not impact the observation
of any other. Uniform deletion and the random corruption mecha-
nisms fit most easily in this category, so we use these for a fusion
experiment. The expected value of A is computed, given the obser-
vations and the model parameters, and detection algorithm is run on
the associated weighted graph.

We consider a graph with 50% edge errors via degree-based cor-
ruption and one with 20% edge errors by uniform deletion. The
background and foreground models are the same as in Section 3.2.
Results of this experiment are shown in Fig. 3. Interestingly, when
significant information about the background is used—in particu-
lar, the true edge probabilities—detection performance actually de-
creases. This may be because the signal subgraph does not follow
the background model, so using additional information helps to re-
construct the background but hinders signal power. Using an Erdős–
Rényi (ER) prior, however, fully recovers the detection performance
achieved when operating on the latent graph. In fact, performance is
slightly better, probably due to the additional information provided:
the expected total number of edges.

4.2. Optimization Approach

While the Bayesian approach is satisfying in its statistical rigor, such
in-depth knowledge of the error mechanism may not be available. In
some applications, judgement calls must be made based on the level
of “trust” an analyst has in a particular data source. In this section,
we consider fusion via a simple weighting procedure, where if an
edge occurs between vertices i and j in any of the n observations,
then in the fused graph the edge is given the weight

g
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Fig. 4. Detection performance when fusing observations via a
weighted sum. Fusion of an observation with uniform corruption
and one with uniform deletion nearly recovers performance achieved
with the latent graph (top), while fusion of mechanisms with a milder
effect on performance come even closer to full recovery (bottom).

where θm, 0 ≤ m ≤ n, are real-valued coefficients and g(x) =
1/(1 + e−x) is the logistic function. This technique is applied to the
same scenario as in Section 4.1, as well as the same degree-based
corruption mechanism fused with data with similarity-based errors.

Results of this experiment are shown in Figure 4. Using the same
data as in the Bayesian experiment, while the same performance is
not achieved, there is a substantial improvement in detection perfor-
mance. Also, this technique can be used for models that may be
too complicated for full Bayesian inference of the latent graph. As
shown in the figure, when the observation with degree-based cor-
ruption is fused with the graph with similarity-based errors, perfor-
mance nearly equivalent to working with the latent graph is achieved.

5. SUMMARY

This paper studies the effect of various data corruption models on
spectral methods for anomalous subgraph detection. Five models
for data errors are proposed, and each one’s influence on signal and
noise power is studied for simple background and foreground mod-
els. Simulations demonstrate how these error models alter detection
performance, with random corruption mechanisms having relatively
little impact, random vertex and edge deletions having a much more
substantial effect, and similarity-based errors having a somewhat
milder impact. When fusing multiple observations from different er-
ror mechanisms together, a Bayesian inference technique is shown to
fully recover detection performance, while a simple weighting pro-
cedure also provides a substantial benefit without necessarily relying
on additional knowledge of the model. Future work will focus on a
deeper analysis of the signal and noise power metrics, and address-
ing additional methods, such as snowball sampling and random walk
sampling.
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