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Abstract—A wide variety of application domains is concerned
with data consisting of entities and their relationships or connec-
tions, formally represented as graphs. Within these diverse appli-
cation areas, a common problem of interest is the detection of a
subset of entities whose connectivity is anomalous with respect to
the rest of the data. While the detection of such anomalous sub-
graphs has received a substantial amount of attention, no applica-
tion-agnostic framework exists for analysis of signal detectability
in graph-based data. In this paper, we describe a framework that
enables such analysis using the principal eigenspace of a graph’s
residuals matrix, commonly called the modularity matrix in com-
munity detection. Leveraging this analytical tool, we show that the
framework has a natural power metric in the spectral norm of the
anomalous subgraph’s adjacency matrix (signal power) and of the
background graph’s residuals matrix (noise power). We propose
several algorithms based on spectral properties of the residuals
matrix, withmore computationally expensive techniques providing
greater detection power. Detection and identification performance
are presented for a number of signal and noise models, including
clusters and bipartite foregrounds embedded into simple random
backgrounds, as well as graphs with community structure and re-
alistic degree distributions. The trends observed verify intuition
gleaned from other signal processing areas, such as greater detec-
tion power when the signal is embedded within a less active por-
tion of the background.We demonstrate the utility of the proposed
techniques in detecting small, highly anomalous subgraphs in real
graphs derived from Internet traffic and product co-purchases.
Index Terms—Graph theory, signal detection theory, spectral

analysis, residuals analysis, principal components analysis.

I. INTRODUCTION

I N numerous applications, the data of interest consist of en-
tities and the relationships between them. In social network

analysis, for example, the data are connections between individ-
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uals, such as who knows whom personally, who is in the same
organization, or who is connected on a social networking web-
site. In computer networks, we are often interested in which
computers communicate with one another. In the natural sci-
ences, we may want to know which chemicals interact in a reac-
tion. Across these varied domains, data regarding connections,
relationships, and interactions between discrete entities enhance
situational awareness and diversify analysis by incorporating
additional contextual information.
When working with relational data, it is common to formally

represent the relationships as a graph. A graph is a
pair of sets: a set of vertices, , comprising the entities, and a set
of edges, , denoting relationships between them. Graph theory
provides an abstract mathematical object that has been applied
in all of the above contexts. Indeed, graphs have been used to
model protein interactions [1] and to represent communication
between computers [2]. Graphs—commonly called networks in
practice—are used extensively in social network analysis, with
many graph algorithms focused on detection of communities
[3], [4] and influential figures [5].
As a data structure, graphs have long been utilized by signal

processing practitioners. Analysis of graphs derived from radio
frequency or image data is common, as a graph structure can
help classify similar measurements (see, e.g., [6]). Recent re-
search has also defined traditional digital signal processing ker-
nels—such as filtering and Fourier transforms—for signals that
propagate along edges in a graph [7], [8]. When the graph com-
prises the data itself, rather than a means of storage, significant
complications arise. Graphs are discrete, combinatorial struc-
tures, and, thus, they lack the convenient mathematical con-
text of Euclidean vector spaces. The ability to perform linear
transformations and the analytical tractability of working with
Gaussian noise are not available in general when working with
relational data. Deriving an optimal detector for a small signal
subgraph buried within a large network, then, becomes poten-
tially intractable, as it may require the solution to an NP-hard
problem.
Despite these complications, it is desirable to understand

notions of detectability of small subgraphs embedded within
a large background. The ability to detect small signals in
these contexts would be useful in many domains, from the
detection of malicious traffic in a computer network to the
discovery of threatening activity in a social network. Recent
work in this area has considered subgraph detection from a
variety of perspectives. Work has been done on detection of
specific target subgraphs in random backgrounds [9], with
special attention paid in the computer science and statistics
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communities to planted cliques [10], [11] and planted clusters
[12], [13]. Other work assumes common substructures over
the graph, and detects anomalies based on deviations from the
“normative pattern” via methods such as minimum description
length [14] or analysis of the graph Laplacian [15]. Techniques
such as threat propagation [16], [17] and vertex nomination
[18] consider a cue vertex as a knowledge prior, giving an
initial indication of which vertices are of interest, the objective
then being to find the remainder of the subgraph. Community
detection in graphs is a widely studied related problem [19],
where the communities in the graph are sometimes cast as
deviations from a null hypothesis in which the graph has no
community structure [20].
The objective of the present contribution is to develop a

broadly applicable detection framework for graph-based data.
To apply in these varied domains, this framework should be in-
dependent of the specific application. We focus specifically on
the uncued anomalous subgraph detection problem, where the
goal is to detect the presence of a subgraph that is a statistical
outlier without a “tip” vertex provided as a cue. As graphs of
interest are often extremely large, the framework should have
favorable scaling properties as the number of vertices and edges
grows. To gain insight into properties that influence subgraph
detectability, the framework will ideally have a natural metric
for signal and noise power to enable discussion of quantities
like signal-to-noise ratio that are intrinsic to signal processing
applications.
In this paper, we present a spectral framework to address the

uncued subgraph detection problem. This framework is based
on a regression-style analysis of residuals in which an observed
random graph is compared to its expected value to find outliers.
We analyze the graph in the space of the principal eigenvectors
of its residuals matrix, which offers two advantages: it allows us
to use results from spectral graph theory to elucidate the notion
of subgraph detectability, and it works within a linear algebraic
framework with which many signal processing researchers are
familiar. Within this framework, the spectral norm provides a
good metric for signal and noise power, as we demonstrate an-
alytically and empirically. This framework also enables the de-
velopment of algorithms that work in a low-dimensional space
to detect small anomalies, several of which are discussed in this
paper.
The remainder of this paper is organized as follows. In

Section II, we formally define the subgraph detection problem.
Section III provides a brief summary of related work on sub-
graph detection and graph residuals analysis. Section IV details
our proposed subgraph detection framework. In Section V, we
outline several algorithms for anomaly detection within the
framework. Section VI presents detection results for several
simulated datasets, and in Section VII we demonstrate these
techniques on real datasets. Finally, in Section VIII, we sum-
marize and discuss open problems and ongoing work.

II. PROBLEM MODEL

A. Definitions and Notation
In the subgraph detection problem, the observation is a graph

. We will denote the sizes of the vertex and edge
sets as and , respectively. A subgraph

of is a graph in which and
, where the Cartesian product is the set of

all possible edges in a graph with vertex set . In this paper, we
consider graphs whose edges are unweighted and undirected.
We will allow the possibility of self-loops, meaning an edge
may connect a vertex to itself. Since edges have no weight,
two graphs will be combined via their union. The union of two
graphs, and , is defined as

.
Working in a spectral framework, we will make use of matrix

representations for graphs. The adjacency matrix of
is a binary matrix. Each row and column is associated

with a vertex in . This implies an arbitrary ordering of the ver-
tices with integers from 1 to , and we will denote the th vertex
. Then is 1 if there is an edge connecting and , and is

0 otherwise. Similarly, let be the adjacency matrix
for the signal subgraph. Since we consider undirected graphs,
and are symmetric. Matrix norms will also be used in the

discussion of signal and noise power. Unless otherwise noted,
the matrix norm will be the spectral norm, i.e., the induced
norm,

(1)

which is equivalent to the absolute value of the largest-magni-
tude eigenvalue of the matrix.
Our framework is focused on detection of signals within a

random background. The analysis presented in this paper is
based on the assumption of Bernoulli random graphs, where
the probability of an edge between and is a Bernoulli
random variable with expected value . Note that the edge
probabilities may be different for all pairs of vertices. Since
the presence of each edge is a Bernoulli random variable, the
expected value of is given by . We refer to as
the probability matrix of the graph.
Another important notionwhen dealing with graphs is degree.

A vertex’s degree is the number of edges adjacent to the vertex.
The observed degree of vertex will be denoted , and its ex-
pected degree is denoted . Note that
and .1 The vectors of the observed and expected
degrees will be denoted and , respectively. The volume of
the graph, , is the sum of the degrees over all vertices.

B. The Subgraph Detection Problem
In some cases, the observed graph will consist of only typ-

ical background activity. This is the “noise only” scenario. In
other cases, most of exhibits typical behavior, but a small
subgraph has an anomalous topology. This is the “signal-plus-
noise” scenario. In this case, the noise graph, denoted

, and the signal subgraph, , are com-
bined via union.
The objective, given the observation , is to discriminate be-

tween the two scenarios. Formally, we want to resolve the fol-
lowing binary hypothesis test:

(2)

1Using this convention, a self-loop only increases a vertex’s degree by 1.
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Thus, we have the classical signal detection problem: under
the null hypothesis , the observation is purely noise, while
under the alternative hypothesis , a signal is also present.
Here and are both random graphs, with drawn from
the noise distribution and drawn from the signal distribu-
tion. We will only consider cases in which the vertex set of the
signal subgraph is a subset of the vertices in the background,
i.e., .

III. RELATED WORK

While there are many flavors of subgraph detection research,
not all of themwork under the same assumptions as in this paper.
For example, we consider a variety of noise models, which may
not have the “normative pattern” required to use techniques
based on common subgraphs [14], [15]. Research into anomaly
detection in dynamic graphs by Priebe et al. [21] uses the history
of a node’s neighborhood to detect anomalous behavior, but this
would not apply in the case of static graphs, which is the focus of
this work. As our interest is in uncued techniques, we operate in
a different context from the work in [16]–[18]. These methods
are complementary to the techniques outlined in this paper, as
a set of outlier vertices could be used to seed a cued algorithm
and do further exploration.
Previous work has considered optimal detection in the same

context we consider in this paper, though in a restricted setting.
In [9], the authors consider the detection of a specific foreground
embedded (via union) into a large graph in which each pos-
sible edge occurs with equal probability (i.e., the random graph
model of Erdős and Rényi). In this setting, the likelihood ratio
can be written in closed form, as demonstrated by the following
theorem.
Theorem 1 (Mifflin et al. [9]): Let denote the random graph

where each possible edge occurs with equal probability , and
let denote the target graph. The likelihood ratio of an ob-
served graph is

(3)

Here denotes the number of occurrences of in the
graph. The applicability of this result, therefore, requires a
tractable way to count all subgraphs of the observation that
are isomorphic with the target. This is NP-hard in general [22],
although there may be feasible methods to accomplish this for
certain targets within sparse backgrounds.
While the previous example requires a complicated proce-

dure, detection of random subgraphs embedded into random
backgrounds may be an even harder problem. Take, for ex-
ample, the detection problem where the background and fore-
ground are both Erdős-Rényi, i.e., when the null and alternative
hypotheses are given by

-

(4)

In this situation, we can derive an optimal detection statistic.

Theorem 2: For an observed graph , let be a
subset of of size , and be the set of all edges
existing between the vertices in . The likelihood ratio for re-
solving the hypothesis test in (4) is given by

(5)

where .
A proof of Theorem 2 is provided in Appendix A. Even in

this relatively simple scenario, computing the likelihood ratio
in (5) requires, at least, knowing how many -vertex induced
subgraphs contain each possible number of edges. In [12], it is
shown that some computable tests asymptotically achieve the
information-theoretic bound for dense backgrounds, but there
are no known polynomial-time algorithms that achieve the
bound in a sparse graph [13]. For more complicated models,
calculating the optimal detection statistic is likely to be even
more difficult.
The subgraph detection framework presented in this paper is

based on graph residuals analysis. The residuals of a random
graph are the difference between the observed graph and its ex-
pected value.2 For a random graph , we analyze its residuals
matrix

(6)

In the area of community detection, a widely used quantity to
evaluate the quality of separation of a graph into communities
is modularity, defined in [20]. The modularity of a partition

is defined as

(7)

where are disjoint subsets of covering the entire set, is
the proportion of edges entirely within , and is the propor-
tion of edge connections in , i.e.,

(8)

with denoting half the number of edges between and
for (half to prevent from counting the edge in both and

). Note that is the expected proportion of edges within if
the edges were randomly rewired (i.e., the degree of each vertex
is preserved, but edges are cut and reconnected at random). In-
deed, if the edge proportions are the only thing maintained in the
rewiring, the fraction of edges from any community that con-
nect to a vertex in will be . Thus, the proportion of the
total edges from to will be . Taken as an analysis
of deviations from an expected topology, modularity is a resid-
uals-based quantity.
In the community detection literature, numerous algorithms

exist to maximize for a given number of communities. In [3],
an algorithm is proposed by casting modularity maximization as
optimization of a vector with respect to amatrix. Themodularity

2This is distinct, it should be noted, from the notion of residual networks when
computing network flow [22].
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matrix is given as the observed minus the expected adjacency
matrices, i.e., a matrix of the form in (6). To divide the graph into
two partitions in which modularity is maximized, we can solve

(9)

and declare the vertices corresponding to the positive entries of
to be in one community, with the negative entries indicating

the other. This technique will optimize for a partition into two
communities. Since this is a hard problem, it is suggested that
the principal eigenvector of

(10)

is computed—thereby relaxing the problem into the real num-
bers—with the same strategy of discriminating based on the
sign of eigenvector components used to divide the graph into
communities.
This is an example of a community detection algorithm based

on spectral properties of a graph, which have inspired a sig-
nificant amount of work in the detection of communities [3],
[23]–[25] and global anomalies [2], [26], [27]. In this paper, we
leverage these same properties within a novel framework for
detection of small subgraphs whose behavior is distinct from
background activity.

IV. DETECTION FRAMEWORK

A. Framework Overview
The subgraph detection framework we propose is based on

the analysis of graph residuals, as expressed by (6). We may be
given , or it may be estimated from the observed data. This
is similar to analysis of variance in linear regression: We com-
pare the observed data to its expectation, and if the deviations
from the expected value are not consistent with variations due
to noise, then this may indicate the presence of a signal (in this
case an anomalous subgraph).
To reduce the dimensionality of the problem, this framework

deals with a graph’s spectral properties. Using the principal
components of the residuals matrix, we can consider a graph in
the linear subspace in which its residuals are largest. For some
established models, there is also theory regarding the eigen-
values and eigenvectors of these matrices [28]. This technique
is used in community detection, and is similar to models in
which each vertex has a position in a latent Euclidean space
(see, e.g., [29]). The presence of certain anomalous subgraphs
will alter the projection of a graph into this Euclidean residuals
space. Working within this space, we can compute test statistics
and, from these, resolve the hypothesis test (2). While these will
not be optimal detection statistics as in Theorems 1 and 2, this
framework can be applied to a wide variety of random graph
models, is computationally tractable, and, as we demonstrate in
subsequent sections, is quite useful for resolving the subgraph
detection problem in a variety of scenarios.
We use the modularity matrix from (9) as our baseline

residuals model. This has several advantages. First, the “given
expected degree” model has been well-studied, and we know
properties of its eigenvalues and eigenvectors [30]. Second, the
model’s expected value term is low-rank, which allows easy

computation of the eigenvectors of without computing a
dense matrix (as noted in [3] and described in [31]).
This makes the model computationally tractable for large
graphs where algorithms more expensive than can be
prohibitive. This model also has a simple fitting procedure. The
observed degree is, in fact, the maximum likelihood estimate
for the expected degree in the version of this model where each
possible edge is a Poisson random variable [32]. For small
edge probabilities, this is a good approximation for Bernoulli
random variables. Finally, this model has demonstrated utility
for intercommunity behavior; i.e., the probability of connec-
tions between vertices in different communities seems to follow
such a model (the reason that observed degree was added as a
covariate in [33]).

B. Power Metrics

As mentioned previously, one important aspect of a signal
processing framework is a metric for signal and noise power.
This provides a quantity that enables an intuitive assessment of
the detectability of a signal in a given background. Again, vector
signals with Gaussian noise provide an intuitive metric based on
vector norms, while such quantities are less clear in the context
of random graphs.
There are several intuitive quantities that could be used for

signal or noise power in the context of random graphs. One nat-
ural choice would be number of edges, or perhaps average de-
gree. It seems intuitive that a signal graph with a large number
of edges would be easier to detect, and that greater variance in
the number of edges in the background would make this more
difficult. A related linear algebraic quantity would be the Frobe-
nius norm of the residuals matrix, i.e., the sum of the squared
residuals over all ordered pairs of vertices. This would consider
each edge probability separately, emphasizing the presence of
less-likely edges.
These metrics, however, have a few shortcomings. In both

cases, the signal power measurement will be exactly the same
for any subgraph with the same number of edges. Consider two
different trees: a path, in which each edge can be traversed while
visiting each vertex exactly once; and a star, where one vertex
is connected to all others. Both will have edges and a
Frobenius norm of . The star, however, is much more
concentrated on one vertex, and this will cause it to stand out
more in the eigenspace (it is also much less likely to occur by
chance if edges are randomly placed). The power metric we use
should provide an indication of a subgraph’s likelihood to stand
apart from the background in the eigenspace, since this is the
space in which we consider the data.
Working within a spectral framework, the spectral norm de-

fined in (1) provides a natural power metric. Using
as a metric for noise power and as a metric for signal
power, we can determine the detectability of a subgraph in the
principal eigenspace. To see this, we first define a new matrix,

, which is the adjacency matrix of ,
i.e., the edges of the anomaly that do not appear in the back-
ground. For deterministic foreground graphs, if is 1, then
is a random variable whose value is 1 with probability
and 0 with probability . For a random Bernoulli foreground,
if , then is 1 with probability . Thus,
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when the subgraph is embedded within vertices where the in-
teraction level is low, . For convenience, we will
also denote a partition of the residuals matrix as

(11)

where the rows and columns have been permuted so that the
subgraph vertices are those with the smallest indices. The sub-
matrix is the background residuals within the subgraph ver-
tices, is the residuals occurring between the subgraph and
the rest of the graph, and includes only the residuals within
the complement of the subgraph vertices.
If the spectral norm of the signal subgraph is sufficiently large

with respect to the background power, the subgraph will dom-
inate the principal eigenvector of the residuals matrix. This is
captured in the following theorem, a proof of which is provided
in Appendix B.
Theorem 3: Let be the residuals matrix of a graph drawn

from an arbitrary Bernoulli graph process, and be the adja-
cency matrix of the subgraph that does not include edges in the
background graph. If is the unit eigenvector associated with
the largest positive eigenvalue of (the residuals matrix
after embedding), then assuming , the
components of associated with only the signal vertices, de-
noted , is bounded below as , where

(12)

Consider the implication of Theorem 3 for a fixed back-
ground, when embedding on a fixed subset of vertices. The
theorem states that as the difference between the signal power
and the power of the noise among the non-signal vertices

becomes much larger than the noise power
involving subgraph vertices , the principal
eigenvector will become concentrated on the foreground ver-
tices. A few aspects of this theorem confirm intuition from
other signal processing areas. First, if there is significant
noise activity within the subgraph vertices, then may be
significantly smaller than , and may be relatively
large. This means that a signal placed in strong noise will be
difficult to detect, which is always the case in detection prob-
lems. Also, the bound in the theorem shows that if a relatively
strong subgraph is embedded where there is typically very
little activity, and where there is relatively little interaction
with the remainder of the graph (i.e., small and ),
the subgraph will be much easier to detect. Put in traditional
signal processing language, the signal will be much easier to
detect when it is less correlated with the noise. Working within
this framework, we see the same properties of the interaction
between signal and noise that affect detectability in domains
like radar and communications.
An empirical example is provided in Fig. 1. In this case, a

4096-vertex Erdős-Rényi graph (see Section VI.A1) is gener-
ated, with a 15-vertex subgraph with 90% edge probability em-
bedded. The horizontal axis is , where is the expres-
sion in (35) in Appendix B. The bound holds for all cases consid-
ered, and the empirical results often are an order of magnitude

Fig. 1. Empirical comparison to bound in Theorem 3. The bound holds for each
case in this scenario with a 4096-vertex random background and a 15-vertex
dense signal subgraph, though it is only tight for cases where .

Fig. 2. Distributions of vertex components in principal eigenvectors: a his-
togram of components in the first eigenvector (left), with a comparison to a
Laplace distribution, and a scatterplot (right) in the principal two-dimensional
subspace, demonstrating its radial symmetry.

below the maximum for both the higher and lower edge proba-
bilities ( and , respectively). Only
when a case is considered where there is no background con-
nectivity within the subgraph vertices is the bound approached
more closely.

V. DETECTION ALGORITHMS

For relatively large subgraph anomalies, a simple “energy de-
tector” based on the spectral norm of the residuals matrix will
provide good detection performance. It is desirable, however,
to be able to detect much smaller subgraphs, which may not
stand out in the principal eigenvector. A few techniques have
been developed within this framework to detect subtler anoma-
lies [34]–[37], which we outline in this section.

A. Chi-Squared Statistic in Principal Components

The first algorithm is based on the symmetry of the projec-
tion of into its two principal components. This will enable
the detection of subgraphs that do not stand out in the first
eigenvector. We have empirically observed for several random
graph models that, when projecting the residuals into their prin-
cipal two components, the result is rather radially symmetric.
For sparse graphs, the entries in the principal eigenvectors re-
semble a Laplace distribution, as shown on the left in Fig. 2,
which is consistent with behavior observed in sparse Erdős-
Rényi graphs. The right-hand plot in Fig. 2 demonstrates the
symmetry of the residuals in the top two eigenvectors.
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When an anomaly is embedded within the graph, as previ-
ously discussed, the subgraph vertices will stand apart from the
background. Therefore, we compute a statistic that is based on
symmetry in this space to detect the presence of an anomaly.
The detection statistic is a chi-squared statistic based on a 2
2 contingency table, where the table contains the number of

vertices projected into each quadrant of the two-dimensional
space. (That is, the number of rows of , where and
are (column) eigenvectors of , fall into each quadrant.) This
yields a 2 2 matrix of the observed numbers of
points in each section. From the observation, we compute the
expected number of points under the assumption of indepen-
dence, , where

(13)

The chi-squared statistic is then calculated as

(14)

and, to favor radial symmetry, we maximize the statistic over
rotation in the plane, computing

(15)

The statistic is used to detect an anomalous subgraph.
When the spectral norm is a reliable detection statistic,

thresholding along the principal eigenvalue is often an effective
method to identify the vertices that are exhibiting anomalous
behavior. Working in multiple dimensions, while it enables the
detection of smaller subgraphs, makes the process of identifica-
tion more complicated. In this setting, we use a method based
on -means clustering to identify the subgraph vertices. Within
the two-dimensional space, we compute a small number of
clusters and declare the smallest cluster with at least a minimum
number of vertices to be the signal subgraph.

B. Eigenvector Norms
It is also desirable to detect signal subgraphs that do not stand

out in the principal two components of the residuals matrix, and
extending the algorithm of Section V.A to an arbitrary number
of dimensions may not be feasible. One method to detect such
anomalies relies on the subgraphs being separable in the space
of a single eigenvector. As mentioned previously, the entries
in the eigenvectors of the background alone resemble numbers
drawn from a Laplace distribution. Thus, if a subgraph were to
stand out in a single eigenvector, that eigenvector will have a
substantially smaller norm than for the background alone.
The norm of a vector , is much smaller
when it is concentrated on a small subset of entries, provided
that it is unit-normalized in an sense. For this reason, the

norm serves as a proxy for sparsity in applications such as
compressed sensing [38].
The following algorithm enables detection when an eigen-

vector is concentrated on the vertices of the subgraph. This will
occur when, for example, a dense subgraph is embedded on rel-
atively low degree vertices, as discussed in Appendix C. We

Fig. 3. An example of using eigenvector norms for subgraph detection.
When a small, dense subgraph is embedded into a background with a skewed
degree distribution, the norm of one of the eigenvectors of the residuals ma-
trix becomes much smaller than usual, as shown on the left. Under the null hy-
pothesis, the largest negative deviation from the mean will resemble a Gumbel
distribution, plotted on the right.

compute the eigenvectors corresponding to the largest eigen-
values. By measuring cases with no embedding present, we ob-
tain themean and standard deviation for the norm of the
th eigenvector. For each of the eigenvectors , we
subtract the mean and normalize by the standard deviation. The
smallest (i.e., most negative) value is then used as a test statistic,
since we are interested in cases where the norm is small. The test
statistic is given by

(16)

An example demonstrating this method is provided in Fig. 3.
The example uses a 4096-vertex graph with a skewed degree
distribution (using the CL model described in Section VI.A2),
with a 15-vertex subgraph with average degree 10.5 randomly
embedded into the background. The analysis is run on the 100
eigenvectors associated with the largest positive eigenvalues.
While the norms of most eigenvectors in the resulting ma-
trix fall within three standard deviations of the mean for their
index, the norm of the 6th eigenvector is over 10 standard
deviations below the mean, which is extremely unlikely to occur
under the null hypothesis. Under the null hypothesis, the test
statistic (16) will resemble a Gumbel distribution (commonly
used to model extreme values), as shown in the plot on the right.
When an embedding occurs that creates a deviation as large as
that in the left-hand plot, it will take on a value much larger than
the maximum under normal circumstances.
The occurrence of tightly connected subgraphs highly aligned

with eigenvectors was documented independently in [39], and
a similar anomaly detection method using eigenvector kurtosis
in [40]. Here, we use this phenomenon to find subgraphs whose
internal connectivity is much larger than the expectation, given
the background model. When an anomaly is detected according
to (16), the corresponding eigenvector is thresholded to deter-
mine the subgraph vertices.

C. Sparse Principal Component Analysis
While analysis of eigenvector norms enables the detection

of some subgraphs that do not separate in the principal com-
ponents of the residuals space, this technique has some short-
comings. In particular, as consecutive eigenvalues get closer
together, the direction of the eigenvectors becomes unstable.
Therefore, we cannot rely on the test statistic being sufficiently
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changed because an eigenvector points in the direction of the
subgraph.
There is, however, a similar technique that enables the detec-

tion of small subgraphs with large residuals. Rather than first
computing the eigenvectors of the residuals matrix and then
finding an eigenvector with a small norm, we can find a
vector that is nearly an eigenvector whose norm is con-
strained. This is a technique known as sparse principal com-
ponent analysis (sparse PCA) [41]. This method has been used
in the statistics literature to find high variance in the space of a
limited number of variables. We utilize it here for a similar goal:
to find large residuals in the space of a small number of vertices.
The problem is formulated as follows. The goal is to find a

vector that is projected substantially onto itself by the residuals
matrix, but with few nonzero components. Put formally, the ob-
jective is to solve

(17)

where denotes the quasi-norm (the number of nonzero
components in a vector). This, however, is an integer program-
ming problem and is NP-hard. We therefore use a relaxation
with an constraint, recast as a penalized optimization:

(18)

This problem is still not in an easily solvable form, due to the
quadratic equality constraint. We use an additional relaxation,
following the method of [41], to achieve a semidefinite program
that can be solved using well-documented techniques:

(19)

where denotes the matrix trace, replaces each entry
in a matrix with its absolute value, and is the set of posi-
tive semidefinite matrices in . The principal eigenvector
of , denoted , is then returned (and should be sparse, given
the constraints). The subgraph detection statistic is . If no
small subgraph has sufficiently large residuals, the vector should
be relatively diffuse and have a relatively large norm. For
vertex identification, the sparse principal component is thresh-
olded, and the vertices corresponding to the components of the
vector greater than the threshold are declared to be part of the
anomalous subgraph.
One drawback of this technique is its computational com-

plexity. As mentioned in the introduction, one goal of this work
is to develop techniques that scale to very large graphs. The
algorithms described in Sections V.A and V.B rely on a par-
tial eigendecomposition. Using the Lanczos method for com-
puting eigenvectors and eigenvalues of a matrix, and lever-
aging sparseness of the graphs, this requires a running time of

, where is the number of restarts
in the algorithm [42]. Thus, if the number of eigenvectors to
compute is fixed, this algorithm scales linearly in the number of
edges in its per-restart running time. Sparse PCA, as described
in [41], has a running time that is , where
controls accuracy of the solution. This implies that sparse PCA

will not scale to extremely large datasets without additional op-
timization, which is a problem for future work. We present re-
sults using this technique to demonstrate the feasibility of de-
tecting exceptionally small anomalies using the framework out-
lined in this paper.

VI. SIMULATION RESULTS

A. Noise Models

There are many models for random graphs, with varying
degrees of complexity. In this section, we outline three
random models that will be used for background noise in our
experiments.
1) Erdős-Rényi (ER) Random Graphs: The simplest random

graph model was proposed by Erdős and Rényi in [43]. In this
model, given a vertex set and a number , an edge
occurs between any two vertices in with probability . In
matrix form, for all and . This model is subsumed
by the model for a random graph with a given expected degree
sequence assumed by (9), where, in this case, all vertices have
the same expected degree.
2) Chung-Lu (CL) Random Graphs: The “given expected

degree” model has been studied extensively by Chung and Lu
[30]. Similarly to the dynamic preferential attachment model of
[44], in this model, the probability of two nodes sharing a con-
nection increases with their popularity. Formally, each vertex
is given an expected degree , and the probability of vertices
and sharing an edge is given by ,

yielding a rank-1 probability matrix

(20)

Using the observed degree as the expected degree—shown
to be an approximately asymptotically unbiased estimator in
[45]—the standard formulation of the modularity matrix (10)
perfectly fits this model for background behavior.
3) R-MAT Stochastic Kronecker Graphs: To include a

slightly more complicated model, we also consider the Recur-
sive Matrix (R-MAT) stochastic Kronecker graph [46]. In this
model, a base probability matrix

(21)

is given, where and are nonnegative values that sum
to 1, and edge probabilities are defined by the -fold Kronecker
product of , denoted . This results in
matrices with vertices. The graph is generated by an iterative
method where one edge is added at each iteration with proba-
bilities defined by . If the total number of iterations is , the
edge probabilities are given by

(22)

If the base probability matrix has rank 1, this generator will pro-
duce graphs with a similar structure to the CL model. When this
is not the case, however, this model creates graphs with mild
community structure, as shown in [46], thereby presenting a
more challenging noisy background for our subgraph detection
framework.
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Fig. 4. Sparsity patterns for background graphs: an R-MAT graph (left), a
Chung-Lu graph (center), and an Erdős-Rényi graph (right).

These three models represent varying degrees of complexity
for the detection framework. The ER model is overspecified by
the given expected degree model used in the modularity ma-
trix, the CL model matches the formula exactly, and the R-MAT
model is mismatched due to its mild community structure. In
the simulations in Section VI.C, the R-MAT graphs are gener-
ated using a base probability matrix with

, and , and the algorithm is run for itera-
tions, resulting in an average degree of approximately 12. The
graph is unweighted and its directionality is removed via the
“clip-and-flip” procedure as in [46], i.e., the edges below the
main diagonal in the adjacency matrix are removed, and those
above the main diagonal are made undirected. For CL back-
grounds, the expected degree sequence is defined by the edge
probabilities of the R-MAT background, i.e., ,
where is defined in (22). The ER backgrounds use an edge
probability that yields an average degree the same as the more
complicated models.
Example sparsity patterns of the adjacency matrices, each

with 1024 vertices, are shown in Fig. 4. Note the moderate com-
munity structure in the R-MAT graph. While the CL graph has
vertices of varying degree, it does not have the same structure
of the R-MAT. One particularly visible difference is the lack of
connections between low-degree vertices and high-degree ver-
tices in the R-MAT graph, seen in the upper-right and lower-left
corners of the matrix. Both of these graphs contain more varia-
tion than the ER graph, where the uniform randomness can be
seen in its sparsity pattern.

B. Signal Subgraph
Two random graph models are used for the anomalous signal

subgraph. In one case, an ER graph with probability parameter
is generated and combined with randomly selected vertices

from the background. Here, the expected adjacency matrix is an
matrix where every entry is , and thus has spectral

norm . The second subgraph we consider is a random bi-
partite graph, where the vertex set is split into two subsets and
no edge can occur between vertices in the same subset. Letting

and be the numbers of vertices in each subset, there are
possible edges between the two vertex subsets, and, as

in the ER subgraph case, each of these possible edges is gener-
ated with equal probability . For the bipartite subgraph, the
expected adjacency matrix has the form

(23)

which has spectral norm . This subgraph provides us
with a signal where the average degree does not equal the spec-
tral norm (unless ), demonstrating that the spectral
norm is a more appropriate power metric.

C. Monte Carlo Simulations

The results in this section detail the outcomes of several
10 000-trial Monte Carlo simulations. In each simulation, a
background graph is generated and may or may not have a
signal subgraph embedded on a subset of its vertices. The
subgraph may be a 15-vertex cluster or a bipartite graph with

and . Test statistics outlined in Section V are
computed on the resulting graph, creating several empirical
distributions that can be used to discriminate between
and . Residuals matrices are formed using either the exact
expected value,3 or a rank-1 approximation based on the
observed degrees, as in (9). The expected degree sequence
from the R-MAT model is used for CL backgrounds, and ER
backgrounds use the same average degree. For R-MAT and CL
backgrounds, we consider cases where the foreground vertices
are selected uniformly at random from all background vertices,
and cases where they are randomly selected from the set of
vertices with expected degree at most five.
For 4096-vertex graphs, ER graphs always achieved near-

perfect detection performance. Identification and detection per-
formance for CL and R-MAT backgrounds are summarized in
Fig. 5. A few phenomena in the results confirm our intuition.
First, note that CL backgrounds have extremely similar perfor-
mance, whether the expected value term is given or estimated.
This is because the observed degree is a good estimate for ex-
pected degree, and the small embedding has a minimal effect on
the expected value term, as shown in Appendix D. (The small
but noticeable difference when using a bipartite foreground em-
phasizes the impact of the number of subgraph vertices.) The
R-MAT backgrounds have much more substantial performance
differences, due to the model mismatch. In fact, when the true
expected value is given, performance is better than with the CL
background. This is likely due to the lower variance in the noise,
caused by smaller connection probabilities among low-degree
vertices. Detection performance improves going from the spec-
tral norm statistic to the chi-squared statistic, and improves fur-
ther when analyzing the eigenvector norms. Also, when the
subgraph is embedded only on vertices with expected degree at
most five, performance significantly increases for norm anal-
ysis, while it degrades for the other statistics (since it is likely
to be more orthogonal to the principal eigenvectors). Note also
that, for the spectral norm and chi-squared statistics, the bipar-
tite embedding is more detectable than the cluster with the same
average degree, since the bipartite foreground has a higher spec-
tral norm. This does not hold for the norm statistic, since
the cluster embedding, while less powerful, is concentrated on
a smaller subset of vertices, making it more detectable using this
statistic.
One interesting aspect of the norm technique is its

non-monotonic behavior when using the estimated rank-1 ex-
pected value. In both detection and identification, performance
improves as the subgraphs increase in density up to a certain
point, after which performance degrades and then improves
again. This is due to clustering of eigenvalues caused by the
model mismatch, as shown in Fig. 6. The figure presents a

3Due to time and memory constraints, a rank-100 approximation for the
R-MAT expected value was used instead of the true probability matrix.
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Fig. 5. A summary of detection and identification performance. The equal error rate (EER) for each background and foreground is shown as the average foreground
degree increases from 6 to 15. Results are shown for cluster subgraphs (solid line) and bipartite subgraphs (dashed line), for R-MAT graphs with the true expected
value , R-MAT graphs with an estimated rank-1 expected value , CL graphs with given expected degrees , and CL graphs using observed degrees .
Performance improves as the test statistic goes from the spectral norm (left column), to the chi-squared statistic (center column), to the largest deviation in norm
(right column). Detection performance with the norm-based statistic improves when the subgraph is embedded on low-degree vertices (second row), rather
than choosing the vertices uniformly at random (first row). The same performance trends typically hold for the vertex identification algorithms (uniform random
embedding in third row, degree-biased embedding in fourth row), shown here in terms of precision at a 35% recall rate. The non-monotone behavior using
norms is caused by a cluster of larger eigenvalues in the R-MAT background, which, as discussed in Appendix C, makes detection more difficult with this method.

histogram of eigenvalues for the R-MAT graph minus the esti-
mated rank-1 expected value matrix, . (The vertical
axis is the average number of eigenvalues that fell into a given
bin over the 10 000Monte Carlo trials.) Most of the eigenvalues
are below 12, while there is always 1 that is greater than 16
and 11 in the cluster that spans approximately 12 to 15. Since,

as discussed in Appendix C, having eigenvalues that are close
together hinders performance with this method, performance
improves when the subgraph can be localized in an eigenvector
as its eigenvalue approaches the gap at 12, but it will be more
difficult once it falls in the cluster of larger values. Using the
true expected value instead of the rank-1 approximation does
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Fig. 6. Histogram of eigenvalues from an R-MAT matrix using an estimated
rank-1 expected value. The two clusters of larger eigenvalues are responsible
for the non-monotonic behavior in the -norm statistic shown in Fig. 5.

not yield this behavior, since there is no model mismatch.
The mismatch between R-MAT and the rank-1 expected value
also causes the slight degradation in performance using the
chi-squared statistic before it rapidly improves. This may be
because the embedded subgraph actually improves the sym-
metry of the projection by balancing out the mismatch, before
finally overpowering it.
The identification results on the bottom half of Fig. 5 follow

similar trends, with one notable exception. Performance is
shown in terms of precision at a 35% recall rate (precision is
emphasized since the foreground vertex set is much smaller
than the background). While the -means-based identification
method (center column, using three clusters and a subgraph
threshold of five vertices) typically improves performance
over thresholding of the principal eigenvector (first column)
for cases where precision is relatively low, it actually hinders
performance in cases where precision is high. This shows that
a subgraph that separates well along the first eigenvector will
not necessarily be equally detectable via -means, possibly due
to spreading in the second dimension.
Since sparse PCA has a much greater computational burden,

we carried out a more limited set of experiments on smaller
graphs. In each trial, a 512-vertex background graph is gener-
ated according to either an R-MAT or ER model. The R-MAT
graphs use the same probability matrix as in the previous
experiment, and the ER graphs have equal expected volume. In
each case, we use an estimated rank-1 expected value, and use
the DSPCA software package [47] to solve (19). Detection and
identification performance are shown in Fig. 7. These results
demonstrate the detection of a 7-vertex, 80% dense subgraph
in the R-MAT background or a 5-vertex, 85% dense subgraph
in an ER background. Sparse PCA yields markedly superior
performance to the three methods used in Fig. 5. By using this
more costly technique, much smaller, subtler anomalies can
be detected, using the same principles as the less expensive
algorithms.

VII. RESULTS ON APPLICATION DATA

Two network datasets were downloaded from the Stanford
Network Analysis Project (SNAP) large graph dataset collec-
tion (available at http://snap.stanford.edu/data). One dataset
consists of product co-purchase records on amazon.com, where

Fig. 7. Detection and identification results using sparse PCA. In both an
Erdős-Rényi background (top row) and an R-MAT background (bottom row),
sparse PCA significantly outperforms the other algorithms. Similar perfor-
mance gaps are seen in detection performance (left column) and identification
(right column).

Fig. 8. Eigenvector norms in application datasets: an amazon.com product
co-purchase network (left) and an autonomous system network (right).

each of the 548 552 vertices represents a product, and a directed
edge from vertex to vertex denotes that when product is
purchased, product is frequently also purchased [48]. The
other dataset has 1 696 415 vertices, representing nodes on the
Internet, taken from autonomous system traceroutes in 2005
[49]. The edges in this graph are undirected and represent
communication links between nodes. In both cases, the 150
eigenvectors corresponding to the largest positive eigenvalues
of the residuals matrices were computed, and subgraphs were
analyzed that align with eigenvectors with small norms.
In the amazon.com co-purchase network, edges are directed,

and each vertex has at most five outward edges.We use the sym-
metrizedmodularity matrix introduced in [50] as a residuals ma-
trix. As shown on the left in Fig. 8, many of the eigenvectors
have small norms, due to frequent co-purchase of small, rel-
atively isolated sets of products. We consider the two smallest

norms, corresponding to the 23rd and 135th largest eigen-
vectors. These eigenvectors are concentrated, respectively, on a
53-vertex subgraph with the maximum possible number of in-
ternal edges (265) and a 44-vertex subgraph with 215 internal
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edges of a possible 220. Neither subgraph has any outgoing
edges, and both have fewer than 20 incoming edges. To com-
pare this to the graph as a whole, we took one million samples
of comparable size by performing random walks on the graph.
Of all 53-vertex samples, only 609 have average internal degree
greater than 4.5, and of those, none has fewer than 20 external
edges. Similarly, among the random samples with 44 vertices,
108 have average internal degree greater than 4.4 and fewer
than 40 external edges. Each of these 108 samples, however,
is primarily outside of the 150-dimensional space spanned by
the computed eigenvectors—an indicator vector for the sample
vertices in each case is nearly in the null space of the matrix
of eigenvectors. Thus, both of these subgraphs are anomalous
with respect to random samples of similar size, when consid-
ering portions of the graph that are well-represented in the com-
puted subspace.
The eigenvector norms in the autonomous system graph

generally follow a trend, getting larger as the eigenvalues get
smaller (indices increasing). The two vectors highlighted in the
figure—the 10th and 94th—were considered for further inves-
tigation, since they have the largest local deviations. The 10th
eigenvector is aligned with a 70-vertex subgraph with over 99%
of its possible edges, and the 94th eigenvector is aligned with a
28-vertex subgraph with over 81% of its possible edges. These
subgraphs consisted of primarily high-degree vertices, with av-
erage external degrees of about 957 and 577 for the 70- and
28-vertex subgraphs, respectively. We took one million random
samples from among the vertices with degree greater than 500,
with sizes commensurate with the number of high-degree ver-
tices in each subgraph (68 of 70 and 17 of 28). Among the three
68-vertex samples with density greater than 80%, all share at
least 55 vertices with the detected subgraph. Of the 17-vertex
samples, 713 are at least 75% dense and have fewer than 16 000
external edges (the 17-vertex subset is 93% dense and has about
12 500 external edges). Of these 713 samples, all are signifi-
cantly aligned with eigenvectors 10 and 18, both of which also
have extremely small norms as shown in the figure. Thus, the
only subgraphs among the samples with similar densities and
external degrees would be detected through analysis of eigen-
vector norms.

VIII. CONCLUSION
In this paper, we present a spectral framework for the uncued

detection of small anomalous signals within large, noisy back-
ground graphs. This framework is based on analysis of graph
residuals in their principal eigenspace. We propose the spectral
norm as a power metric, and several algorithms are outlined,
with varying degrees of complexity. In simulation, we demon-
strate the utility of the algorithms for detection and identification
of two foregrounds within three background models, with the
more computationally complex methods providing better detec-
tion performance. In two real networks, subgraphs detected via
one of the algorithms are shown to be anomalous with respect
to random samples of the background.
The framework presented in this paper demonstrates the

utility of considering the anomalous subgraph detection
problem in a signal processing context. There are myriad av-
enues of investigation from this point. Recent work has focused

on extending this framework to time-varying graphs [51], [52]
and attributed graphs [53]. Non-spectral statistics have also
been of interest, in particular for detecting anomalously sparse
(rather than anomalously dense) subgraphs [54], though this
complicates the analysis since embedding the signal involves
subtracting edges rather than adding them. Another interesting
area is detection using supervised learning based on subgraph
features, as in [55]. Performance bounds in spectral detection
of cliques and communities have recently been studied [11],
[56], as have computational limits of detection [57], [58]. Also,
while the presented framework relies on analysis of residuals,
considering normalized residuals may improve detection for
subgraphs where the edges are extremely unlikely [30], [59].
This analysis, however, may be intractable for more compli-
cated graph models, since it requires normalizing each observed
vertex pair and may not allow the computational tricks men-
tioned in Section IV.A. As the detection of anomalous behavior
in relational datasets continues to be a problem of interest, the
field of signal processing for graphs will continue to pose a rich
set of challenges for the research community.

APPENDIX A
PROOF OF THEOREM 2

Under —the hypothesis that the observed graph was gen-
erated by an Erdős-Rényi process—the likelihood of the ob-
served graph is given by

(24)

Under the alternative hypothesis, an -vertex subset was se-
lected uniformly at random to serve as the subgraph. Suppose
that , was chosen as the subset. Each pair of
vertices within still has probability of sharing an edge due
to background activity. If there is no edge in the background,
however, an edge will be added with probability . Thus, the
probability of an edge occurring between a given pair of ver-
tices both in is

(25)

All other vertex pairs still have probability of sharing an edge.
Therefore, we have

(26)

Note that is the number of “non-edges”
that are not within the subgraph vertices. Since only one vertex
subset is chosen for the signal embedding, the likelihood of
under the alternative hypothesis is

(27)

Each of the possible subsets is equally likely, so the like-
lihood ratio is

(28)
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or, equivalently,

(29)

The ratio in (29) can be further simplified as

(30)

Replacing the ratio in (29) with the expression in (30), and
moving the non-subgraph-dependent portion outside of the
summation, yields the expression in (5). This completes the
proof.

APPENDIX B
PROOF OF THEOREM 3

Let be the (unit-normalized) principal eigenvector of .
Since is the eigenvector corresponding to the largest eigen-
value of , we have

(31)

Since only has nonzero entries in rows corresponding to sub-
graph vertices, we can bound this quantity below by

.
The vector can be decomposed as , where

the only nonzero components of correspond to the signal
subgraph vertices and may only be nonzero in the rows cor-
responding to . Let . Since has unit
norm, and and are orthogonal, we have and

. The largest eigenvalue of the residuals matrix
is then given by

(32)

Both terms that include are zero, since is only nonzero
within the subgraph vertices. To get an upper bound for this
quantity, we bound each term in (32), yielding

(33)

For convenience, let
, and . Combining the

upper bound in (33) with the lower bound yields

(34)

We can verify that, for and , (34) will
achieve equality at the lesser of the two roots of the parabola
obtained by squaring both sides of the expression. Therefore,
(34) holds whenever

(35)

Using the triangle inequality to remove the radical in (35) and
substituting the matrix norms back into the equation yields the
bound in (12). This completes the proof.

APPENDIX C
CONCENTRATION OF EIGENVECTORS ON SUBGRAPH VERTICES

Here we provide an example of an embedding on which a
single eigenvector will be concentrated. Consider a subgraph
that is regular, i.e., each vertex has the same degree . Such
a subgraph will have a spectral norm , and the prin-
cipal eigenvector will be a vector in which all components on
subgraph vertices are equal. Let be a unit-normalized indicator
vector for the subgraph, i.e., a vector where the th component
is if corresponds to a subgraph vertex and is 0 oth-
erwise. Further consider and . We
have

(36)

where

(37)

is a random variable whose mean is 0 and variance is less than
, that is, the expected fraction of pos-

sible edges between the subgraph vertices that exist in the back-
ground. If the embedding occurs on vertices where the expected
connectivity is low, then will likely be very small. We also
have

(38)

Note that , which can be rewritten as

(39)

For , the expectation of the summand is 0. Considering
only , we have

(40)

(41)

where the upper bound is the average expected degree of the
subgraph vertices before the embedding occurs. Again, if the
subgraph is embedded on vertices with low expected degree,
this quantity is likely to be small.
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Let be the eigendecomposition of the resid-
uals matrix, with denoting the th eigenvector ( for

), and let . We have

(42)

(43)

If the quantities in (42) and (43) were the same, then would
be an eigenvector of . Since their difference is very small
(i.e., assuming and are small, as they are in expectation),
then may be highly correlated with a single eigenvector. That
is, for some may be quite large, so that concentrates
most of its magnitude on the th eigenvector. Let be the
eigenvalue closest to , and . Then
we have

(44)

For , let . For convenience, define the
following substitutions:

(45)

(46)

(47)

(48)

(49)

Thus, and are convex combinations of the
eigenvalues greater than and less than , respectively. We
can then express (44) as

(50)

Similarly, letting

(51)

(52)

(43) can be rewritten as

(53)

Combining (50) and (53) and performing some algebraic ma-
nipulation yields the system of equations

(54)
(55)
(56)

which, solving for , gives us

(57)

If the eigenvalues around are spread far apart, then
, and will be relatively large, the fractions in (57) will

be small, and will be heavily concentrated on a single eigen-
vector. This is supported by the empirical results in Section VI,
where embedding clusters onto vertices with low expected de-
gree yields separation in a single eigenvector.

APPENDIX D
CHANGE IN MODULARITY DUE TO SUBGRAPH EMBEDDING

When using observed degree to estimate expected degree, the
difference in the expected value terms caused by the signal is as
follows. If no embedding occurs, the estimated expected value
is , where is the observed degree vector resulting
from the background noise. If an anomalous subgraph is em-
bedded into the background, the degree vector is changed by

. Since consists of only edges within the subgraph
that do not appear due to noise, the degree vector after embed-
ding is , and the volume is . Thus,
the difference between the modularity matrix with estimated ex-
pected degrees under and is

(58)

To bound the strength of , we will bound the spectral norm
of each summand in the numerator of (58) and ignore the
in the denominator, yielding

(59)
To show that the strength of this quantity will grow more slowly
than the signal strength, given certain conditions, we will show
that is , i.e., that

(60)

Since , we will ignore the term, as the other
terms will dominate it. Thus, we must bound

(61)
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In many applications, the graphs of interest have degree se-
quences that follow a power law; i.e., the number of vertices
with degree is approximately for constants .
Using this model, we can analyze the ratio of and norms
in graphs with a realistic growth pattern. Let be the largest
degree in the graph. Then the squares of the and norms
of can be approximated as

(62)

(63)

respectively. Their ratio is then approximated, assuming does
not exactly equal 1 or 2, as

(64)

In practice, is typically greater than 1 and less than 3 (see,
e.g., [60]), so the constant will be positive. As

increases, the ratio on the right will tend to . If we let
the maximum degree increase, however, should be allowed to
increase as well, since this controls the number of vertices with
a given degree. Assume is a degree that will probably not
occur in the graph. Specifically, for a small, constant threshold
, let . Since this means that

(65)

we have

(66)

Using the approximation in (64), the ratio of the and
norms of is approximately .
To bound the term dependent on the subgraph, we have

(67)

This upper bound can be achieved if the subgraph is a clique or
a star. Noting that , we substitute (66) and
(67) into (61) to obtain

(68)

meaning that is if is . Using (65) as
a lower bound for , this implies that will vanish
as the graph grows if grows more slowly than .
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