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Abstract

System administrators are required to access the privi-
leged, or “super-user,” interfaces of computing, network-
ing, and storage resources they support. This low-level
infrastructure underpins most of the security tools and
features common today and is assumed to be secure. A
malicious system administrator or malware on the sys-
tem administrator’s client system can silently subvert this
computing infrastructure. In the case of cloud system ad-
ministrators, unauthorized privileged access has the po-
tential to cause grave damage to the cloud provider and
their customers. In this paper, we describe Spyglass, a
tool for managing, securing, and auditing administrator
access to private or sensitive infrastructure networks by
creating on-demand bastion hosts inside of Linux con-
tainers. These on-demand bastion containers differ from
regular bastion hosts in that they are nonpersistent and
last only for the duration of the administrator’s access.
Spyglass also captures command input and screen output
of all administrator activities from outside the container,
allowing monitoring of sensitive infrastructure and un-
derstanding of the actions of an adversary in the event
of a compromise. Through our evaluation of Spyglass
for remote network access, we show that it is more dif-
ficult to penetrate than existing solutions, does not intro-
duce delays or major workflow changes, and increases
the amount of tamper-resistant auditing information that
is captured about a system administrator’s access.

1 Introduction

System administrators have super-user access to the low-
level infrastructure of the systems and networks they
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maintain. To effectively do their job, they need to ac-
cess the sensitive interfaces of switches, routers, operat-
ing systems, firmware, virtualization platforms, security
appliances, etc. We rely increasingly on this infrastruc-
ture for tasks, from ordering food to controlling complex
mechanical systems like the electric grid. Given the typ-
ical administrator’s breadth of access to this infrastruc-
ture, administrators or the client devices they use are a
prime target for compromise by a motivated adversary.
Alternatively, if the administrator and the adversary are
the same (i.e., a rogue administrator or insider), then this
administrator often has unchecked access to disable and
evade the security controls of the network.

To protect the sensitive interfaces an administrator
must use, the system architect can place these inter-
faces on a private network or VLAN that is not broadly
accessible to either the Internet or even and organi-
zational LAN. This practice is also commonplace in
Infrastructure-as-a-Service cloud environments at both
the tenant layer (e.g., the user of virtual machines) and
the provider layer (e.g., the operator of the virtual ma-
chine hosting environment) [27]. Firewalls, virtual pri-
vate networks (VPNs), and bastion hosts allow remote
access for the administrator into the sensitive network.
Firewalls and VPNs open new security vulnerabilities by
directly connecting a potentially untrusted client system
directly to the sensitive network, and the do not directly
offer an audit log of the administrator’s activities. Bas-
tion hosts explicitly isolate the client system from the
network and offer a centralized place to audit activities.
However, bastion hosts themselves can be compromised,
leading to a catastrophic security collapse where the ad-
versary can impersonate any administrator and wreak
havoc across the network.

To address the security shortcomings of bastion hosts,
while retaining good network isolation and audit capa-
bilities, we created Spyglass. Spyglass is a tool that pro-
vides on-demand nonpersistent bastion hosts to each ad-
ministrator to facilitate access to sensitive networks. The



system creates a Linux container using Docker for each
user’s session and destroys it after the user disconnects.
Through a least-privilege system design, Spyglass lowers
the risk of compromise to the bastion server itself. While
Spyglass does not prevent insiders with valid credentials
from accessing the sensitive network, it does provide a
tamper-resistant audit record of their activities. This ca-
pability allows an organization to forensically track the
moves of adversaries and assists in recovery and cleanup.

This paper’s primary contributions are:

• Design for securely isolating and monitoring the ac-
tions of system administrators while reducing the
threat posed by insiders and phishing attacks

• Implementation of the Spyglass prototype and best
practices for deployment

• Security and performance evaluation showing that
Spyglass is more difficult to penetrate than previ-
ous solutions and that it can be implemented with-
out considerable delay or workflow changes.

The rest of this paper is structured as follows: Section
2 describes the the problem, threat model, and existing
solutions. Section 3 discusses the design of the system.
In Section 4, we describe the components of the system
and their implementations. We evaluate both the perfor-
mance and security in Section 5. Section 6 reviews re-
lated work. We discuss the current status of Spyglass and
opportunities for future work in Section 7, and conclude
in Section 8.

2 Background

A system administrator often connects to a variety of in-
terfaces to perform their work. These interfaces may be
used to configure switching or routing logic, or to access
hardware in the event of a system crash. The adminis-
trator may connect to the host running a virtualization
platform, or a machine instance operating a cloud plat-
form. Given the success and prevalence of DevOps en-
vironments, the administrator may also be making code
changes to the software that actually runs the provider’s
self-service platform.

It is easy to see why administrator credentials are so
sought by adversaries, either those looking to compro-
mise an administrator for an organization, or a software-
as-a-service customer of that organization. Credential
theft can be crippling: in June 2014, an adversary com-
promised the Amazon Web Services (AWS) credentials
of CodeSpaces, a company that provided cloud-based
source code repository hosting. The adversary then
asked the company for a sum of money by a certain
time. When the money was not paid, the adversary then

deleted all of CodeSpaces’ AWS instances and disk stor-
age, along with all of their backups. The company folded
shortly thereafter [10].

One of the most popular ways to obtain credentials
is by phishing. In the most damaging phishing attacks,
an adversary convinces an administrator to install mal-
ware on their computer, steals their credentials, and then
spreads across the network that the administrator main-
tains. Some of the most serious breaches of 2014, in-
cluding those on Sony Pictures [3] and JP Morgan Chase
Bank [2], involved the theft and misuse of administrative
credentials. Indeed, these attacks were most damaging
precisely because of this fact.

Given that our infrastructure can be compromised by
either an inside or outside adversary, we need a solution
to limit the impact of these attacks. As part of security
best practices, the networks on which the most sensitive
of these interfaces are hosted are often separated from
public-facing or even internal LANs. This limits the ac-
cessibility of these sensitive interfaces and protects the
credentials for accessing them from eavesdropping.

Since administrators must invariably access these iso-
lated networks to do their work, we need ways to facil-
itate remote access. The goals of an ideal remote ac-
cess solution should provide security for remote access,
strong authentication, and audit logging of all actions
that take place across the trust boundary. In the follow-
ing sections, we describe the existing remote access so-
lutions and their strengths and weaknesses with respect
to this set of goals.

2.1 Firewalls

When a sensitive network is firewalled off from an un-
trusted network, the firewall allows or denies traffic
based on policy rules. This provides a layer of security
to the protected network. Hosts exposed to external net-
works need to contend with malicious traffic, many of
which attempt to brute-force common passwords or at-
tempt known attacks en masse to any host that will listen.
The firewall allows for a central focus point for security
decisions, and enforcement of security policy [37]. In-
deed, “firewalls are an important tool that can minimize
the danger, while providing most – but not necessarily all
– of the benefits of a network connection” [1].

The downside of firewalling traffic is that it only al-
lows network-based filtering of traffic. Firewalls do not
establish authorization of a user to connect. They do not
protect against IP spoofing attacks. Multiple users could
be behind an IP address that is chosen as an appropriate
host from which to receive traffic. This leaves the au-
thorization decision to the remote device. Firewalls also
do not protect against a trusted insider. Similarly, they
do not do anything for the remote host in the sensitive
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Figure 1: A state diagram showing steps required to compro-
mise a sensitive network protected with Firewalls and VPNs.

network:

Given that the target of the attackers is the
hosts on the network, should they not be suit-
ably configured and armored to resist attack?
The answer is that they should be, but prob-
ably cannot. Such attempts are probably fu-
tile. There will be bugs, either in the network
programs or in the administration of the sys-
tem. [1]

Indeed, there are bugs. For example, many administra-
tors use the Intelligent Platform Management Interface
(IPMI) to perform remote administration functions. This
protocol and the hardware that implements it are both
critical to the ability to remotely debug system failures
and problems. Yet, one independent researcher found
that close to 90% of implementations that were publicly
accessible had a security issue that would allow unautho-
rized access to the hardware [7]. Some of these expose
their password by querying a device using Telnet [34].

We show a state diagram in Figure 1 that illustrates
what an attacker would have to do to compromise the
sensitive network. A firewalled network may always be
connected to the host. This reduces the amount of time an
adversary may have to wait to compromise the sensitive
network.

2.2 Virtual Private Networks
A popular methodology for separating sensitive and un-
trusted networks is to place a host between two networks.
In the VPN methodology, the host runs software such as
OpenVPN that facilitates a remote host “joining” the net-
work as if it were there locally [25]. Many organizations
use this to facilitate remote workers: the worker can be
anywhere, and the traffic between the company and the
end user’s laptop is encrypted to prevent the data from
interception or eavesdropping.

The ubiquity of the VPN is due in part to its ease of
use. A user installs a client application configured by
their organization, and is able to connect to the network
and access the network in its entirety. Applications don’t

need to be redesigned to deal with external access, and
an organization can rest assured that most of their data
stays on the internal network.

However, in the era of the “French-bread model” of
network security, this has meant that an external lap-
top has unfettered access to the soft inside of the net-
work [13]. This makes the administrator’s laptop a per-
fect pivot point to infiltrate a network that connects to
sensitive infrastructure. Many organizations attempt to
deal with this risk via policy. For example, policies like
“Establish a VPN connection immediately after estab-
lishing Internet connectivity” and “do not connect any
non-work-owned devices to a work-owned laptop” are
common. There are multiple reasons, intentional and un-
intentional, that may cause an employee to not follow the
rules. For example, an employee may connect to a mali-
cious wireless access point. The owner of the malicious
access point may inject advertisements that are provided
by a malware carrier, infecting the computer.

Finally, while logging and auditing of VPN connec-
tions themselves is straightforward to implement at the
VPN concentrator, correlation of a user activities through
network logs, host logs, and authentication information
is more challenging. First, the VPN connection will vir-
tually connect the remote user to a dynamically chosen
IP address within the sensitive network that may have
previously been used by another VPN user. Second, the
VPN user’s activities on the host (e.g., commands exe-
cuted or data copied) must be combined with network
logs to understand the impact of a malicious actor.

2.3 Bastion Hosts

Bastion hosts are like the lobby of a building: “Outsiders
may not be able to go up the stairs and may not be able
to get into the elevators, but they can walk freely into the
lobby and ask for what they want” [37]. Bastion hosts
provide a single point to audit traffic as an interface that
can be controlled by the organization that owns or con-
trols the private network, as opposed to just being able to
see basic network flow data (source, destination, session
duration, etc.). Firewalls and VPNs allow you direct ac-
cess to a remote network, without having to necessarily
“check in.”

Providing a controlled interactive session, as opposed
to firewalled or VPN-based access, carries benefits for
the organization that controls the sensitive network. The
organization does not have to worry as much about the
state of the administrator’s workstation. The organiza-
tion can employ software and methods used to monitor
workstations and integrate these with existing security
infrastructure. Figure 2 shows that compromise of the
sensitive network is more difficult with a bastion host
than with firewalls or VPNs.
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Figure 2: A state diagram showing steps required to compro-
mise a sensitive network protected with a traditional bastion
host.

Bastion hosts provide a centralized point at which to
enforce strong authentication and to capture detailed au-
dit logs of user activity. Their primary weakness is in the
new vulnerabilities they introduce. The act of providing
an interactive session on the bastion host to an end user
is risky. In the case of a malicious insider, the organi-
zation has given logical access to a bastion host; if any
pieces of software on the bastion host are compromised,
the insider can attribute actions to other users, get a set of
password hashes of other accounts, and/or key log to gain
access to other devices on the sensitive network. Litera-
ture going back decades covers how attackers break into
bastion hosts and create persistent environments [4].

3 Design

We believe the bastion host pattern provides the best so-
lution to achieve secure and audible remote access for
system administrators. To implement a secure bastion
host, we need to address the weaknesses in typical bas-
tion deployments like single point of failure, tamperable
audit information, and weak passwords.

Our goals in this work are to minimize the risk of the
bastion itself, while providing higher security for system
administrators and the isolated networks they use. We
want to have the ability to audit and log, in a tamper-
resistant manner, all activities that a user makes on the
sensitive network. We want to limit the spread of an ex-
ternal attacker and the impact they can have. Finally, we
want to ensure that even if they do compromise the sen-
sitive network, we can recover using the audit log.

To address these challenges and our set of goals, we
developed Spyglass. Spyglass is a network access device
that is dual homed on an untrusted network and sensitive
network where the interfaces to critical security infras-
tructure reside (see Figure 3). A user wishing to access
the sensitive network authenticates to Spyglass and re-
quests a nonpersistent, isolated session. From this ses-
sion, the user can access resources on the sensitive net-

Figure 3: Spyglass System Design

work. From a vantage point outside of the user’s ses-
sion, Spyglass monitors and records all of the user’s ac-
tivities. In the following sections we review the threat
model for Spyglass and then discuss its four key design
components: multifactor authentication, isolation, non-
persistence, and auditing.

3.1 Threat Model

We assume that the adversary is either a malicious
system administrator or that the system administrator’s
client system has been compromised. The goal of the
adversary is to compromise an isolated network the sys-
tem administrator controls. We assume that the adver-
sary may be able to compromise applications inside of
the containers that face the untrusted network. However,
we assume the adversary cannot break out of the sand-
box Spyglass creates, and cannot compromise the con-
trol process for creating and destroying containers. We
assume that valid users have used multiple factors to au-
thenticate to the system creating the containers. Finally,
we assume that SSH is properly configured (i.e., dis-
abling tunneling) along with the network bridge device
used by the OS-level virtualization provider.

3.2 Multifactor Authentication

We begin by considering how to authenticate Spyglass
users. Reusable passwords are both easily cracked and
easily stolen [21]. Indeed, with custom hardware, an
adversary can crack passwords at a rate of 350 billion
guesses per second [9]. Adding multiple factors makes it
more difficult to steal a user’s credentials to obtain unau-
thorized access. Some types of multifactor authentica-
tion require that the valid user be physically present to
initiate a session. In the case of an administrator whose
client system is compromised by an external attacker,
this slows the attacker to only be able to initiate a session
when they can subvert one initiated by the valid user.

Best practices for organizational cyber security also
agree on the importance of multifactor authentication.
For example, the SANS Institute’s Critical Security Con-
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trols recommend that multifactor authentication should
be used “for all administrative access, including domain
administrative access” [30]. Unfortunately, some assets
(e.g., networking or storage appliances) cannot take ad-
vantage of multifactor authentication natively. By intro-
ducing the Spyglass bastion in front of these systems, we
are able to better address the SANS control’s recommen-
dation.

Many government institutions implement multifactor
authentication by taking advantage of the cryptographic
functions of smart cards. For organizations that already
have the infrastructure required to operate a large smart
card infrastructure, this could be suitable for Spyglass.
However, the implementation often requires additional
hardware (both in the form of the cards and readers). It
also requires complicated integration to allow for those
capabilities to be used to authenticate with websites.

To address these scalability and adoption challenges,
we chose Yubico YubiKey to add another authentication
factor for Spyglass authentication [36]. The YubiKey
is a USB device that outputs a 44-character string of
ASCII letters that represent a 12-character identifier and
a 32-character one-time password based on the secret and
public identifier stored on the hardware device. A large
community exists around the use of the YubiKey, and an
open-source YubiKey Validation Server exists along with
cross-language libraries to interface with the server.

3.3 Isolation

While it’s certainly easier for a user to directly connect
to a sensitive network (either via firewall or via VPN),
as discussed in Sections 2.1 and 2.2, it comes at a cost to
the security posture of the sensitive network. Malware on
the users system may have unfettered access to the sensi-
tive network and may directly connect to and attack hosts
there. For this reason, Spyglass, as other bastion hosts
do, explicitly isolates and separates the administrator’s
computer and the sensitive network. Isolation is criti-
cal, since “[t]oday’s cyber incidents result directly from
connecting formerly standalone or private systems and
applications to the Internet and partner networks” [8].

We also introduce isolation between the different users
of Spyglass and the components that underpin Spyglass.
Thus, each user gets their own login environment from
which to pivot to the sensitive network and, similarly,
each component of Spyglass is in an isolated environ-
ment and only communicates to other components over
minimal well-defined interfaces. Traditionally, virtual-
ization provides an answer for system architectures that
required that two subsystems couldn’t necessarily affect
each other’s memory space in unexpected ways. How-
ever, that assurance comes at a performance cost. Creat-
ing a virtual machine for each user would pose a signifi-

cant resource overhead and delay considering that virtual
machine spin-up times (even in the cloud) exceed 30 sec-
onds regularly.

To achieve strong isolation without the performance
overhead of full system virtualization, we utilize OS-
level virtualization technologies to isolate Spyglass com-
ponents and users. This method of virtualization allows
multiple environments to share a common host kernel
and utilize underlying OS interfaces, thus incurring less
CPU, memory, and networking overload [29].

3.4 Nonpersistence

Increasing the amount of ephemerality in the system de-
sign works to the organization’s advantage in defend-
ing their systems. Goldman found the benefits that non-
persistence provides makes an attacker’s job more diffi-
cult. Specifically, consider the ability it allows organiza-
tions to stand up and tear down a particular capability (in
our case, remote access) in an on-demand fashion, and
the ability to ensure that a particular state is regularly
patched [8].

To understand the importance of nonpersistence, we
need to understand the kill chain of an attack. The Cy-
ber Kill Chain describes the steps an attacker must take
to compromise a computer system. Generally, to launch
a successful attack on a system, an attacker must collect
useful information about a target, attempt to access the
target, exploit a vulnerability for the target, launch the
attack, and then find a way to maintain access to the sys-
tem [24]. Nonpersistence interrupts an attacker’s ability
to persist by forcing session timeouts and subsequent de-
struction of their environment.

In Spyglass, new user sessions are always instantiated
inside of a fresh container that is patched regularly. Even
if an attacker can compromise the container, they will
have to repeat this process regularly and potentially raise
their profile in other monitoring and logging capabilities
of the system, leading to a higher chance that an attacker
will be detected.

3.5 Audit

The presence of some form of situational awareness
when it comes to running a server that is available on
an untrusted network like the Internet is an important as-
set. It is otherwise impossible to know whether a com-
promise has occurred if there isn’t a means to audit and
monitor accesses, user actions, and other items of in-
terest. Considering that it is not a matter ofif one gets
hacked but rather when [37], it makes sense that seeing
an attacker’s actions that allowed them to compromise
the host would aid in repair and recovery.
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While often given less importance than active security
measures like strong passwords or antivirus, best prac-
tices include the need for audit logging. The Australian
Signals Directorate recommends “centralised and time-
synchronised logging of successful and failed computer
events” and “centralised and time-synchronised logging
of allowed and blocked network activity” as part of their
Strategies to Mitigate Targeted Cyber Intrusions report.
Specifically:

Centralised and time-synchronised logging
and timely log analysis will increase an or-
ganisation’s ability to rapidly identify pat-
terns of suspicious behaviour and correlate
logged events across multiple workstations and
servers, as well as enabling easier and more ef-
fective investigation and auditing if a cyber in-
trusion occurs. [5]

Similarly, MITRE’s report Building Secure, Resilient
Architectures for Cyber Mission Assurance specifies de-
tection and monitoring as one of five objectives that help
achieve architecture resilience:

While we cannot always detect advanced ex-
ploitations, we can improve our capabilities
and continue to extend them on the basis of
after-the-fact forensic analysis. Recognizing
degradations, faults, intrusions, etc., or ob-
serving changes or compromises can become
a trigger to invoke contingency procedures and
strategies. [8]

These ideas lead to the requirement that a system be
in place that captures all commands issued and their out-
put for later retrieval and review. These logs need to be
located on a remote host to preserve their content in the
event that the bastion host machine is compromised. In
Spyglass, we further protect the logs from tampering by
capturing and transmitting the audit log information from
outside of the user’s container. Furthermore, if the at-
tacker is able to disrupt the logging process somehow,
the session is immediately terminated. This leads to a
system where a system administrator is unable to take
any actions on the sensitive network without leaving a
trail of what they did.

4 Implementation

Spyglass consists of four components: a locally hosted
YubiKey validation server, the Spyglass web interface,
the container daemon, and the audit daemon. To main-
tain proper segmentation, the YubiKey Validation Server
and the database server should be on a separate VLAN
that is not on the sensitive network pictured above. An-
other independent host on a separate VLAN should store

audit log data. Additionally, this audit host should be
controlled/maintained by parties other than the system
administrators using Spyglass (e.g., by a security policy
or oversight rather than IT organization) to avoid the pos-
sibility of audit log tampering.

4.1 User Facing Interface
The user interface for Spyglass is required to:

• Authenticate a user

• Store a valid SSH public key for each user

• Instantiate a bastion container

• Destroy a bastion container

• Be accessible from a variety of client platforms

Figure 4 displays the Spyglass architecture, along with
numbers representing relevant communication flows.
During session initiation, a user (1) accesses the web ap-
plication. The application (2) checks the authentication
against a database and validates the other factor. Once
the user is logged in, they (3) request a container and
the web application sends a request to the container dae-
mon with information about the user and the preferred
key. The container daemon pulls this information from
the database in step (4), and sends this information to
Docker in step (5). Docker then (6) creates the container
and sends information back to the web application to in-
form the user what host their container is running on.
Finally, the user logs into their container in step (7). This
creates a set of log files, which are read by the audit dae-
mon and moved to the audit host (8). Processes that run
on the bastion host are outlined with a dotted line.

Upon initial login, Spyglass presents users with the
main interface in Figure 5. The user then adds an SSH
public key by going to the Keys menu and clicking New
Key, as seen in Figure 6. Once the key is added, the user
can now start a session by going to the Sessions menu and
clicking New Session as seen in Figure 7. Afterwards,
Spyglass presents the user with session information (Fig-
ure 8). The user can now initiate an SSH connection to
the bastion container and access the sensitive network.

4.2 Container Daemon
We need to enable the web UI to handle container man-
agement through Docker. Rather than doing this di-
rectly from the web application, we chose to imple-
ment a middleware process called the container daemon
(or containerd). The primary motivation for this de-
sign was to avoid giving the Spyglass web application
root privileges so that it could access the Docker control
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Figure 4: Spyglass infrastructure and information flows.

socket (owned by root). The separation also enables
us, in future work, to further isolate the web application
from containerd by placing the web application itself in-
side of a container and using SELinux mandatory access
controls to implement least privilege.

We wrote containerd in a strongly typed language (Go)
to prevent a variety of simple attacks on the web appli-
cation itself. Containerd supports a small, simple, and
well-defined interface for commands that further limits
its attack surface. Thus, even if the web application is
compromised, it will only able to create and delete con-
tainers and not access any other user’s session.

The container daemon provides two HTTP Endpoints:
containercreate and containerdestroy. The
conatinercreate endpoint handles the creation of a
container via an HTTP POST. It expects to receive a
JSON object that references a database that the container
request application uses.

Listing 1: A sample JSON container created notification
{

"DbKeyId ":10,
"DbUserId ":2,
"SshKey ":"ssh -rsa AAAAB3NzaC1yc2EAA <truncated >",
"SshUser ":" cable",
"SshPort ":"49154" ,
"DockerId ":" c46a32bd3347 <truncated >"

}

Upon receiving the request, containerd queries the
request application’s database to get the appropriate user-
name and SSH public key needed to insert into the con-
tainer. Once it has the appropriate metadata, containerd
instantiates a docker object with the appropriate config-
uration for the container. After Docker creates and starts

the container, containerd returns a JSON object with the
information about the container to the request application
(as Listing 1 shows).

The containerdelete endpoint handles the deletion
of a container via an HTTP DELETE. It only accepts a
container identifier, and passes it to Docker for deletion.

4.3 Audit Daemon
Initially, we evaluated SSLsnoop for use in the system
to capture activity inside the bastion containers from
a vantage point outside the container boundary [20].
SSLsnoop locates the SSH session keys in the SSH pro-
cess memory and does real-time decryption of traffic be-
tween two hosts. However, later versions of SSH have
changed the format of in-memory structures, causing
SSLsnoop to be unable to proper locate the key and en-
crypted stream. SSLsnoop also only monitored the SSH
connections originating from the bastion itself, so an at-
tacker intent on breaking the container would go unde-
tected.

To keep as much of the monitoring infrastructure out-
side of the container as possible, we settled on a hybrid
solution using SudoSH and a custom log monitor. Su-
doSH works by spawning the user’s shell inside of an en-
vironment that is transparently capturing keystrokes and
screen output [12]. We are able to look into the container
host’s file system and use Linux’s inotify functionality
to read the logs from the container host and relay them to
the audit host [23]. The Audit Daemon ensures that the
logs are sent to the audit host regularly and thus avoid any
tampering from compromise of a Spyglass container. To
further ensure the integrity of the auditing system, Spy-
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Figure 5: Initial login screen. Figure 6: Adding an SSH key.

Figure 7: Creating a session. Figure 8: Viewing active sessions.

glass monitors the process table and will immediately
terminate the user’s bastion container if the SudoSH pro-
cess stops.

5 Evaluation

We hypothesize that fast, on-demand provisioning of
Linux containers that are unique to a particular user’s
session loosens the coupling between the integrity of the
private network and the integrity of the remote client that
connects to it. This separation is easy to provide as a ser-
vice in part due to the lightweight nature of containers.

To prove this point, we analyzed the individual over-
head of five containers on the host machine. We also at-
tempt attacks on the system and attempt to connect to the
authorization and auditing networks, along with some at-
tempts to evade of the audit logging process. In Figure 9
we also created a state diagram, similar to Figures 1 and
2 to illustrate how Spyglass differs from existing firewall,
VPN, and bastion host solutions.

These experiments were performed in VMware Fusion
7 Pro running on a Macbook Pro with 16 GB of RAM
and a 2.6 GHz Intel Core i7 processor. The bastion host
virtual machine has one processor core, and 1024 MB of
memory.
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Figure 9: A state diagram showing steps required to compro-
mise a sensitive network protected with Spyglass

5.1 Bastion Container Performance

To measure the load characteristics of an individual
container, we used the Google tool cAdvisor [11] run-
ning on the bastion host. cAdvisor captures CPU and
Memory load and writes it to InfluxDB, a time series
database [17]. We monitored five invocations of the con-
tainer that the container request application would in-
stantiate. This session connected to a remote host and
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ran the top command. We used the time command
to measure the instantiation time of an individual con-
tainer. We queried InfluxDB for max(memory usage)

and last(cpu cumulative usage) values for each in-
dividual container. Table 1 shows the results.

As expected, we find overhead and instantiation la-
tency to be substantially lower than a virtual machine-
based approach, where memory, instantiation, and CPU
overhead are much larger [15]. We expect that even an
embedded system with a low amount of RAM could sup-
port 10s of users. As a control channel for a sensitive
network, we do not anticipate that Spyglass would limit
network bandwidth.

5.2 Host Denial of Service

A serious potential attack that an adversary could launch
is to deny service to other clients connecting to the Spy-
glass. To test this, we spawned a new container and ran a
command to fill the container disk (dd if=/dev/zero

of= temp). This in turn caused the host disk to fill.
The system was still able to spawn new containers af-
ter the disk was full; however, their auditing processes
were quickly killed off as the host ran out of disk space.

One solution is to use the devicemapper backend
for Docker container storage. Using the devicemapper
backend allows for finer-grained control on storage by
specifying a base size for all container images. How-
ever, this means that all containers must be the same
size; by default this value is 10 gigabytes. This effect
can be mitigated by starting the Docker daemon with
the --storage-opt dm.basesize=1G option; how-
ever, this breaks compatibility with the container creation
web interface. Work towards user namespaces and in-
dividual quotas will make it trivial to apply file system
quotas to containers; however, these features are not yet
available.

5.3 Network Protection

The container host is connected to two different networks
that are used to provide authentication and audit log stor-
age support for the system. These networks should not
be exposed to the user who is looking to access the pro-
tected network. By default, the container does not have
access to use the ping command. However, it was still
possible to use netcat to send data between two hosts
if the destination address was known. It was also possi-
ble to connect back out to the untrusted network, which
would allow an attacker to pivot to another host.

We implemented firewall rules on the Spyglass con-
tainer host to mitigate these and other network-based at-
tacks. This way, traffic to and from the container was

limited to SSH inbound and a select set of outbound pro-
tocols for the container. Finally, the host firewall explic-
itly drops and logs all connection attempts from the con-
tainer to the host. In our testing, we found no unautho-
rized network connections were allowed.

5.4 Container Escalation and Escape

A core assumption of the security of our system is that a
user cannot escalate privileges and/or “break out” of the
container itself. We accomplish this by proper configu-
ration and multilayered defensive practices.

We configure the container in such a way that a re-
mote user does not have root privileges. This is to pro-
tect against an escape attack within system, as it is easier
to jump from the container to the container host if an
attacker has root inside the container. We also suggest
regular rebuilding of the container with patched binaries.
This makes it more difficult for an attacker to take advan-
tage of a root exploit in any base packages.

The use of mandatory access control can also limit the
scope of an attacker who is able to both escalate to a root
user within the container and break out of the container
itself. Docker has SELinux rules available for use with
Red Hat Enterprise Linux 7 and derivatives, but our im-
plementation uses Ubuntu. In future work, we plan to im-
plement this addition protection that would further raise
the bar for an adversary trying to compromise Spyglass.

5.5 Audit Security

The logs created by the SudoSH process running inside
of the container are ephemeral. To address this issue, we
send the logs to another host on a separate network to
provide a record in the event of a container compromise
or other security event. rsync provides functionality to
move files over to the audit host. We discuss methods to
optimize this approach in Section 7.

6 Related Work

There is a variety of work that show early interest and
effort into implementing container-based solutions to in-
sulate a host operating system from attack. Ioannidis et
al. implement a tag that is attached to files obtained from
remote sources that allows built-in limiting what mali-
cious code can do to a user’s other files [19]. This is
interesting, in that modern operating systems have im-
plemented a variation of this idea (Apple’s Mac OS X
is able to detect files that have been downloaded and
warn before opening); however, the technology that is
more applicable to this project has gone largely unimple-
mented in major operating systems. Wagner also shows

9



# Memory Use CPU Cycles Real Time User Time System Time
1 4.80 320437210 0.77 0.01 0.02
2 4.80 246014871 0.85 0.02 0.03
3 4.91 464523389 0.16 0.00 0.00
4 4.79 417975143 0.16 0.01 0.00
5 4.80 332404388 1.05 0.01 0.00

Table 1: Memory (MB), CPU (jiffies) and Time (seconds) for container instantiation.

early interest in the idea of containerization, and imple-
ments a method of attempting to “containerize” an ap-
plication in user space by monitoring system calls [33].
Wagner monitors system calls and the files they act upon
against a policy to ensure that applications are allowed
to access specific files or network devices. The approach
comes about a year before the release of SELinux, which
uses contexts rather than per-application configuration to
enforce access to resources.

Thakwani proposes a new UNIX dfork() call that in-
stantiates the child process in a virtualized machine [32].
This solution is elegant in that it provides a very low-
level means to ensure that processes start in separate
namespaces. Thakwani’s work doesn’t measure the
amount of time it takes to use dfork()with a new virtual
machine on each use. Many processes can be sandboxed
in the same virtual machine in Thakwani’s architecture,
thus saving time; however, this would not work well for
our goal of isolating users from each other.

Parno et al. demonstrates demand-based virtualized
containers that are instantiated upon user-login to a web-
site in CLAMP [26]. CLAMP goes on to actively broker
access to a particular database and ensure each container
instance only contains the appropriate data for the au-
thenticated user. While our work does not deal with spe-
cific user data, CLAMP demonstrates a model of mitigat-
ing risk by implementing nonpersistence and container-
ization.

Similarly, Huang et al. propose a framework to reduce
an adversary’s ability to have an attack persist on a par-
ticular network by refreshing to a known clean state on
a regular basis [14]. This methodology works well on
detectable and undetectable attacks thanks to the regular
refresh interval. However, it does not protect against any
lower-level (i.e., hardware) attacks that may occur [24].
It also provides some form of “highly available” architec-
ture to handle the hosts that are being actively refreshed.
Spyglass makes no guarantee of a highly available re-
source, but new containers are easy to instantiate unless
the container host has failed.

Our approach is similar to the Lightweight Portable
Security [22]. Lightweight Portable Security creates a
bootable, read-only environment that doesn’t store state.
This affords an organization reasonable assurance that
there is no persistent malware on a machine they may

not own, which addresses concerns in Section 2.2 re-
garding virtual private networks. However, the technique
has a significant amount of overhead in that it requires a
user to reboot into the environment, and it makes no as-
sumptions about attacks that would live in hardware (and
therefore, persist across reboots) [24].

Nonpersistence can have operational benefits as well.
An example of this is Ganger, a tool for instantiating con-
tainers when a network request is received [31]. The
motivation for Ganger was to create a temporary envi-
ronment that would ensure that files created under /tmp
would be cleaned up in an orderly fashion after the net-
work connection was closed. This was due to the use
of a particular application that wrote a large amount of
temporary data.

Proving that there is a market for monitoring of the
connection concentrator, Pythian’s Adminiscope imple-
ments a form of connection concentrator to a private net-
work with live auditing ability [28]. However, it is un-
clear as to what mechanisms are implemented to guard
the host against compromise and other threats to the con-
centrator itself. Similarly, another industry product exists
named Invincea [18]. Invincea brings together concepts
of non-persistence and isolation to protect a browser
against web-based malware. In our system, we aim to
protect sensitive infrastructure from a bad client.

A similar commercial offering is Dome9’s Secure Ac-
cess Leasing product [6]. Secure Access Leasing is
a mechanism by which users request access to various
cloud-hosted resources, and the Dome9 product has an
agent that configures hosts and AWS firewalls to allow
a particular user access to the host for a certain amount
of time. The solution allows administrators to see when
users are accessing which resources. This is an easy win
for many organizations with assets in the cloud. How-
ever, an organization has no visibility into what a particu-
lar administrator is doing with that resource; the auditing
is pushed off to the host that needs to be accessed.

Recently, Yelp created dockersh, a shell environment
that is able to provide nonpersistent shell environments
for users who SSH into a server [35]. This is one of
the closest matches to what the system aims to do. The
dockersh documentation does mention the issues re-
garding opening bastion hosts to the Internet. The sys-
tem described runs a SSH daemon in the container envi-

10



ronment, which does allow for more separation. There
is also limited discussion of good security practice in
the event of a compromise. Users blindly implementing
dockersh against the warnings of the engineers at Yelp
will find themselves without any situational awareness in
the event of a compromise. We mitigate these concerns
by providing a “belt and suspenders” approach to secu-
rity. If our container is compromised, we do have a log
for a period of time that allows us to replay the attacker’s
movements pre-compromise.

7 Future Work

While we were able to create a system design and archi-
tecture that meets our needs and goals, there are several
considerations that could enhance the security, usability,
and performance of the system. Some of these items in-
clude:

• Centralized authentication is prevalent in many or-
ganizations, and it may be beneficial to leverage that
as an authentication backend for the container re-
quest application.

• While it is convenient that the SudoSH utility logs
all keystrokes, there are instances where this is a
problem (e.g., when a user enters a password). Cre-
ating a mechanism to ignore sensitive details would
be important to mitigate some insider risk.

• The container audit daemon executes rsync twice
for every keystroke. We plan to implement a sim-
ple streaming data service on top of an SSH tunnel
to a corresponding agent on the audit host to lower
overhead for audit information.

• Migration to a Red Hat Enterprise Linux-based sys-
tem would allow the use of SELinux for greater con-
tainer security. Later versions of Docker will also
support user namespaces, which improves the secu-
rity of containers to break out even when an adver-
sary can obtain root access inside of the container.

• A means for keeping track of the age of administra-
tor keys, and enforcing age limits on those keys.

• Providing the SSH host key signature to the web
interface (so a user could verify the key of the con-
tainer they are connecting to) would be an impor-
tant addition to ensure the security of the connection
from a man-in-the-middle attack. This is especially
relevant in Spyglass as the “trust on first use” nature
of SSH host authentication provides limited bene-
fit when the containers are re-instantiated on each
session.

8 Conclusion

Given that external attackers and malicious system ad-
ministrators could wreak havoc across an organization’s
network, it is extremely important to protect access to
networks with sensitive interfaces connected to them.
In this paper, we presented Spyglass, a system that uti-
lizes auditability, nonpersistence, isolation, and multi-
factor authentication to protect sensitive networks. This
system requires minimal change to the actual configura-
tion of the network, provides a high security bastion, and
allows an organization to securely audit their administra-
tors’ activity.

The container request application, container daemon,
and audit daemon are in the process of being open
sourced. The project will be updated as necessary, and
pull requests from the community are welcome.
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