
	 IEEE SIGNAL PROCESSING MAGAZINE  [42]  SEPTEMBER 2015� 1053-5888/15©2015IEEE

B
iometrics were originally developed for identification, 
such as for criminal investigations. More recently, bio-
metrics have been also utilized for authentication. 
Most biometric authentication systems today match a 
user’s biometric reading against a stored reference 

template generated during enrollment. If the reading and the tem-
plate are sufficiently close, the authentication is considered 

successful and the user is authorized to access protected 
resources. This binary matching approach has major inherent 
vulnerabilities.

An alternative approach to biometric authentication proposes 
to use fuzzy extractors (also known as biometric cryptosystems), 
which derive cryptographic keys from noisy sources, such as bio-
metrics. In theory, this approach is much more robust and can 
enable cryptographic authorization. Unfortunately, for many bio-
metrics that provide high-quality identification, fuzzy extractors 
provide no security guarantees. 
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This gap arises in part because of an objective mismatch. The 
quality of a biometric identification is typically measured using 
false match rate (FMR) versus false nonmatch rate (FNMR). As a 
result, biometrics have been extensively optimized for this met-
ric. However, this metric says little about the suitability of a bio-
metric for key derivation. 

In this article, we illustrate a metric that can be used to optimize 
biometrics for authentication. Using iris biometrics as an example, 
we explore possible directions for improving processing and repre-
sentation according to this metric. Finally, we discuss why strong 
biometric authentication remains a challenging problem and pro-
pose some possible future directions for addressing these challenges. 

Introduction

Authentication and Authorization
Security systems commonly include two components: 1) an 
authentication framework that validates a user’s identity and 2) an 
authorization framework (sometimes called a reference monitor) 
that controls access to resources for the validated identity [1], [2]. 
Biometrics represent one important way to verify a user’s identity 
[3]–[7]. An adversary able to impersonate you can do surprisingly 
bad things to you and in your name. Authentication is a crucial 
aspect of security, but it is surprisingly difficult to do in a way that 
is easy to deploy and use, as well as provide proper protection [8]. 

Binary Matching Authentication Paradigm
In typical modern authentication systems, during the enroll-
ment stage—when a user is added to the system—an original 
reading is collected from the user; transformed into a 

canonical form; and stored as a reference value, often referred 
to as a stored template. 

Later, when the user authenticates to the system, a new 
reading is collected, transformed into the same canonical form, 
and matched against the stored reference template. The authen-
tication is successful if the two values match. Then an authori-
zation framework may grant the user access to protected 
resources, e.g., by providing cryptographic keys (called content 
keys) to the appropriate resources (see Figure 1). 

For example, for passwords, a user enrolls by selecting a 
password, the canonical form is a cryptographic hash, and an 
authenticated match is required to be exact [9]. Biometrics are 
typically noisy: readings vary even for the same subject—hence, 
the match is approximate. We call this paradigm binary match-
ing (sometimes using only one of these words) since the 
authentication results in just a single bit: match or not match. 

Inherent Weaknesses  
of Binary Matching Paradigm
This paradigm has a number of crucial inherent weaknesses 
(see [10] for their manifestations in biometric systems): 

■■ Binary authentication decisions in the matching step are 
fragile and can be skipped or flipped even by accidental errors. 

■■ Matching requires the reference templates to be readily 
available during authentication, creating opportunities for 
an attacker to steal the templates, which in turn enables fur-
ther attacks (see the section “Weaknesses of Binary Matching 
Paradigm: Details”). 
The binary nature of the decision also implies that the system 

must have access to all the resources that a properly authenticated 

[Fig1]  Binary authentication and authorization. First, authentication data, such as a password and/or biometric, is collected from the 
user and transformed into the appropriate canonical form, or template. Next, the acquired template is matched against the stored 
reference template. If the match is successful, the authorization framework grants the user access to the appropriate resources (e.g., via 
appropriate cryptographic keys). The three major vulnerable components of this approach are highlighted: matching (with its fragile 
binary decision), stored templates, and authorization framework (and its cryptographic keys).
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user might need, thus forcing a violation of the principle of least 
privilege [11]. As a result, by compromising the system, an attacker 
can also obtain this access; this is what, in particular, makes privilege 
escalation attacks so attractive. These inherent weaknesses become 
especially apparent in settings where it is not clear who can be 
trusted to perform the matching and grant access, e.g., in the cloud. 

The Biometric Cryptosystem Paradigm
An alternative approach is to derive cryptographic keys from bio-
metrics. These keys can then be used to access the resources. 
The challenge here is that the biometrics are inherently noisy. 
This approach originated with the work on fuzzy commitment 
and fuzzy vault [12]–[14], building on ideas from [15] and [16]. 
These ideas were formalized in a cryptographic object known as 
fuzzy extractors that reliably produce a uniform key from a noisy 
source of entropy (see “Fuzzy Extractors”). In particular, this 
assures that even if the entropy was distributed unevenly among 
the bits of the source, the output will have all bits random. This 
approach has also been investigated under the names of biomet-
ric cryptosystems and biometric key generation [17], [18]. We 
show the main stages in this approach in Figure 2. 

We have implemented a full authentication system where 
authorization is implicit based on the knowledge of the proper 
cryptographic keys. Compared to the single bit produced by 
binary matching, this approach enables leveraging the full 
entropy (to the extent possible) that the user provides as part of 
the authentication. We call such an approach cryptographic 
authorization or cryptographic access control. The advantages 
of this approach according to the metrics of [8] are discussed in 
“Benefits of the General Full-Entropy Approach.” During the 
development of this system, we found that fuzzy extractors often 
do not provide meaningful guarantees on the key strength (KS) 
of keys derived from biometrics. For example, the iris code [3], 
which is a representation of one of the best biometrics [19], pro-
duces a key with no provable security using standard fuzzy 
extractors [20, Sec. 5]. The goal of this work is to examine why 
this is the case and how to derive stronger keys from biometrics. 

The gap between biometrics  
and fuzzy extractors
Extensive work on fuzzy extractors and similar techniques may 
lead one to believe that deriving cryptographic keys from 

Fuzzy Extractors
Fuzzy extractors are a pair of algorithms for deriving keys from 
a noisy source of entropy. The first algorithm, generate or Gen, 
is used at enrollment time. It takes an initial reading ,w  produc-
ing a key as well as public information .P  The second algorithm, 
reproduce or Rep, is used at authentication time, taking w l 
(a nearby reading of an iris) and the public value .P  The correct-
ness guarantee is that Gen and Rep should give the same key if 
the distance between w  and w l is at most some bounded 
parameter denoted .t  To protect against the attacks described 
in the Introduction, the key should be strong even in the pres-
ence of P.  The problem is trivial if P  is private. A private P  can 
store a key and the original reading. Then Rep outputs the key 
if and only if the new reading w l is close enough. This essen-
tially reduces the problem to having a good biometric source.

Bennett, Brassard, and Robert identified two crucial tasks for 
deriving keys from noisy data [47]. The first, information-rec-
onciliation, removes errors from .w l  The second, privacy 
amplification, converts w  to a uniform value. Traditionally, a 
fuzzy extractor uses two separate algorithms to accomplish 
these tasks. A secure sketch [48] performs information-recon-
ciliation and a randomness extractor [49] performs informa-
tion-reconciliation. A fuzzy extractor that separates 
information-reconciliation and privacy amplication is called the 
sketch-and-extract construction. See the work of Dodis et al. 
for formal definitions of the requirements of fuzzy extractors 
and secure sketches [48, Sec. 2.5–4.1]. Here we provide a brief 
review of standard constructions and recent advances. The 
goal of secure sketch is to map nearby w l back to the original 
w  without revealing unnecessary information about .w

The simplest construction of a secure sketch uses the syn-
drome of an error correcting code. The public information P  
consists of applying a parity check matrix to the original reading 

.w  This allows decoding of the original w  from a nearby w l 
and .P  The entropy of w  conditioned on this secure sketch is at 
least the starting entropy minus the length of the syndrome. 
The length of a syndrome must increase as the error tolerance 
increases. This means the lower bound on the remaining 
entropy of w  decreases as the error tolerance increases. 

There are many coding-based constructions of secure 
sketches. The security analysis of these constructions usually 
considers the difference between the size of the metric space 
and the deficiency of the best code correcting enough errors 
in the metric space. (The measure can be relaxed considerably 
by allowing the secure sketch to occasionally output the 
wrong value.) This imposes a tradeoff between the remaining 
entropy of w  and the noise that can be tolerated. 

Correcting more errors decreases FNMR and decreases the 
length of the derived key. Standard constructions of fuzzy 
extractors work well when the source has a high entropy rate 
(nearly uniform). Recent work builds fuzzy extractors from the 
face biometric when the entropy rate is almost full, even for 
an error rate of nearly 30% [50]. However, standard fuzzy 
extractors are not known to be secure on sources with low 
entropy rates. This is not a limitation of a particular construc-
tion; there are probability distributions with the same entropy 
and error rate as irises where key derivation is impossible (see 
[40] and [48, Appendix C]). 

Recent works have also built fuzzy extractors using proper-
ties of a distribution other than entropy and desired error tol-
erance [40], [51], [52]. Unfortunately, these constructions are 
not known to work for the iris distribution. These construc-
tions assume properties of the physical source that irises do 
not appear to satisfy. Thus, authentication from the iris 
remains challenging. 
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biometrics is a solved problem. Unfortunately, authentication 
from many noisy sources remains challenging. 

Biometric techniques have been developed and optimized for 
identification (these optimizations naturally carry over to binary 
matching). The metrics used for evaluating biometrics are typi-
cally variants of FMR versus false FNMR plots. But these charac-
teristics say little about the cryptographic security of the keys 
derived from the biometric. A different metric must be identified 
for the cryptographic authentication task, and biometric tech-
niques need to be optimized according to this metric. 

In this work, we propose that biometric quality for authentica-
tion should be measured as FNMR versus the strength of the key 
(see the section “Metric for Cryptographic Authentication”). 
This will help focus the development of biometrics for authen-
tication as their quality will be measured for that task. 

Using the iris as an example, we provide initial optimiza-
tions of biometrics to this authentication metric. However, key 
derivation from the iris remains a challenging problem. 

For the purposes of simplicity, we assume the goal is to derive 
a 128-bit key. This is the key length for the standard symmetric 
cipher AES-128 approved by the National Security Agency to pro-
tect information classified up to secret level, so this should be 
useful for the most commonly used systems and accounts [21]. 

The Case for Key Derivation from Biometrics
In this article, we consider the suitability of biometrics for 
strong authentication. We discuss authentication modalities in 
“Other Authentication Modalities.” 

The central problem that complicates the use of biometrics is 
noise: readings of the same biometric of the same user can differ 

significantly, even under the most controlled (and thus least flexi-
ble and convenient for the user) environments. For binary 
matching, this forces use of approximate comparisons (using an 
appropriate metric). When biometrics are used for cryptographic 
authorization, noise represents a larger challenge. 

Weaknesses of Binary  
Matching Paradigm: Details
As discussed in the section “Inherent Weaknesses of Binary 
Matching Paradigm,” attackers can exploit fragility of the 
matching step of the binary matching paradigm, obtaining 
access to a single session. Similarly, privilege escalation attacks 
are extremely powerful. 

In the case of biometrics, the transformation must preserve 
locality (i.e., similar readings, such as those taken from the same 
user, must remain close according to an appropriate metric, even 
after the transformation into the canonical form). This makes it diffi-
cult to design truly one-way transformations. Indeed, for commonly 
used transformations, it turns out that the stored reference tem-
plates can be reverse-engineered to produce realistic biometrics that 
would match the corresponding templates. Adversaries can manu-
facture a natural looking iris biometric that will pass the identifica-
tion test [22], [23]; the same is true for fingerprints [24]. 

Cryptomatching: Going HalfWay
It is, in principle, possible to use cryptographic key derivation to 
obtain a cryptographic key, but then revert back to a binary match 
paradigm—comparing the key to the stored reference. Since, in 
this case, a cryptographic key is matched against a stored refer-
ence, we call this approach a cryptomatch authentication. 
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[Fig2]  Cryptographic authentication and authorization: Authentication data is collected from the user and transformed into the 
appropriate canonical form or template. But instead of matching this acquired template against the stored reference template, the 
acquired template is used (with some nonsecret public parameters) to regenerate the cryptographic key. This key can then be used to 
obtain access to the appropriate resources via cryptographic access control and key management. The vulnerabilities highlighted 
in Figure 1 are no longer present.
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For passwords, the traditional binary matching implementa-
tions can be seen as a specific implementation of exactly this cryp-
tomatch principle. For biometrics, even this halfway approach can 
yield significant advantages compared to the binary matching the 
way it is typically practiced today. 

As discussed previously, binary match biometrics suffer 
from an additional vulnerability: stealing a reference template 
enables an attacker to generate realistic biometrics. Some 
research on so-called cancelable biometrics and similar tech-
niques helped to address this issue (e.g., see [18] for a survey). 
However, many of the considered methods do not result in 
strong security, say, compatible to provable security of common 
cryptographic tools (there are many notable exceptions, such as 
[25], [26], and others). In contrast, an ability of users to consis-
tently regenerate cryptographic keys immediately results in a 
very strong version of cancelable biometrics. Once a key is 
derived, cryptomatch authentication can be easily implemented 
by deriving different (and easily replaceable) keys for each veri-
fier, using the regenerated key as a master secret and unique 
random value (salt)—this is essentially similar to the way dif-
ferent keys are derived from a master secret in many secure 
protocols, e.g., such as transport-layer security [27]. 

Benefits of Cryptographic Authorization
However, a cryptographic matching approach is still a binary 
decision. For high-security applications, authorization decisions 
should be based on knowledge of cryptographic keys derived from 
authentication material. Because there is no single-bit match/no 
match decision (one instead recovers a key), it is more difficult 
for an adversary to cause hardware to fail or software to branch in 
a way that will enable access. 

Even in the most primitive case when the key regenerated in 
authentication stage is used as content key to access protected data 
directly, there is no information on the system that the attack can 
use to break security. The templates are replaced with public 
parameters and the content key is no longer stored, but rather rec-
reated when needed from the biometric. This approach allows for 
strong authentication even against adversaries with physical access 
to the system when it is not actively used by a legitimate user. It is 
crucial for this approach that the public parameters produced by 
the fuzzy extractor do not compromise security of the biometric. 

This approach also allows the creation of multiple keys from 
the same biometric in such a way that compromising one or a 
few of these keys (by leaking them to an adversary) in no way 
compromises the others. More sophisticated cryptographic access 

Benefits of the General Full-Entropy Approach
In a comprehensive study of two decades of general-purpose 
user authentication on the web, [8] proposes a broad set of 
usability, deployability, and security properties (constituting 
benefits, when satisfied), and uses these to compare differ-
ent authentication techniques. 

However, these properties had been formulated for the 
binary match approach. We believe that they should be 
revised in the context of the cryptographic authorization 
and cryptographic access control paradigms. Whenever it 
makes sense, we compare binary match to cryptomatch, 
rather than cryptographic authorization. 

The change from binary match to cryptographic authorization 
has little or no effect on many properties listed in [8]: e.g., 
U1-U6 and D1-D2. For other properties, effect might be nonob-
vious. For example, Property U7: Infrequent-Errors aims to mini-
mize the number of failed authentications. For the exact match 
(such as for passwords), this property would not be affected by 
the transition from binary matching to cryptomatching and 
cryptographic authorization. But for biometrics, the matching 
and key regeneration may involve somewhat different tech-
niques, resulting in somewhat different error rates. 

But furthermore, if proper cryptographic access control 
authorization is used—for any type of authentication modal-
ity, including passwords and biometrics—the failed authenti-
cation may result in a failure during access. Such access 
failures can be made easily detectable, eliminating the dif-
ference between binary match and cryptographic authoriza-
tion approaches. But this failure detection can be exploited 
by an attacker as well—e.g., in an exhaustive search for the 
correct password. So, this represents a potential tradeoff 

between the usability and security (specifically, Property S4: 
Resilience-to-Unthrottled-Guessing). This example also illustrates 
the aforementioned need for revision of the properties in [8]: 
for example, inserting Property U7’: Easy-Recovery-from- 
Authentication-Failure. 

Property U8: Easy-Recovery-from-Loss provides an example 
of a different tradeoff. A simple implementation, dogmatically 
following the least privilege principle, will result in a system 
where if a user loses the authentication data (whether public 
parameters or, say, the password), the data cannot be accessed 
by anyone at all and thus can be considered lost. However, a 
wiser implementation will build in various recovery mecha-
nisms, which would trade off security and usability once again: 
making the data easier to recover but also easier to steal, or 
making the data more secure but also more difficult to 
recover. While passwords are typically considered to have the 
property U8 satisfied, this is typically because the choice in the 
security-usability trade off is made for the users, favoring 
usability at the cost of security (any administrator able to reset 
the password is also able to impersonate the user). 

Property D3: Server-Compatibility requires the (authenticat-
ing) server to be compatible with the passwords. In our case, 
the servers only need to provide the right public information, 
and thus our approach completely eliminates the need for 
the server to do anything special for the authentication. D3 
does not quite capture this benefit of cryptographic authori-
zation. Cryptomatch, on the other hand, can be made server-
compatible by using the key as the password. 

The client in the cryptographic authorization and cryptomatch 
approaches needs to compute the cryptographic key. Currently, 
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our implementations run in Java, but not from a browser. It may 
be possible to implement similar tools as applets or run them 
from a browser in some other way, but until that happens, we 
need to consider our approach as having a negative impact on 
Property D4: Browser-Compatibility. While the change to crypto-
graphic authorization has mixed effects on deployment and 
usability, it has positive impacts in the security area. 

S1: Resilience-to-Physical-Observation, S5: Resilience-to-Inter-
nal-Observation, and S10: Requiring-Explicit-Consent are not 
directly affected by the shift from binary match to crypto-
graphic authorization. These properties are typically provided 
only by special hard tokens (for which providing, or even bet-
ter—encapsulating, so it can be used securely—a cryptographic 
key would typically be rather trivial). Similarly, S2: Resilience-to-
Targeted-Impersonation (when personal knowledge of the tar-
get user person can be utilized in the attack) should not be 
affected by the shift, but it does eliminate some of the easiest 
pitfalls: while a user might use her mother’s maiden name as a 
password, in cryptographic authorization, the user would not 
be prompted to use such information for security. 

As discussed above, resilience to guessing (properties S3 
and S4) can be strengthened at some usability cost. However 
in the throttled variant (S3), the verifier can limit the rate of 
attacker’s guessing, but in our approach, there is no verifier. 
So, implementing throttling requires a different approach: 
e.g., a PBKDF2 function [53] can be used to increase the time 
to derive the key. Such an approach can also benefit even S4 
(the unthrottled version, since the above mechanism 
requires no help from any servers). More sophisticated throt-
tling mechanisms, however, can be designed for our 

approach, making it at least as resilient to guessing as the 
binary matching, and probably even more so. 

Property S6: Resilience-to-Leaks-from-Other-Verifiers can be 
provided even by the cryptomatch version. For the crypto-
graphic authorization, this property can be strengthened sig-
nificantly (to be resilient) to leaks from any verifiers, since no 
verifiers are even present. The only other approach that 
assures this property is the zero-knowledge proofs of identity 
[54]. Such proofs are cryptographic protocols requiring signif-
icant computational power from both the prover and the 
verifier. Furthermore, just as in binary matching authentica-
tion, this protocol results in a single bit (pass or fail), and 
hence is vulnerable to the corresponding weaknesses. 

Since cryptographic authorization requires no verifiers, it 
also has the other properties that rely on the verifiers not 
failing: S7: Resilient-to-Phishing and S11: Unlinkability. In fact, 
even the crypto-match approach can achieve unlinkability. 

Cryptographic authorization also satisfies S9: No-Trusted-
Third-Party. By necessity, the binary matching approach must 
exclude the verifier from the consideration. This is a direct con-
sequence of the binary nature of the traditional approach. In 
contrast, cryptographic authorization has no verifiers and no 
(implicit or explicit) reference monitor acting upon the result 
of the binary authentication, it only relies on the client security 
not to steal the authentication data provided by the user (if 
hardware tokens or devices are an option, then even this vul-
nerability can be reduced or eliminated, depending on the 
specifics of the token). Cryptographic authorization improves 
security in a number of ways, with the improvements to S9 
and S6 being the most significant.

control structures can be built as well, for example, traditional 
operating system permissions. 

The gap between biometrics  
and fuzzy extractors
Biometrics have been extensively used for the task of identifica-
tion: discriminating effectively between two individuals. Right-
fully, biometric systems were evaluated according to metrics for 
identification. The standard metric is a function between how 
reliably a single person’s biometric can be recognized as such 
(FNMR) and how often two individuals are confused (FMR). Obvi-
ously, for a system always reporting a match, FNMR = 0 (since 
nonmatch, false or not, is never reported) and FMR = 1 (since dif-
ferent subjects are always falsely reported as matched). Con-
versely, never reporting a match makes FMR = 0 but FNMR = 1. 

In practice, biometric systems allow adjusting their parameters 
to achieve some tradeoff between these characteristics depending 
on needs of specific applications. This tradeoff can be depicted as a 
function comparing FNMR versus FMR and is often used as a mea-
sure of quality of the biometric systems. We call this the identifica-
tion metric. Current iris biometrics techniques produce a very 
strong biometric according to the identification metric [28]. 

There can be different ways to improve biometric systems 
according to this metric. For example, we can fuse iris codes from 
three readings by taking a majority for each bit in the iris code, as 
proposed in [15] and [29]. Then we use the result in matching, 
improving its quality according to the match metric (see Figure 3). 

According to the identification metric, fusing provides an 
impressive improvement—see Figure 3, which depicts our exper-
iments using the multispectral iris data set, licensed through the 
Scitor Corporation. But what this metric says is that we can get 
the FMR rate down to between 0.001–0.1%. In other words, by 
trying between 100,000 and 1,000 irises would give an attacker a 
good chance of impersonating a targeted user. 

Measuring Biometric Suitability  
for Cryptographic Authorization
In this section, we show that the identification metric may be 
inappropriate for the cryptographic authorization task. Recall that 
the goal of this task is to create a strong cryptographic key from 
the same user, and note that the strength of the cryptographic 
key implies that different users rarely map to the same key. 

Intuitively, FNMR corresponds to an authorized user failing 
an authentication attempt. Thus, FNMR can be viewed as, 
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loosely speaking, a nuisance factor for authentication systems: 
e.g., it reflects how many attempts you would have to make 
before successfully logging into your own account. While this 
can have a serious impact on the system usability, it has no effect 
on security. 

In contrast, FMR reflects probability that a user can be 
impersonated by someone else: e.g., if my iris is accepted when 
authenticating to log into your account. This is extremely 
important for security, and so FMR reflects insecurity of the sys-
tem—the higher it is, the easier it is to trick the system into let-
ting unauthorized users in. 

FNMR versus FMR assumes an attacker that attempts 
authentication using random biometrics from a suitable popula-
tion. Crucially, it says nothing about what is revealed by the 
authentication system. In a binary matching system, the 
authentication system writes down a template, revealing the 
original reading to the attacker. In a cryptographic authoriza-
tion system, using fuzzy extractors, the system writes down 
some public information necessary to map nearby readings to 
the same cryptographic key. A dedicated attacker will use all 
information available; a metric for the authorization task must 
include this information. 

As noted in [20, Sec. 5], there is no known fuzzy extractor for 
the iris. The core of the problem is that irises a relatively low 
entropy rate compared to their noise. For provable security, the 

known constructions of fuzzy constructors need the entropy rate to 
be significantly higher than the noise. 

Metric for Cryptographic Authentication
In an authorization system, the two important parameters are 
how often a user completes authentication (FNMR) and the 
strength of the resulting cryptographic key (in the presence of 
public parameters). Thus, when a biometric is used for authentica-
tion, the relevant metric is FNMR versus KS. It may be possible to 
generate a key whose strength and length are unequal. Since in 
our key derivations our goal is to produce a key indistinguish-
able from random, we can assume that key has strength propor-
tional to  .2 | |key-  

As described in the section “Weaknesses of Binary Matching 
Paradigm: Details,” any information written by the authentica-
tion system should be assumed to be available to the attacker. For 
this reason, we call any authentication information public param-
eters or .P  Fuzzy extractors and other biometric cryptosystems 
write down error correcting information to ensure the same user 
reliably generates the same key. Therefore, the strength of a key 
should be measured relative to an adversary with access to public 
parameters P  (such as the public information produced by fuzzy 
extractors in “Fuzzy Extractors”). 

We suggest measuring the quality of the biometric when 
used for cryptographic authorization as a function of FNMR and 

Other Authentication Modalities
It is common to organize all the authentication methodolo-
gies into three categories, according to the nature of the 
input provided by the user—we call them modalities: 1) what 
you have (e.g., hardware tokens, such as smart cards, etc.),  2) 
what you know (e.g., a password), and 3) what you are 
(biometrics). 

Each of these categories comes with its own typical charac-
teristics. Often multifactor authentication (using multiple 
modalities) is recommended to achieve higher security. But it 
is convenient to consider each modality, with its pros and 
cons, separately. 

The strength of hardware tokens is that they can store 
plenty of entropy and perform complex computations far 
beyond human capacity. On the other hand, such tokens 
impose deployability limitations and can also be forgotten, lost 
or destroyed, or even stolen. Furthermore, in some cases (e.g., 
theft), the token might be used by an attacker. To defend 
against this, the user should authenticate to the token using 
another authentication modality [e.g., a short password, or 
personal identification number (PIN)]. Since token integrity can 
often be assumed, this authentication to the token is typically 
easier. Tokens are also subject to various hardware attacks and 
might also be used without explicit consent (e.g., if a PIN is 
cached after the first use of a smartcard—as done by many 
drivers—then malware can request smartcard to decrypt or 
authenticate data without the user knowing it). 

Passwords—what you know—suffer from limitations of the 
human mind: since our memory is relatively weak, passwords 

have notoriously little entropy and are, hence, open to 
exhaustive search attack, such as password cracking. On the 
other hand, it is ultimately deployable, imposing the least 
amount of restrictions and only moderate inconvenience. 

Finally, the biometric approach can be easier for the user, 
since there is nothing to remember or carry. Biometric read-
ing can also be made very easy, requiring minimal effort from 
the user. But the easier the reading, the harder it is to 
enforce explicit consent. There may also be a separate trad-
eoff between the ease of reading and the reliability and the 
amount of entropy collected. This approach also requires 
some special equipment. 

Biometric modality has another important feature: it is 
almost like a password that we wear literally on our face (or 
hands, in that case leaving its copies on everything we 
touch). In other words, biometrics can be easy to steal when 
the subject is present. So, the best use of biometrics is in 
remote authentication, where an attacker may not have 
physical access to the target user. Sometimes biometrics is 
used more as a test of physical presence, rather than the 
authentication. In that arena there is a constant arms race 
between biometric device manufacturing and the attackers, 
who use anything from jelly beans to cameras and special 
contact lenses. The most expert attackers tend to be leading 
in that race most of the time.  

When a theft does occur, unlike passwords, biometrics can-
not be easily replaced, no matter which authentication 
approach is used.
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the strength, KS, remaining after the key is derived (with public 
information known). We call this the authorization metric. The 
metric specifies how often for a given KS a legitimate user will 
be rejected. There are two ways of viewing this metric: 

1)	measuring the authentication strength possible from the 
source with the best known fuzzy extractor. 
2)	measuring the information theoretic capacity of the 
source for key derivation.
Both the identification and authentication metrics measure 

how frequently the legitimate user is granted access. The identifi-
cation metric measures how frequently other users from the dis-
tribution are also granted access. When considering a determined 
attacker, this is not a sufficient threat model. For the authentica-
tion task, it is prudent to assume that the attacker has access to 
public parameters, P, and then measures the probability of recov-
ering the key, given this information. 

Optimizing for the Entropy  
metric: Iris Experience

The Iris Code
The human iris is believed to be a strong biometric attribute [19]. 
The iris pattern develops in utero and is fairly stable throughout 
the lifetime of an individual [30]. Irises are diverse in small homo-
geneous populations (even right and left eyes of the same subjects 
appear to be independent) and are believed to be largely epigenetic 
(not dependent on genetic information), although some correla-
tions may be observed [31], [32]. Typically, the near-infrared (NIR) 
images are used, although some research into using multispectral 
images has been undertaken [33]. 

For biometric applications, an iris is typically transformed 
into an iris code as follows (see Figure 4). First the image of the 
iris is segmented, locating the iris and the pupil. Then the iris 
image is unwrapped using polar coordinates, translating the iris 
from a two-dimensional (2-D) tor (doughnut) into a rectangle. 
Finally, the rectangle is subjected to various special processing 

(typically, filtering and quantization), producing a bit-vector 
called the  iris code. 

Modern transforms derive from the work of Daugman based on 
2-D Gabor wavelets [3].The filtering phase uses 2-D Gabor wave-
lets [34] at various angular and radial coordinates. The image is 
divided into a polar grid of some angular and radial resolution and 
a wavelet is computed at each coordinate. We denote these values 
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multispectral iris data set, licensed through the Scitor 
Corporation, using open source IrisCode software [35]. The 
green plot is obtained by faking the bit-wise majority of three 
repeated IrisCodes from the same user. As we discuss in the 
section “The Gap Between Biometrics and Fuzzy Extractors,” 
while it is desired to reduce both FNMR and FMR, the latter 
corresponds to insecurity of the system, while the former 
reflects inconvenience for the users. For FNMR, the rates below 
0.1% (eligible user failing to authenticate in less than one out of 
1,000 attempts) can be considered quite acceptable. However, 
FMR range needs to be tens of orders of magnitude lower to be 
compatible with cryptographic security. This preference of FMR 
over FNMR is reflected by the angle of the “desired” arrow.
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by angres  and ,radres  respectively. The sign of the real and imagi-
nary components yield 2-bit values for each location. The total 
length of the transform is * *2 ang radres res . We then utilize the 
transform of Masek [35], which uses an angular resolution of 

240angres =  and 20radres =  for an overall length of 9,600 bits. 
The transform of Daugman [3] provides superior performance 
but it is not publicly available. Performance is improved by apply-
ing simple automatic tests detecting some unsuccessful segmen-
tations, to eliminate these from the statistical analysis, when 
working with various iris corpora. 

We denote as w  the iris code from an original reading col-
lected from a user and stored as a reference template. During 
authentication, a new reading is then collected producing IrisCode 
wl. Typically, fractional Hamming distance (FHD)—the fraction of 
bits that differ between w  and wl—is used as the distance 
between the two readings. Typical FHD between two readings of 
the same iris of the same person is between 10–30% (more careful 
tools can get it much lower). This is what is referred to as in-class 
FHD. For readings from different people, or different irises, FHD is 
within 40–60%. This is called out-of-class FHD. 

In-class FHD can be increased by rotational distortions; e.g., 
when the image is taken at slightly different angles. Binary 
matching can compensate for this distortion by comparing the 
reference and authentication templates ,w wl multiple times, 
applying a serious of small relative rotations, and picking the best 
(smallest) FHD. For the out-of-class FHD, this has a relatively 
negligible effect. Also, when reflections and occlusions occur, it is 
possible to simply ignore (mask) some portions of the image 
when the matching is performed. Both of these optimizations 
present additional challenges for cryptographic authorization. 
Next we consider the suitability of the iris for the cryptographic 
authorization task. 

Iris Biometric Suitability  
for Cryptographic Authorization
In cryptographic authentication, we view users’ inputs—in this 
case, irises—as sources of entropy. 

Iris Code Entropy
Random strings have entropy essentially equal to their length. 
Unfortunately, most biometrics are not fully random. Estimat-
ing entropy of nontrivial distributions is a difficult problem 
[36], [37]. 

Assuming the existence of pseudorandom generators [38] 
(implied by one-way functions [39]), it is possible for distribu-
tions to appear to have significantly more entropy than they 
actually possess. This means it may be fundamentally impossi-
ble to estimate the entropy of distributions occurring through 
complex unknown processes. 

Pseudorandom distributions are sophisticated and one may 
hope that they do not often appear in nature, or at least that bio-
metric distributions appear to have the same entropy to all par-
ties. There are several heuristics used to estimate entropy by 
comparison to well-known probability distributions. Daugman 
notes that the FHD between different individuals in an iris corpus 

fits a binomial distribution with mean .p 5=  and N 249=  [3]. 
This yields an estimate of 249 bits of entropy. 

As described in the section “Metric for Cryptographic Authen-
tication,” when measuring KS, we must include public parame-
ters of the authentication system. This means we also need to 
consider the noise between repeated readings w  and .wl

Rederiving the key essentially requires correcting wl to .w  If 
we assume an error rate of ,f  then the number of possible 
errors that might take place is !/ ( .( ) ! ( ( )) !)n n n 1f f-  Hence, 
the error-correction requires ( ( ) ( ))lg lgn 1 1f f f f+ - -  bits of 
information, where n  is the number of bits in .w  For f  around 
10%, this is approximately /n 2 bits. For the transforms above, 

, ,n 9 600=  this means that 4,800 bits of error correction infor-
mation is necessary. Standard fuzzy extractor constructions 
may lose security proportional to this information. Since irises 
are estimated to have 249 bits of entropy, fuzzy extractors pro-
vide no guarantee on the resulting cryptographic key. The key 
challenge in deriving keys from irises is that the entropy rate 
and error rate are approximately the same. Fuzzy extractors 
provide good performance when the entropy rate is significantly 
higher than the error rate (see [40] for more details). 

Optimizing the Iris for  
the Authentication Metric
As described in the previous section, a major obstacle to deriv-
ing keys from irises is the low entropy rate of current trans-
forms. In this section, we discuss techniques for trying to 
improve the entropy rate of irises. We emphasize that none of 
these techniques currently seem sufficient to derive strong keys 
from irises. However, similar ideas will be necessary to derive 
strong keys from the iris. 

Subsampling Wavelets
Irises have a low entropy rate but each bit on its own behaves 
like a Bernoulli coin with . .p 5=  This indicates that each bit 
has full entropy and that the correlations in the iris exist 
between multiple bits. Thus, one approach to improve the iris 
transform is to try and find sets of bits that are uncorrelated 
with a similar error rate as the overall transform. Random sub-
sampling preserves both entropy [41] and error rate. If iris bits 
are uncorrelated on large sets, then subsampling should pro-
duce an entropy rate higher than 10%. There has been work in 
the iris community on producing better transforms using 
structured subsampling. The entropy rate and error rate can 
be maintained while reducing length using random subsam-
pling. If each bit of an iris is entropic on its own, random sub-
sampling may be helpful. In particular, if any 249 bits can be 
used to reconstruct the iris, we can randomly subsample to 
249 bits while maintaining all entropy and keeping error rate 
constant. The goal of structured subsampling techniques is to 
find better strategies. 

The work of Gentile, Ratha, and Connell [42] introduced 
short-length iris codes, which were designed to improve process-
ing speed of iris codes by reducing their length. Their work con-
tains several observations: 1) the inside and outside of an iris tend 
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to be less reliable due to increased deformations and occlusions, 
respectively, and 2) there is significant correlation between radi-
ally adjacent bits and little correlation between angularly adjacent 
bits. This leads them to create a transform that subsamples every 
tenth row of the iris code starting from the fifth row. 

In Figure 5(a) and (b), we show the entropy rate and error rate 
at various resolutions. Observe the following: 

■■ The entropy rate increases as the radial dimension is 
subsampled. 

■■ The error rate remains constant as the radial dimension is 
subsampled.

■■ The entropy rate decreases slightly as the angular dimen-
sion is subsampled. 

■■ The error rate decreases as the angular dimension is 
subsampled.
Figure 5 confirms the observations of Gentile et al. that there 

is significant redundancy in the radial dimension and this can 
safely be subsampled. We do note that although subsampling in 
the radial dimension improves the entropy rate, it does reduce the 
overall entropy. Careful analysis is needed to determine where the 
maximum strength key is possible. 

Finding the best posttransform bits
We will now look at subsampling in the bit domain (postwavelet 
transform). We start from a 9,600-bit transform. Each bit of the 
distribution follows a Bernoulli distribution with . .p 0 5=  How-
ever, it may be that some bits are more likely to contain errors 
and contribute more to the overall error rate. We now will try and 
find the bits that have the lowest error rate. This idea stems from 
the work of Hollingsworth et al. [43]. The results are shown in 
Figure 6; unfortunately, this graph is very flat, meaning there are 
not a large number of bits with lower error rate. Each bit has 
roughly the same error probability. This means subsampling at 
the bit level is unlikely to be helpful.  We note that for a particular 

individual, there are bits that consistently have a lower error rate. 
Writing down such bits for a particular individual may reveal 
information about the original reading .w  Thus, we only consider 
consistency of bits across the population.

Discussion and Summary
For decades, authentication has relied on matching an original 
reading from a user against a previously captured and stored 
reference template. The binary outcome of the matching 
required a corresponding authorization mechanism to control 
access to the resources, granting the access based on the result 
of the matching. Implementations of this paradigm suffer from 
inherent weaknesses: fragility of the binary decisions, vulnera-
bility of the stored reference templates, and the high value tar-
get of the authorization mechanisms. 
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Biometrics represent an important authentication source but 
with significant new challenges. Biometrics can be stolen and are 
not replaceable. Research on cancelable biometrics has tried to 
mitigate this issue (e.g., see [18] for a survey). These methods do 
not aim to replace the actual biometrics, of course, but rather 
they aim to replace a compromised (stolen) stored reference tem-
plate with a different one. Most of these methods add certain dis-
tortions to the transformation to the canonical template, so that if 
a reference template is compromised for one distortion, a differ-
ent one can be generated and used. However, only some (e.g., 
[26]) of these considered methods result in strong security, com-
patible to provable security of common cryptographic tools. This 
provides more motivation to move away from models where a 
template is stored, precisely because if that template is success-
fully attacked, then an attacker will be able to leverage that infor-
mation remotely and at scale. 

The main challenge to authentication using biometrics is 
their noisy nature: repeated readings can differ significantly. 
Current techniques for eliminating noise, such as fuzzy extrac-
tors, come at a significant entropy cost. However, we believe 
this approach has promise and that key derivation from noisy 
sources can be improved significantly. For noisy sources such as 
biometrics, existing processing algorithms have been optimized 
for identification, not authentication. Revisiting feature extrac-
tion for such sources with authentication in mind should 
reduce the entropy loss. 

In this article, we show that the traditional FMR versus 
FNMR identification metric does not properly optimize for the 
authentication task. We instead propose using an authentica-
tion-specific metric, such as KS, rather than FMR versus FNMR. 
To illustrate the difference between these two approaches, we 
discuss attempts to optimize the iris biometric according to the 
authentication metric. Unfortunately, key derivation from the 
iris still remains a challenge. This article, and the works of our 
predecessors, lay the foundation for future progress in opti-
mized key derivation from biometrics and their application to 
authentication systems. 
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