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Abstract. Leakage resilient cryptography designs systems to withstand
partial adversary knowledge of secret state. Ideally, leakage-resilient sys-
tems withstand current and future attacks; restoring confidence in the
security of implemented cryptographic systems. Understanding the rela-
tion between classes of leakage functions is an important aspect.

In this work, we consider the memory leakage model, where the leakage
class contains functions over the system’s entire secret state. Standard
limitations include functions with bounded output length, functions that
retain (pseudo) entropy in the secret, and functions that leave the secret
computationally unpredictable.

Standaert, Pereira, and Yu (Crypto, 2013) introduced a new class of
leakage functions they call simulatable leakage. A leakage function is
simulatable if a simulator can produce indistinguishable leakage without
access to the true secret state. We extend their notion to general appli-
cations and consider two versions. For weak simulatability: the simulated
leakage must be indistinguishable from the true leakage in the presence
of public information. For strong simulatability, this requirement must
also hold when the distinguisher has access to the true secret state. We
show the following:

– Weakly simulatable functions retain computational unpredictability.
– Strongly simulatability functions retain pseudoentropy.
– There are bounded length functions that are not weakly simulatable.
– There are weakly simulatable functions that remove pseudoentropy.
– There are leakage functions that retain computational unpredictabil-

ity are not weakly simulatable.

1 Introduction

Cryptography relies on secret randomness, such as keys. It is crucial to prop-
erly model how an adversary can interact with and observe this secret state. As
an example, when defining security of a block cipher, an adversary may ask for
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encryption of arbitrary plaintexts and see the corresponding ciphertext. The se-
cret key and randomness used by the algorithm are assumed to be hidden from
the adversary.

Unfortunately, the adversary rarely uses cryptographic systems as black-boxes,
exploiting side-channel information when possible. As many works have shown,
side-channel attacks have been devastating to existing deployed cryptosystems
[Koc96,KJJ99,BB05,BM06,OST06,TOS10,GST13].

Completely eliminating side-channel attacks seems hopeless. The cryptographic
community began designing systems that remain secure in the presence of side-
channel attacks. In the theoretical community, the work of Ishai, Sahai, and
Wagner [ISW03] showed how to transform any circuit into one that withstood ad-
versarial knowledge of some constant fraction of the wire values. The work of Mi-
cali and Reyzin [MR04] considered arbitrary leakage functions of bounded output
length.

There are two crucial aspects to defining a leakage function: what the function
computes on, and what type of computations the function can perform. We refer
to these aspects as the leakage model and leakage class respectively.

Leakage Models. There are two commons models: circuit leakage assumes the
leakage function operates on a particular circuit implementation of a computa-
tion. The leakage function is allowed (with restrictions) to compute on individual
gates and wires in the circuit. Memory leakage allows the leakage function to
leak on secret state and ignores the intermediate states of computation specific
to the implementation of the algorithm.1 Circuit leakage is used in conjunction
with leakage classes restricted to local computations. Memory leakage is used in
conjunction with functions that access all state simultaneously (but with some
restriction on the output). Results in these models are not easily compared. We
focus on the memory leakage model but briefly discuss simulatable leakage in
the context of circuit leakage in Appendix A.

Leakage Classes. We now describe common leakage classes in the memory leak-
age model.

– Bounded Length [MR04]. The leakage function is an arbitrary function L
of input, secret state and randomness. The only limitation on the function
is a bounded output length. A natural broadening of this class is the set of
all functions that preserve min-entropy of the secret state.2 We denote this
class of leakage functions by bLEN.

– Indistinguishable [DP08]. Bounded length leakage is easy to reason about
because secret state has entropy conditioned on the output of the leak-
age function. Unfortunately, many leakage functions (such as the power

1 If the leakage class is sufficiently powerful, the particular implementation of an algo-
rithm is irrelevant. The leakage function can recompute a given implementation of
the functionality. This is the case for all leakage classes we consider in the memory
leakage model.

2 If the output length of the leakage function is significantly less than the entropy of
the secret state, then bounded length leakage functions retain average min-entropy.
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trace of computation) are quite long. Furthermore, in many applications
the secret key does not have information-theoretic entropy (for example, a
Diffie-Hellman key conditioned on the public transcript). A leakage function
L is an indistinguishable leakage function if the secret state looks like it
has entropy conditioned on L (we use HILL entropy [HILL99]). Note this
class contains bounded length functions. We denote this class of leakage
functions by Indist. We also use a weaker notion of pseudoentropy called
relaxed HILL entropy [Rey11] and denote the class of leakage functions that
preserve relaxed HILL entropy as rIndist.

– Hard-to-invert [DKL09]. The indistinguishable leakage model is too re-
strictive for many applications. As an example, a symmetric cipher key is
often uniquely determined conditioned on a few plaintext/ciphertext pairs.
It is usually possible to verify a guess for the key and thus, it is not indistin-
guishable from any high entropy distribution. A minimum condition is that
secret state is hard to guess given leakage. This is known as hard-to-invert
leakage. We denote this class of functions as hINV.

– Simulatable [SPY13]. Standaert, Pereira, and Yu recently introduced simu-
latable leakage. Consider some private state K with some public information
Y (such as a public key or plaintext/ciphertex pairs). A leakage function is
simulatable if a simulator S can create a random variable S(Y ) that is indis-
tinguishable from L(K). Simulatable leakage is a combination of ideas from
practice and theory. It allows simulators to be proposed for actual leakage
functions. Then practitioners can try and distinguish simulator output from
the true leakage. Indeed, the simulator proposed by Standaert et al. was sub-
sequently broken [LMO+14]. The work of Standaert, Pereira, and Yu also
shows how to construct a stream cipher that withstands simulatable leakage
from a pseudorandom generator that withstands simulatable leakage.

Containments between the first three leakage classes are understood. (bLEN ⊂
Indist ⊂ hINV.) Simulatable leakage is a natural definition. Ideally, simulat-
able leakage would preserve security as an adversary could use the simulated
leakage (and execute their attack with similar success probability) and therefore
leakage would not harm application security. The goal of this work is to clarify
this intuition.

We consider two versions of simulatable leakage: first where the simulated
leakage must be consistent with only the public system state, and second where
the simulated leakage must be consistent with both the public and private sys-
tem state. We call these classes weakly simulatable (wSIM) and strongly simu-
latable (sSIM) respectively.

Meaningfulness of Weakly Simulatable Leakage Weakly simulatable leakage is
not always meaningful. As example, consider an adversary trying to guess a
private key K with no public information. The identity function is a weakly
simulatable. A simulator for the leakage can sample a uniform random key K ′.
We call this situation leak-and-resample. To prevent this, we assume it is difficult
to sample a key that is consistent with the public information (Definition 12).
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Fig. 1. Containment between difference leakage notions. The relations between sim-
ulatable leakage are shown in this work. Arrows imply containment and arrows with
slashes imply there is a function in one class not contained in the other class.

This is the case in many applications but not all. We call this setting—borrowing
terminology from zero knowledge—witness hiding.

Our contribution: We connect the notion of simulatable leakage to standard
leakage models. A graphical description of our results is in Figure 1. We show
five results:

– Lemma 4: Strong simulatability implies relaxed HILL entropy. That is,
sSIM ⊆ rIndist.

– Lemma 5: There are simulatable leakage functions that remove all pseudoen-
tropy from private state. That is, wSIM �⊆ rIndist.

– Lemma 8: There are bounded-length leakage functions that are not simulat-
able. bLEN �⊆ wSIM.

– Lemma 9: Simulatable leakage preserves unpredictability. wSIM ⊂ hINV.

– Lemma 10: There are hard-to-invert leakage functions that are not simulat-
able. hINV �⊆ wSIM.
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Discussion: These results show that weakly simulatable leakage is properly con-
tained in hard-to-invert leakage. This suggests it may be possible to build crypto-
graphic primitives for weakly simulatable leakage that have eluded hard-to-invert
leakage. Building crypto systems secure against hard-to-invert leakage been dif-
ficult, suggesting that simulatable leakage is a promising alternative.

This work places simulatable leakage in the context of other memory leakage
classes. The complementary question is how simulatable leakage fits with pre-
viously considered leakage classes in the circuit model. We discuss definitional
considerations for simulatable leakage in the circuit model in Appendix A. Pro-
viding results in the circuit model is more complicated as one must consider the
implementation of a functionality. We leave this an open problem.

In this work we show that sSIM is contained in rIndist. It seems natural
that simulatable leakage is related to indistinguishability (since it is an indis-
tinguishability based definition). Settling the containment with Indist is an
interesting question.

Organization: The remainder of the paper is organized as follows. We begin by
covering preliminaries and definitions of memory leakage classes in Section 2.
In Section 3, we define simulatable leakage and extend it to general applica-
tions (the definition of [SPY13] is specific to symmetric ciphers). In Section 4,
we discuss strong simulatability and pseudoentropy. In Sections 5 and 6, we con-
nect weakly simulatable leakage to indistinguishable and hard-to-invert leakage
respectively.

2 Preliminaries

We usually use upper case letters for random variables and lower case letters for
particular outcomes. Un denotes the uniformly distributed random variable on
{0, 1}n. Unless otherwise noted logarithms are base 2.

Entropy Notions. The min-entropy of X is H∞(X) = − log(maxx Pr[X = x]).
Let |W | be the size of the support of W that is |W | = |{w|Pr[W = w] > 0}|.
Definition 1. [DORS08, Section 2.4] The average (conditional) min-entropy
of X given Y is

H̃∞(X |Y ) = − log( E
y∈Y

max
x

Pr[X = x|Y = y]).

Distance Notions. The statistical distance between random variables X and Y
with the same domain is Δ(X,Y ) = 1

2

∑
x |Pr[X = x] − Pr[Y = x]|. For a dis-

tinguisher D (or a class of distinguishers D) we write the computational distance
between X and Y as δD(X,Y ) = |E[D(X)]− E[D(Y )]|. We denote by Dssec the
class of randomized circuits which output a single bit and have size at most ssec.

We use a slightly nonstandard notion of a one-way function is hard on a
particular input distribution (instead of the uniform distribution).
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Definition 2. Let K be a distribution over space M and let f : M → {0, 1}∗.
We say that f is (s, ε,K)-one-way if for all A of size at most s,

Pr
x←K

[f(A(f(x))) = f(x)] ≤ ε.

2.1 Pseudoentropy

In this section, we present notions of pseudoentropy that are used to describe
leakage classes. Pseudoentropy is the computational analogue of min-entropy. In
general, a pseudoentropy notion describes how much entropy a random variable
has to computationally bounded adversaries. The most common notions of pseu-
doentropy consider indistinguishability from a high entropy random variable and
unpredictability.3

Indistinguishability. We use the common notion of HILL entropy [HILL99] ex-
tended to the conditional setting [HLR07].

Definition 3. [HLR07] Let (K,Y ) be a pair of random variables. K has relaxed
HILL entropy at least k conditioned on Y , denoted HHILL

εent,sent
(K|Y ) ≥ k if for

each y ∈ Y there exists distributions Zy giving rise to a joint distribution (Z, Y ),

such that H̃∞(Z|Y ) ≥ k and δDsent (K,Y ), (Z, Y )) ≤ εent.

One of the primary uses of HILL entropy is that applying a randomness ex-
tractor [NZ93] yields pseudorandom bits [BSW03, Lemma 4.2]. There are many
notions of indistinguishability based pseudoentropy [BSW03,Sko14]. One sig-
nificant drawback of conditional HILL entropy is that revealing one bit can
significantly decrease HILL entropy [KPW13]. Relaxed HILL entropy allows re-
placement of the condition as well in the indistinguishability game.

Definition 4. [GW11,Rey11] Let (K,Y ) be a pair of random variables. K has
relaxed HILL entropy at least k conditioned on Y , denoted HHILL-rlx

εent,sent
(K|Y ) ≥

k if there exists a joint distribution (K ′, Y ′) such that H̃∞(K ′|Y ′) ≥ k and
δDsent (K,Y ), (K ′, Y ′)) ≤ εent.

Relaxed HILL entropy is a weaker notion than HILL entropy (by restricting to
the joint distributions (K ′, Y ′) where Y ′ = Y ).

Proposition 1. HHILL-rlx
εent,sent

(K|Y ) ≥ HHILL
εent,sent

(K|Y ).

However, it is still useful as applying a randomness extractor still yields a pseu-
dorandom output [Ful15, Theorem 2.2.4]. Furthermore, relaxed HILL entropy
obeys a chain rule unlike traditional HILL entropy [GW11,Rey11].

3 There are also notions of pseudoentropy that consider compressibility of a random
variable. We do not discuss this notion in this work. See [Yao82,BSW03,HLR07].
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Unpredictability. One can also consider the unpredictability of a random vari-
able by computationally bounded adversaries. This is captured by the following
definition [HLR07]:

Definition 5. Let (K,Y ) be a pair of random variables. We say that K has un-
predictability entropy at least k conditioned on Y, denoted by H

unp
εunp,sunp(K|Y ) ≥

k, if for all joint distributions (Z, Y ) such that δDsunp ((K,Y ), (Z, Y )) ≤ εunp,
and for all circuits I of size sunp,

Pr[I(Y ) = Z] ≤ 2−k.

HILL entropy is at least as large as unpredictability entropy.

Proposition 2. [HLR07, Lemma 8] HHILL
ε,s (K|Y ) ≥ H

unp
ε,s (K|Y ).

The work of Hsiao, Lu, and Reyzin shows they can be separated by an arbitrary
polynomial case in the conditional case [HLR07, Lemmas 2 and 3]. However, it
is possible extract from unpredictability entropy using a randomness extractor
with a reconstruction procedure [HLR07, Lemma 6].

In our results, we use of the fact that HILL and unpredictability entropy
are unchanged if a polynomial size circuit is applied to the condition. In the
information theoretic setting this is known as the data processing inequality.

Lemma 1. Let S be a circuit of size ssim. Then

HHILL
εent,sent−ssim(K|S(Y )) ≥ HHILL

εent,sent
(K|Y ).

Proof. Let HHILL
εent,sent

(K|Y ) = k. Suppose for the sake of contradiction that for all

joint distributions Z, S(Y ) such that H̃∞(Z|Y ) ≥ k there exists D ∈ Dsent−ssim

such that
D((Z, S(Y )), (K,S(Y ))) > εent.

Let Z ′, Y be a distribution such that H̃∞(Z ′|Y ) ≥ k. By the information-
theoretic data-processing inequality, H̃∞(Z ′|S(Y )) ≥ k. Thus, there exists a
D ∈ Dsent−ssim such that D((Z, S(Y )), (K,S(Y ))) > εent. Fix one such D.
Consider the distinguisher D′(z, y) = D(z, S(y)) (of size at most sent). Then
D′((K,Y ), (Z ′, Y )) ≥ D((K,S(Y )), (Z ′, S(Y )) ≥ εent. This is a contradiction
and completes the proof.

This fact also holds for relaxed HILL entropy and unpredictability entropy.
We present these lemmas without proof.

Lemma 2. Let S be a circuit of size ssim. Then

HHILL-rlx
εent,sent−ssim(K|S(Y )) ≥ HHILL-rlx

εent,sent
(K|Y ).

Lemma 3. Let S be a circuit of size ssim. Then

H
unp
εent,sent−ssim(K|S(Y )) ≥ Hunp

εent,sent
(K|Y ).
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2.2 Leakage Models

In this section we focus on memory leakage models – the models in which our
results focus. We briefly review circuit leakage models in Appendix A.

Bounded Leakage: This leakage class allows an arbitrary L with limited output
length [DP08].

Definition 6. Let K be a discrete random variable over space χ1. The random-
ized map L : χ1 → {0, 1}∗ is an �-bounded leakage function if for L(x) takes at
most 2� values for any choice x ∈ χ1 and any choice of random coins of L.
For convenience, we refer to this class of leakage as bLEN. Bounded leakage is
a natural definition. If a random variables starts with min-entropy k, we know
that after � bits of leakage it has remaining min-entropy k− � [DORS08, Lemma
2.2]. That is, if H∞(K) ≥ k, then H̃∞(K|L(K)) ≥ k−�. Unfortunately, bounded
length leakage is not representative of reality. Many side channels take values in
a universe larger than the key itself.

Indistinguishable Leakage. In many applications, the secret state has no true in-
formation conditioned on the public state of the algorithm. For example, the se-
cret key of a symmetric cipher has little entropy after a few plaintext/ciphertext
pairs. However, it often has pseudoentropy. Dziembowski and Pietrzak construct
a pseudorandom generator secure against this type of leakage [DP08]. Indistin-
guishability leakage retains high entropy (we refer to this class of functions as
Indist):

Definition 7. Let K be a random variable and let L be a randomized map. L
is a (k, εent, sent)-indistinguishable leakage function if HHILL

εent,sent
(K|L(K)) ≥ k.

We refer to leakage functions that retain relaxed HILL entropy as rIndist.

Hard to invert leakage. For a scheme with secret key K, the minimal notion
of security is that an adversary should not be able to predict the value of K.
This is model is known as the auxiliary input [DKL09] or hard-to-invert leak-
age [FHN+12]. We refer to this class of functions as hINV:

Definition 8. Let K be a random variable over space χ1. The randomized map
L is a (k, εunp, sunp)-hard-to-invert leakage if Hunp

εunp,sunp(K|L(K)) ≥ k.

We make no condition in the above definition about K unconditionally. For K
to be unpredictable with L(K) it must have unconditional unpredictability at
least k.4 Hard-to-invert leakage seems like the weakest leakage class for which
applications can retain security.

4 In the unconditional setting, there is a polynomial time circuit that predicts K with
probability 2−H∞(K). That is, H∞(W ) = Hunp

εunp,sunp(K).
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3 Simulatable Leakage

Standaert, Pereira, and Yu [SPY13] introduce a new leakage class designed to
be achievable and verifiable. Simulatable leakage is leakage that can be simu-
lated without access to the true secret state. We first present the definition of
Standaert, Pereira, and Yu [SPY13]. This definition is specific to the setting of
a block cipher (denoted BC) in the presence of leakage function L. For more
information on block ciphers and the definition see [SPY13].

Game sim(q,D,BC,L, S, b).
The challenger selects two random keys k and k∗ in {0, 1}n. The output of
the game is a bit b′ computed by D based on the challenger responses
to a total of at most q adversarial queries of the following type:

Query Response if b = 0 Response if b = 1

Enc(x) BCk(x),L(k, x) BCk(x), S(k
∗, x,BCk(x))

and one query of the following type:

Query Response if b = 0 Response if b = 1
Gen(z, x) S(z, x, k) S(z, x, k∗)

Definition 9. [SPY13, Definition 1] A block cipher BC with leakage function
L has (ε, ssim, ssec) q-simulatable leakages if there is a simulator S, of size ssim,
for every D, of size ssec, , we have:

δ(sim(q,D,BC,L, S, 1), sim(q,D,BC,L, S, 0)) ≤ ε.

3.1 Extending Simulatable Leakage to General Applications

Definition 9 is specialized to the setting of symmetric-key cryptography. In par-
ticular, the second type of query exists because the authors argue that symmetric
keys are often derived from sources that themselves have leakage. It is not clear
how to generalize this type of query to arbitrary leakage settings. In addition,
providing a single key to S as consistent state is limiting, it is not clear why the
simulator should not be allowed to keep state between leakage queries. Further-
more, the fact that leakage is provided with each output of the block cipher is
not a necessary requirement. There may multiple leakage queries for each block
cipher output or vice versa. Furthermore, the distinguisher does not have any
access to k when trying to decide if the leakage is legitimate. In different ap-
plications, the distinguisher may have partial access to the secret state k. We
present two definitions modeling the two extremes, one where the distinguisher
has full access to the secret and one the secret is completely hidden. Our defi-
nitions consider two random variables K and Y that represent the private and
public state of the cryptosystem (but we do not include this distinction in the
definitions).
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Definition 10. Let (K,Y ) be a pair of random variables over χ1 × χ2. The
randomized map L is an (ε, ssim, ssec)-weakly simulatable leakage function if
there exists a simulator S of size at most ssim such that

δDssec ((Y,L(K)), (Y, S(Y ))) ≤ ε.

Definition 11. Let (K,Y ) be a pair of random variables over χ1 × χ2. The
randomized map L is an (ε, ssim, ssec)-strongly simulatable leakage function if
there exists a simulator S of size at most ssim such that

δDssec ((K,Y,L(K)), (K,Y, S(Y ))) ≤ ε.

We use wSIM and sSIM as shorthand for weakly and strongly simulatable
classes respectively.

Proposition 3. If L is (ε, ssim, ssec)-strongly simulatable leakage function, then
L is a (ε, ssim, ssec)-weakly simulatable. That is, wSIM ⊆ sSIM.

Notes: These definitions do not model secret key updates. We assume a single
leakage query. Alternatively, we can think of an adversary that prepares all of
their multiple leakage queries simultaneously. This is slightly weaker than the
definition of Standaert et al.

We also assume that Y incorporates all public values of the scheme. This may
include a public-key, ciphertexts, signatures, etc. In the work of Standaert et al.,
this is assumed to be the input and output of the block cipher with the true key.

Meaningfulness of Weakly Simulatable Leakage. Some restriction on Y
is necessary to make weakly simulatable leakage meaningful. If Y is empty, the
leakage L(K) = K is simulatable by sampling a fresh secret key K ′. However,
there is no security remaining in the system. In particular, in this setting, there
is no min-entropy, HILL entropy, or unpredictability entropy remaining in the
key. Indeed, when there is no public Y , any polynomial time function is sim-
ulatable (by sampling a fresh k ← K and outputting f(k)). This gives us the
following proposition:

Proposition 4. Let K be a random variable over χ1 samplable by procedure
Sample of size ssam and let Y be empty. Let f : χ1 → {0, 1}∗ be a function
computable by a circuit of size |f |. Then f is a (0, ssim,∞)-weakly simulatable
leakage if ssim ≥ |f |+ ssam.

It is not just empty Y that presents a problem to weakly simulatable leak-
age. It may be possible to leak the entire secret even when it is information-
theoretically determined by the condition Y . For example, if the public state is
a Diffie-Hellman exchange ga, gb, then the key gab can be leaked (since a fresh
gc is indistinguishable).

To prevent these leak-and-resample simulators, we assume it is hard to find
k values consistent with the public information. We use the notation of witness
hiding from zero-knowledge.
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Definition 12. Let K,Y be random variables and let R be a relation (com-
putable by a circuit of size srel) where Pr[R(K,Y ) = 1] = 1. The public state
Y is a (srel, sinv, εrel)-witness hiding relation if for all I of size at most sinv,
Pr[R(I(Y ), Y ) = 1] ≤ εrel.

Note: If it is hard to find keys that are consistent with plaintext/ciphertext
pairs, then the definition of Standaert et al. also has a witness hiding condition.

When discussing weakly simulatable leakage, we consider public information
that is witness hiding of the secret stateK. Witness hiding implies unpredictabil-
ity of H

unp
0,sinv

(K|Y ) ≥ − log(εrel). We first discuss strongly simulatable leakage
and then weakly simulatable leakage. We discuss how to apply simulatable leak-
age to the circuit leakage model in Appendix A.

4 Strongly Simulatable Leakage

In this section, we show that all strongly simulatable leakages preserve in-
distinguishability. We use the relaxed notion of HILL entropy. We show that
sSIM ⊆ rIndist. In the next section, we show that bLEN �⊆ wSIM which implies
that bLEN (and thus rIndist)) are not contained in sSIM.

Lemma 4 (sSIM ⇒ rIndist). Let K be a distribution over χ and let Y be some
public information. Let HHILL-rlx

εent,sent
(K|Y ) ≥ k and let L be a (εsim, ssim, ssec)-

strongly simulatable leakage function. Then HHILL-rlx
ε′,s′ (K|Y,L(K)) ≥ k for ε′ =

εent + εsim, s′ = min{ssec, sent − ssim}.
Proof. Fix L and let S be a simulator of size at most sent. Define the circuit
S′ that on input y outputs y, S(y) and note that S′ is of size ssim. Then by
Lemma 2 the simulator does not decrease relaxed HILL entropy,

HHILL-rlx
εent,sent−ssim(K|Y, S(Y )) = HHILL-rlx

εent,sent−ssim(K|S′(Y )) ≥ k.

Thus, there exists some K ′, Y ′, Z ′ where H̃∞(K ′|S′, Y ′) ≥ k such that

δDsent−ssim ((K,Y, S(Y )), (K ′, Y ′, Z ′))) ≤ εent.

By simulatability, we have that

δDssec ((K,Y,L(K)), (K,Y, S(Y ))) ≤ εsim.

Finally, by the triangle inequality,

δDmin{ssec,sent−ssim}((K,Y,L(K)), (K ′, Y ′, Z ′))) ≤ εsim + εent.

5 wSIM and rIndist

In the previous section, we showed that strong simulatability of a leakage function
implied relaxed HILL entropy. However, this does not carry over to the setting of
weak simulatability. In this section we show that simulatable leakage is
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incomparablewith indistinguishable leakage functions.We showabounded leakage
function that is not simulatable (bLEN �⊆ wSIM) and a simulatable leakage function
that removes all relaxed pseudoentropy from the secret (rIndist �⊆ wSIM). Since
bounded length leakage functions are contained in Indist (and rIndist) this also
shows that rIndist �⊆ wSIM. In this section, we assume that the public information
is witness hiding of the secret state (Definition 12).

5.1 wSIM �⊆ rIndist

There are simulatable leakage functions that remove all HILL-rlx.

Lemma 5 (wSIM �⊆ rIndist). Let K = (K1,K2) where K1 ∈ {0, 1}�1 and
K2 ∈ {0, 1}�2 be uniformly distributed. Let f be an (εowp, sowp)-injective one-
way function from {0, 1}�1 → {0, 1}�3 computable in size |f |. Let Y = f(K1).
Then H∞(K|Y ) = �2. The function L(K) = K2 is (0, �2,∞)-weakly simulatable
and HHILL-rlx

ε,ssec (K|Y,L(K)) ≤ − log(1− ε) if ssec ≥ sowf + �1 + �2.

Proof. We first prove that for K,Y where Y = f(K) and f is a function com-
putable in size |f |, K|Y has almost no min-entropy remaining. We first show
that Y,L(K) removes all HILL-rlx from K.

Lemma 6. Let K be a random variable over {0, 1}�, {0, 1}�2 and let f : {0, 1}�1
→ {0, 1}�2 be an injective function computable by a circuit of size |f |. Then

HHILL-rlx
ε,|f |+�1+�2

(K|f(K)) ≤ − log(1− ε).

Proof. Let K ′, Z ′ be a distribution

δD
ssec

((K, f(K)), (K ′, Z ′)) ≤ ε.

Consider the distinguisher

D(k, z) = 1 if and only if f(k) = z).

Clearly E[D(K, f(K))] = 1. By indistinguishability, E[D(K ′, Z ′)] ≥ 1 − ε. This
means that

E
z←Z′

D(K ′|Z ′ = z, z) ≥ 1− ε.

For all z there is a unique k ∈ {0, 1}�1 such that D(k, z) = 1, denote this value
by kz . This means that Ez←Z′ Pr[K ′ = kz|Z ′ = z] ≥ 1 − ε. We then have the
following:

E
z←Z′

max
k

Pr[K ′ = k′|Z ′ = z] ≥ E
z←Z′

Pr[K = kz|Z ′ = z] ≥ 1− ε.

Taking the negative logarithm of each side yields that H̃∞(K ′|Z ′) ≤ − log(1−ε).
This completes the proof of Lemma 6.

Lemma 6 implies that HHILL-rlx
ε,ssec (K|Y,L(K)) ≤ − log(1− ε).

Y is a (|f |, sowp, εowp), witness hiding relation of K where the relation is

R(k1, k2, y) = (f(k1)
?
= y). The simulator S for L computes a uniform sample

from {0, 1}�2. This is identically distributed to L(K) and takes �2 size to com-
pute. Since there is a unique k1 for each y, H̃∞(K|Y ) = H̃∞(K2|Y ) = H∞(K2).



Unifying Leakage Classes: Simulatable Leakage and Pseudoentropy 81

5.2 bLEN �⊆ wSIM

We now show a leakage function of bounded length that cannot be simulated.5

We will use a secure signature scheme and leak a valid signature. This leakage
function has been used previously to demonstrate the difficult of constructing
leakage resilient signature schemes [FHN+12]. We need a signature scheme that
is hard to forge and a signature does not determine the secret key completely. We
begin by describing the EU-RMA notion of signatures from Goldwasser, Micali,
and Rivest [GMR88].

Definition 13 (EU-RMA). A signature scheme Σ = (Gen, Sig,Ver) is
(q, ssec, ε)-existential unforgeable against random message attacks if for all cir-
cuits A of size ssec the following holds:

Pr
(pk,sk)←Gen(·)

[m1, ...,mq ← M∧ σi ← Sig(mi, sk)∧

(m∗, σ∗) ← A(m1, ...,mq, σ1, ..., σq, pk)

∧m∗ �= mi ∧ Ver(pk,m∗, σ∗) = 1] < ε

Under this definition a signature must not be simulatable. To ensure that the
secret key still has high entropy we need a signature scheme where multiple
private keys exist for each public key. We use a scheme where it is hard to find a
candidate private key for each public key (making the public key witness hiding).
We use Lamport’s one-time secure signature scheme [Lam79].6

Construction 1. Let f be a (εowf , sowf)-one-way function mapping {0, 1}kc →
{0, 1}k for c > 1:

Key Generation: Choose random xi,0, xi,1 ← {0, 1}kc

for i = 1, ..., �. Compute
yi,b ← f(xi,b) for i ∈ {1, ..., �} and b ∈ {0, 1}. The public key is pk = {yi,b}
and the secret key is {xi,b}.

Signing: The signature on a k-bit message m = m1, ...,mk consists of the k
values x1,m1 , ..., xk,mk

.
Verification: Given x1, ..., xk and m = m1, ..,mk and pk = (s, {yi,b}), output

1 iff yi,mi

?
= f(xi) for all i.

Lemma 7. Construction 1 is a (1, εowf , sowf)-secure signature scheme. Fur-

thermore H̃∞(SK|PK) ≥ 2�kc − 2�k. Furthermore for any message m,

H̃∞(SK|PK, SigPK(m)) ≥ �kc − 2�k.

5 This also shows that Indist �⊆ wSIM and rIndist �⊆ wSIM.
6 This scheme was used in the setting of leakage-resilient cryptography by Katz and
Vaikunatanathan [KV09]. They extend Lamport’s scheme making the function col-
lision resistant and using error correcting codes. Lamport’s original scheme suffices
for our purposes.
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Proof. We omit the proof that the scheme is secure (and that Y = PK is witness
hiding of X). We have the following for the entropy calculations by [DORS08,
Lemma 2.2], H̃∞(SK|PK) ≥ 2�kc − 2�k. Similarly, for any m H̃∞(SK|PK,
SigPK(m)) ≥ 2�kc − 2�k − �kc ≥ �kc − 2�k.

Lemma 8. Let (Gen, Sig,Ver) be as above for some c > 1, let K = SK, Y =
PK. Then for any message m the function L(K) = SigSK(m) is not simulatable
by any S of size ssec ≤ sowf with ε ≤ εowf . Furthermore, H̃∞(SK|PK,L(K)) ≥
�kc − 2�k (and thus, HHILL

0,∞ (SK|PK,L(K)) ≥ �kc − 2�k).

Proof. The lack of a simulator follows from the one-time security of the signature
scheme. The remaining entropy follows from Lemma 7.

6 wSIM � hINV

In the previous section, we showed that weakly simulatable leakage and indis-
tinguishable leakage are incomparable. In this section, we turn to hard-to-invert
leakage. We show that weakly simulatable leakage preserves unpredictability but
there are leakage functions that preserve unpredictability that are not simulat-
able. Our results assume Y is witness hiding.

6.1 wSIM ⊆ hINV

We show the ability to predict K given both Y and L(K) is not significantly
different than the ability to predict the witness given just Y .

Lemma 9. Let K,Y be a pair of random variables. Let R be a (srel, sinv, εrel)-
witness hiding relation on K,Y . If L be a (εsim, ssim, ssec)-weakly simulatable
leakage for (K,Y ). Then Hunp

0,s′inv
(K|Y,L(K)) ≥ − log(εrel + εsim) for s′inv =

min{ssec − srel, sinv − srel}.
Proof. Let S be a simulator of size ssim for L. Suppose there exists an inverter
I of size s′inv such that Pr[I(Y,L(K)) = K] > εrel + εsim. To arrive at a
contradiction it suffices to show there exists an inverter I ′(Y ) of size s′inv+ssim ≤
sinv and succeeds with probability > εrel. Define I ′(y) = I(y, S(y)).
Claim. Pr[R(I(Y, S(Y )), Y ) = 1] ≥ Pr[R(I(Y,L(K)),K) = 1]− εsim ≥ εrel.

Proof. Recall that δDssec ((Y,L(K)), (Y, S(Y ))) ≤ εsim. Suppose for contradic-
tion that

Pr[R(I ′(Y, S(Y )),K) = 1] < Pr[R(I ′(Y,L(K)),K) = 1]− εsim.

We present a distinguisher D of size s′inv + srel ≤ ssec:

– On input y, z.
– Run x ← I ′(y, z).
– Output 1 if and only if R(x, y) = 1.
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Then

Pr[D(Y,L(K)) = 1]− Pr[D(Y, S(Y )) = 1]

= Pr[R(I(Y,L(K)),K) = 1]− Pr[R(I(Y, S(Y )),K) = 1] > εsim.

This is a contradiction. This completes the proof of the claim and the proof of
the lemma.

6.2 hINV �⊆ wSIM

In the previous section, we saw that simulatable leakage preserves unpredictabil-
ity. In this section, we show this containment is tight.

Lemma 10. Let f1 : {0, 1}�1 → {0, 1}�2 be (s1, ε1, U�1)-one way and let f2 :
{0, 1}�2 → {0, 1}�3 be s2, ε2, f(U�1)-one way. Then for K = U�1 , Y = f2(f1(K)),
L(K) = f1(K) the following hold:

1. H
unp

0,s1−|f2|(K|Y,L(K)) ≥ − log (εowf,1).

2. L is not (|f2|, s2, 1− ε2)-weakly simulatable.

Proof. We prove each statement in turn. Suppose Statement 1 is not true, that
is, there exists an inverter I ′ of size s1 − |f1| that inverts f2 ◦ f1|f1. Then
I(y) = I ′(y, f2(y)) is an inverter for f1.

Now suppose that Statement 2 is not true. Then there exists a simulator S
of size s2 that simulates f1(K). That is, δDssec ((Y,L(K)), (Y, S(Y )) < 1 − ε2.
Consider the following distinguisher D (of size |f2|):
– Input y, z.
– Output 1 if and only if y = f2(z).

Clearly, E[D(Y,L(K))] = 1. Thus, by indistinguishability, E[D(Y, S(K))] ≥ 1−
(1− ε2) ≥ ε2, this is a contradiction.
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A Extending Simulatable Leakage to the Circuit Model

A.1 Leakage Classes in the Circuit Model

In this section we provide a brief introduction to the circuit leakage model and
discuss the applicability of simulatable leakage to the circuit leakage model. The
main difference between the circuit and memory leakage model is that the leakage
function leaks on a particular implementation of a cryptographic primitive. (In
the memory leakage model, leakage is only on the private state.) Most circuit
leakage classes assume leakage is “local” to the computation. This makes the
leakage class sensitive to the implementation. C represent a circuit with wires
C1, ..., Ck (with the first wires representing the inputs and final wires representing
the outputs).

– Probing [ISW03]. Let The adversary specifies a subset L ⊂ C1, ..., Ck (of
bounded size) and sees the values of all wires in L. L may include some
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of the secret input, intermediate values, and output values. However, the
leakage function is not allowed to compute on parts of the computation
simultaneously, the leakage function can only learn the value of individual
wires.

– Computationally Bounded [FRR+10]. Faust et al. [FRR+10] hypothesize
that leakage can be modeled by low complexity circuits. As an example, they
show how to protect circuits against leakage in AC0. They secret share state,
security critically relies on the inability of AC0 circuits to compute parity.

– Noisy [CJRR99,FRR+10]. It is not clear how to precisely determine the
computational complexity of a side-channel attack. However, most side-
channel attacks are known to contain significant noise. The work of Faust
et al. [FRR+10] also proposed modeling leakage function as an arbitrary
function L applied to the secret state with an additive noise term N .

Recent work of Duc, Dziembowski, and Faust [DDF14] shows how to simulate a
noisy leakage function using a probing leakage function.

A.2 Adapting Simulatable Leakage to the Circuit Model

We now provide a definition of simulatable leakage that can be used in either
the memory or circuit leakage models. As before, we can define both a weak and
strong version. We present only a weak version for simplicity.

Definition 14. Let (K,Y ) be a pair of random variables over χ1 × χ2 and C
be a encoding function such that C : χ1 → ζ. The randomized map L is an
(ε, ssim, ssec, C)-weakly simulatable leakage function if there exists a simulator
S of size at most ssim such that

δDssec ((Y,L(C(K))), (Y, S(Y ))) ≤ ε.

Notes: Taking the encoding function to be the identity function yields the mem-
ory leakage model. The above definition depends on the encoding function and
the leakage class. As an example, for a fixed leakage function, there may be
a simulator for only some encoding functions. The work of Ishai, Sahai, and
Wagner [ISW03] builds an encoding function where the probing side-channel is
simulatable (security of the encoded circuit is shown through simulation).
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