
You Sank My Battleship! ∗

A Case Study in Secure Programming

Alley Stoughton
Andrew Johnson

MIT Lincoln Laboratory

{alley.stoughton,ajohnson}
@ll.mit.edu

Samuel Beller

Brandeis University

sammbeller@gmail.com

Karishma Chadha

Wellesley College

kchadha@wellesley.edu

Dennis Chen

Tufts University

dchen741@gmail.com

Kenneth Foner

Brandeis University

kenneth.foner@gmail.com

Michael Zhivich

MIT Lincoln Laboratory

mzhivich@ll.mit.edu

Abstract

We report on a case study in secure programming, focus-

ing on the design, implementation and auditing of programs

for playing the board game Battleship. We begin by pre-

cisely defining the security of Battleship programs, borrow-

ing ideas from theoretical cryptography. We then consider

three implementations of Battleship: one in Concurrent ML

featuring a trusted referee; one in Haskell/LIO using infor-

mation flow control to avoid needing a trusted referee; and

one in Concurrent ML using access control to avoid need-

ing such a referee. All three implementations employ data

abstraction in key ways.

Categories and Subject Descriptors D.3.3 [Programming

Languages]: Language Constructs and Features—Abstract

data types; Modules, packages; D.4.6 [Operating Systems]:

Security and Protection—Access controls; Information flow

controls

Keywords security, auditing, access control, information

flow control, data abstraction, concurrent functional pro-

gramming, real/ideal paradigm

∗ This work was sponsored by DARPA under Air Force contract FA8721-

05-C-0002. Opinions, interpretations, conclusions, and recommendations

are those of the authors and are not necessarily endorsed by the Department

of Defense or the United States Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PLAS’14, July 29, Uppsala, Sweden.
Copyright c© 2014 ACM 978-1-4503-2862-3/14/07. . . $15.00.
http://dx.doi.org/10.1145/2637113.2637115

1. Introduction

Programming languages for information flow control (IFC)

(Sabelfeld and Myers 2006) promise to make secure pro-

gramming easier. IFC languages include: Jif (Myers 1999;

Arden et al. 2013), a security-typed programming language

extending Java with support for IFC, enforced at compile

and run time; Fabric (Liu et al. 2009), a distributed pro-

gramming language based on Jif; LIO (Stefan et al. 2011),

a library for Safe Haskell (Terei et al. 2012) providing dy-

namically enforced IFC; and Breeze (Hriţcu et al. 2013), a

dynamically typed functional language with dynamic IFC.

IFC languages restrict the flow of data, preventing more-

classified data from influencing less-classified results, and

preventing lower-integrity data from influencing higher-

integrity results.

IFC facilitates partitioning programs into trusted and un-

trusted components in such a way that a program’s secu-

rity is independent of the behavior of its untrusted parts.

This makes auditing easier, as the auditor can focus on the

trusted components. One can also consider mutually dis-

trustful components, perhaps implemented by different soft-

ware development teams. A given team may want to assure

itself that its component is secure against the other compo-

nents, i.e., that even if the other components were replaced

by sloppy or malicious code, the security of their component

wouldn’t be compromised.

Although recent research on secure programming has fo-

cused on IFC, other approaches are available, including the

use of data abstraction and access control (AC) (Lampson

1971). Data abstraction can be used to maintain data invari-

ants and provide limited views and access to data. It is often

useful to supplement other approaches with data abstraction.

AC can be used to restrict data access to program parts hold-

ing the right privileges, without limiting how data may be

used once accessed.

There is a rich technical literature on language-based se-

curity. E.g., (Sabelfeld and Myers 2006) includes 147 refer-

ences to papers on information flow control. Given all this

work, it is surprising how little attention has been paid to the

problem of specifying program security policies. With com-

plex programs involving declassification and endorsement,

the state-of-the-art involves attempting to capture an infor-

mal policy with dozens or hundreds of Jif security annota-

tions. To quote Steve Zdancewic (Zdancewic 2004),

. . . we do not yet have the tools to easily describe de-

sired security policies. We do not understand the right

high-level abstractions for specifying information-

flow policies.

These words were written ten years ago, but we believe they

could have been written today.

Case studies can help us understand the security-related

benefits provided by IFC, AC and data abstraction, as well

as the effort required to achieve these benefits in a practi-

cal setting. To date, relatively few case studies have been

carried out using language-based security. These include: Jif

implementations of Battleship (Zheng et al. 2003) and online

poker (Askarov and Sabelfeld 2005); the implementation of

λChair, an API for implementing secure conference review-

ing (Stefan et al. 2011); and GitStar, a code-hosting website

enforcing privacy in the presence of untrusted apps, which

is built using Hails, an IFC web framework based on LIO

(Giffin et al. 2012).

For our case study, we wanted an application that was

a good test bed for developing a more formal approach to

the specification of whole-program security. Our plan was

to implement the application using different language-level

enforcement techniques, providing a common ground on

which to compare these techniques. For realism, we wanted

an application requiring concurrent programming. The ap-

plication we selected was the two-player board game Battle-

ship, whose informal security policy has just the right level

of complexity.

In Battleship, each player begins by placing its ships on a

private board. Subsequently, the players take turns shooting

cells of each other’s boards. After the opponent makes a shot

on a player’s board, the player announces whether it was a

“miss” (the shot cell was vacant) or a “hit” (the shot cell

was part of an unspecified ship). When the last cell of a ship

is hit, the player announces that this ship has been “sunk”

(e.g., “you sank my battleship”).1 The first player to sink all

its opponent’s ships is declared the winner.

A simplified version of Battleship was implemented by

the Jif team (Zheng et al. 2003; Arden et al. 2013).2 This

1 The official board game rules allow players to identify a ship for each hit.

Disallowing this results in a more complex and interesting security policy.
2 The Battleship program of (Zheng et al. 2003) was written for the Jif/split

compiler, which implemented a different language from today’s Jif (Arden

program isn’t interactive; the players’ strategies are hard-

coded. Furthermore, a player isn’t informed when it has sunk

a ship, but only whether a shot is a hit or a miss. The first

player to hit all its opponent’s cells is declared the winner.

In Jif, Java types are augmented with information flow la-

bels from the decentralized label model (DLM) (Myers and

Liskov 1997). The DLM label of a value has two parts: a se-

crecy part, saying who may read the value; and an integrity

part, saying who might have written the value. Jif provides

mechanisms for declassifying data—affecting secrecy—and

endorsing data—affecting integrity. In the Jif Battleship pro-

gram, a player’s board has the secrecy of the player, but is en-

dorsed by both the player and its opponent. Most of the pro-

gram’s methods have the integrity of both players, meaning

they must be trusted by both players. E.g., this is true of the

method used by a player to shoot (declassify) one of its cells

on behalf of the opponent; consequently, the method must

be trusted (audited) by the opponent. Because the program

has a single Player class, parameterized by the player and

opponent, both players must trust the methods of this class.

Unsurprisingly, it is easy to create a well-typed BadPlayer

class that lies about the result of shooting a cell.

The reader may now be wondering what—exactly—it

means for a Battleship implementation to be “secure”. In-

formally, it seems our security policy should say that:

(1) a player must properly place its ships before game

play begins, and may not move those ships during the

game; and

(2) at each stage of the game, a player’s knowledge about

its opponent’s board must correspond exactly to what

was revealed through faithfully executed game play.

But this policy description isn’t formal enough to be the ba-

sis for program auditing, much less for a proof of program

security. Questions include: What threads or modules are the

players? What data structures are the boards? What consti-

tutes game play? We will answer these questions by giv-

ing precise definitions of program security, borrowing ideas

from theoretical cryptography (Canetti 2000).

Our case study in secure programming features three

Battleship implementations:

• One in Concurrent ML (CML) (Reppy 1999) using a

trusted referee. (About 480 trusted lines of code, 500

untrusted LOC.)

• One in Haskell/LIO using IFC to avoid the need for a

trusted referee. (About 850 trusted LOC, 580 untrusted

LOC.)

et al. 2013). The Jif/split Battleship program differs in some respects from

the current implementation. Most importantly, in the Jif/split program, the

unshot portion of each player’s board is declassified at the game’s end,

to verify that both players placed the same number of ship cells at the

game’s beginning. It is unclear why this verification isn’t part of the current

implementation. Mainly, though, the current implementation is simply an

updating of the Jif/split program to the current Jif language.

• One in CML using AC to avoid needing a trusted referee.

(About 610 trusted LOC, 550 untrusted LOC.)

All three implementations employ data abstraction. In par-

ticular, the AC mechanism used by the second CML program

is realized using data abstraction.

Haskell and CML are concurrent functional programming

languages. Concurrent functional programming is an in-

creasingly popular paradigm, retaining much of the elegance

and simplicity of functional programming, while avoiding

much of the complexity of shared variable concurrency. We

made an early decision to use Haskell/LIO for one of the

implementations. It was thus natural for the alternative pro-

grams to employ concurrent functional programming, and

we chose CML for those programs because of its superior

support for modularity, data abstraction and concurrency.

The contributions of our case study are twofold:

• We gave rigorous, high-level specifications of security

based on a non-trivial informal security policy. Defin-

ing whole program security for Battleship was straight-

forward, once we settled on the right abstraction, but

defining security against a malicious opponent was chal-

lenging.

• We compared IFC, AC and data abstraction as ways

of implementing a secure program. Obtaining whole

program security for Battleship was straightforward,

even without using IFC or AC. But obtaining security

against a malicious opponent was very challenging, and

seemed to require IFC or AC.

The paper is structured as follows. Section 2 describes

the rules of Battleship and the client/server architecture of

our programs, and gives the definitions of program secu-

rity. Section 3 describes the implementation in CML using

a trusted referee. Section 4 describes the implementation in

Haskell/LIO using IFC. And Section 5 describes the CML

implementation using AC. Finally, Section 6 draws conclu-

sions from the case study, and suggests directions for future

research.

The source code of our case study is available on the web

at:

www.ll.mit.edu/mission/cybersec/CST/

CSTcorpora/Cybersystemscorpora.html

2. Battleship Rules, Program Architecture

and Security Definitions

2.1 Battleship Rules

Battleship is a two-player, two-phase board game. In the

placing phase of a game, each player places its five ships on

a private board—a 10× 10 grid. Each ship is one cell wide,

but the ships have varying lengths: a carrier (abbreviated

“c”) of length 5; a battleship (“b”) of length 4; a submarine

(“s”) of length 3; a destroyer (“d”) of length 3; and a patrol

a b c d e f g h i j

a

b b

c c c c c c b

d b

e b

f

g p s s s

h p d

i d

j d

Figure 1. Player’s Board with Ships Properly Placed

a b c d e f g h i j

a

b b

c c C C C C b ∗

d ∗ ∗ b

e B ∗

f

g ∗ p S S s

h p D

i ∗ D

j ∗ ∗ ∗ d

Figure 2. Player’s Board During Shooting Phase

boat (“p”) of length 2. Ships may be placed horizontally or

vertically, but not diagonally; they may not overlap.

Figure 1 contains an example of a board on which all

ships have been properly placed. Board cells are indexed by

positions, pairs (r, c), where r, c ∈ {a, . . . , j}: r selects a

row, and c selects a column within that row. We say that

a ship is positioned at position p iff p is the position of

the ship’s leftmost cell—if the ship is placed horizontally—

or topmost cell—if the ship is placed vertically. E.g., the

battleship and carrier in Figure 1 are positioned at (b, f) and

(c, a), respectively.

In the shooting phase of a game, the players take turns

shooting cells of their opponents’ boards. When the oppo-

nent shoots a cell of the player’s board, the player updates

its board to indicate that this cell has been shot. To show that

a vacant cell has been shot, we’ll put a “∗” in the cell; to

show that a cell of a ship has been shot, we’ll capitalize the

ship’s letter. E.g., in Figure 2, the carrier’s last four cells, the

battleship’s last cell, and the first two cells of the submarine

and destroyer have been shot, and vacant cells (c, g), (d, b),
(d, d), (e, g), (g, b), (i, d) and (j, d)–(j, f) have been shot. If

the opponent shoots a cell of the player’s board that’s already

been shot, it is told that repeated shooting is illegal, and to

shoot again; this process continues until a legal shot is made.

When a vacant cell is shot, the opponent is told the shot was

a “miss”. When a cell of a ship is shot—but some of the

ship’s other cells remain unshot—the opponent is told it has

“hit” a ship, without being told which ship was hit. But when

the last unhit cell of a ship is hit, the opponent is told which

ship it has sunk (e.g., “you sank my battleship”). E.g., if cell

(c,a) of the board in Figure 2 were shot, the opponent would

be told “you sank my carrier”. When the opponent sinks the

player’s last ship, the opponent is told it has won the game.

2.2 On Battleship Security

In a non-computer-mediated game of Battleship, cheating is

obviously possible. E.g., a player can

• fail to properly place all five ships during the placing

phase of the game, or move a ship during the shooting

phase of the game;

• lie about whether a shot was a hit or a miss, say a ship

was sunk when it wasn’t, or pretend a ship wasn’t sunk

when it was; or

• peek at its opponent’s board before the game is over.

Some—but not all—cheating can be detected, by record

keeping during the game and examining an opponent’s board

at the game’s conclusion.

A player may inadvertently reveal more about its board

than the opponent is entitled to know at a given stage of the

game. E.g., when one’s carrier is hit but not sunk, saying

“you hit my carrier” can reveal more than saying “you hit

a ship”. We will refer to such over-revealing of information

as leaking. Also, it might be considered wrong for a player

to make use of external aids, ranging from bookkeeping to

asking others for advice. We’ll call this consultation, below.

A computer-mediated implementation of Battleship can

prevent cheating and leaking—as long as all player interac-

tions are via the computer. And, it can force any consultation

to happen outside of the program. But since players may be

physically separated and unsupervised, controlling consul-

tation may not be a worthwhile goal. With computer medi-

ation, though, the notion of the current state of a player’s

board is no longer clear-cut. In fact, it is perfectly possible

for a user’s understanding of the current state of its board to

be inconsistent with what its opponent has learned through

shooting. Such an inconsistency could be due to user inter-

face bugs, or could have deeper roots. Unfortunately, this

means that, were we to define program security from the

users’ viewpoints, we would be asking for something ap-

proaching functional correctness.

Player 2

Net Net

Client 1 Client 2

User 1 User 2

Terminal Terminal

Server

Referee

Player 1

Figure 3. Program Architecture

It is useful for program security to be a weaker property

than functional correctness. Furthermore, there are advan-

tages to allowing flexibility in user interfaces, as well as in

core logic. E.g., assuming we give up on trying to prevent

consultation, we could accommodate core logic with a range

of helpfulness and automation, ranging from not doing any

record keeping, to doing (some of) the shooting automati-

cally. This is the approach we will take.

2.3 Program Architecture

Our Battleship programs use a client/server architecture

in which the interesting computation happens in a multi-

threaded server. The core of the server is a referee, which

takes in network sockets for communicating with the play-

ers’ client sides, spawns a thread3 for each player, and then

interacts with the players, running the game. The clients

simply mediate between the users and the server’s player

threads, communicating with the users via standard input

and output, and with the server via network connections.

This architecture is illustrated in Figure 3.

The Battleship executable is invoked from the

Unix/Linux shell, and uses command-line arguments to de-

cide whether to start a server or client. One first starts the

server running on a given host/port. Then each of the users

starts a client, specifying the host/port to connect to. When

game play begins, the first player to have connected will be

the first player to shoot.

Our implementations don’t encrypt the data flowing be-

tween players’ client and server sides, nor do they perform

any kind of authentication. It would be easy to write a stan-

dalone client program in which data could flow directly from

client to client, not via the server, but that would also inter-

operate with our server. But our standard client implementa-

tion doesn’t allow this, despite featuring untrusted code.

3 In general, threads may spawn additional, supporting threads.

a b c d e f g h i j

a

b

c + + + + ∗

d ∗ ∗

e + ∗

f

g ∗ + +

h +

i ∗ +

j ∗ ∗ ∗

Figure 4. Opponent’s Shooting Record

2.4 Inferring Locations of Sunk Ships

In our Battleship implementations, users are kept informed

by their player threads of the states of their own, private

boards. Furthermore, they are reminded where they have

shot on their opponents’ boards. E.g., Figure 4 shows the

opponent’s shooting record corresponding to the player’s

board of Figure 2. Misses are represented by “∗”, and hits by

“+”. If the opponent were then to shoot cell (c, a), it would

be told it had sunk the carrier, and cell (c, a) of its shooting

record would be set to “C”. The opponent can then infer

that the carrier is horizontally positioned at (c, a). We have

implemented an algorithm for inferring the cells of sunk

ships from a shooting record. In this case, the user interface

would change cells (c, b)–(c, e) from + to “C”.

If the opponent were then to sink the submarine by shoot-

ing cell (g, g), it would still not know whether it was po-

sitioned horizontally at (g, e) or vertically at (g, g). This

means a secure implementation of Battleship must not reveal

the position of a ship when it is sunk. Once the destroyer

is sunk by hitting (j, g), a smart user (or our inference al-

gorithm) could determine that the submarine was horizon-

tally positioned at (g, e), with the destroyer vertically posi-

tioned at (h, g). This shooting record is shown in Figure 5,

and would be displayed by our user interface.

2.5 Defining Program Security

Instead of defining program security from the users’ view-

points, we’ll take a more abstract approach. A player will be

a program abstraction, a server component with the follow-

ing interface:

• A way to start the player, giving it a network socket for

communicating with its client side as well as its identity

(Player 1 or Player 2).

• A way of asking the player to choose a complete placing

board (CPB), i.e., a board on which its five ships have

been properly placed, but no shooting has taken place.

a b c d e f g h i j

a

b

c C C C C C ∗

d ∗ ∗

e + ∗

f

g ∗ S S S

h D

i ∗ D

j ∗ ∗ ∗ D

Figure 5. Subsequent Opponent’s Shooting Record

• A way to ask the player what position it wants to shoot

next.

• A way to inform the player of the result of such a shot (il-

legal repetition, miss, hit of an unspecified ship, sinking

of a specified ship).

• A way to tell the player where its opponent has shot.

• A way to tell the player it has won or lost the game.

In the shooting phase of the game, we work with (shoot-

ing phase) boards in which cells are annotated with whether

they have been shot or not. Initially, a CPB is converted to a

shooting phase board in which no cells have been shot. And

there are functions for: (a) shooting a cell of a board, return-

ing the shooting result (illegal repetition, miss, hit, sinking of

a specified ship) plus the resulting board; and (b) checking

whether all five ships have been sunk on a board.

Players will be required to communicate only via their in-

terfaces (including via the network sockets they are passed

for communicating with their client sides). Similarly, the

client sides of players will be required to communicate only

via their interfaces (with their users, via standard input and

output, and with their server sides, via network sockets).

In languages with low-level libraries allowing control flow

or data abstraction to be compromised, we won’t allow the

server and client sides of players to use such libraries. For

brevity in what follows, when we stipulate that a module or

program component may “communicate only via its inter-

face”, this should be understood as also prohibiting it from

using such low-level libraries.

Definition 2.1 (Referee Security) We say that a server’s

referee is secure iff it communicates only via its interface,

doesn’t directly use the network sockets for communicating

with the players’ client sides, and behaves as if it were ex-

ecuting the following model algorithm—as measured from

the vantage points of the players:

• The referee starts up the players, giving them the network

sockets for communicating with their client sides, and

telling them their identities (1 and 2).

• The referee obtains CPBs from the players. These CPBs

are then converted to shooting phase boards.

• The referee then enters its main loop, in which it alter-

nates letting the players take shots at each other’s boards

(Player 1 goes first, then Player 2, etc.). When all ships of

a player’s board have been sunk, the player is told it has

lost, and its opponent is declared the winner. Otherwise,

the body of the loop works as follows:

The next player to shoot is asked where it wants to

shoot on its opponent’s board.

The shot is carried out using the shooting function,

yielding a shooting result and the resulting board.

If the shooting result is an illegal repetition, the player

is asked to choose a position again, and the opponent’s

board isn’t changed.

Otherwise: the player is told the result of its shot;

the opponent player is told where on its board the

player shot; and the opponent’s board is replaced by

the board resulting from the shooting.

Because a player can’t tell when the referee interacts with

its opponent, this definition doesn’t impose a total ordering

on the referee’s interactions with the players. E.g., after

calculating the result of a shot, the actions of (a), telling

the player the result of its shot, and (b), telling the player’s

opponent where on its board the player shot, could be carried

out in either order. On the other hand, the referee can’t,

e.g., delay action (b) until after it asks the player’s opponent

where it wants to shoot next, since the player’s opponent

would notice such a delay.

Definition 2.2 (Program Security) We say that a program

is secure iff its referee is secure, and the client and server

sides of its players communicate only via their interfaces.

According to this definition, the client and server sides

of players are untrusted—need not be audited—except for

the requirement of communicating only via their interfaces.

This allows for players that mislead their users, as well as for

players with varying degrees of automation and helpfulness.

The reader should compare our definition of program

security with the informal security policy of the introduction.

Because the referee obtains a complete placing board from

each player and subsequently manages both players’ boards,

part (1) of the informal policy is ensured by our definition.

And part (2) is a consequence of the algorithm followed

by the referee. But note our definition’s requirement that

the referee keep a player informed of the shots made on its

board. This requirement was implicit in the informal policy.

The reader might be wondering whether the requirement

that a referee behave exactly like the model referee of Defini-

tion 2.1 is overly restrictive. For example, it might seem safe

Net

Player Interface Player Interface

Player Player

Referee

Net

Figure 6. Server with Referee Made of Player Interfaces

to allow a referee to repeat messages to players. But message

repetition could be used by a referee to convey information

to one of the players. E.g., suppose the referee wants to tell

Player 2 that Player 1 has an unshot ship cell at the jth cell of

the ith row of its board, for i, j ∈ {0, . . . , 9}. It could do this

by repeating a message to Player 2 10i+ j + 1 times. We’ll

leave to future work the question of whether Definition 2.1

may safely be weakened.

The most straightforward way of implementing a ref-

eree is to directly implement the model referee algorithm.

This, in fact, is what we’ve done in the first of our CML

implementations—see Section 3. However, if we don’t want

to make use of a trusted third party, we can split the ref-

eree into mutually distrustful components, which we’ll call

player interfaces (PIs), as in Figure 6. With this architec-

ture, the referee spawns two player interfaces, passing them

the network sockets for their players’ client sides, their iden-

tities (1 and 2) as well as a means of communicating with

each other. The player interfaces then spawn their players,

passing them their network sockets and identities.

This splitting of the referee into mutually distrustful

player interfaces allows each PI to be written and maintained

by a different software development team. This may be sen-

sible when the teams are able to agree on a protocol for PI in-

teraction, but when each team wants some freedom to choose

how to implement that protocol. Our standard definition of

program security applies to this architecture: we must con-

vince ourselves that the referee consisting of the composi-

tion of the two player interfaces behaves as it should. In par-

ticular, given a “good” player interface, G, we may convince

ourselves that the referee consisting of the composition of G

with itself behaves correctly. But we also want to say what

it means for G to be secure against an arbitrary possibly

malicious opponent. We give this definition by borrowing

ideas from the real/ideal paradigm of theoretical cryptogra-

phy (Canetti 2000).

Definition 2.3 (Security Against Malicious Opponent)

Suppose G is a player interface such that the referee con-

sisting of the composition of G with itself is secure. Then G

is secure against any malicious opponent iff, for all player

interfaces M that communicate only via their interfaces,

there exists a player S(M)—a “simulator” based on M—

such that the referees of Figure 7 behave identically from

G M

Referee

(Real)

NetPlayer

G

S(M)

Referee

(Ideal)

Player Net

G

Figure 7. Simulating Malicious Player Interface M by

Player S(M)

the vantage points of the player (on the left) and the network

socket (on the right). (M isn’t depicted as creating a player,

since it may or may not do so.)

Since the program in which the referee is G composed

with itself—the “ideal” program—is assumed to be secure,

this tells us that M doesn’t compromise G’s security in the

“real” program.M is sandboxed in S(M), which must func-

tion without having more information or control than any

other player. In the real program,M can’t modify its player’s

board during the shooting phase, because the player S(M),
in the ideal program, must supply a CPB before the shoot-

ing phase begins. In the real program, M can’t exfiltrate to

the network socket information about G’s player’s board to

which it isn’t entitled, since then S(M) would be able to

achieve the same result in the ideal program. And M can’t

cause G to mislead its player in the real program, because

then S(M) would be able to do this in the ideal program.

M may behave in such a way thatG detects an error of the

PI interaction protocol. In such a case, G will cause the pro-

gram to abort, and part of the proof that the simulator player

S(M) works as it should consists of showing that S(M) will

also cause a program abort in such a circumstance.

In Sections 4 and 5, we’ll consider two—quite different—

ways of implementing a player interface that is secure

against any malicious opponent: one in LIO using IFC, and

one in CML using AC. In both programs, the PIs begin

by exchanging “protected” boards—b1 and b2, in Figure 8.

Through this exchange, each PI commits to its complete

placing board (CPB). Subsequently, the PIs take turns send-

ing shot messages (s1, s2, . . .) to their opponents, who then

send back shot response messages (r1, r2, . . .).

It is easy to define a player interface that—when com-

posed with itself—is secure. But defining a player interface

r4

PI 1 PI 2

b1

b2

s1

r1

s2

r2

s3

r3

s4

Figure 8. Player Interface Message Exchange

that’s secure against a malicious opponent is challenging.

In fact, it took multiple iterations for our designs to stabi-

lize. During this process, we found our definition of security

against a malicious opponent to be invaluable. Armed with

this definition, we were better able to find security flaws.

3. Implementation in CML with a Trusted

Referee

We now consider our implementation of Battleship in CML

using a trusted referee. CML (Reppy 1999) is a library for

the Standard ML (SML) (Milner et al. 1997) programming

language. SML is a mostly functional language with static

scoping, strong static typing, eager (as opposed to lazy)

evaluation, and a sophisticated module language supporting

data abstraction. CML provides lightweight threads and syn-

chronous communication over channels.

This implementation of Battleship is straightforward. Its

main modules are:

• A trusted Ship module providing a datatype ship.

• A trusted Boardmodule implementing abstract datatypes

of placing boards (on which some ships are properly

placed), complete placing boards (CPBs, on which all

ships are properly placed) and shooting phase boards.

• An untrusted Player module implementing the players

of Section 2.

• An untrusted Client module implementing the client

side of a player.

• A trusted Referee module implementing the referee of

Section 2.

• A trusted Main module defining the program’s entry

point.

Auditing this program is also straightforward. We must

check that the implementations of Player and Client don’t

communicate except via their interfaces. Most importantly,

we must check that the referee implemented by Referee is

secure (see Definition 2.1). This is obvious, as the referee is

a direct implementation of the model referee algorithm.

4. Implementation in LIO with IFC

We now consider our implementation of Battleship in LIO

using IFC to avoid the need for a trusted referee.

4.1 LIO

LIO (Stefan et al. 2011) is an IFC library for Safe Haskell

(Terei et al. 2012), an extension of Haskell that facilitates

safe execution of untrusted code. (Safe) Haskell is a mostly

functional language with static scoping, strong static typing,

lazy evaluation, and a simple module language. It supple-

ments a purely functional base language with monads, one

of which (IO) implements input/output, mutable variables

(mvars) and multi-threading.

Data in LIO may be explicitly labeled with a security

label, and is always implicitly labeled. Labels form a lattice,

ordered by a can flow to relation, ⊑, describing when data

with one label may flow to data with another label. The

evaluation context contains two labels, a current label (CL)4

and a clearance. LIO ensures the CL is always an upper

bound of the labels of all observed values. The clearance is

an upper bound on how high the CL may be raised. When a

value is explicitly labeled with label l, l must be greater than

or equal to the CL, and less than or equal to the clearance.

Unlabeling a labeled value raises the CL to the least upper

bound of the CL and the labeled value’s label. LIO uses a

labeled version of the IO monad—called LIO—to keep track

of the CL and clearance. A value of type LIO a b, where a is

a label type and b is a type, is a computation that, if run with

a starting CL and clearance, will produce a value of type b,

possibly changing the CL and clearance in the process.

The standard LIO label type is DCLabel, whose values

are disjunction-category (DC) labels (Stefan et al. 2012). A

DC label has the form 〈s, i〉, where s and i are propositional

formulas whose atoms are principals, with s corresponding

to secrecy and i to integrity. The secrecy part describes the

combination of principals needed to declassify a value, and

the integrity part refers to the combination of principals that

have endorsed a value. The can flow to relation for DC labels

is defined by: 〈s, i〉 ⊑ 〈s′, i′〉 iff s′ implies s, and i implies

i′. DCLabeled a is the type of DC-labeled values of type

a. Public data is labeled 〈True, True〉, dcPublic. The type

constructor DC is an abbreviation for LIO DCLabel; a value

of type DC a is a DC action, a computation using DC labels

that produces a value of type a.

LIO has unforgeable privileges corresponding to formu-

las. Possession of privileges allows the label-related rules to

be relaxed. If the privilege pr corresponds to the formula φ,

then 〈s, i〉 ⊑pr 〈s′, i′〉, i.e., 〈s, i〉 can flow to 〈s′, i′〉 when

possessing pr , iff φ ∧ s′ implies s and φ ∧ i implies i′. E.g.,

when unlabeling a labeled value, one can use a privilege to

reduce the raising of the CL.

Privileges may also be used to relabel labeled values.

Suppose, e.g., the privilege pr corresponds to the principal

4 CL is often called the program counter (PC) label in the literature.

q, and the labeled value x consists of a value v and label

〈q, r〉—classified by q and endorsed by r. Then pr can be

used to declassify x, producing a labeled value consisting

of v with label 〈True, r〉; it can also be used to endorse x,

producing a labeled value with label 〈q, q∧r〉—classified by

q, and endorsed by both q and r.5

4.2 Program Structure

The main modules of the LIO Battleship program are:

• A trusted Ship module providing a datatype Ship.

• A trusted Boardmodule implementing abstract datatypes

of placing boards and complete placing boards (CPBs),

but also implementing labeled boards.

• An untrusted Player module implementing the server

side of a player.

• An untrusted Client module implementing the client

side of a player.

• A trusted PlayerInterfaceMsg module implementing

a type of player interface messages, along with a way of

creating a pair of functions for communicating messages

via an mvar.

• A trusted PlayerInterface module implementing

player interfaces.

• A trusted Main module, defining the program’s entry

point.

Main has the Safe Haskell Mode “Unsafe”, allowing it

to use unsafe operations for managing network connections,

creating IO handles, and creating privileges. IO handles and

mvars are labeled objects. To use them, the CL and the la-

bel of the handle or mvar must be the same, modulo the

possession and use of applicable privileges.6 When the pro-

gram begins, the CL and clearance will be dcPublic and

〈False, True〉, respectively. This allows the CL’s secrecy to

rise, and means that privileges must be possessed and used

to endorse data. However, during normal operation, the CL

will remain fixed at dcPublic.

In server mode, Main forks threads for the two player

interfaces, giving them network handles for communicating

with their players’ client sides, functions for communicating

with each other, and their identities. Each player interface

is also given the privilege corresponding to its principal—

"player1" or "player2". The network handle given to the

PI—and then to the player it starts—is labeled dcPublic,

and the mvars underlying its functions for communicating

with the other PI are also labeled dcPublic. The PI is started

with a CL of dcPublic.

Because the Player and PlayerInterface modules

don’t have access to unsafe operations, player interfaces and

the players they create are automatically sandboxed. A PI

5 Subject to the new labels being less than or equal to the clearance.
6 The CL will automatically be raised, if necessary.

data LSR = MissLSR | HitLSR | SankLSR Ship.Ship
data LC =
LC (DCLabeled

(Principal, -- originating principal
Principal, -- receiving principal
Pos, -- position of cell
DC LSR)) -- DC action for shooting cell

data LB -- abstract type
sub :: LB -> Pos -> LC
update :: LB -> Pos -> LC -> LB
data LBC -- abstract type
completeToLBC ::
Complete -> Principal -> DCPriv -> DC(Maybe LBC)

lbcToLB ::
LBC -> Principal -> DCPriv -> DC(Maybe LB)

Figure 9. Labeled Boards Part of Board Module

can only communicate via the functions it is given for com-

municating with its opponent PI, and via the network handle

it is given for communicating with its player’s client side.

This guarantee is specific to LIO. In another IFC language,

we might have needed to use IFC to stop PIs and players

from communicating inappropriately.

In client mode, Main uses the untrusted Client module

to run a player’s client side, passing the client IO handles for

the standard input and output (for communicating with the

user) and for the network connection to the client’s server

side. Because Client doesn’t have access to unsafe opera-

tions, clients are automatically sandboxed.

4.3 Labeled Boards

The trusted Boardmodule implements labeled boards. More

precisely the datatypes, abstract types and functions of Fig-

ure 9 are provided by Board. The type LB of labeled boards

is an abstract type, and labeled boards are made up of labeled

cells, which are elements of the concrete type LC. The func-

tions sub and update—Pos is the abstract type of board

positions—are used to look up and update cells of labeled

boards, respectively.

To elucidate the design of labeled cells, we’ll start by

considering how labeled cells could have been implemented

if, upon shooting a cell, a player was only to be told whether

the shot was a miss or a hit. In that case, we could try these

definitions of LSR (labeled shot result) and LC:

data LSR = MissLSR | HitLSR
data LC = LC (DCLabeled LSR)

Suppose that a player interface (the “originating PI”, or

“OPI”) wants to safely share its board with its opponent (the

“receiving PI”, or “RPI”), thus committing to that board.

It can turn each cell of its board into a labeled cell with

label 〈oprin , oprin〉, where oprin is the OPI’s principal.

The resulting labeled board can then be sent to the RPI.

When the RPI wants to shoot a cell of the OPI’s board, it

can’t declassify the labeled cell itself, since it doesn’t have

the OPI’s privilege. And were it to unlabel the labeled cell,

this would add oprin to the secrecy part of its CL, making it

unable to communicate with either its player’s client side or

the OPI. This is since the IO handle and mvars via which it

communicates are labeled dcPublic. Consequently, the RPI

must send the labeled cell to the OPI for declassification. To

ensure the labeled cell it gets back from the OPI may be

trusted, the RPI endorses the labeled cell first, giving it label

〈oprin , oprin ∧ rprin〉, where rprin is the RPI’s principal.

When the labeled cell is returned by the OPI, the RPI can

check that its label is 〈True, oprin ∧ rprin〉—declassified,

but still carrying its endorsement. It can then unlabel the

labeled cell, without raising the CL, getting the labeled shot

result.

There is a problem with this version of the protocol, how-

ever: nothing prevents the OPI from carrying out a “replay

attack”, sending a previously declassified labeled cell back

to the RPI. To prevent such attacks, we can add a cell’s posi-

tion to its data:

data LC = LC (DCLabeled(Pos, LSR))

The goal is for the RPI to be able to verify that the labeled

cell it sent to the OPI for declassification was returned to

it. But the cell position can only be read by the RPI once

the cell is declassified, and thus there is nothing stopping

the OPI from providing a labeled board with incorrect po-

sitional information. Our solution to this problem is to do

the construction of the labeled board from a CPB in trusted

code.7 This allows a second flaw in the protocol to be reme-

died, stopping the OPI from handing over a labeled board

that doesn’t correspond to any CPB. Such cheating might

eventually be detected, but our definition of security against

a malicious opponent requires that it be impossible to at-

tempt. The inclusion of a cell’s position in its data is also

needed so the OPI can send that position to its player when

the cell is shot.

One final problem is that a declassified labeled cell’s label

〈True, prin
1
∧ prin

2
〉 = 〈True, prin

2
∧ prin

1
〉 has an

ambiguous origin—it might have originated from either PI.

This would allow a PI to send a declassified labeled cell

it had received from its opponent back to the opponent as

a shot result. Consequently, we add the principals of the

originating and receiving PIs to a labeled cell:

data LC =
LC (DCLabeled

(Principal, Principal, Pos, LSR))

(the originating principal first, followed by the receiving

principal).

Now, let’s return to the actual game, where a player learns

it has sunk a ship upon shooting its last unshot cell. Here the

datatype of labeled shot results is:

data LSR = MissLSR | HitLSR | SankLSR Ship.Ship

7 Another solution is for the RPI to endorse a labeled cell at position (r, c)
with formula rprin∨x, where x is the conversion of (r, c) into a principal,

making it unnecessary to include the position in the cell’s data.

But it is no longer sufficient to include a labeled shot result

in a labeled cell, since shooting a cell of ship ship may yield

HitLSR or SankLSR ship , depending upon whether all other

cells of the ship were previously hit. Instead, we switch to

this definition of LC:

data LC =
LC (DCLabeled

(Principal, Principal, Pos, DC LSR))

With this design, a labeled cell contains a DC action that,

when run, returns a labeled shot result. For this to work, the

DC actions of the cells of a ship must share a private mvar8

recording the positions of the cells of the ship that have been

hit so far. Running the DC action of a cell of ship ship , causes

the position of the cell to be added, if necessary,9 to the

contents of ship’s mvar. When the updated list of positions

contains all the ship’s cell’s positions, the DC action returns

SankLSR ship; otherwise, it returns HitLSR.

This design seems plausible, but suffers from a serious

flaw: once a ship, ship , has been sunk, an RPI can determine

the other cells of the ship by re-running the DC actions

of all previously hit cells that could be part of the ship,

looking for result SankLSR ship. Going back to Figure 4

of Section 2, after the RPI sank the submarine by shooting

cell (g, g), it could re-run the DC actions of cells (g, e) and

(g, f), yielding SankLSR Submarine in both cases. The fix

is for the DC action associated with a cell of ship ship to

return SankLSR ship only when the updated contents of the

ship’s mvar contains the positions of all of the ship’s cells,

and the cell’s position was the last position to be added to

the mvar. This design has the property that running the DC

action of a labeled cell more than once has no effect, and

returns the labeled shot result that was returned the first time

the DC action was run.

One final issue remains: the RPI is capable of running

the DC actions of the declassified labeled cells it receives

in a different order from the one in which the OPI sent

the cells to it. Returning to Figure 4, if the RPI sent the

labeled cells at positions (g, e), (g, f) and (g, g) to the OPI

for declassification, in that order, it’s not entitled to learn that

the cell at (g, e) is part of the submarine. But by running the

DC actions of these cells in reverse order, that’s what it would

learn. The fix is for the OPI to run a labeled cell’s DC action,

before returning the declassification of the cell to the RPI.

As we explained above, the construction of a labeled

board from an OPI’s CPB is carried out by trusted code, so

as to ensure the labeled board corresponds to a CPB. This

construction is initiated by the OPI, but must also involve

the RPI, because otherwise the OPI could modify the con-

structed labeled board before sending it to the RPI. Conse-

quently, the construction of the labeled board is carried out

in two steps.

8 We’ll give them label dcPublic.
9 The DC action might already have been run.

First, the OPI sends the RPI a value of the labeled board

closure abstract type, LBC. This value is produced using the

function completeToLBC, which takes in the OPI’s CPB

compl , principal oprin , and corresponding privilege, and

returns a DC action that optionally delivers a value of type

LBC. The DC action only returns Nothingwhen the principal

and privilege are inconsistent, or when the CL or clearance

would prevent the action from succeeding. Otherwise, it

returns Just of a labeled board closure lbc.

The RPI uses the function lbcToLB to turn lbc into a

labeled board. This function also takes in the RPI’s prin-

cipal rprin , and corresponding privilege. The resulting DC

action returns Nothing if the supplied principal and priv-

ilege don’t agree, or the principal is the same as oprin ,

or the CL or clearance won’t allow the labeled board to

be constructed, or lbc had already been converted to a la-

beled board. Otherwise, it returns Just of the labeled board

that is consistent with compl , whose cells are all labeled

〈oprin , oprin ∧ rprin〉 and have oprin and rprin as their

originating and receiving principals, respectively, and whose

private mvars are empty.

4.4 Player Interface Protocol

The PIs begin by exchanging the labeled board closures con-

structed from their CPBs. Each PI converts the labeled board

closure it receives into a labeled board. Should this conver-

sion fail, it will be because it was sent its own labeled board

closure, or since the other PI converted the labeled board clo-

sure to a labeled board. This is a protocol violation, and re-

sults in the program being terminated.10 Each PI knows that

at most one labeled board was constructed from its CPB. The

shooting phase of the game then begins.

When an RPI wants to shoot a labeled cell on behalf of its

player, it first sees if the labeled cell is already declassified,

asking its player to choose another position to shoot, if that’s

the case. Otherwise, it sends the labeled cell to the OPI for

declassification. When given a labeled cell to declassify, the

OPI checks that the labeled cell really did originate from

it, and that the labeled cell’s position isn’t in its list of shot

positions. Otherwise, it signals a protocol violation. It then

runs the DC action of the labeled cell, and tells its player

which of its cells has been shot. If the resulting labeled shot

result says that one of its ships was sunk, it makes a note

of that ship; when all of its ships have been sunk, it tells its

player it has lost the game. The OPI is able to trust the DC

action’s result since it knows the labeled cell is part of the

unique labeled board that originated from it. The OPI then

sends the declassification of the labeled cell back to the RPI.

Upon receipt of a declassified labeled cell, the RPI checks

that the labeled cell still has its endorsement. It then unlabels

it, checking that the cell’s position is correct and the cell’s

receiving principal is its own principal. If either of these

checks fails, this is a protocol violation. Otherwise, it runs

10 This is always the response to a protocol violation.

the cell’s DC action, telling its player the shot’s result, and

updating its record of which of its opponent’s ships are yet

to be sunk. (If the OPI hadn’t already run the cell’s action,

this will make no difference.) When no such ships remain to

be sunk, it tells its player it has won the game.

4.5 Auditing

The auditing process for this Battleship implementation has

two parts. First, we must convince ourselves that our pro-

gram is secure, i.e., that the referee consisting of the compo-

sition of our standard player interface,G, with itself is secure

(see Definition 2.1). This is straightforward.

Second, we must show that G is secure against any ma-

licious opponent (Definition 2.3). Here, we must show that

any possibly malicious player interface M that communi-

cates only via its interface may be transformed into a simu-

lator player S(M), in such a way that the referees of Figure 7

behave identically from the vantage points of the player (on

the left) and network socket (on the right). S(M) consists of

supervisory code, which runs M in a sub-thread. The goal in

constructing S(M) is for M in the real program to remain

in sync with the simulated version of M in the ideal pro-

gram; we also need that the messages exchanged between

player interfaces in the real and ideal programs remain in

sync, except when M in the real program has violated the

PI protocol, in which case this violation must be detected by

S(M).
S(M) will know the principal of M ("player1" or

"player2"), but it won’t have access to the corresponding

privilege. Thus the version of M that runs in a sub-thread of

S(M) will have to run in a variant of the LIO monad. Since

M can’t exfiltrate its privilege to a thread it didn’t create, the

simulation of M ’s use of its privilege is feasible.

The key to this construction is the realization that the

simulated version of M will have two versions of labeled

board closures, labeled boards and labeled cells, coexisting

in the same three types:

• Normal ones, but where the supervisory code of S(M)
has access to special inspection functions. E.g., when the

simulated version of M produces a labeled board closure

lbc, the supervisory code needs to be able to look up the

CPB, compl , that it represents, so this can be returned as

the CPB chosen by S(M).

• Partially defined ones, which the supervisory code of

S(M) will gradually make more and more defined. E.g.,

the labeled board closure supplied by S(M)’s supervi-

sory code to the simulated version of M is turned into

a labeled board in which the positions of ships are un-

defined, in contrast to the real labeled board derived by

M from the labeled board closure received from G. As

G gives S(M) the results of the shots it makes on behalf

of the simulated version of M , the supervisory code of

S(M) uses special functions to “patch in” this informa-

tion to the labeled cells of the board, via side-effects. In

type ck and kb and lb and tlb
val labelKey : Key.key * int -> ck
val idOfTLB : tlb -> bool
val lbOfTLB : tlb -> lb
val completeToBoardPair :

complete -> kb * (bool -> tlb)
val keyedAllSunk : kb -> bool
val lockedAllSunk : lb -> bool
val keyedShoot : kb * pos -> kb * Key.key option
val lockedAlreadyShot : lb * pos -> bool
datatype lsr = InvalidLSR | RepeatLSR | MissLSR

| HitLSR | SankLSR of Ship.ship
val lockedShoot : lb * pos * ck -> lb * lsr

Figure 10. Locked Boards Part of Board Module

this way, when M in the real program learns something

about G’s board, the simulated version of M in the ideal

program is also able to learn exactly the same thing.

Space limitations don’t allow us to give the details of the

construction of S(M). We have sketched the proof that this

construction works, but haven’t written the full proof yet.

5. Implementation in CML with AC

The LIO Battleship implementation of Section 4 uses IFC

for implementing labeled cells. However, that use of IFC

amounts to an application of AC: if a receiving PI (RPI) un-

labels a labeled cell that’s still classified by the originating

PI (OPI), this will stop the RPI from subsequently commu-

nicating with its player’s client side or with the OPI.

In this section, we’ll consider an implementation of Bat-

tleship in CML that explicitly uses AC. This implementation

could be directly translated into LIO; we used CML to em-

phasize the point that it didn’t require use of IFC. This pro-

gram is an amalgam of our first CML solution (Section 3)

and the LIO solution. In this solution, a PI shares a locked

board with its opponent PI, and then provides keys to unlock

the board’s cells, in response to shot requests.

5.1 Keys, Counted Keys and Keyed/Locked Boards

There is a trusted Key module implementing an abstract type

key of unforgeable keys:

type key
val newKey : unit -> key
val sameKey : key * key -> bool

Each call of newKey returns a distinct key, and sameKey tests

keys for equality.

The trusted Board module now implements keyed and

locked boards, in addition to placing and complete plac-

ing boards. More precisely, the abstract types, datatype and

functions of Figure 10 are provided by Board. There is an

abstract type ck of counted keys—keys labeled by counters.

Counted keys are created using labelKey; crucially, no way

of destructing keys is exported from Board.

Keyed (kb) and locked (lb) boards are immutable data

structures. Each of their cells contains a membership, saying

whether it is part of a ship, and, if so, which ship. Keyed

and locked boards come in pairs: a cell of the keyed board

contains a key for unlocking the corresponding cell of the

locked board, unless the keyed board’s cell was already shot

(using keyedShoot). Locked boards contain counters: to

shoot a cell of a locked board, one needs a counted key

whose counter is equal to the board’s counter and whose key

will unlock the cell.

The process of shooting/unlocking a cell of a locked

board (using lockedShoot) isn’t local to that cell, if the cell

is part of a ship: it must be determined whether the ship’s

other cells are all unlocked, so as to know whether to return

a locked shot result of HitLSR or SankLSR of that ship. This

is why the type lb of locked boards is abstract, and its locked

cells aren’t exposed.

A value of abstract type tlb is a totally locked board,

consisting of a boolean identity (true = Player 1, false

= Player 2), plus a locked board whose counter is 0 and

in which all cells are locked. The functions idOfTLB and

lbOfTLB select the components of a totally locked board.

5.2 Player Interface Protocol

An OPI calls completeToBoardPair with its complete

placing board (CPB) compl . This creates a matching

keyed/locked board pair (kb, lb), where the memberships of

the cells of kb and lb correspond to the memberships of the

cells of compl , and the counter of lb is 0, and then returns

(kb, tlbFun), where tlbFun takes an identity id and returns

the tlb with identity id and locked board lb. The OPI calls

tlbFun with its identity, and sends the resulting tlb to the

RPI. The RPI checks that the identity of the totally locked

board it has received isn’t its own identity. If this isn’t true, a

protocol error has occurred—the OPI may have been trying

to send the RPI’s tlb back to it. Otherwise, it uses lbOfTLB

to retrieve the OPI’s locked board, which is guaranteed to

have no unlocked cells.

Once each PI has turned the totally locked board it re-

ceived into its opponent’s locked board, we enter the shoot-

ing phase of the game. Each PI maintains a key counter,

which is initially 0.

When an RPI wants to shoot a given cell of the OPI’s

locked board, it first uses lockedAlreadyShot to ensure it

hasn’t already shot that cell. It then sends the cell’s position

to the OPI. The OPI uses keyedShoot to shoot the speci-

fied cell of its keyed board, yielding an updated board and

an optional key. If this optional key is NONE, that cell has al-

ready been shot—a protocol error. Otherwise, the OPI labels

the key with its key counter, sends the resulting counted key

back to the RPI, and increments the key counter by 1.

The RPI then uses the counted key to shoot the cell of

the locked board, using the function lockedShoot, which

returns an updated locked board, plus the result of the shoot-

ing. A result of InvalidLSR means that either the counted

key’s counter wasn’t equal to the locked board’s counter, or

the counted key’s key wouldn’t unlock the locked board’s

cell; this is a protocol error. It isn’t possible that RepeatLSR

will be the result, as the RPI already verified it wasn’t re-

peating a shot. When the shot succeeds, the counter of the

updated locked board is one more than the original locked

board’s counter; otherwise, the updated locked board is the

same as the original one.

The functions keyedAllSunk and lockedAllSunk are

used by the PIs for determining whether all ships of a keyed

or locked board are sunk; when this happens, the PIs inform

their players of the game’s result.

5.3 Assessment and Auditing

To understand the role of counters in our design, consider

the consequence of dispensing with them. Locked boards

are immutable, and the RPI could keep a copy of the initial

locked board, lb, plus a record of the keys it has been sent,

associating them with their positions. After having sunk a

ship, ship , it could learn the ship’s position, as follows. If

the cell at position pos could be part of ship, the RPI would

apply the keys with positions other than pos to lb, yielding

lb
′, and then use pos’s key to shoot position pos of lb

′,

looking for a result of SankLSR ship. The use of counters

makes it useless to re-shoot an earlier locked board, which

can only be shot with the unique counted key provided by

the OPI for that purpose. Of course, it is crucial that ck be

an abstract type: otherwise, an RPI could extract the key of a

counted key, and construct new counted keys from that key.

This implementation is simpler than the LIO implemen-

tation for two reasons:

• Keyed and locked boards don’t involve mutable state,

unlike the labeled boards of the LIO implementation.

• The messages exchanged by player interfaces during the

shooting phase are much simpler: positions and counted

keys are simpler to reason about than labeled cells.

The auditing process for this Battleship implementation is

similar to, but simpler than, that of the LIO implementation.

First, we must convince ourselves that our program is secure,

i.e., that the referee consisting of the composition of our

standard PI, G, with itself behaves identically to the model

referee algorithm. This is straightforward. Second, we must

show that G is secure against any malicious opponent. As

in the LIO case, the proof that a simulator S(M) can be

correctly defined has only been sketched to date.

6. Conclusions

We defined whole program security by specifying that a

referee must behave identically to a model implementation

from the players’ vantage points, and defined security of

a player interface against a malicious opponent using the

real/ideal paradigm. Although these definitions are sufficient

for ensuring security, they are certainly not necessary. E.g.,

just because a program doesn’t implement the player ab-

straction of Section 2.5, it doesn’t follow that we should con-

sider it insecure. Further research is needed on definitional

formalisms for whole program security.

We found that whole program security was easily achiev-

able, even without using IFC or AC. On the other hand,

achieving security against a malicious opponent was chal-

lenging, and seems to require using IFC or AC. Our AC so-

lution in CML is considerably simpler than the IFC solution

in LIO.

We found data abstraction to be a powerful supporting

technique for achieving program security. In particular, the

AC mechanism used by the second CML program is realized

using data abstraction.

LIO allows modules to be sandboxed, preventing them

from using low-level libraries or communicating except via

their interfaces, and we found this facility extremely useful.

There is no obvious reason why sandboxing couldn’t be

added to Standard ML/CML, but to our knowledge, this

hasn’t yet been done.

The paradigm of splitting trusted code—in our case, the

referee—into mutually distrustful modules—in our case,

player interfaces—is a natural one, but it is far from clear

when it makes sense to do this. In both our LIO and CML

+ AC implementations, we needed some additional trusted

code to facilitate the splitting of the referee. When the trusted

code needed to carry out splitting grows too large, it will call

into question the utility of the splitting.

There is also the question of what it was about Battle-

ship that made it possible to implement mutually distrust-

ful player interfaces without using IFC. Part of the answer

is that, in Battleship, once information is declassified, it is

completely public. Applications in which untrusted compo-

nents are asked to carry out sensitive computations, the re-

sults of which will remain classified, might need IFC. But

sometimes effective sandboxing (as in LIO) is sufficient to

control such information flow.

We believe there is a great need for more case studies in

language-based security. The balance between theory (e.g.,

non-interference results) and practice seems heavily on the

theory side. Actual case studies—warts and all—are a cru-

cial way of grounding the field.

Acknowledgments

This work benefited from discussions with Robert Cunning-

ham, Cătălin Hriţcu, Amit Levy, David Mazières, Benjamin

Pierce, Emily Shen, Gregory Sullivan, Mayank Varia and

Mitch Wand. We are indebted to Deian Stefan for his ex-

planations of LIO’s intricacies. We wish to thank the anony-

mous referees for their detailed feedback on our submission.

References

O. Arden, S. Chong, A. Myers, K. Vikram, and D. Zhang. Jif

Distribution, Version 3.4.1, April 2013. www.cs.cornell.

edu/jif.

A. Askarov and A. Sabelfeld. Security-typed languages for imple-

mentation of cryptographic protocols: A case study. In Proc. of

the 10th European Conference on Research in Computer Secu-

rity, ESORICS’05, pages 197–221. Springer-Verlag, 2005.

R. Canetti. Security and composition of multi-party cryptographic

protocols. J. Cryptology, 13(1):143–202, 2000.

D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Mazières, J. C.

Mitchell, and A. Russo. Hails: Protecting data privacy in un-

trusted web applications. In Proceedings of the 10th USENIX

Conference on Operating Systems Design and Implementation,

OSDI’12, pages 47–60, Berkeley, CA, USA, 2012. USENIX As-

sociation.

C. Hriţcu, M. Greenberg, B. Karel, B. C. Pierce, and G. Morrisett.

All your IFCException are belong to us. In Proc. of the 2013

IEEE Symposium on Security and Privacy, SP ’13, pages 3–17.

IEEE Computer Society, 2013.

B. W. Lampson. Protection. In Proc. of the Fifth Princeton

Symposium on Information Sciences and Systems, pages 437–

443. Princeton University, 1971. Reprinted in Operating Systems

Review, 8, 1, January 1974, pages 18–24.

J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C.

Myers. Fabric: A platform for secure distributed computation

and storage. In Proc. of the ACM Symposium on Operating

Systems Principles, pages 321–334. ACM, 2009.

R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition

of Standard ML—Revised 1997. MIT Press, 1997.

A. C. Myers. JFlow: Practical mostly-static information flow con-

trol. In Proc. of the 26th ACM Symposium on Principles of Pro-

gramming Languages (POPL), pages 228–241. ACM, 1999.

A. C. Myers and B. Liskov. A decentralized model for information

flow control. In Proc. of the 16th ACM Symposium on Operating

System Principles (SOSP), pages 129–142. ACM, 1997.

J. H. Reppy. Concurrent Programming in ML. Cambridge Univer-

sity Press, 1999.

A. Sabelfeld and A. C. Myers. Language-based information-flow

security. IEEE Journal on Selected Areas in Communications,

21(1):5–19, Sept. 2006.

D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. Flexible

dynamic information flow control in Haskell. SIGPLAN Notices,

46(12):95–106, Sept. 2011.

D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. Disjunction

category labels. In Proc. of the 16th Nordic Conference on

Information Security Technology for Applications, NordSec’11,

pages 223–239. Springer-Verlag, 2012.

D. Terei, S. Marlow, S. Peyton Jones, and D. Mazières. Safe

Haskell. In Proc. of the 2012 Haskell Symposium, pages 137–

148. ACM, 2012.

S. Zdancewic. Challenges for information-flow security. In Proc.

Programming Language Interference and Dependence (PLID),

2004.

L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using

replication and partitioning to build secure distributed systems.

In Proc. of the 2003 IEEE Symposium on Security and Privacy,

pages 236–250. IEEE, 2003.

