

April 2014 Page 1 of 11

Adaptive Attacker Strategy Development Against
Moving Target Cyber Defenses

M. L. Winterrose, K. M. Carter, N. Wagner, and W. W. Streilein
MIT Lincoln Laboratory

Lexington, MA
{michael.winterrose, kevin.carter, neal.wagner, wws}@ll.mit.edu1

ABSTRACT

A model of strategy formulation is used to study how an adaptive attacker learns to overcome a moving target cyber
defense. The attacker-defender interaction is modeled as a game in which a defender deploys a temporal platform
migration defense. Against this defense, a population of attackers develop strategies specifying the temporal
ordering of resource investments that bring targeted zero-day exploits into existence. Attacker response to two
defender temporal platform migration scheduling policies are examined. In the first defender scheduling policy, the
defender selects the active platform in each match uniformly at random from a pool of available platforms. In the
second policy the defender schedules each successive platform to maximize the diversity of the source code
presented to the attacker. Adaptive attacker response strategies are modeled by finite state machine (FSM)
constructs that evolve during simulated play against defender strategies via an evolutionary algorithm. It is
demonstrated that the attacker learns to invest heavily in exploit creation for the platform with the least similarity to
other platforms when faced with a diversity defense, while avoiding investment in exploits for this least similar
platform when facing a randomization defense. Additionally, it is demonstrated that the diversity-maximizing
defense is superior for shorter duration attacker-defender engagements, but performs sub-optimally in extended
attacker-defender interactions.

ABOUT THE AUTHORS

Dr. Michael L. Winterrose is a researcher in the Cyber Systems and Technology Group at MIT Lincoln
Laboratory. He is primarily interested in developing models and techniques to aid in the understanding and shaping
of adversarial dynamics observed in the cyber domain. Dr. Winterrose’s research interests include advanced
simulation techniques, game theory, complex systems modeling, and artificial intelligence with an emphasis on
learning.

Dr. Kevin M. Carter is an Assistant Group Leader in the Cyber Systems and Technology Group at MIT Lincoln
Laboratory. He leads efforts focused on developing models and analytics for the purposes of network security,
situational awareness, anomaly detection, and decision support. His research interests include statistical signal
processing, pattern recognition and machine learning applied to cyber network and system data.

Dr. Neal Wagner is a researcher in the Cyber Systems and Technology Group at MIT Lincoln Laboratory. His
focus lies in developing and applying computational intelligence techniques for problems in the cyber domain.
Specifically, he is interested in bio-inspired and heuristic algorithms for real-world scale applications of
optimization, prediction, and simulation.

Dr. William Streilein is an Assistant Group Leader in the Cyber Systems and Technology Group at MIT Lincoln
Laboratory where he manages research and development efforts focused on delivering capabilities and technologies
for cyber reasoning and response. His research interests include machine learning and modeling and simulation,
especially as applied to problems in cybersecurity, security metrics, and cyber moving target.

1 This work is sponsored by the Department of Defense under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the authors and are not necessarily endorsed by the United States Government.

April 2014 Page 2 of 11

Adaptive Attacker Strategy Development Against
Moving Target Cyber Defenses

 M. L. Winterrose, K. M. Carter, N. Wagner, and W. W. Streilein
MIT Lincoln Laboratory

Lexington, MA
{michael.winterrose, kevin.carter, neal.wagner, wws}@ll.mit.edu

INTRODUCTION

Today cyber defenders are at a systematic disadvantage in cyber conflict. Attackers often only need to exploit a
single security vulnerability to succeed with an attack, and attackers can typically act at a time and place of their
choosing. Furthermore, the technological monocultures that dominate information technology today place these
systems at significant risk for attack. With a large number of organizations and individuals using essentially
identical hardware, operating systems, and application software, significant incentives have been created for cyber
attackers to discover and exploit vulnerabilities in these systems.

In this context, new techniques are under development by the cyber security research community to rebalance the
playing field for cyber defenders. A major effort in recent years along these lines is an attempt by cyber defenders to
diversify the most vulnerable pieces of the existing large cyber monocultures. These techniques, aiming to increase
the diversity of a system's attack surface, causing increased operational costs and uncertainty for attackers have
come to be grouped under the umbrella term moving target. Moving target techniques have been applied to diversify
runtime environments, software, networks, platforms, and data in recent years (Okhravi et al., 2013; Okhravi,
Hobson, Bigelow, and Streilein, 2014).

In this study, we examine a class of migration-based techniques that dynamically change the platform (i.e.,
operating system (OS)) that is active on a host in order to reduce attacker success and increase attacker resource
investment requirements. These techniques work under the assumption that the attacker has limited resources and
generally does not have exploits available for all OSes. As such, migrating between OSes with some frequency
reduces the ability of an attacker to maintain persistence on a system. Additionally, it increases the uncertainty for
an attacker that aims to expend resources toward exploit development.

Two recent studies have examined the optimal scheduling policy for a temporal migration moving target defense. In
the first the conclusion was drawn that a uniform random scheduling policy by a defender employing a set of active
spam filters performed optimally against an adaptive adversary (Colbaugh and Glass, 2012). The second set of
studies (Carter, Okhravi, and Riordan, 2013) required the attacker to maintain persistence in a system for a period of
time before reward accrued. An additional factor incorporated in the second set of studies was that of coupled
exploits, in which a given exploit targeted at a specific OS may work against other similar OSes. It was shown that a
deterministic scheduling policy that maximizes the diversity of the platforms played in each successive round was
superior under the assumption of coupled exploits and the requirement of attacker persistence (Carter et al., 2013).

The goal of this work is to evaluate different scheduling policy strategies against a non-deterministic, adaptive
attacker. As opposed to (Colbaugh and Glass, 2012) and (Carter et al., 2013), which posited a restrictive attacker
model in which an attacker could only develop exploits for OSes presented to it by the defender, we extend our prior
work (Winterrose and Carter, 2014) to model an adaptive attacker with a less restrictive attacker model. This more
flexible adversary model allows an attacker to invest in the development of zero-day exploits against any potential
defender system. Attackers observe defender actions and use these observations to learn optimal investment
strategies. We will demonstrate the complex, yet intuitive, strategies that are evolved to optimize attacker success
against various defender platform migration scheduling policies.

April 2014 Page 3 of 11

The major contributions of this work are as follows:

1. We employ a less restrictive attacker model that more accurately captures the resource investment decision
problem faced by an attacker.

2. We present the first use of a novel finite state machine (FSM) construct that transitions between action
states based on a heterogeneous set of system observations.

3. We show that learned attacker strategies are highly sensitive to the statistical characteristics of the
defender's moving target scheduling policy.

4. We demonstrate that the degree to which a defense policy is optimal against an adaptive adversary changes
as the duration of conflict varies.

METHODS

Attacker/Defender Game Scenario

Many security scenarios can be modeled as games (Tambe, 2012). Typically this involves the reduction of a given
adversarial situation to its most essential elements, casting the salient features of a security conflict in stark relief.
Done well, this procedure facilitates the discovery of the deeper mechanisms underlying a real-world phenomenon
by eliminating the non-essential aspects of a situation.

In our scenario the attacker, characterized by a population of N strategies, plays a series of games made up of sets of
consecutive matches against the defender. A simulated game between the attacker and the defender is played in
which time advances in discrete steps. A single match is executed at each tick of the simulation clock. In each
match, a deterministic defender activates one platform according to a pre-determined defense strategy. The attacker
observes the defender's choice and must decide how to allocate resources in the next round to bring exploits into
existence so as to attack the defender's system with an optimal chance of success. All exploits in this study are
assumed to be zero-day exploits, meaning that they are unobserved by the defender when used against the
corresponding operating system.

In the simulated game there exists one possible zero-day exploit for each type of platform the defender might deploy
in the temporal platform migration defensive system. In each match of the game, the attacker may choose to use its
resources to further develop one of these zero-day exploits.

The attacker resources (i.e., the number of rounds of attacker resource investment) required to bring a given zero-
day exploit into existence is determined by sampling from a Gamma distribution at the beginning of each
generation. The attacker is not informed a priori of the number of resources that will be required to bring a zero-day
exploit against a given platform into existence. Instead the attacker discovers this only after having successfully
created the exploit through the allocation of sufficient resources. Additionally the attacker must learn when to
discontinue investment in the creation of a particular exploit once the required number of resources has been
invested, as continued investment will be wasted. This is used to model the fact that a real-world attacker is not
generally able to predict a priori the level of effort that will be required to develop new exploits against a given
system.

In each match, the attacker uses any exploits that have been developed in the current game against the activated
platform. Success for the attacker in a match occurs when it has an available exploit that works against the platform
activated by the defender. Intuitively, the attacker gains a reward if the attacker is able to compromise the defender's
system during the match, and earns nothing otherwise. For the purposes of this study, we impose a persistence
requirement on the adversary, such that a reward is granted only after 3 consecutive successful matches. One may
view this as the requisite length of time to stage an attack, such as the exfiltration of data over a difficult channel,
with a cumulative reward being granted each match while the full attack is successful (i.e., ≥ 3 matches) (Carter et
al., 2013).

April 2014 Page 4 of 11

In this study we allow the defender access to the pool of 5 platforms: Fedora on x86, Gentoo on x86, Debian on
x86_64, FreeBSD on x86, and CentOS on x86. In the randomization defense, in each match an OS is selected from
the pool of 5 for activation on the defender's system uniformly at random, with the caveat that the OS activated in
the present match cannot be activated again in the immediate next match. The diversity defense consists of the
deterministic activation of Fedora, Debian, and FreeBSD in succession (Carter et al., 2013). This rotation between 3
platforms maximizes the diversity of the source code presented to the attacker from match to match and reduces the
likelihood that an exploit developed for one OS can persist when that OS is replaced by the next OS in the rotation.

The attacker can develop a targeted exploit for each of the defender operating systems. A targeted exploit works
with certainty each time it is used against the platform it targets. In our model a developed exploit also works against
platforms other than the exploit's target system with a probability proportional to the code similarity of the two
operating systems. We term this effectiveness of an exploit against systems other than the target system its cross
platform effectiveness.

Table 1 lists a set of code similarity scores for the defender's operating systems. These similarity scores were
calculated using the Measure of Software Similarity (MOSS) tool (Schleimer, Wilkerson, and Aiken, 2003) and are
based on each operating system's kernel code and standard device drivers (Carter et al., 2013). The similarity scores
are given on a scale from 0 to 1, with 1 implying identical operating system code and 0 indicating completely
dissimilar operating system code.

Table 1. Platform similarity scores based on operating system kernel code and standard device drivers,
reproduced from (Carter et al., 2013).

CentOS Fedora Debian Gentoo FreeBSD
CentOS 1.0000 0.6645 0.8067 0.6973 0.0368
Fedora 0.6645 1.0000 0.5928 0.8658 0.0324
Debian 0.8067 0.5928 1.0000 0.6202 0.0385
Gentoo 0.6973 0.8658 0.6202 1.0000 0.0330
FreeBSD 0.0368 0.0324 0.0385 0.0330 1.0000

We note that FreeBSD is an outlier in the set with a markedly low similarity score compared with the remainder of
the set. This is explained by the fact that FreeBSD is based on Unix while the other 4 operating systems are Linux-
based. In the sections that follow the outlier status of the FreeBSD platform will be shown to have a significant
impact on attacker strategy development.

In this study the cross-platform effectiveness is determined on a match-by-match basis. On each match the attacker
plays all available exploits against the defender activated platform If the attacker has developed the exploit targeted
at the activated defender's system then the attacker succeeds with the attack with certainty. On the other hand, if the
targeted exploit has not been created by the attacker for the activated platform, any other created exploits succeed
against the defender's system with a probability equal to the similarity score between the exploit's targeted system
and the system activated by the defender.

Finite State Machine Strategy Encoding

We represent attacker strategies as binary chromosomes encoding a FSM construct. An FSM is an abstract machine
that takes discrete inputs from an environment and specifies a discrete output in response. An agent modeled by an
FSM will occupy only one state at any point in time. Such an agent transitions between states based on observations
of its environment.

April 2014 Page 5 of 11

Figure 1. Hypothetical single automata state and corresponding outgoing transition set of an attacker's FSM
(upper). E, P, S, and F represent Exploit investment, Platform observation, Successful attack, and Failed attack
by the attacker, respectively. The finite automata state maps into a binary chromosome in which bits are
represented by # ∈ {0, 1}. Portion (a) of the chromosome encodes the attacker investment in zero-day exploit
creation when the attacker occupies this hypothetical state using 3-bits. Segments (b) and (c) of the
chromosome encode two possible transitions executed in response to observation of the defender's activations
and the attacker's success in the current round. The transitions are encoded using 4-bits each

Each strategy in our 30-strategy population is represented by one 16-state, 160-transition FSM. Each state encodes
up to 8 possible actions, leading to a 692-bit chromosome encoded in a manner similar to (Miller, 1996; Winterrose,
2014). Figure 1 depicts a single state in our machine and its outgoing transitions.

The 30 machines are initialized randomly before the simulation begins. During the simulation the actions encoded in
each state of each machine and the transitions between states evolve according to the genetic algorithm presented in
the next section.

We use 16-state FSMs for historical reasons (Miller, 1996), but find through ancillary studies that the actual
strategies evolved by attackers generally fit easily within our 16-state constraint. An extended study with a widely
varying number of machine states would shed useful light on the consequences of bounded rationality on the nature
of strategies evolved in the cyber domain.

Our FSMs transition between states based on both the type of platform activated by the defender in the previous
round and on the success the attacker had with its exploit attacks in the previous round. To the best of our
knowledge, this dual-observation transition model is unique to this study. Previous studies using a simpler, but
related, FSM construct to play the Prisoner's Dilemma game-theoretic scenario (Miller, 1996) transitioned between
machine states based on a single observation of opponent action in each round of play.

Evolutionary Algorithm

The adaptive attacker in our study evolves strategies against the defender using a genetic algorithm (GA) (Holland,
1975). Originally conceived as a stylized model of biological evolution, the GA has proven to be a robust method
that can efficiently search solution spaces that are nonlinear and/or discontinuous. In our implementation we
randomly initialize 30 strategies at the outset of a simulation run. In each generation each agent (i.e., strategy) plays
a game consisting of M matches against the defender.

In a match, if the defender's active platform is vulnerable to an exploit that has been successfully developed, the
attacker accrues a reward, governed by some underlying function that is hidden from the algorithm. This may

(P2, S)

(P0,S)

(P1,S)
(P3,S)

(P4,S)

E1#

(P0,F)

(P1,F)
(P2,F)

(P3,F)

(P4,F)

 (a)

.
(b) (c)

April 2014 Page 6 of 11

include immediate reward, or for example, require some level of consecutive success before a reward is granted (e.g.
persistence). See (Carter et al., 2013) for example scenarios and associated reward functions.

Once the reward is computed, the match is concluded. A new match begins with the attacker choosing an exploit to
develop with its allocated resources (one resource is available for investment by the attacker in each match).
Concurrently, the defender selects a platform to make active in the system, against which the attacker moves with
any available exploits. This continues for M matches, at which point the game ends between the chosen attacker and
the defender, and a new attacker strategy from the population is rotated in to play against the defender. Once all
attackers have played their M matches in the generation (g) against the defender, each strategy, i, is assigned a
fitness score, F, based on its success against the defender,

Fi,g = Φi, j
j=1

Mg

∑ , (1)

with Φ!,! set equal to +1 if the system is compromised, and set equal to 0 otherwise. Attacker strategies are ranked
based on their fitness scores. A new population of attacker strategies is generated for play against the defender using
the following steps:

1. A fraction of the top ranked attacker strategies are copied directly into the new population. This procedure
is known as elitism and is commonly used in GA applications to avoid the loss of the best strategies from
previous strategy populations (Mitchell, 1996).

2. Two attacker strategies are chosen from the current population using fitness proportionate selection in
which higher ranking strategies are more likely to be selected.

3. The two selected (parent) strategies undergo the crossover genetic operation (analogous to biological
sexual reproduction) to generate two offspring strategies. In this operation, a single crossover point c ∈
{1,2, . . . n} on each of two parent chromosomes is selected uniformly at random. The first offspring
combines the first c bits from the first parent with all bits after the c+1 chromosome position of the second
parent to form a new chromosome. The second offspring takes all bits after the c+1 chromosome position
from parent 1 and combines it with the first c bits of parent two's chromosome to form a new strategy.

4. The two offspring strategies are then subject to the mutation genetic operation (analogous to asexual
reproduction). In this operation bits in the chromosome are randomly altered. The mutation operation is
commonly used in GA applications to increase population diversity and avoid local extrema in the search
space (Michalewicz, 1996).

5. The two generated offspring strategies are then added to the new population.

6. The above steps are repeated until the new population has a sufficient number of strategies (specified by a
population number parameter).

Attacker strategies are evolved over a set of generations where each generation includes the attacker-defender
simulated games and the above steps to generate new populations of strategies.

EXPERIMENTS

Simulation Initialization

The defender's dynamic platform scheduling policy is assigned at the beginning of the game and is not altered as the
game progresses. The attacker's strategy is represented by a population of randomly initialized strategies encoded as
binary chromosomes representing FSMs. Each iteration of the simulation is allowed to run for 100 generations of
genetic algorithm evolution, with the attacker strategy being evolved in each of these generations. A single

April 2014 Page 7 of 11

generation consists of each of the N=30 attackers playing M matches against the defender. The 100-generation run is
iterated 100 times and the results aggregated and averaged to account for the stochasticity in the model.

The number of attacker resources required to bring a given zero-day exploit into existence is determined at the
beginning of each generation by independent draws from a Gamma distribution for each of the 5 possible zero-day
exploits available for development by the attacker, similar to the procedure we used in (Winterrose and Carter,
2014). The Gamma distribution is parameterized by a mean (µ) and variance (σ2) parameter. We use µ =25 and
σ2=10 throughout this study.

In the analysis that follows we typically extract the fittest learned attacker strategy in each generation of each
simulation run and aggregate these together to produce the results discussed. This procedure is consistent with the
focus in this paper on the nature of the optimal attacker strategies developed against the defender's moving target
defense. We refer to this set of fittest strategies extracted from each simulation run as the fittest attackers or fittest
strategies hereafter.

Simulations were created and executed in the NetLogo modeling environment (Wilensky, 1999). Data aggregation
across simulation runs and the calculation of statistical measures was carried out using MATLAB release 2013b
(Matlab, 2013). To visualize the evolved FSMs we have used the Gephi network visualization and analysis software
package (Bastian, Heymann, and Jacomy, 2009).

Attacker’s Response to Diversity and Randomization Defense

Figure 2 shows the match-level response at the 100th generation of genetic algorithm evolution for the fittest
attackers averaged over 100 simulation runs. The attacker performs better against the randomization defense
throughout the 100-match game, but the difference in performance narrows as the match number increases. We
recall that the attacker must compromise the defender's system for 3 consecutive matches using its developed
exploits before beginning to accrue a reward for system compromise. Figure 2 shows that this begins to occur at an
earlier point in match play when the attacker faces the randomization defense. Specifically, the attacker's fitness
begins to rise around match number 40 when the attacker faces the randomization defense, roughly the point at
which an efficient attacker might begin to have access to 2 exploits given this studies' exploit creation cost
parameterization. With 2 exploits created the attacker can utilize the cross-platform effectiveness of the created
exploits to achieve the persistence required for accruing attacker reward.

Figure 2. Fittest attacker game success in the 100th generation of genetic algorithm evolution averaged over
100 simulation runs. The attacker is most successful against the defender deploying the randomization
dynamic platform scheduling policy, though the difference in response narrows in later matches. See text for
discussion.

0 20 40 60 80 100 120
0

5

10

15

20

25

30

Match

A
tt

a
c
k
e
r

F
it

n
e
s
s

Diversity
Random

April 2014 Page 8 of 11

Against the diversity defense, on the other hand, the attacker does not begin accumulating reward until just before
match 60. Between the 60th and 75th match the attacker's reward (i.e., fitness) climbs slowly, then accelerates
sharply after approximately match 75. This can be understood by recalling that once the attacker has had the
opportunity to develop 3 targeted exploits it is able to completely counter the diversity defense. This causes the
fitness of the attacker facing the diversity defense to quickly approach the fitness of the attacker facing the
randomization defense.

Figure 3. Structural representation of an exemplar attacker strategy developed to counter the diversity
defense. The strategies are encoded in a FSM. Nodes are labeled by the investment to be made by the attacker
in the various machine states. Edges represent transitions between states based on observations of the
defender's actions and successful game play. See text for further discussion.

Figure 3 shows the structural properties of an exemplar FSM encoding an attacker's evolved strategy when facing
the diversity defense. In the figure the node and label sizes are proportional to the number of transitions into a given
state. The importance of the Fedora, Debian, and FreeBSD exploit development in the learned attacker strategy are
clear in this FSM representation. In particular, FreeBSD is the most prevalent investment state in the structure, a fact
we discuss in the next section.

Patterns of Attacker Investment in Zero-Day Exploit Creation

An important consideration when deciding upon a deployment strategy for a dynamic platform moving target
defense is how the attacker is likely to alter its strategy based on the defender's choices. For this experiment, we
were interested in understanding how the statistical characteristics of the defender's scheduling policy affects
attacker exploit creation investment choices.

The basic choice the attacker faces is the manner in which to invest its resource in each round to compromise the
attacker's system with maximum effectiveness. The key considerations for the attacker in achieving this goal is the
persistence requirement (i.e., 3 consecutive successful attacks before attacker reward accrues) and the cross-platform
effectiveness of each zero-day exploit. The need to weigh these factors together with the observations of the
defender's dynamic platform scheduling policy make the investment choice a complex one for the attacker.

Figure 4 shows the generational investment patterns learned by the fittest attackers aggregated across the 100
simulation runs. It is clear that the statistical character of the defender's scheduling policy strongly affects the exploit
investment pattern of the attacker. The largest effects are observed in the preference or disdain the attacker shows
for developing the FreeBSD zero-day exploit. Figure 4a shows that when facing the randomizing defender the
attacker prefers to minimize investment in the FreeBSD exploit and focus investment on the creation of exploits for
the Linux-based platforms. This behavior contrasts sharply with the attacker's response to the diversity-maximizing
defender (Fig. 4b). Here the attacker shows a strong preference for developing the FreeBSD exploit.

*HQWRR

)UHH%6'

)HGRUD

1XOO

'HELDQ

'HELDQ

'HELDQ

)HGRUD

1XOO

'HELDQ

)HGRUD

)UHH%6'
'HELDQ

)UHH%6'

)HGRUD

1XOO

April 2014 Page 9 of 11

Figure 4. Generational progression of fittest attacker exploit creation investments averaged over 100
simulation runs. Investment patterns of attackers facing a randomized defender scheduling policy (a) differ
markedly from the investment patterns developed by the evolving attackers facing a diversity defense (b).

We note that in Fig. 4 the attacker has discovered these investment patterns already in the initial generation. This
early discovery of the fittest attacker strategy is essentially a matter of luck. The process of learning these
investment patterns is more evident when examining the evolution of investment patterns within the entire
population of N=30 attackers, as shown in Fig. 5. Here we see the population mean investment in each of the
available exploits distributed approximately uniformly in the initial generation, then diverging strongly in just a few
generations as the population converges on the strategies of avoiding FreeBSD exploit investment when facing the
randomized defense (Fig. 5a), and investing heavily in FreeBSD exploit creation when facing the diversity defense
in Fig. 5b.

Figure 5. Generational progression of mean attacker exploit creation investments for the entire attacker
population of N=30 strategies. Displayed results are aggregated and averaged over 100 simulation runs. As in
the fittest attacker case, investment patterns of attackers facing a randomized defender scheduling policy (a)
are quite different from the investment patterns developed by the evolving attackers facing a diversity
defense (b).

These trends can be understood by taking account of the following observations. When facing the diversity defense
the attacker can predict with certainty that it will face a defender activating the FreeBSD platform reliably every 3
matches. Given the dissimilarity of FreeBSD with the other 4 platforms, this makes it improbable that the attacker
will achieve the requirement of 3-match persistence across the FreeBSD activation if the FreeBSD exploit has not
been created. When the attacker is facing the randomization defense, in contrast, there exists a reasonable
probability that the attacker will achieve the persistence requirement and accrue reward without facing activation of
the FreeBSD platform by the defender. The predictability of needing to overcome a FreeBSD activation in the first
case (i.e., diversity defense), and the uncertainty of facing a FreeBSD activation in the second case (i.e.,
randomization defense) rationalizes the investment patterns in Fig. 4 and 5.

0 20 40 60 80 100
5

10

15

20

25

30

35

40

Generation

At
ta

ck
er

 I
nv

es
tm

en
ts

CentOS
Fedora
Debian
Gentoo
FreeBSD

0 20 40 60 80 100
5

10

15

20

25

30

35

40

Generation

A
tta

ck
er

 I
nv

es
tm

en
ts

(a) (b)

0 20 40 60 80 100
5

10

15

20

25

30

35

40

Generation

At
ta

ck
er

 I
nv

es
tm

en
ts

 (P
op

ul
at

io
n)

CentOS
Fedora
Debian
Gentoo
FreeBSD

0 20 40 60 80 100
5

10

15

20

25

30

35

40

Generation

A
tta

ck
er

 I
nv

es
tm

en
ts

 (P
op

ul
at

io
n)

(a) (b)

April 2014 Page 10 of 11

Engagement Duration Effects

Another important consideration when deciding upon a deployment strategy for a dynamic platform moving target
defense is the duration of the interaction. For this experiment, we were interested in understanding how attacker
fitness in the face of diversity and random strategies was affected by different interaction (i.e., game) durations.
Figure 6 demonstrates that the duration of attacker/defender interaction greatly affects the efficacy of the defensive
capability, which is reflected inversely in the fitness level of the attacker: better attacker fitness implies worse
defensive capability. In Fig. 6a we see that the attacker achieves a high level of fitness for a 75-Match game when a
random strategy is utilized. By contrast, when the defender utilizes the diversity strategy, the attacker never
achieves a similar level of fitness, though the overall level of fitness does increase with generation. As the duration
of the games increases, through 100-Match and 125-Match games, Fig. 6 shows that the value of the diversity
strategy diminishes for longer duration interactions. Specifically, when 100-Match games are played, the attacker
fitness level is roughly equivalent for random and diversity strategy at the start, with the diversity strategy initially
performing sub-optimally and then improving. When the 125-match games are played, the diversity strategy is
always sub-optimal to the random strategy in providing effective defense by allowing the attacker fitness to reach a
higher level. It is worth noting that the absolute fitness level achieved by the attacker increases overall as the
interaction duration increases regardless of the defensive strategy employed. This is due to the fact that the attacker
is provided with more time to develop an exploit in all cases regardless of the defensive strategy in use and thus is
able to improve fitness level.

To understand the benefit provided at shorter durations by the diversity strategy it is instructive to consider that
although the attacker is able to focus his resources on a smaller set of target OSes, the shorter duration makes it
difficult to achieve all exploits needed to compromise the system with the required persistence. As the duration
increases, the attacker is more likely to develop targeted exploits for the entire set of the OSes in the diversity
strategy before the interaction ends and thus is able to achieve persistent compromise. When the game duration
reaches 125 matches, the random strategy provides more defensive benefit due to the attacker's increased difficulty
in predicting future OSes relative to the diversity strategy.

As a result of these simulated experiments, it is recommended that when interaction with an attacker can be kept to a
short duration, a diversity strategy is preferred. The specific length of the duration that is optimal depends upon the
expected time it would take the attacker to develop the exploits.

Figure 6. Game success as a function of generation number for the set of fittest attackers facing the defender
in games of varying length, as indicated in the figures.

CONCLUSION

We have developed a model of adaptive attacker strategy evolution and used it to investigate the strategies an
attacker develops to overcome two temporal platform migration moving target defense strategies. The attacker-
defender interaction has been modeled as a game in which a non-adaptive defender deploys a randomization or a
diversity moving target defense. Against these dynamic platform scheduling policies a population of attackers
develop strategies specifying the temporal ordering of resource investments that bring zero-day exploits into
existence to compromise the defender's system.

The results of this study have strong implications for real-world defenders. First, defenders deploying dynamic
platform defenses and anticipating attacks over difficult channels (i.e., requiring persistence to succeed), should be

0 20 40 60 80 100
2

4

6

8

10

12

14

16

18

Generation

A
tta

ck
er

 F
itn

es
s

75−Match Games

Diversity
Random

(a) (a)

0 20 40 60 80 100
12

14

16

18

20

22

24

26

28

30

Generation

A
tta

ck
er

 F
itn

es
s

100−Match Games

Diversity
Random

0 20 40 60 80 100
25

30

35

40

45

50

Generation

A
tta

ck
er

 F
itn

es
s

125−Match Games

Diversity
Random

(b) (c)

April 2014 Page 11 of 11

particularly vigilant regarding the systems in their rotation-set with outlier status in attributes relevant to an
attacker's success. It is these outlier systems that advanced attackers will devote the largest proportion of resources
to compromising. Furthermore, our results suggest that diversity-maximizing defenses are most effective for short
duration attacker/defender encounters. The crucial parameter in this regard is the time required for an attacker to
bring exploits into existence versus the duration of the attacker's encounter with the defender's system.

Future directions of interest for investigation include the incorporation of noise into the attacker's observation model
in order to bring the game scenario nearer to conditions likely to prevail for real-world attackers and the
incorporation of an adaptive defender into our cyber game scenario.

REFERENCES

Bastian, M., Heymann, S., Jacomy M. (2009). Gephi: An Open Source Software for Exploring and Manipulating
Networks. International AAAI Conference on Weblogs and Social Media, 361-362.

Carter, K. M., Okhravi, H., & Riordan, J. (2014). Quantitative Analysis of Active Cyber Defenses Based on
Temporal Platform Diversity. arXiv preprint arXiv:1401.8255.

Colbaugh, R., & Glass, K. (2012). Predictability-Oriented Defense Against Adaptive Adversaries. Proceedings of
the 2012 IEEE International Conference on Systems, Man, and Cybernetics, 2721-2727.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: The University of Michigan Press.

MATLAB R2013b, The MathWorks, Inc., Natick: Massachusetts.

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs, 3E, Berlin, Springer-Verlag.

Miller, J. H. (1996). The Coevolution of Automata in the Repeated Prisoner's Dilemma. Journal of Economic
Behavior and Organization, 29, 87-112.

Mitchell, M. (1996). An Introduction to Genetic Algorithms, Cambridge: MIT Press.

Okhravi, H., Rabe, M., Mayberry, T., Hobson, T., Bigelow, D., Leonard, W., & Streilein, W. (2013). Survey of
Cyber Moving Target Techniques. MIT Lincoln Laboratory Technical Report, 1166.

Okhravi, Hamed, Hobson, Thomas, Bigelow, David, & Streilein, William (2014). Finding Focus in the Blur of
Moving-Target Techniques. IEEE Security & Privacy, 12 No.2, 16-26.

Schleimer, S., Wilkerson, D.S., & Aiken, A. (2003). Winnowing: Local Algorithms for Document Fingerprinting.
Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, 76-85.

Tambe, M. (2012). Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned, New York:
Cambridge University Press.

Wilensky, U. (1999). NetLogo, Center for Connected Learning and Computer-Based Modeling.
http://ccl.northwestern.edu/netlogo/, Evanston: Northwestern University.

Winterrose, M. L., & Carter, K. M. (2014). Strategic Evolution of Adversaries Against Temporal Platform Diversity
Active Cyber Defenses. The Proceedings of the 2014 Agent-Directed Simulation Symposium, Spring Simulation
Conference, forthcoming.

