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Abstract—A common problem in network analysis is detecting
small subgraphs of interest within a large background graph.
This includes multi-source fusion scenarios where data from
several modalities must be integrated to form the network. This
paper presents an application of novel techniques leveraging
the signal processing for graphs algorithmic framework, to
well-studied collaboration networks in the field of evolutionary
biology. Our multi-disciplinary approach allows us to leverage
case studies of transformative periods in this scientific field as
truth. We build on previous work by optimizing the temporal
integration filters with respect to truth data using a tensor
decomposition method that maximizes the spectral norm of the
integrated subgraph’s adjacency matrix. We also demonstrate
that we can mitigate data corruption via fusion of different data
sources, demonstrating the power of this analysis framework for
incomplete and corrupted data.

I. INTRODUCTION

In numerous applications, the data of interest are entities and
the relationships, connections, and interactions between them.
We may be interested in interactions between individuals,
communication between computers, or interaction between
proteins. Across these diverse application areas, the data of
interest are naturally represented as a graph.

One of the application domains where casting the data as a
graph is widely used is the analysis of social networks. Ana-
lyzing the interactions between people allows for identification
of community structure and influential figures. A network
of scientific collaborators is a particularly interesting type of
social network. Understanding the way innovation manifests
itself within the public record via collaborative publications
may lead to new insights into the evolution of scientific
research.

In this paper, we analyze such a network in the context of
a novel anomaly detection framework called signal processing
for graphs (SPG) [1]. This framework enables the detection of

small, anomalous clusters within large, dynamic background
graphs. Within this framework, a filtering technique can be
used to emphasize certain patterns of behavior and increase
the power of these “signal” components of the graph within
the “noise” of the background. This paper considers an opti-
mization technique with respect to a known, rigorously-studied
innovation period, and demonstrates that the optimal filter
does in fact bring a significant subset of data to a prominent
position within the analytical space. This framework can be
applied when the graph is derived from many fused sources,
which can also improve detection performance by considering
multiple “looks” at the data. Since network data are often
noisy or incomplete, we also consider observation of corrupted
data within this context. While data corruption significantly
hinders performance, we can leverage the diversity of multiple
measurements and recover the signal by fusing the corrupted
observations.

The remainder of this paper is organized as follows. Sec-
tion II reviews the subgraph detection problem and defines
notation. Section III discusses the filtering technique for ana-
lyzing dynamic graphs. Our dataset of interest—co-authorship
networks of authors who all cite a seminal paper within a large,
dynamic collaboration network—is described in Section IV.
Section V presents the results of a set of experiments on this
dataset, including filter optimization to best emphasize the
innovation subnetwork and methods to fuse multiple corrupted
observations and still maintain signal power. In Section VI, we
summarize and provide possible avenues for further investiga-
tion.

II. SUBGRAPH DETECTION PROBLEM

A graph G = (V,E) consists of a vertex set V , a set of
entities, and an edge set E, a set of edges which represent re-
lationships between vertices. The subgraph detection problem
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is a classical detection problem studied in [2] [3] with a graph
as its observation. We cast the problem of subgraph detection
as detecting a signal embedded in noise, where our objective
is to resolve the binary hypothesis test

H0 : The observed graph is “noise” GB

H1 : The observed graph is “signal+noise” GB ∪GS .

Let H0 denote the null hypothesis, an undirected, un-
weighted graph GB = (VB , EB) generated by some random
model. The alternative hypothesis, H1, has an additional graph
GS = (VS , ES) embedded into GB . The problem is to decide
whether or not the null hypothesis is true based on whether the
observed graph deviates significantly from normal background
behavior.

While optimal detection is possible in some scenarios [4],
we focus on cases where this would be computationally
intractable. We take a spectral approach, which has the benefit
of analyzing the data in a space where there are known
metrics for power and detectability [5]. Our subgraph detection
procedure is based on the spectral analysis of modularity. Mod-
ularity is commonly used to detect communities in graphs [6],
but in the context of this paper—and in the SPG framework
more broadly—we analyze modularity to detect the presence
of an anomaly. The modularity matrix B of an unweighted,
undirected graph G is given by

B = A− kkT

2|E| ,

where A is the adjacency matrix of G (i.e., Aij is 1 if vertices
vi and vj share an edge and is 0 otherwise) and k is the
observed degree vector of G, where ki is the number of
edges connected to vi. The matrix B can be considered the
residuals matrix, a matrix consisting of the difference between
the observed edges A and the expected edges kkT /(2 |E|) (the
expectation under the Chung–Lu model [7], which assumes no
community structure).

The algorithms described in [2] [3] analyze the residuals
under H0 and H1 by studying the eigendecomposition of B
(i.e. B = UΛUT ) and compute a test statistic to discriminate
between the two hypotheses. In [2], we determine the presence
of an anomaly by analyzing only the first two eigenvectors of
B. To compute the test statistic, matrix B is projected into
the space of its 2 principal eigenvectors u1 and u2. This is
the linear subspace in which the residuals are largest, and,
intuitively, a subgraph with particularly large residuals will
separate from the rest of the vertices in this space.

III. DETECTION IN DYNAMIC NETWORKS

Extending the SPG framework to dynamic graphs, our
observation is a sequence of time-varying graphs G(n) =
(V,E(n)) where the vertex sets remain constant and the edge
sets vary over time [8], [9]. Dealing with time-series graphs,
we consider the residuals integrated over a time window.
At each discrete time step n we have a graph G(n) and a
modularity matrix B(n). We apply a finite impulse response

filter h over the length of a time window ℓ and aggregate the
residuals, obtaining

B̃(n) =
ℓ−1
∑

i=0
B(n− i)h(i).

Let B̃(n) be the aggregated residuals matrix for the graph at
time n filtered by h. Thus B̃(n) is a matrix where in each
vertex entry is the result of a vertex pair having its modularity
filtered by h. The sequence of filter coefficients h is designed
to effectively emphasize the subgraph and de-emphasize the
background. The problem of choosing the appropriate filter
coefficients is discussed in further detail later, where h will
be computed to maximize the integrated signal power over
time for a particular subgraph of interest. We perform the
same analysis on B̃(n) as performed on B for static graphs
to discriminate between H0 and H1.

IV. DATASET

One of the significant challenges in developing and evalu-
ating subgraph detection techniques is lack of truth for many
of the applications of interest. In this work, as in [10], we
leverage rigorously studied period of scientific innovation
in evolutionary and developmental biology. This multidisci-
plinary approach allows us to refine our algorithmic techniques
while also potentially providing insight into emergence of
innovation in scientific literature. In this section, we describe
the dataset that is used for our analysis throughout the rest of
the paper.

The case study we consider is the emergence of the concept
of gene regulatory networks in developmental biology. As
discussed in [11], [12], [13], gene regulatory networks are one
of the main explanatory concepts in today’s evolutionary and
developmental biology. The history and emergence of this idea
are also well-studied [13]. This includes early conceptual ideas
from the beginning of the 20th century and more specifically,
the recent developments based on the formulation by Roy
Britten and Eric Davidson published in Science in 1969
[14]. The Britten-Davidson (BD) model is a clear study of
transformative innovation in a scientific field. As discussed in
[10], the citations to the 1969 BD paper illustrate its persistent
impact. Specifically, the citations rapidly increased throughout
the 1970s, dropping somewhat during 1980s and 1990s, and
again increasing in the 2000s and 2010s. Furthermore, second
order citations, or citations of papers that cite the BD paper,
tell a similar story - including a sharp increase in second
order citations in 2000s and 2010s. Second order citations are
good indicators of broader impact of the idea, especially when
combined with first order citation patterns.

Study of the BD model and its impact on the field has
allowed for an observation of the fact that scientific innovation
at least in this case, leads to re-wiring of patterns of collabo-
ration. Based on the analysis of this case study, truth or signal
subgraphs were created by co-authorship graphs of the authors
that have directly cited the BD paper. The signal subgraphs
span 1969 to 2000. All citation graphs were extracted from the
Web of Science database and covered a representative sample
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of the field of developmental biology, specifically, the top 12
journals in the field plus Science, Nature, and Proceeding of

the National Academy of Sciences. For each year, the graphs
considered were unweighted and undirected (co-authorship
is fundamentally undirected) yielding a symmetric adjacency
matrices. Total number of unique authors (number of vertices
in the graph) was help consistently at 294,700 (representing
the number of unique authors in the entire time period). The
ordering of authors in the graph, while arbitrary, was preserved
(as is necessary) in each year.

V. EXPERIMENTS

A. Temporal Filter Optimization

Within the SPG framework, the spectral norm is a good
power metric for signal and noise power [15]. When an
embedded subgraph’s spectral norm is large, its vertices are
more likely to stand out in the eigenspace. When working
with the temporal integration technique described in Section
III, this means that it is desirable to choose filter coefficients
that maximize the spectral norm of the principal submatrix of
the adjacency matrix associated with the subgraph vertices.

As originally discussed in [16], the subgraph’s spectral
norm can be maximized by forming a 3-way tensor from
the subgraph adjacency matrix, and computing a low-rank
approximation for this tensor. Let AS be an NS×NS×ℓ tensor
for the subgraph vertices, where NS = |VS |. The first two
dimensions represent vertices and the third dimension repre-
sents time. Much like approximating a matrix with its singular
value decomposition, a low-rank tensor decomposition can be
used to approximate AS. For a rank-1 approximation, this is
achieved by solving

arg maxλ,x,y,z

NS
∑

i=1

NS
∑

j=1

ℓ
∑

t=1

(AS(i, j, t)− λxiyjzt)
2

(1)

subject to ∥x∥2 = 1, ∥y∥2 = 1, ∥z∥2 = 1.

Here x, y ∈ RNS and z ∈ Rℓ are vectors, and λ ∈ R is a
scalar. Our objective is to maximize the spectral norm of the
integrated adjacency matrix whose ijth entry is given by

ahij =
ℓ

∑

t=1

AS(i, j, ℓ+ 1− t)h(t).

It turns out that this quantity is optimized—under the con-
straint that the squares of the filter weights sum to 1—
by setting the filter weights h(t) equal to the time-reversed
temporal factor zℓ+1−t from (1). This computation can be
done in Matlab using the PARAFAC decomposition [17] in
the Tensor Toolbox [18].

The effect of tuning the filter with respect to the vertices of
interest has been demonstrated in simulation [16], but here we
demonstrate application to the well-studied period of scientific
innovation described in Section IV: we optimize the filter
applied to the coauthorship graph from 1969 to 1980. As
demonstrated in Fig. 1, the impact is extremely significant.
Within each plot, there is one curve for each vertex in the

subgraph of interest. In each case, the eigenvectors associated
with the largest 20 (nonnegative) eigenvalues were computed,
with smaller indices corresponding to larger eigenvalues. The
values of the plots are the components of the (unit-normalized)
eigenvectors that are associated with the subgraph vertices.
Without any knowledge of truth, one may assume that simply
averaging over time would be a reasonable approach, or that
integrating using a ramp filter (where the weight on each
successive time step increases in a linear fashion) would
detect interesting subgraphs, given that this would emphasize
emerging behavior. Using these strategies, as shown in the
figure, there is only one vertex that is particularly strong within
the eigenvectors with the largest eigenvalues. Using a method
that considers the spectral norm of the subgraph at each point
in time (i.e., using weights corresponding to the instantaneous
power of the foreground) provides some additional benefit,
as a few additional vertices stand out more prominently in
eigenvector 14. Using a filter that is optimized via the tensor
decomposition, on the other hand, brings out several more
vertices. When this filter is applied, nine vertices from the
subgraph stand out significantly in eigenvector four. Looking
back at the data used to optimize the graph (i.e., the authors
citing the seminal BD paper), these nine vertices comprise the
largest connected component in any given year, and in fact
form a clique (a graph with all possible edges) in 1977. Two
of the authors in this cluster are also part of a larger clique
with nine other authors in the background, who also stand out
in the same eigenvector. This is a significant finding: the most
interconnected that authors citing the BD paper ever become
in a given year, as well as other close collaborators. Without
this temporal integration technique, the subgraph would not
stand out from the background within this low-dimensional
space. We will focus on this subgraph for the remainder of
the experiments.

B. Data Corruption

In many applications, the datasets from which the graphs are
derived are inherently incomplete or noisy. When forming the
graph, these errors can have a significant impact on detection
performance. Interference or noise can lead to incorrect or
missing edges. Clerical errors can lead to an edge being
switched from one vertex to another. And data are frequently
sampled from a population, giving an inherently incomplete
view of the individual interactions. All of these factors can
significantly hinder performance of detection algorithms.

The impact of network uncertainty on subgraph detection
has been of interest in recent years [19], [20]. In this paper,
we consider the impact of two of the corruption mechanisms
from [20] on detection of the subgraph pulled out of the
noise in Section V-A. One mechanism is a simple missing
data model, in which each edge that exists in the true graph
exists in the observed graph with equal probability. As noted in
[20], this mechanism reduces the power of random background
behavior more slowly than it reduces the power of clusters that
stand out in the eigenspace. This is a consequence of Wigner’s
semicircle law. Considering an Erdős–Rényi random graph—
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Fig. 1. Projections of subgraph vertices onto principal eigenvectors with various temporal integration techniques. Within the space of the principal eigenvectors,
only one vertex is particularly prominent when using equal weights (top left), linearly increasing weights (top right), or weights determines by eigenvalues
(bottom left). Only when an optimized filter is applied (bottom right) do a substantial number of subgraph vertices become prominent in the eigenspace.

where all possible edges are equally probable—the range of
eigenvalues is proportional to the standard deviation of the
edge presence probability,

√

p(1− p). For sparse graphs, p
will be small and thus changing p will change the largest
eigenvalues by approximately

√
p. Meanwhile, the subgraph

that does not fit the background model will have its spectral
norm reduced by a factor of p, reducing the signal-to-noise
ratio and making the detection problem more difficult. As
shown in [20], this phenomenon also occurs in more realistic
models that incorporate arbitrary degree structure.

The other corruption mechanism we consider is an edge-
flipping mechanism, where there is a random model for data
corruption based on vertex degree. For each vertex in the
graph, we assume that the number of errors is proportional to
the number of edges the vertex has. Similarly to the Chung–Lu
model, we assign a weight wi to vertex vi, where

wi =
α

√

∑N
j=1 kj

ki.

The probability of an edge error between vertices vi and vj
is then pcorrij = wiwj . If there is an edge in the true graph

between these two vertices, then it will not be observed with
probability pcorrij , and if there is no such edge, then this is the
probability with which an edge will be incorrectly observed.
The scalar α controls the overall number of errors. In this
paper, the corruption is focused on those vertices—in the
entire graph, including the subgraph of interest—that are most
prominent in the principal eigenspace for the true graph. This
concentrates the effects of the corruption on the portion of the
graph that we analyze, to better demonstrate the impact of this
mechanism on eigenvector analysis.

A typical example of the impact of these data corruption
mechanisms on subgraph detection ability is illustrated in
Fig. 2. Each scatter plot in the figure is created using the two
eigenvectors (among the principal 10) that most prominently
feature the subgraph vertices. The nine-vertex clique from
the data of interest, and the nine other close collaborators,
clearly stand out in the fourth eigenvector when the graph
is uncorrupted. For missing data, we consider a case where
only 15% of the edges are observed. In the plotted instance,
the subgraph vertices were most prominent in the eighth and
ninth eigenvectors. While some of the vertices still stand out
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Fig. 2. Scatter plots emphasizing the subgraph from the known period of innovation. Background vertices are in blue, while the nine-vertex clique and its
close collaborators are in red. When working with the true graph (left), the vertices all stand out in the fourth eigenvector. When only observing 15% of
the edges, the subgraph partially stands out in the eighth and ninth eigenvectors, but many vertices are buried in the background (center). The degree-based
corruption method similarly has a few vertices standing out in the 5th and 6th eigenvectors, but many of them are overpowered by background noise.

in this space, most of them are subsumed by other activity, and
many vertices are very close to the origin. The degree-based
corruption model (where about half of the observed vertices
are errors) has a different effect on performance, but the result
is similar. In the case plotted in the figure, the subgraph
vertices stand out the most in the 5th and 6th eigenvectors.
The background is much noisier due to the extra activity, and
many of the subgraph vertices are buried within the noise. In
both of these cases, the loss in power will reduce detection
performance.

C. Fusion of Corrupted Data

While the medium through which we observe a network
can create artifacts that hinder detection performance, it will
sometimes be possible to get multiple “looks” at the data. If the
error mechanisms are not correlated, it is possible to use the
diversity of the measurement domains to recover performance.
As alluded to in [20], this can be done via a Bayesian fusion
method or by weighting the individual observations based on
the level of trust in the source.

At relatively small scale, a Bayesian fusion method can be
quite powerful for performance recovery. With the two cor-
ruption mechanisms considered in this paper, we can estimate
that an edge exists in the latent graph in the following way.
Let pprior be the prior probability of edge existence in the
latent graph, and let aij , amiss

ij , and acorrij be the ijth entry in
the adjacency matrix of the true graph, the graph with missing
data, and the graph with degree-based corruption, respectively.
If amiss

ij is 1, then aij is 1, since edges can only be taken away

with the missing data mechanism. If amiss
ij is zero, then the

probability that the edge exists in the true graph is

P [aij = 1] =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1−pobs)pcorr
ij pprior

(1−pobs)pcorr
ij +(1−pcorr

ij )
if acorr = 0

(1−pobs)(1−pcorr
ij )pprior

(1−pobs)(1−pcorr
ij )+pcorr

ij

if acorr = 1.
(2)

While fusing in this fashion has the potential to completely
recover detection performance—as demonstrated in simulation
in [20]—the posterior expected value of A will be dense, and
may not have the sort of exploitable structure (e.g., low-rank

structure) that enables efficient eigenvector analysis at scale.
In practice, it may also be difficult to estimate the model
parameters, and there may be mismatch with the true model.
We therefore focus on a method for fusing based on a weighted
sum.

When given the two observed graphs, they will be fused as
follows. For each pair of vertices, a fused observation will be
computed as

âij =
1

1 + exp
(

−β0 − β1amiss
ij − β2acorrij

) . (3)

Here the β parameters are the weights of the corrupted obser-
vations. We are operating in the context of logistic regression,
where a linear function of the observations is mapped to an
expected value via the logistic function. Within this context,
values for âij only need to be computed if an edge exists
between vi and vj in one of the observations. Otherwise,
the probability is assumed to be 1/(1 + e−β0), which can
be accounted for by adding a rank-1 matrix to the fused
observations.

Fusing the observations in this way improves the repre-
sentation of our subgraph of interest in the eigenspace, as
demonstrated in Fig. 3. Under the same corruption scenarios as
in Section V-B, we measured the “power” of the subgraph in
the first 10 eigenvectors. Let U be the N × 10 matrix where
each column is an eigenvector of the integrated modularity
matrix for the observed (or fused) graph, and let x ∈ {0, 1}N
be an indicator vector for the subgraph that is emphasized by
the optimized filter. We measure the power of the subgraph
in this space as ∥UTx∥22, i.e., the L2 norm squared of the or-
thogonal projection into the space spanned by the 10 principal
eigenvectors. Using the optimized filter, this will be reduced by
the corruption mechanisms, but can be recovered by fusing the
two observations. Let Ptrue be the power when U is computed
from the true graph, and we will compare the power P from
other cases to this quantity. Fig. 3 provides cumulative density
functions (CDF) demonstrating the probability that a corrupted
(or fused) observation will provide the signal power within
its principal eigenspace, as determined via a Monte Carlo
simulation. As shown in the figure, working with only 15% of
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Fig. 3. Cumulative density functions for the signal power maintained in
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the true (uncorrupted) graph.

the edges can significantly reduce the power of the subgraph
in the top eigenvectors: about half the time less than 50% of
the power remains. The degree-based corruption mechanism in
which about half of the observations are incorrect also reduces
performance, but not usually as drastically, maintaining, on
average, over 62% of the power. By simply averaging the two
observations together, we shift the CDF by over 10%. Finally,
by using the fusion technique of (3), we improve upon this
result, increasing the signal power maintained by an additional
5%.

VI. CONCLUSION

This paper investigates the use of temporal and multi-source
integration to enable detection of known innovation patterns
in scientific literature. Dynamic collaboration networks are
analyzed with the signal processing for graphs framework,
focused principally on eigenspace analysis of graph residuals
integrated over time. The temporal weights are optimized with
respect to a known innovation period surrounding the Britten-
Davidson model for gene regulation, specifically among au-
thors that cite the seminal paper on the model. We demonstrate
that this technique boosts the power of the largest connected
component of this subset of the data to a point where it
can be detected within a low-dimensional projection of the
data. Using two simple error models for graph data, we show
the negative impact of working with a corrupted graph, with
the detected subgraph having its power reduced while being
subsumed by other activity in the principal eigenspace. Using
a simple weighting procedure, we demonstrate that we can
recover the power of the subgraph within this space.

There are numerous potential areas for future development.
One interesting area would be determining an approximation
to the Bayesian fusion method in (2) that would allow the
technique to scale to very large graphs. Another possibility

would be to study optimization of filter coefficients when there
are missing data in the training set, as in [21]. At a higher level,
it would be interesting to determine what other subgraphs can
be emphasized by this technique, and to find what subgraphs
are detected using the same filters in more recent publication
data. A comparative study of which filters detect patterns of
innovation in different scientific fields might also contribute
to a better understanding of the structure of different scientific
practices.
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