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This poster discusses a strategy for automatic whitelist
generation and enforcement using techniques from informa-
tion flow control and trusted computing. During a mea-
surement phase, a cloud provider uses dynamic taint track-
ing to generate a whitelist of executed code and associated
file hashes generated by an integrity measurement system.
Then, at runtime, it can again use dynamic taint tracking to
enforce execution only of code from files whose names and
integrity measurement hashes exactly match the whitelist,
preventing adversaries from exploiting buffer overflows or
running their own code on the system. This provides the
capability for runtime integrity enforcement or attestation.
Our prototype system, built on top of Intel’s PIN emulation
environment and the libdft taint tracking system, demon-
strates high accuracy in tracking the sources of instructions.

1. INTRODUCTION
Trusted computing techniques, such as integrity measure-

ment attestation via a Trusted Platform Module (TPM) [17],
can provide guarantees of a known good state when a pro-
gram is loaded. Sailer et. al. proposed the Integrity Mea-
surement Architecture (IMA) to allow measurement and at-
testation for all programs executed on the machine by mea-
suring (hashing) each program as it is executed into the
TPM, then sending a challenger both the TPM contents and
the list of programs executed as an attestation [15]. IMA is
part of the Linux kernel, and measurement of all binary files
to be executed (both kernel modules and user applications)
can be enabled with a kernel command line argument (these
measurements can be done upon boot or file system mount-
ing, optimizing performance at runtime) [6]. Therefore, IMA
provides the ability for a machine to attest to the load-time
integrity of its system and running applications.

However, load-time integrity has no view into code once
it begins running, so it cannot detect any runtime modifica-
tions. Many items executed in a cloud system run for long
enough for an adversary to be able to compromise them,
so runtime integrity measurement is necessary to verify that
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the program is still in a good state. Work that built upon the
ideas of IMA has attempted to achieve some runtime mea-
surements, such as by imaging the runtime memory from a
coprocessor [13], or from the hypervisor [11], using contex-
tual inspection to monitor dynamic data structures as well
as static code [12], dynamic rewriting techniques to defend
against return-oriented programming [4], or by combining
integrity measurement with information flow integrity via
some kind of policy framework [8]. However, all of these
techniques are limited and do not provide full runtime in-
tegrity.

Dynamic Taint Analysis (DTA) or dynamic taint tracking
can address some of the runtime challenges by determin-
ing the origin (files on disk, network data, or other input)
of executed instructions at the cost of performance at run-
time. The performance cost is because taint tracking must
be done from within some kind of emulation environment
such as QEMU [1] or Intel’s PIN [7] and each instruction
must be rewritten into several in order to propagate the
taint correctly. Several techniques have optimized the emu-
lation process, including reducing switches between the pro-
grams and the DTA code [14], direct memory mapping [3],
increasing the parallelization of analysis and execution [9],
and on-demand emulation [5]. Finally, native hardware sup-
port for taint tracking can significantly increase the perfor-
mance since instructions will not have to be re-written and
multiplied [16] [2].

1.1 Threat Model
Our threat model assumes an adversary who is able to

compromise some application on a cloud system, via ex-
ploitation of some vulnerability such as a buffer overflow
attack, which allows the adversary to attempt to run some
arbitrary code on the system. We want to prevent our ad-
versary from executing this code. As a defense, we assume
that binaries to can be measured in a trusted environment
to create a whitelist prior to their installation on the system.
Additionally, we assume the presence of a TPM and integrity
measurement system on the machine that allows for a full
trusted boot process, enabling us to trust everything from
the hardware up through and including the kernel because
any modifications to the kernel will cause a re-measurement
and a failure to attest via IMA.

2. IMPLEMENTATION
We implemented a prototype whitelist generation utility

by building on top of the libdft code from Kermerlis et.
al. [10] to track taint from all files opened by the program

This work is sponsored by Assistant Secretary of Defense for Research & Engineering under Air Force Contract FA8721-05-C-0002. 
Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.



during the measurement phase, and record the filename and
hash of a file that was the source of executed code into a
whitelist. Libdft works on Linux 32 bit operating systems,
and is built on top of Intel’s PIN runtime emulation soft-
ware [7]. For every executable, it creates shadow memory
in order to taint track inputs to that executable, and then
determine whether tainted information is ever executed.

We modified libdft to support tracking every instruction
that was executed, including ones from shared libraries, data
read from a file into memory via mmap, the contents of the
initial binary (found in memory by parsing the loaded ELF
file), and a number of other changes. A particular challenge
is the dynamic loader, which loads many shared libraries,
and the associated VDSO (virtual dynamic shared objects)
file. The locations of these items in memory is not easily
visible from within PIN, but is fixed when address random-
ization is turned off for all files tested.

Our taint tracker associates a color with every source of in-
put (binary file, shared library, etc.), and colors all memory
containing contents from that input. When the instruction
pointer reaches a colored register or memory cell, the associ-
ated filename and its hash (read from a file system extended
attribute generated by the IMA kernel module) are written
to the whitelist file. Execution of memory colored by multi-
ple sources results in all the sources and their hashes being
added to the whitelist. Once the whitelist is produced, a
very similar workflow can be used for enforcement.

3. EVALUATION
We evaluated the whitelist generation, checking for taint

coverage of all JMP/RET calls, on a number of small and
medium sized Linux executables ranging from cat which had
3,000 JMP/RET calls to the Python interpreter with nearly
700,000. We had 100% coverage for all executables, and saw
between 2x and 9x slowdown relative to PIN, mostly due
to the overhead of libdft rather than our additions. Further
evaluation to ensure the coverage remains accurate on larger
binaries is necessary, but runs into a limitation in the num-
ber of distinct inputs that can be tracked in libdft. Once
larger numbers of inputs can be tracked, we plan to gen-
erate whitelists for some cloud applications based on their
test suites and use that to test enforcement coverage during
runtime.

4. CONCLUSION
The combination of dynamic taint analysis and existing

integrity measurement techniques allows for detailed moni-
toring and attestation of runtime integrity, even for complex
cloud applications.
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