
Quantitative Evaluation of Dynamic Platform

Techniques as a Defensive Mechanism ⋆

Hamed Okhravi, James Riordan, and Kevin Carter

MIT Lincoln Laboratory

{hamed.okhravi,james.riordan,kevin.carter}@ll.mit.edu

Abstract. Cyber defenses based on dynamic platform techniques have been pro-

posed as a way to make systems more resilient to attacks. These defenses change

the properties of the platforms in order to make attacks more complicated. Un-

fortunately, little work has been done on measuring the effectiveness of these

defenses. In this work, we first measure the protection provided by a dynamic

platform technique on a testbed. The counter-intuitive results obtained from the

testbed guide us in identifying and quantifying the major effects contributing to

the protection in such a system. Based on the abstract effects, we develop a gen-

eralized model of dynamic platform techniques which can be used to quantify

their effectiveness. To verify and validate our results, we simulate the general-

ized model and show that the testbed measurements and the simulations match

with small amount of error. Finally, we enumerate a number of lessons learned

in our work which can be applied to quantitative evaluation of other defensive

techniques.

Keywords: Dynamic platforms, platform diversity, quantitative evaluation, metrics, in-

trusion tolerance, moving target

1 Introduction

Developing secure systems is difficult and costly. The high cost of effectively mitigating

all vulnerabilities and the far lesser cost of exploiting a single one creates an environ-

ment which advantages cyber attackers. New active cyber defense paradigms have been

proposed to re-balance the landscape and create uncertainty for the attackers [1]. One

such paradigm is active defenses based on dynamic platform techniques.

Dynamic platform techniques (or simply, dynamic platforms) dynamically change

the properties of a computing platform in order to complicate attacks. Platform prop-

erties refer to hardware and operating system (OS) attributes such as instruction set

architecture (ISA), stack direction, calling convention, kernel version, OS distribution,

and machine instance. Various dynamic platform techniques have been proposed in the

literature. Emulation-based techniques change the calling sequence and instruction set

presented to an application [2]; multivariant execution techniques change properties

⋆ This work is sponsored by the Department of Defense under Air Force Contract #FA8721-05-

C-0002. Opinions, interpretations, conclusions and recommendations are those of the author

and are not necessarily endorsed by the United States Government.

2 Okhravi, Riordan, & Carter

such as stack direction or machine description using compiler generated diversity and

virtualization [3–6]; migration-based techniques change the hardware and operating

system of an application using containers and compiler-based checkpointing [7]; server

diversification techniques rotate a server across multiple platforms and software stacks

using network proxies [8]; self cleansing techniques change the machine instance by

continuously rotating across many virtual machines and re-imaging the inactive ones

[9–11].

Unfortunately, little work has been done on understanding and quantifying the im-

pact of dynamic platforms on the security of a system. The impact of such techniques

is often assumed to be intuitive and straight forward. Moreover, one cannot compare

different features provided by different dynamic platforms in a quantitative way. For

example, is it more effective to support multiple platforms that are running simultane-

ously and voting on the result (a.k.a. multi-instance), or to have one active platform, but

support cleansing of the inactive ones (a.k.a. cleanup)?

In this work, we first identify the four major features proposed by different dynamic

platforms in the literature. We then perform a set of experiments on a testbed with one

such technique that is augmented to support these features in order to quantify its pro-

tection. The results from our testbed experiments are, in fact, counter-intuitive and com-

plex. The complexity of the results suggest that various underlying effects contribute to

such a system.

Based on our observations and the mathematical principles involved, we enumerate

and analyze the various underlying effects in an abstract analysis of a dynamic platform

system. To evaluate the completeness of our enumerated list of abstract effects, we

develop a generalized model of dynamic platforms based on these effects and verify

and validate the model by simulating the same experiments as the ones we performed

on the testbed. The matching results and the small amounts of error validate our model

and verify that we have at least correctly captured the main effects contributing to the

protection provided by a dynamic platform. Finally, we enumerate a number of lessons

learned that can be applied to the quantitative evaluation of other defensive techniques.

Our contributions are as follows:

– To the best of our knowledge, we perform the first quantitative evaluation of dy-

namic platforms as a defensive mechanism and illustrate the complexities and the

counter-intuitive effects contributing to such a system. Moreover, we enumerate the

major effects and their impacts.

– We develop a generalized model of dynamic platforms and simulate the results. We

verify and validate the model by comparing the simulated results with the testbed

experiments and show that they match closely.

– We demonstrate how testbed experiments, abstract analysis, and modeling and sim-

ulation can be used together to quantify the impact of defensive techniques. In our

work, testbed experiments are used to uncover the complexities, abstract analysis is

used to enumerate and describe such complexities, and modeling and simulation is

used to check the completeness of the abstract analysis and to validate the results.

We enumerate a number of lessons learned which can guide future evaluations of

the defenses.

Quantitative Evaluation of Dynamic Platforms 3

The rest of the paper is organized as follows. Section 2 provides a brief overview

of dynamic platform techniques. Section 3 describes the threat model used throughout

the paper. Section 4 discusses our testbed experiments and measurements performed

on a real system. Section 5 discusses our abstract analysis approach and its results.

Section 6 describes our generalized model of dynamic platforms. Section 7 presents

the simulation results from the generalized model. Section 8 enumerates a number of

lessons learned and discusses our findings. We discuss the related work in Section 9

before concluding the paper in Section 10.

2 Dynamic Platform Background

We briefly describe the defensive techniques based on dynamic platforms. We provide

enough background for understanding the rest of the paper. More details about each

technique can be found in its original publication.

Dynamic platform techniques change platform properties in order to make attacks

more complicated [12]. They often rely on temporal changes (e.g. VM rotation), di-

versity (e.g. multivariant execution), or both (e.g. migration-based techniques) to pro-

tect a system. These techniques are often implemented using machine-level or operat-

ing system-level virtualization, compiler-based code diversification, emulation layers,

checkpoint/restore techniques, or a combination thereof. Emulation-based techniques

such as Genesis [2] often use an application-level virtual machines such as Strata [13] or

Valgrind [14] to implement instruction set diversity. In some cases, multiple instances

are executed and a monitor compares their results. Multivariant execution techniques

such as Reverse stack [15] (also called N-variant systems [16]) use compiler-based

techniques to create diverse application code by replacing sets of instructions with se-

mantically equivalent ones. Migration-based techniques such as Talent [7] use operating

system-level virtualization (containers) to move an application across diverse architec-

tures and operating systems. A dynamic platform can also be achieved at a higher ab-

straction level by switching between different implementations of servers [8]. These

techniques either do not preserve the state (e.g. a web server) or they preserve it using

high level configuration files (e.g. DNS server). Finally, self-cleansing techniques such

as SCIT [9] only change the current instance of the platform without diversifying it.

The main goal, in this case, is bringing the platform to its pristine state and removing

persistence of attacks.

We have identified four features that determine the protection provided by dynamic

platform techniques. Later in our analysis, we show that these features can result in very

different defensive benefits for each technique. The four features are:

Diversity A dynamic platform technique provides diversity if it changes the properties

of the platform used for running the application. For example, the Reversed Stack

[15] technique provides diversity because it changes the direction of stack growth

whereas SCIT [9] does not because it rotates the service among homogeneous vir-

tual machines.

Multi-Instance A technique is multi-instance if more that one platform instance is

used to serve a transaction simultaneously. For example, multivariant execution [3]

4 Okhravi, Riordan, & Carter

Technique Diversity Multi-Instance Limited Duration Cleanup

SCIT [9] X

GA-Based Configuration [17] X X

MAS [18] X X

Multivariant Execution [3] X X

Reversed Stack [15] X X

Talent [17] X X

Machine desc. diversity [6] X X

N-Variant System [16] X X

Intrusion Tolerance for MCS [19] X X

Intrusion Tolerant WS [8] X X

Table 1: Features of some of the dynamic platform techniques

is a multi-instance technique because it runs a transaction on multiple different in-

stances of the platform and compares the results, whereas Talent [7] is not, because

it uses one instance at a time.

Limited Duration A technique has limited duration if the instance of the platform can

change while processing a single transaction. Otherwise, we call it extended dura-

tion which means that the technique must finish processing a transaction before it

can change the instance of the platform. For example, using genetic algorithms to

change platform configurations [17] has limited duration because the the configura-

tion can change while processing a transaction whereas moving attack surfaces [18]

completes each transaction on the same instance on which it started (i.e. extended

duration).

Cleanup A technique supports cleanup if each instance is wiped and imaged into a pris-

tine state before it is used again. For example, SCIT [9] supports cleanup whereas

multivariant execution does not.

Table 1 shows a list of representative dynamic platform techniques and their fea-

tures.

We use one of the above techniques, Talent, to quantitatively analyze the effective-

ness of dynamic platforms. Although Talent does not natively support multi-instance

and cleanup, we augment it with these features to understand their impact. The main

reason for using Talent was its code availability, but we show that our analysis can be

generalized based on the features of the techniques.

In this work, our goal is not to provide arguments for merits or demerits of any of

the proposed dynamic platform techniques. Rather, we strive to quantitatively evaluate

dynamic platforms as a cyber defense mechanism and study various features that can

significantly change their impact.

2.1 Talent

Talent [7] is a technique that allows live migration of applications across diverse plat-

forms. It uses operating-system-level virtualization (OpenVZ [20]) to sandbox an ap-

Quantitative Evaluation of Dynamic Platforms 5

plication and migrate the environment. For internal process state migration, Talent uses

a portable checkpoint compiler (CPPC [21]) to insert checkpointing instructions into

a code. At the time of migration, it pauses a process, checkpoints its state, moves the

state to the next platform, and resumes the execution. Some portions of the code are

re-executed in order to construct the entire state.

Since it allows an application to run on different operating systems and architecture,

Talent provides diversity. Also, it is a limited duration technique, because it can pause

a process and resume it on a different platform. However, it does not natively support

multi-instance since one platform is active at a time; it does not implement cleanup

either.

Talent has been implemented on Intel Xeon 32-bit, Intel Core 2 Quad 64-bit, and

AMD Opteron 64-bit processors. It has also been tested with Gentoo, Fedora (9, 10, 11,

12, and 17), CentOS (4, 5, and 6.3), Debian (4, 5, and 6), Ubuntu (8 and 9), SUSE (10

and 11), and FreeBSD 9 operating systems.

3 Threat Model

We discuss multiple threat models in this paper but analysis shows that they share com-

mon features. To make the analysis more precise, we explicitly describe the core threat

model in this section. Variations upon the core threat model are described in the other

sections as appropriate.

In our model, the defender has a number of different platforms to run a critical

application. The attacker has a set of exploits (attacks) that are applicable against some

of these platforms, but not the others. We call the platforms for which the attacker

has an exploit “vulnerable” and the others “invulnerable.” In a strict systems security

terminology, vulnerable does not imply exploitable; without loss of generality, we only

consider exploitable vulnerabilities. An alternative interpretation of this threat model is

that the vulnerabilities are exploitable on some platforms, but not on the other ones.

The defender does not know which platforms are vulnerable and which are invulner-

able, nor does she have detection capabilities for the deployed exploits. This scenario,

for example, describes the use of zero-day exploits by attackers, for which no detection

mechanism exists by definition.

Since there is little attempt to isolate the inactive platforms in dynamic platform

systems, we assume that all platforms are accessible by the attacker, and the attacker

attempts to exploit each one.

The attacker’s goal is what creates the variations in our threat model. For exam-

ple, one success criteria may be for the attacker to compromise the system for a given

period of time to cause irreversible damage (e.g. crash a satellite), while a different

success criteria gives the attacker gradual gain the longer the system is compromised

(e.g. exfiltration of information). Different techniques with different features provide

varying protections against these goals which we study in the subsequent sections.

6 Okhravi, Riordan, & Carter

4 Experiments

4.1 Experiment Setup

To understand the protection provided by dynamic platforms, we start by performing

simple experiments with Talent and two real-world exploits. We observe that contrary

to the naïve view, even these simple experiments result in very complex results which

highlight a number of subtleties about dynamic platforms.

To perform the experiments, a notional application with C back-end and GUI front-

end has been ported to Talent. The application’s back-end performs attestation of ma-

chines within a local network and its front-end displays the result. However, the details

of the application are unimportant for the evaluations done in this work, so for the sake

of brevity we do not discuss them here.

On the testbed, we have a pool of five different platforms: Fedora on x86, Gentoo on

x86, Debian on x86_64, FreeBSD on x86, and CentOS on x86. The application runs for

a random amount of time on a platform before migrating to a different one (i.e. platform

duration).

The attacker’s goal in the experiments is to control the active platform for some

time T . Since in a real scenario the vulnerability of the platform is unknown, we may

consecutively migrate to multiple vulnerable platforms, in which case the attacker wins.

To implement this scenario on the testbed, we launch two real exploits against Talent.

The first is the TCP MAXSEG exploit which triggers a divide by zero vulnerability in

net/ ipv4/tcp.c (CVE-2010-4165) to perform a DoS attack on the platform. Only

the Gentoo platform is vulnerable to this attack. The second attack is the Socket Pairs

exploit which triggers a garbage collection vulnerability in net/unix/

garbage.c (CVE-2010-4249) to saturates the CPU usage and file descriptors. The Fe-

dora and CentOS platforms are vulnerable to this attack. Our Debian and FreeBSD

platforms are not vulnerable to these exploits.

In each configuration, we select N ∈ (1, 5) platforms. For each trial, the application

randomly migrates across those N platforms without immediate repeat. In the case of

N = 1 (baseline), the application remains on the same platform during the entire trial.

Without loss of generality, the duration on each platform (d) is chosen randomly and

uniformly from 40− 60 seconds. Although we have no reason to believe that these are

the appropriate values for a real-world application, we will show later that the actual

values of the duration (d) and attacker’s goal (T) are inconsequential to our experiments

and can be parametrized.

One or both exploits become available to the attacker at random times during each

trial. As a result, zero to three platforms can be compromised (zero when the exploit is

not effective against the set of platforms and three when both exploits are available and

Fedora, CentOS, and Gentoo are in the pool of platforms). When the exploit is launched,

its payload reaches all of the platforms in the selected set at once (not one after another).

This approach tries to model the behavior of network-based exploits that propagate to all

machines within a network very rapidly. Each trial runs for 15 minutes. We collect 300

trials for each configuration. We also collect a central log which includes a timestamp,

the status of each platform (up or down), and the active platform and a local log (for

verification purposes) which also includes finer-grained CPU load for each platform.

Quantitative Evaluation of Dynamic Platforms 7

Fig. 1 illustrates one trial with 3 platforms. The red arrows show when exploits are

launched. In this case, platforms 2 and 5 are vulnerable to exploits 1 and 2 respectively.

A shaded rectangle shows a compromised platform while a white rectangle shows an

uncompromised one (vulnerable or invulnerable).

Exploit 1 Exploit 2

P2 P5 P2 P2 P1 P1 P5

time

Uncompromised

Compromised

Fig. 1: A 3-platform trial

4.2 Experiment Results

We calculate the value of the metric, which is the percentage of time that the attacker is

in control for longer than T and present these results in Fig. 2.

The results are completely perplexing. In fact, the results are so counter-intuitive

that we initially thought that some mistakes have been made in collecting them. We can

at least observe the following peculiarities in the results.

– The 1-platform result is very different than the others and seems to estimate a

straight line for T > 100 sec.

– More platforms does not always result in lower chance of attacker success. Specifi-

cally for 60 < T < 120, more platforms result in higher chance of success for the

attacker.

– There are several downward steps in the curves for more than one platform at T =
60, 120, 180,

– For T > 120, more platforms result in lower chance of attacker success and that

remains the case for larger values of T .

The complexity of the results suggest that various effects should be in play which

we explain one by one in the next section.

5 Abstract Analysis

Much of the analysis of one system using dynamic platforms as a defense applies to any

such system. First, we explain the effects that contribute to our experiment results and

then we generalize our analysis to any dynamic platform technique.

5.1 Limited Duration Effect

The first effect contributing to the results is the limited duration effect. Let d be the

duration of the transaction on a platform, T be the period that the attacker must be

8 Okhravi, Riordan, & Carter

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300

P
o

rt
io

n
 o

f
T

im
e

th
e

A
tt

ac
k

er
 S

u
cc

ee
d

s

Attacker's Goal T (time to disrupt service in seconds)

1 Platform

2 Platforms

3 Platforms

4 Platforms

5 Platforms

Fig. 2: Testbed measurements of the impact of dynamic platform on attacker success

d

T

s

Attacker

Wins

Attacker

Loses

Fig. 3: Window of opportunity for the attacker

P
o
rt

io
n

 o
f

T
im

e
th

e
A

tt
ac

k
er

S
u
cc

ee
d

s

Attacker's Goal T (time to disrupt service in seconds)
T

1

d-T d

Fig. 4: The limited duration effect

Quantitative Evaluation of Dynamic Platforms 9

present, and s the start time of attack. If T > d, the attacker can never win. For T < d,

the attacker can only win if she starts early enough during the d−T interval. As a result,

the probability of winning for the attacker is a decreasing linear function of T .

Then the probability that the attack succeeds is given by

Prsuccess = min

(

1,max

(

0,
d− T

s

))

This explains the general decreasing trend for the probability of success as a func-

tion of attacker’s goal in Fig. 2.

Counter-intuitively, this effect also explains the straight-line result for the 1-platform

experiment in Fig. 2. Although in the 1-platform case, the platform never changes, the

probability of success decreases linearly with time because the entire trial has a limited

duration. The attacker cannot possibly win if she starts late even if that single platform

is vulnerable. This explains the similarity of the 1-platform result in Fig. 2 and Fig. 4.

5.2 Diversity Effect

Informally speaking, the intuition behind the concept of diversity is that it is harder for

an attacker to compromise different platforms than it is to compromise homogeneous

ones. Since we assume that the platforms are all available and no separation exists

between them, in the case of homogeneous platforms, they can all be compromised by

an exploit that works against one of them. On the other hand, if the platforms are diverse

(which is the case in our experiments), an exploit can work against some of them, but

not the other ones.

In practice, diversity creates an effect which occurs when the required attacker goal

T passes between various multiples of the duration of each platform d. For example, if

the attacker goal passes from being a bit less than a single platform duration to a bit

more, then instead of a single vulnerable platform, two need to be used consecutively.

The same effect happens as we transition from two to three and so on. The result is

downward steps in the curve when the required attacker goal passes multiples of the

platform duration. Fig. 5 illustrates this impact when three out of five platforms are vul-

nerable. The first platform is trivially vulnerable with 3
5 probability. Since we do not

have immediate repeats, the subsequent platforms are chosen from the four remaining

ones of which two are vulnerable, so the probability that the second platform is vulnera-

ble if the first one is vulnerable is 2
4 . As a result, both the first and the second platforms

are vulnerable with probability 3
5 × 2

4 . If we extend the analysis, the first, second, and

third platforms are vulnerable with probability 3
5 × (24)

2 , and so on (see Fig. 5).

5.3 Multi-Instance Effect

In the multi-instance case, the system is compromised if the majority of platforms are

compromised. Although Talent does not natively support multi-instance, we augment it

with a simple voting mechanism to analyze the impact of running multiple platforms si-

multaneously. With the same experiment setup as described in section 4 we analyze the

probability of success when the application runs on multiple platforms and the majority

of the platforms are compromised.

10 Okhravi, Riordan, & Carter

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300

P
o

rt
io

n
 o

f
T

im
e

th
e

A
tt

ac
k

er

S
u

cc
ee

d
s

Attacker's Goal T (time to disrupt service in seconds)

5

3

4

2

5

3
u

2

4

2

5

3
¸
¹

·
¨
©

§
u

3

4

2

5

3
¸
¹

·
¨
©

§
u 4

4

2

5

3
¸
¹

·
¨
©

§
u

Fig. 5: The diversity effect

When the system is multi-instance, if there is no platform change, the case becomes

trivial; that is, if the majority of the platforms are not vulnerable, the system as a whole

is never compromised and the attacker never wins. On the other hand, if the majority of

the platforms are vulnerable, the attacker wins as soon as the exploits are launched and

remains in control indefinitely. As a result, we only show the effect when the platform

change happens. Moreover, the 1-platform and 5-platform cases are also trivial, so we

only show the results for a 3-platform setup. In this setup, the application runs on three

platforms simultaneously. For each platform, the application migrates to a new platform

uniformly randomly after spending 40-60 seconds. Thus, the migrations may be out-of-

sync, but at each instance of time the application is running on three diverse platforms.

The multi-instance effect is shown in Fig. 6. The single instance result is the same

as the 3-platform setup in Fig. 2.

Counter-intuitively, the multi-instance setup is less secure for small values of T .

This arises from a combinatorial effect. Since three of the five platforms are vulnerable,

there are three configurations in which the majority is not vulnerable (the two invul-

nerable platforms selected with one other vulnerable platform) which is expressed by

C (3, 1) where C (x, y) = x!
y!(x−y)! is the combinatorial choice function. The total num-

ber of choices is C (5, 3) = 10. As a result, the defender wins with the probability of

30% and thus, the attacker wins with the probability of 70%. This is why the multi-

instance case starts from 0.7. With the single instance case this probability is smaller

because there is a higher probability of a combination with an invulnerable platform. In

other words, when the majority of the platforms are vulnerable (3 out of 5 in this case),

there is a higher probability that if we choose three platforms, two or more of them are

vulnerable (1−C (3, 1)) than if we choose just one platform and that is vulnerable (35).

We will explain this effect in more details in Section 6.1.

5.4 Cleanup Effect

A dynamic platform system supports cleanup if every inactive platform in restored into

its pristine state. Talent does not natively support cleanup either, but we augment it

Quantitative Evaluation of Dynamic Platforms 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 50 100 150 200 250 300

P
o
rt

io
n

 o
f

T
im

e
th

e
A

tt
ac

k
er

 S
u
cc

ee
d
s

Attacker's Goal T (time to disrupt service in seconds)

3 Platforms single-

instance

3 Platforms multi-

instance

Fig. 6: The multi-instance effect

with a cleanup capability to evaluate its impact. As discussed earlier, techniques such

as SCIT [9] and MAS [18] implement cleanup.

The impact of cleanup is trivial if the exploit is only launched once and never re-

peated; the attacker may compromise the active platform for the remainder of the time

on that platform, but when the platform changes, the system becomes pristine and the at-

tacker never wins again. This is because the inactive platforms are being cleaned while

the attacker attacks the active one. Consequently, in the case of a non-repeating exploit,

the portion of time the attacker is in control amortizes with the duration of the trial.

Here, we evaluate the non-trivial case where the exploit is repeated frequently. We

re-launch the exploit with mean time between attacks (MTBA) set at 20, 40, and 60
seconds. Fig. 7 illustrates the impact of cleanup. As can be observed, for any attacker

goal of greater than 60 seconds, the chance of success for the attacker drops to zero.

This makes sense because the inactive platforms are restored to their pristine state, so

the application can never migrate to an already compromised platform. As a result, the

attacker can only win if her goal is shorter than the maximum duration of time on a

single platform, which is 60 seconds.

As the results suggest, cleanup can greatly improve the protection offered by dy-

namic platform techniques since it significantly reduce the window of opportunity for

an attacker. It is advisable that all dynamic platform techniques should support cleanup.

5.5 Smoothing Effects

A few effects contribute to the smoothness of the edges of the curves depicted in Fig. 2.

For example, the downward steps are not sharp transitions (similar to a step function).

Rather, they are smoother curvatures. For the sake of completeness, we explain a few

factors that contribute to this smoothness.

First, the time spent on a platform is not fixed; rather, it is a random variable uni-

formly selected between 40 and 60 seconds. This is an important smoothing factor

because it makes the time on a platform non-deterministic and as a result, it makes the

threshold for passing between multiples of the platforms also smooth.

12 Okhravi, Riordan, & Carter

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 50 100 150 200 250 300

P
o

rt
io

n
 o

f
T

im
e

th
e

A
tt

ac
k

er
 S

u
cc

ee
d

s

Attacker's Goal T (time to disrupt service in seconds)

3 Platforms, no

cleanup

3 Platforms,

cleanup,

MTBA=20s

3 Platforms,

cleanup,

MTBA=40s

3 Platforms,

cleanup,

MTBA=60s

Fig. 7: The cleanup effect

Second, the exploits are also launched at random times instead of the beginning of

the trial. This factor is not crucial in evaluating dynamic platforms and its only tangible

impact is making the curves smoother.

Third, we assumed that as soon as the exploit is launched the vulnerable platforms

are compromised. In reality, the time it takes for the exploit to successfully compromise

a platform after reaching it is non-zero which also makes the results smoother. For

example, the Socket Pairs exploit used in the experiments takes a few seconds to saturate

the file descriptors.

Fourth, networking, OS scheduling, and various other delays also make the results

smoother and in some cases noisier.

6 Generalized Model of Dynamic Platform Techniques

In this section, we use the knowledge of our experiments and the effects that we ex-

plained in the previous section to develop a generalized model of the dynamic platform

techniques.

We can categorize the problem space according to a number of properties:

– The attackers control requirement can either be aggregate or continuous. In the

aggregate case, any period of time during which the attacker controls a platform

counts and aggregates towards the payoff. Data exfiltration attacks are an example

of attacks that require aggregate control. In the continuous case, only the time since

the most recent compromise during which the attacker has continuous control of

the platform counts towards the payoff. For example, attacks that leak crypto keys

through remote side channel attacks require continuous control since that key may

only be valid for the most recent session.

– The attackers payoff can be either fractional or binary (all or nothing). In the frac-

tional case, the attacker is rewarded more, the longer she controls the platform.

Data exfiltration attacks are an example of fractional payoff. In the binary case, the

Quantitative Evaluation of Dynamic Platforms 13

α Number of vulnerable platforms

β Number of invulnerable platforms

pk Platform at migration step k

v
(

pk
)

Platform at migration step k is vulnerable

¬v
(

pk
)

Platform at migration step k is not vulnerable

Pr
(

v
(

pk
))

Probability that v
(

pk
)

Prvv P
(

v
(

pk+1
)

|v
(

pk
))

Prii P
(

¬v
(

pk+1
)

|¬v
(

pk
))

Table 2: Notation describing dynamic platform system

attacker is not rewarded before a known period of control, and then she is fully re-

warded at once. Attacks on critical infrastructure systems to cause a physical impact

(e.g. to cause a blackout) are an example of binary payoff.

– The platform change model can include random with repeat, random without repeat,

and periodic permutation.

We will define the abstract model of a dynamic platform system P as a system that

migrates through a finite fixed collection of platforms {pi}. Each platform either has or

does not have a property exploitable by the attacker which we call vulnerable. In the

first approximation to the model we assume that the platforms are fully independent.

We will use the notation presented in Table 2.

6.1 Attacker Aggregate Control

When the attacker requires only aggregate control, there are two main subcategories

according to the attacker’s payoff. The fractional case is trivially determined by the ra-

tio of α and β. In the binary case, wherein the attacker wins by controlling a specified

fraction of the vulnerable time, the defender may optimize via an initial subselection of

platforms in a process reminiscent of gerrymandering. For example, if α = 3 and β = 2
and the attacker wants to control greater than 50% of the time, then the defender should

simply expect to lose should all platforms be utilized. By contrast if the defender ran-

domly subselects two platforms then the defender can reduce the attacker’s expectation

of winning to
C (3, 2)

C (5, 2)
=

3

10
= 30%,

where C (x, y) = x!
y!(x−y)! is the combinatorial choice function. Here the value of 2 as

the number of platforms chosen.

Generally, if t is the percentage of time that the attacker requires for success and we

subselect j platforms from the total α+ β, then the probability of attacker success is

Prsuccess =

min(α, j)
∑

i=⌈t·j⌉

C (α, i) · C (β, j − i)

C (α+ β, j)
,

in the steady-state model.

14 Okhravi, Riordan, & Carter

Repeat Vuln¬VulnPr
(

v
(

pk+1
))

Pr
(

v
(

pk+1
)

|v
(

pk
))

Pr
(

v
(

pk+j
)

|v
(

pk+j−1
)

& . . .&v
(

pk
))

Without α β α
α+β

α−1
α+β−1

α−j
α+β−j

With α β α
α+β

α
α+β

α
α+β

Table 3: Conditional Probabilities

6.2 Attacker Continuous Control

When the attacker requires continuous control, the defender can use the subselection

strategy as above as well as leveraging conditional probabilities. These conditional prob-

abilities are given in Table 3.

Here, we observe that α
α+β

> α−j
α+β−j

so long as β and j are both greater than

zero. As such, migrating without immediate repeat, while not influencing the fraction of

vulnerable platforms selected, tends to reduce successful sequences for the attacker. We

note that the influence is greater when a smaller number of platforms is used. Our later

experiment will use 3 vulnerable and 2 invulnerable platforms which is a sufficiently

small number to have a strong influence upon the conditional probabilities.

This reduces to the Markov chain:

V Prvvff

1−Prvv

��

start

Prv

77♦♦♦♦♦♦♦♦♦♦♦♦♦

Prk=1−Prv ''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖

I Priidd

1−Prii

FF

6.3 Attacker Fractional Payoff Model

The steady state of attacker control of the system can be modeled using Markov chains
with states I and V referring to invulnerable and vulnerable respectively. While the
simple Markov model describing the transitions {I, V } −→ {I, V } describes the base
behavior of the system, it does not naturally capture the notion of repeated vulnerable
states. We can adapt this chain to one with a richer collection of states

{

I, IV, IV
2
, . . . , IV

n−1
, V

n
}

−→
{

I, IV, IV
2
, . . . , IV

n−1
, V

n
}

which support runs of length n. The probability of invulnerable to invulnerable transi-

tion is given by

Prii = Pr
(

¬v
(

pk+1
)

|¬v
(

pk
))

=
β − 1

α+ β − 1

and the probability of vulnerable to vulnerable transition is given by

Prvv = Pr
(

v
(

pk+1
)

|v
(

pk
))

=
α− 1

α+ β − 1

Quantitative Evaluation of Dynamic Platforms 15

The Markov model looks like

IV

1−Prvv

qq

Prvv // IV 2

1−Prvv $$
I

1−Pr¬v

22

Prii

MM IV n−11−Prvvoo

Prvvzz✈✈
✈✈
✈✈
✈✈
✈

V n

1−Prv

Prvv

MM

which has the (n+ 1)× (n+ 1) Markov transition matrix is given by























Prii 1− Prvv
1− Prvv Prvv
1− Prvv Prvv
1− Prvv Prvv

1− Prvv
. . .

1− Prvv Prvv
1− Prvv Prvv























.

This transition matrix has the steady state eigen-vector
[

β

α+β
av · Prvv av · Pr2vv · · · av · Prn−1

vv av ·
∑

∞

i=n
Privv

]

where

av =
α

α+ β
·

(

1− Prvv

Prvv

)

.

This can be used to compute the steady state behavior of the system. If the attacker

success begins after n steps then the steady state is given by the right most term in the

eigen vector av ·
∑∞

i=n P
i
v = α

α+β
− av ·

∑n−1
i=0 P i

v. If the attacker success includes the

steps leading to a run of n steps then we must also include vulnerable states weighted by

the probability that they will become a run of n vulnerable states and the contribution to

the run: the probability that IV n−1 will become V nis PrV , the probability that IV n−2

will becomeV nis 2·Pr2V and so forth. Reducing that equation, we find that the expected

period of attacker control L(n) is

L(n) = 1−
(1− Pr¬v)

−1
+ (1− Prv)

∑n−1
i=0 i · Pri−1

v

(1− Pr¬v)
−1

+ (1− Prv)
−1

which is one minus the percentage of time that the defender is in control.

6.4 Attacker Binary Payoff Model

In the binary payoff model with random selection (with or without immediate repeats),

the attacker will eventually win so long as it is combinatorially possible in the same

16 Okhravi, Riordan, & Carter

manner that a person flipping a coin will eventually observe a sequence of ten, or ninety-

two, heads in a row. Here metrics might reasonably be based in the mean time until

attacker victory. These can be analyzed in a fashion similar to the steady state model:

I{1···∞}

1−Prn−1
vv

((PP
PP

PP
PP

PP
PP

Prn−1
vv

**

start
Pr∗ //

PrvPrn−1
vv

��

1−Prv

OO

V {1···n−1}I{1···∞}

Pr(n−1)
vvvv♠♠♠

♠♠
♠♠
♠♠
♠♠
♠♠

1−Prn−1
vv

��

V n

1

��
end

where Pr∗ = Prv
(

1− Prn−1
vv

)

. We can use this to evaluate the expected time L′(n)
to attack compromise as the probabilistically weighted sum of all path lengths

L′(n) =n+
1− Prv

1− Prii
+

(

Pr1−n
vv − 1

)

·
(

1− n · Prn−1
vv + (n− 1) · Prnvv

(

1− Prn−1
vv

)

· (1− Prvv)
+

1

1− Prii

)

. (1)

Hence, in scenarios such as ‘crash the satellite’, Eq. (1) computes the expected time

before the adversary is able to take down the service.

7 Simulation Results

In order to verify that we have captured the major effects in our analysis and that our

generalized model of dynamic platforms is valid, we simulate the Markov chain that

corresponds to our testbed experiments. Our testbed experiments assumed migration

with no immediate repeat, continuous control, and fractional payoff which is modeled

using the Markov chain in section 6.3. We run a Monte Carlo simulation on that model

with the same parameters as our testbed experiments: 40 − 60 second time of each

platform, three vulnerable platforms out of five total, exploits launched at random times

during each trial, and each trial runs for 15 minutes. The results are presented in Fig. 8.

In the figure, the testbed measurements are also overlaid on the simulated results using

dotted lines for comparison.

As can be observed, the simulation results match the testbed measurements very

closely. This validates the fact that we have indeed captured at least the major ef-

fects that contribute to the effectiveness of dynamic platform techniques. Note that the

smoothing effects (e.g. random duration on a platform and random exploit launch times)

are captured in the simulation results since we have captured them in the model. How-

ever, various jitters and delays (e.g. networking, OS scheduling, etc.) are not in the

Quantitative Evaluation of Dynamic Platforms 17

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50 100 150 200 250 300

P
o

rt
io

n
 o

f
T

im
e

th
e

A
tt

ac
k

er
 S

u
cc

ee
d

s

Attacker's Goal T (time to disrupt service in seconds)

Testbed

Measurements

2 Platforms

Simulation

3 Platforms

Simulation

4 Platforms

Simulation

5 Platforms

Simulation

Fig. 8: Simulation results from the generalized model. The testbed measurements are

also shown in dotted lines

model which can explain the small amount of discrepancy between the simulated and

measured results. Table 4 shows the mean squared error (MSE) of the simulation results

compared to the testbed measurements.

7.1 Discussion

One important observation to be made for both the simulated and measured results is

that for small attacker goals (T), fewer platforms actually perform better. This is due

to the fact that in situations where the attacker wins quickly, more platforms present a

larger attack surface. As a result, the attacker wins if she can compromise any of the

platforms. In other words,

T
d
→ 0 : Attacker wins iff any platform is vulnerable

The value of dynamic platforms can only be observed for attacker goals that are

large with respect to the duration of each platform (T ≫ d). This is an important pa-

rameter when deploying dynamic platform systems; the duration of each platform must

be selected short enough based on the service requirements of the system. For example,

if the system has to survive and provide service within 5 minutes (i.e. the attacker goal

is disrupting service longer than T = 5 minutes), the platform duration must be d << 5
min. In other words,

T
d
→ ∞ : Attacker wins iff all platforms are vulnerable

Note that there may be practical considerations when choosing small platform du-

ration. If the platform changes too rapidly (i.e. very small d), it can disrupt the normal

mission of the system.

18 Okhravi, Riordan, & Carter

Number of Platforms Mean Squared Error

2 Platforms 634× 10−6

3 Platforms 329× 10−6

4 Platforms 322× 10−6

5 Platforms 257× 10−6

Table 4: Mean squared error of the simulated model compared to the testbed measure-

ments

8 Lessons Learned

Our work in analyzing dynamic platform techniques has provided five main lessons.

The first is that many effects contribute to a dynamic platform system. Although

these systems have been proposed in many different forms in the literature, little work

has been done to identify and quantify these effects which can be very counter-intuitive.

On the other hand, when these effects are studied and understood, even first-order mod-

els can closely estimate the system behavior.

The second is that experiments such as ours using real-world technologies on a

testbed can shed light on some of the complex dynamics of active systems and can be

used as a way to identify and quantify the major contributing effects of such systems.

The third is that threat models are crucial in understanding the protection provided

by a defensive technique and they are also instrumental in quantitatively measuring such

protections. As can be observed in our results, while a technique can provide significant

protection against one type of threat (e.g. long-duration attacks that can have fractional

gain for the attacker such as slow data exfiltration), it may actually degrade the secu-

rity of the system for another one (e.g. short duration attacks causing an irreversible

impact). In fact, threat models should be an integral part of metrics and measurements

of effectiveness [22].

The fourth is that testbed experiments, abstract analysis, and modeling and simula-

tion can be used together to perform quantitative evaluation of defensive techniques in

general. These different approaches can identify subtle effects and dynamics. Moreover,

they can provide the verification and validation necessary to ensure that the results are

indeed correct.

The final lesson is that some features of the proposed techniques, such as cleanup,

can significantly reduce the likelihood of success for attacks. When designing new tech-

niques, quantitative evaluations such as what we have done in this paper can be used to

decide the important features to support in order to provide the most protection with the

least performance overhead.

9 Related Work

Various dynamic platform techniques have been proposed in the literature. As men-

tioned earlier, The Self-Cleansing Intrusion Tolerance (SCIT) project rotates virtual

machines to reduce the exposure time. SCIT-web server [23] and SCIT-DNS [24] pre-

serve the session information and DNS master file and keys, respectively, but not the

Quantitative Evaluation of Dynamic Platforms 19

internal state of the application. The Resilient Web Service (RWS) Project [25] uses a

virtualization-based web server system that detects intrusions and periodically restores

them to a pristine state. Certain forms of server rotation have been proposed by Black-

mon and Nguyen [26] and by Rabbat et al. [27] in an attempt to achieve high availability

servers.

High-level forms of temporal platform changes have been proposed by Petkac and

Badger [28] and Min and Choic [19] to build intrusion tolerant systems although the

diversification strategy is not as detailed in these efforts. Compiler-based multivariant

[3–5, 15, 29] and N-variant systems [16] propose another way of achieving platform

diversity. Holland et al. propose diversifying machine descriptions using a virtualiza-

tion layer [6]. A similar approach with more specific diversification strategy based on

instruction sets and calling sequences has been proposed by Williams et al. [2]. Wong

and Lee [30] use randomization in the processor to combat side-channel attacks on

caches.

On the evaluation side, Manadhata and Wind [31] propose a formal model for mea-

suring a system’s attack surface that can be used to compare different platforms. Evans

et al. [32] develop models to measure the effectiveness of diversity-based moving tar-

get technique. They evaluate the probability of attack success given the time duration

of attack probing, construction, and launch cycles and the entropy of randomness in the

target system. They evaluate the impact of various attacks on moving target systems in-

cluding circumvention, deputy, brute force, entropy reduction, probing, and incremental

attacks.

There has been numerous modeling attempts in the literature for diversity systems

or N-version programming such as those done by Popov and Mladenov [33], or Arlat

et al. [34]. However, they focus on accidental faults, not malicious attacks.

10 Conclusion

In this paper, we have quantitatively studied cyber defenses based on dynamic platform

techniques. We used testbed experiments to collect results from an actual technique. The

unexpected and complex results motivated us to perform an abstract analysis to explain

the various effects that contribute to the protection. We extended our analyses to the

main features provided by the dynamic platforms proposed in the literature. Based on

these effects, we then developed a generalized model of dynamic platforms. In order to

ensure that we have captured the major effects, and to verify the model and validate our

testbed results, we simulated the same sets of experiments using the generalized model.

The closely matching results enhance the confidence in the results and validate the fact

that we have at least captured the main effects.

Our results suggest that while dynamic platforms are useful for mitigating some

attacks, it is of critical importance to understand the threat model one aims to defend

against. While dynamic platforms can be effective against long-period attacks with grad-

ual gains (e.g. data exfiltration), they can be detrimental for short-period attacks with

instantaneous gains (e.g. a malware causing an irreversible impact in a control system).

The future work in this domain will focus on performing more experiments with

such systems, extending the analysis to other dynamic platform techniques and other

20 Okhravi, Riordan, & Carter

randomization and diversity approaches, and analyzing the second order behavior such

as adaptive adversaries who change tactics based on the deployed defenses.

11 Acknowledgement

We would like to thank Charles Wright, Mark Rabe, Paula Donovan, and William

Streilein for their insights and contributions to this work.

References

[1] Networking, F., Research, I.T., (NITRD), D.: Federal Cybersecurity Game-change R&D

Themes (2012) http://cybersecurity.nitrd.gov/page/federal-cybersecurity-1.

[2] Williams, D., Hu, W., Davidson, J.W., Hiser, J.D., Knight, J.C., Nguyen-Tuong, A.: Security

through diversity: Leveraging virtual machine technology. IEEE Security and Privacy 7(1)

(January 2009) 26–33

[3] Salamat, B., Jackson, T., Wagner, G., Wimmer, C., Franz, M.: Runtime defense against

code injection attacks using replicated execution. Dependable and Secure Computing, IEEE

Transactions on 8(4) (july-aug. 2011) 588 –601

[4] Salamat, B., Gal, A., Jackson, T., Manivannan, K., Wagner, G., Franz, M.: Multi-variant

program execution: Using multi-core systems to defuse buffer-overflow vulnerabilities. In:

International Conference on Complex, Intelligent and Software Intensive Systems. (2008)

[5] Jackson, T., Salamat, B., Wagner, G., Wimmer, C., Franz, M.: On the effectiveness of multi-

variant program execution for vulnerability detection and prevention. In: Proceedings of the

6th International Workshop on Security Measurements and Metrics. (2010) 7:1–7:8

[6] Holland, D.A., Lim, A.T., Seltzer, M.I.: An architecture a day keeps the hacker away.

SIGARCH Comput. Archit. News 33(1) (March 2005) 34–41

[7] Okhravi, H., Comella, A., Robinson, E., Haines, J.: Creating a cyber moving target for

critical infrastructure applications using platform diversity. International Journal of Critical

Infrastructure Protection 5(1) (2012) 30 – 39

[8] Saidane, A., Nicomette, V., Deswarte, Y.: The design of a generic intrusion-tolerant archi-

tecture for web servers. Dependable and Secure Computing, IEEE Transactions on 6(1)

(jan.-march 2009) 45 –58

[9] Bangalore, A., Sood, A.: Securing web servers using self cleansing intrusion tolerance (scit).

In: Second International Conference on Dependability. (2009) 60 –65

[10] Huang, Y., Arsenault, D., Sood, A.: Incorruptible system self-cleansing for intrusion toler-

ance. In: Performance, Computing, and Communications Conference, 2006. IPCCC 2006.

25th IEEE International. (april 2006) 4 pp. –496

[11] Arsenault, D., Sood, A., Huang, Y.: Secure, resilient computing clusters: Self-cleansing

intrusion tolerance with hardware enforced security (scit/hes). In: Proceedings of the The

Second International Conference on Availability, Reliability and Security. ARES ’07, Wash-

ington, DC, USA, IEEE Computer Society (2007) 343–350

[12] Okhravi, H., Hobson, T., Bigelow, D., Streilein, W.: Finding Focus in the Blur of Moving-

Target Techniques. IEEE Security & Privacy (Mar/Apr 2014)

[13] Scott, K., Davidson, J.: Strata: A Software Dynamic Translation Infrastructure. Technical

Report CS-2001-17 (2001)

[14] Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary in-

strumentation. In: Proceedings of the 2007 ACM SIGPLAN conference on Programming

language design and implementation. PLDI ’07, New York, NY, USA, ACM (2007) 89–100

Quantitative Evaluation of Dynamic Platforms 21

[15] Salamat, B., Gal, A., Franz, M.: Reverse stack execution in a multi-variant execution en-

vironment. In: In Workshop on Compiler and Architectural Techniques for Application

Reliability and Security. (2008)

[16] Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., Knight, J., Nguyen-

Tuong, A., Hiser, J.: N-variant systems: a secretless framework for security through diver-

sity. In: Proceedings of the 15th conference on USENIX Security Symposium. (2006)

[17] Crouse, M., Fulp, E.: A moving target environment for computer configurations using

genetic algorithms. In: Configuration Analytics and Automation (SAFECONFIG), 2011

4th Symposium on. (Oct 2011) 1–7

[18] Huang, Y., Ghosh, A.K.: Introducing diversity and uncertainty to create moving attack

surfaces for web services. In: Moving Target Defense. (2011) 131–151

[19] Min, B.J., Choi, J.S.: An approach to intrusion tolerance for mission-critical services using

adaptability and diverse replication. Future Gener. Comput. Syst. (2004) 303–313

[20] Kolyshkin, K.: Virtualization in linux. White paper, OpenVZ (September 2006)

[21] Rodríguez, G., Martín, M.J., González, P., Touriño, J., Doallo, R.: Cppc: a compiler-assisted

tool for portable checkpointing of message-passing applications. Concurr. Comput. : Pract.

Exper. 22(6) (April 2010) 749–766

[22] R.P. Lippmann, J.F. Riordan, T.H. Yu, K.K. Watson: Continuous Security Metrics for Preva-

lent Network Threats: Introduction and First Four Metrics. Technical report, MIT Lincoln

Laboratory (May 2012)

[23] Bangalore, A.K., Sood, A.K.: Securing web servers using self cleansing intrusion toler-

ance (scit). In: Proceedings of the 2009 Second International Conference on Dependability.

(2009) 60–65

[24] Yih Huang, David Arsenault, A.S.: Incorruptible self-cleansing intrusion tolerance and its

application to dns security. AJournal of Networks 1(5) (September/October 2006) 21–30

[25] Huang, Y., Ghosh, A.: Automating intrusion response via virtualization for realizing un-

interruptible web services. In: Network Computing and Applications, 2009. NCA 2009.

Eighth IEEE International Symposium on. (july 2009) 114 –117

[26] Blackmon, S., Nguyen, J.: High-availability file server with heartbeat. System Admin, The

Journal for UNIX and Linux Systems Administration 10(9) (2001)

[27] Rabbat, R., McNeal, T., Burke, T.: A high-availability clustering architecture with data

integrity guarantees. In: IEEE International Conference on Cluster Computing. (2001)

[28] Petkac, M., Badger, L.: Security agility in response to intrusion detection. In: in 16th

Annual Computer Security Applications Conference (ACSAC. (2000) 11

[29] Jackson, T., Salamat, B., Homescu, A., Manivannan, K., Wagner, G., Gal, A., Brunthaler, S.,

Wimmer, C., Franz, M.: Compiler-generated software diversity. In: Moving Target Defense.

(2011) 77–98

[30] Wang, Z., Lee, R.B.: New cache designs for thwarting software cache-based side channel

attacks. In: Proceedings of the 34th annual international symposium on Computer architec-

ture. ISCA ’07, New York, NY, USA, ACM (2007) 494–505

[31] Manadhata, P.K., Wing, J.M.: A formal model for a system’s attack surface. In: Moving

Target Defense. (2011) 1–28

[32] Evans, D., Nguyen-Tuong, A., Knight, J.C.: Effectiveness of moving target defenses. In:

Moving Target Defense. (2011) 29–48

[33] Popov, G., Mladenov, V.: Modeling diversity in recovery computer systems. In Mastorakis,

N., Mladenov, V., Kontargyri, V.T., eds.: Proceedings of the European Computing Confer-

ence. Volume 27 of Lecture Notes in Electrical Engineering. Springer US (2009) 223–233

[34] Arlat, J., Kanoun, K., Laprie, J.C.: Dependability modeling and evaluation of software

fault-tolerant systems. IEEE Trans. Comput. 39(4) (April 1990) 504–513

