
Timely Rerandomization for Mitigating Memory
Disclosures∗

David Bigelow
MIT Lincoln Laboratory
dbigelow@ll.mit.edu

Thomas Hobson
MIT Lincoln Laboratory

thomas.hobson@ll.mit.edu

Robert Rudd
MIT Lincoln Laboratory

robert.rudd@ll.mit.edu

William Streilein
MIT Lincoln Laboratory

wws@ll.mit.edu

Hamed Okhravi
MIT Lincoln Laboratory

hamed.okhravi@ll.mit.edu

Abstract

Address Space Layout Randomization (ASLR) can increase
the cost of exploiting memory corruption vulnerabilities.
One major weakness of ASLR is that it assumes the secrecy
of memory addresses and is thus ineffective in the face of
memory disclosure vulnerabilities. Even fine-grained vari-
ants of ASLR are shown to be ineffective against memory
disclosures. In this paper we present an approach that syn-
chronizes randomization with potential runtime disclosure.
By applying rerandomization to the memory layout of a pro-
cess every time it generates an output, our approach renders
disclosures stale by the time they can be used by attackers
to hijack control flow. We have developed a fully function-
ing prototype for x86 64 C programs by extending the Linux
kernel, GCC, and the libc dynamic linker. The prototype
operates on C source code and recompiles programs with a
set of augmented information required to track pointer lo-
cations and support runtime rerandomization. Using this
augmented information we dynamically relocate code seg-
ments and update code pointer values during runtime. Our
evaluation on the SPEC CPU2006 benchmark, along with
other applications, show that our technique incurs a very
low performance overhead (2.1% on average).

1. INTRODUCTION
Memory corruption attacks have been one of the most

prevalent types of attack for decades [5], and they continue
to pose a threat to modern systems. These attacks have
evolved from simple stack-based buffer overflows [33] to a
more sophisticated type that reuses existing code in a pro-
cess’s memory space [40]. Known as code reuse attacks, or
return-oriented programming (ROP), these attacks bypass
traditional defenses such as marking memory pages writable

∗This work is sponsored by the Department of Defense un-
der Air Force Contract #FA8721-05-C-0002. Opinions, in-
terpretations, conclusions and recommendations are those of
the author and are not necessarily endorsed by the United
States Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
c© 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813691.

or executable but not both (W⊕X), or defenses that check
the integrity of code before execution [34]. Although in
many cases these attacks may be mitigated through the use
of a memory safe language, protecting against such attacks
remains challenging due to enormous volumes of existing
code combined with modern programs that continue to be
developed in C/C++ [44] for reasons of practicality, perfor-
mance, and developer familiarity.

Because memory safe languages are not always a reason-
able option, numerous defenses have been proposed over
the years to mitigate memory corruption attacks in non-
memory safe languages. These defenses can be broadly cat-
egorized into enforcement-based and randomization-based
defenses. In the enforcement-based category, certain checks
are performed on the code to prevent memory corruption
attacks. Complete memory safety techniques such as Soft-
Bound and its CETS extension [31, 32] are an example of
such defenses; however, they incur a high overhead, up to
4x slowdowns in some cases. Other enforcement-based tech-
niques include control-flow integrity (CFI) [3], along with
its coarse-grained enforcement variants [47, 48], that try to
stop control-hijacking attacks by verifying the target of any
control transfer. Unfortunately, ideal CFI has not proven
practical to date, and coarse-grained enforcement of CFI
has been shown to be ineffective [18].

In the randomization-based category, the process’s instruc-
tions [26, 8] or memory layout [35] are randomized to thwart
memory corruption attacks. A widely deployed memory
randomization technique is Address Space Layout Random-
ization (ASLR), implemented in most modern desktop and
mobile operating systems, that randomizes the location of
the stack, heap, linked libraries, and main program [35]. A
major assumption of randomization-based defenses is that
the memory layout remains secret. Unfortunately, this as-
sumption has been shown to be incorrect. Memory data
can be leaked to a potential attacker either directly using
memory disclosure vulnerabilities [43], or indirectly using
remote timing or fault analysis attacks [38, 9]. In response
to such weaknesses, one trend in the research community
has been to make randomization techniques finer-grained.
Techniques such as Binary Stirring [46], medium- and fine-
grained ASLR [27, 17], or in-place code rewriting [20] try to
make randomization of memory layout more granular than
traditional memory segments. However, as shown by recent
offensive techniques such as just-in-time ROP [42] or side-
channel attacks [38], even fine-grained randomization can
be bypassed with an extensive-enough leakage of memory
content.

In this work, we take a different approach to mitigate
memory leakage attacks. We observe that the weaknesses
of existing traditional and fine-grained randomization tech-
niques arise from the fact that randomization happens a
single time at program load and never again, while leaks
may happen many times at runtime. As a result, the infor-
mation leaked to an attacker remains valid as long as the
process is running. We therefore rerandomize a process’s
memory layout at runtime in order to mitigate the impact
of information leakage.

An important question is when to rerandomize the mem-
ory layout. Overly frequent rerandomization can incur an
unacceptably high overhead, while insufficiently frequent re-
randomization can weaken or eliminate security guarantees
because an attacker may have the opportunity to leak mem-
ory layout information and execute the main attack before
the process is rerandomized. A key insight in our technique
is the need to tie rerandomization to the actions of a poten-
tial attacker. Therefore, we rerandomize the process mem-
ory layout whenever there is an output from the process; that
is, a socket write, a file write, a console write, etc. More pre-
cisely, we rerandomize the memory layout after many out-
put system calls and before processing an input system call.
This mitigates the impact of memory disclosure attacks be-
cause any information about the layout of memory that an
attacker obtains at output time is stale by the time there
is an opportunity to use that information to hijack control
flow (i.e. at input time).

In this paper, we describe the design, implementation, and
evaluation of our technique, Timely Address Space Random-
ization (TASR1), which rerandomizes the memory layout
during runtime before the attacker can take advantage of
any stolen knowledge (hence, the timely aspect). TASR is
conceptually simple, but its realization required a substan-
tial design and implementation effort, most notably in track-
ing the locations of all code pointers in a live process. TASR
consists of three major components. First, the compile-time
component annotates source code written in C with infor-
mation needed to support its relocation at runtime. This
information is added as a new section into the compiled bi-
nary (ELF) file of the application which is used in a TASR-
enabled system and ignored otherwise. Second, the kernel
component of TASR uses this information to manage the re-
randomization whenever the appropriate input/output sys-
tem call pairings occur, and third, an injected process ele-
ment performs the actual pointer updating each time it is
required.

TASR was designed with the intent of achieving source
code compatibility [44] with complex, production-level ap-
plication while having low performance overhead, which has
been shown to be critical for widespread adoption of defen-
sive techniques.

Pointer analysis similar to what is needed for TASR has
been studied before in other contexts including control-flow
integrity techniques [3] or garbage collection for C [36]; how-
ever, those analyses are not sufficient for our prototype be-
cause the pointer analysis must be exact and complete in
order for TASR to work properly. Imprecise pointer track-
ing can be tolerated in previous work where correctness is
not at stake (e.g. a garbage collector simply fails to collect
an unused region of memory which does not break function-

1Pronounced “taser”

ality), but can cause crashes or worse in a TASR-enabled
process. Therefore, we have also improved pointer tracking
for compiler-generated temporary variables so as to achieve
greater precision. We additionally use techniques from re-
lated work [36] to handle other hard cases, such as disam-
biguation of unions and other dynamically allocated objects.

TASR is practical and lightweight. We have implemented
a complete TASR prototype which includes the improved
compile-time pointer analyzer and a runtime rerandomizer
on x86 64 Linux systems. We also evaluate the performance
characteristics, compatibility, and security of TASR. We
have evaluated TASR against the SPEC 2006 benchmark
and show that it offers significant protection with low per-
formance overhead. The average runtime overhead incurred
by TASR on SPEC 2006 is 2.1% with a maximum overhead
of 10.1%. Thus, TASR’s overhead is well within the com-
monly recommended threshold of 10% overhead for practical
memory corruption defenses [44].

TASR is subject to certain limitations. First, it is designed
to protect precompiled binary applications rather than inter-
preted code, and as such, attacks such as JIT-ROP [42] that
apply to scripting engines are not in scope. Second, TASR
cannot automatically handle code that is not compliant with
the C Standard in certain ways. Specifically, upcasting any
other pointer type into a function pointer prevents necessary
code annotations during the compilation process. Third, use
of a custom memory allocator requires the manual addition
of the allocator signature into the compilation process in or-
der to properly convey necessary information between com-
pilation stages. Related to this, memory allocations must
make use of the sizeof() operator when allocating mem-
ory that includes function pointers. Fourth, TASR does not
protect against data-only attacks or attacks that use relative
addressing, and as such, partial pointer overwrite attacks re-
main possible without the incorporation of additional fine-
grained ASLR techniques. These limitations are described
in more detail in Sections 3 and 4.

Our contributions are summarized as follows:

• We design a complete prototype that continuously ran-
domizes memory layout in a manner that is synchro-
nized with attacker interactions in order to thwart
memory disclosure attacks (direct or indirect) that are
commonly used to bypass existing defensive techniques.

• We implement a prototype for applications written in
C on x86 64 Linux systems. We modify GCC and
the dynamic linker to support rerandomization, and
develop a kernel component and userspace module to
control and perform it.

• We evaluate TASR using the SPEC 2006 benchmark
and show that it incurs a low performance overhead.
We illustrate that by tying output system calls to re-
randomization events, we can minimize the overhead of
TASR while providing the desired security guarantees.

We begin in Section 2 by reviewing existing defenses and
their weaknesses with respect to memory disclosures. Sec-
tion 3 details the threat model under which TASR operates.
The design and implementation of our prototype make up
Section 4. We evaluate the performance and security of our
prototype in Section 5. Finally, we conclude in Section 6.

2. BACKGROUND AND RELATED WORK

2.1 Randomization-Based Defenses
In 2001, the PaX team released Address Space Layout

Randomization which took the form of a Linux kernel patch
[35]. It applies a one-time randomization to various memory
components of a process at load time. With the advent of
sophisticated exploitation techniques such as ROP in which
small code snippets are chained together to achieve a mali-
cious purpose, finer-grained forms of ASLR have been pro-
posed in the literature. For example, ASLP [27] randomizes
the location of functions within libraries (a.k.a. medium-
grained ASLR), and Binary Stirring [46] applies randomiza-
tion at the basic block level (a.k.a. fine-grained ASLR). Oxy-
moron [7] is another technique that facilitates fine-grained
randomization while allowing code sharing among processes.

Randomization can also be applied to the content of mem-
ory. For example, the multicompiler technique [24] diversi-
fies the content of memory by adding random no-operation
(NOP) instructions into the code at compile-time, among
other protections. ILR [21] is another example that imple-
ment in-place code rewriting of binaries. Techniques such
as multicompiler and ILR can achieve sufficiently high en-
tropy to make traditional brute-force attacks [41] hard to
implement without unacceptably high numbers of crashes.

The challenge in these techniques, however, arises in the
frequency of randomization. Multicompiler randomizes the
code at compile-time, and ASLR, ASLP, Binary Stirring,
Oxymoron, and ILR randomize the code at load-time. Al-
though the latter case ensures that the code or layout will
be different every time that the process is run, the code and
layout will then stay the same during the entire execution
of the process which can be days, weeks, months, or longer
in the case of some server programs.

2.2 Enforcement-Based Defenses
Numerous enforcement-based memory defenses have also

been proposed in the literature. Complete memory safety
techniques such as the SoftBound technique with its CETS
extension [31] incur large runtime overhead (up to 4x slow-
down). “Fat pointer” techniques such Cyclone [25] have also
been proposed to provide spatial pointer safety, but are not
compatible with existing C codebases. Other efforts such as
Cling [4] and AddressSanitizer [39] only provide temporal
pointer safety to prevent use-after-free attacks.

Control flow integrity (CFI) [3] techniques are another
class of enforcement-based defenses. They enforce a compile-
time extracted control flow graph (CFG) at runtime to pre-
vent control hijacking attacks. Unfortunately, precise CFI
enforcement has not yet shown itself to be practical [3]. As
a result, weaker forms of CFI have been implemented in CC-
FIR [47] and bin-CFI [48], but have also been shown to be
vulnerable to carefully crafted control hijacking attacks [18].
Other, finer-grained forms of CFI have also been proposed
recently among which are: Opaque CFI [29] and Forward-
Edge CFI [45].

2.3 Memory Disclosure
A major assumption in the existing layout and code ran-

domization techniques is that the layout of memory remains
unknown to the attacker. As many attacks have illustrated,
however, memory content can leak directly or indirectly [22].
In the direct form, memory content is sent as an output of

the process because of a memory disclosure vulnerability.
For example, a buffer overread vulnerability can be used to
leak memory content [43]. Moreover, the same vulnerabil-
ity may be used repeatedly to leak large parts of memory,
a technique that has been used to successfully bypass fine-
grained ASLR [13] and Oxymoron [13]. In the indirect form,
timing or fault analysis attacks are used to remotely leak
the contents of memory. These attacks have been shown
to be effective in bypassing one-time randomization tech-
niques [38], and are effective even against unknown binaries
[9]. In its indirect form, the attack can cover large regions
of memory, and is not limited to areas adjacent to an over-
flowed buffer. Moreover, these attacks do not require a sep-
arate memory leakage vulnerability; that is, a single buffer
overflow vulnerability can be used for the dual purposes of
leaking the content of memory and then hijacking control
[38]. The indirect information leakage attack [16] was also
used to bypass an enforcement-based memory corruption de-
fense known as code pointer integrity [28], and even recent
generalized techniques such as Counterfeit Object-Oriented
Programming [37] make use of information leakage to carry
out an otherwise low-requirement attack. A promising new
defense, Readactor [11], combines execute-only permissions
with a randomized indirection layer to resist memory disclo-
sure attacks. It provides much greater resistance to memory
disclosure attacks than previous defenses, but maintains a
one-time only randomization strategy.

TASR solves these memory disclosure problems by reran-
domizing the layout of memory at every opportunity that
an attacker has to obtain such information.

2.4 Previous Rerandomization Efforts
Memory rerandomization has been proposed [17] or men-

tioned in the literature [9, 13, 6]. To the best of our knowl-
edge, the work by Giuffrida et al. [17] is the only one that
provides an actual implementation, applying live rerandom-
ization in the Minix 3 microkernel. This technique employs
a wall clock timing-based rerandomization model. There
are two drawbacks to such a timing-based approach. First,
it imposes unnecessary overhead when the system is cur-
rently performing operations which permit no opportunity
for attack. Second, and more importantly, even very fre-
quent rerandomization may not provide sufficient security.
For example, the technique proposed by Giuffrida et al. can
rerandomize as fast as once a second, but we note that one
second is sufficient to execute an attack even for remote
attackers that require multiple network round trips: the at-
tacker can leak memory content and send the control flow
hijacking payload, all within the interval between two ran-
domizations. Other discussions of possible rerandomization
in the literature also focus on timing-based rerandomization.
For example, Davi et al. [13] note that “However, the ad-
versary could exploit the (small) time frame between the
subsequent randomization to launch the attack”, and Backes
et al. [6] note that “an attacker can potentially abuse this
long time window to perform a JIT-ROP attack”. The nov-
elty in TASR is tying rerandomization to output in order
to synchronize it with potential observation points for an
attacker, achieving efficiency while providing the desired se-
curity guarantees.

C Source

Code

GCC

Annotated

Binary

Main

Program

TASR

Rerandomizer

Rerandomizer

Module
TASR

Kernel

Support

User

Space

Kernel

Space

Library

Library
TASR

Modifications

Figure 1: TASR Architecture

3. THREAT MODEL
In our threat model, an attacker has remote or console ac-

cess to the application and can interact with it via standard
system interfaces but is not explicitly authorized to directly
access the memory of the application (e.g., via shared mem-
ory). However, the application is assumed to contain one or
more memory corruption vulnerabilities that unintention-
ally allow the attacker to corrupt and read memory. Since
memory corruption vulnerabilities are known to be strong
for modifying or leaking memory content [38], we assume
that the attacker exploits these vulnerabilities to read or
write arbitrary memory pages. Thus, the attacker can take
advantage of memory disclosure vulnerabilities that allow
the layout of memory to be leaked in its entirety, in addi-
tion to vulnerabilities that enable the corruption of point-
ers, for the purposes of hijacking control flow. The attacker
cannot, however, inject or modify code. This can be, for ex-
ample, because W⊕X or Data Execution Prevention (DEP)
has been enabled on the system. As a result, the attacker
must resort to code reuse attacks. We further assume that
the operating system, dynamic linker, and hardware devices
are trusted. Our threat model is consistent with related lit-
erature on memory corruption [44] and code reuse attacks
[9].

We also note that the TASR prototype is designed to pro-
tect precompiled application binaries. Applications making
use of interpreted code, such as in script execution engines,
are capable of leaking memory content to uninstrumented
code in the same process address space without traversing
a system call boundary. As such, attacks such as JIT-ROP
[42] are out of scope for this work.

4. DESIGN AND IMPLEMENTATION
Many code reuse attacks begin with the exploitation of a

memory disclosure vulnerability that reveals the location of
an existing piece of executable code. TASR is designed to
thwart these attacks. It repeatedly rerandomizes the loca-
tion of all executable code at runtime, and does so at every
opportunity an attacker has for observing the system.

This core functionality requirement is augmented by the
practical considerations of ensuring low performance over-
head, and avoiding the imposition of overly burdensome
practices upon software developers. A recent survey suggests
that security techniques must impose low overhead in order
to be practical [44], and similarly, requiring manual code
annotations or limiting existing standard coding practices
(e.g., unions) is unscalable and unlikely to gain widespread
adoption.

TASR’s development was guided accordingly, and is de-
scribed in the remainder of this section. We begin with
the high-level direction and core architecture of TASR as

a whole, and then proceed into the three major individual
components.

4.1 High-Level Design and Core Architecture
We chose to implement TASR as a prototype for the x86 64

architecture running Linux, applied to programs written in
the C language. The security and functionality requirements
discussed above may be applied to a variety of different im-
plementations, but this particular combination was chosen
due to its general suitability for both experimental research
projects and production systems, its robust and open-source
toolchain and ecosystem, and its familiarity to developers.
Additionally, C programs are particularly notorious for en-
abling memory corruption attacks, and are a common target
for the type of code reuse attack that we aim to prevent.

We identified three high-level tasks for achieving effec-
tive rerandomization of a given program. First, we need to
gather enough information on the code to be able to reran-
domize it without breaking it. Second, it is necessary to
select appropriate rerandomization points that deny an at-
tacker any opportunity for a successful attack. Third, we
require the rerandomization component itself.

Ideally, TASR could be applied to any arbitrary precom-
piled binary. Unfortunately, as is often the case, the opacity
of compiled code renders it extraordinarily difficult to col-
lect sufficient information about the program structure to
apply the technique, using only static offline analysis. Dy-
namic analysis at runtime offers greater opportunities, but
also imposes higher overhead. At the opposite end of the
spectrum, a requirement for developers to write their code
according to predefined and strict standards would render
analysis trivial, but would also violate our requirement of
minimal manual source code changes on the part of the de-
veloper.

TASR works between the two extremes: during compila-
tion without manual modifications, so it is a source com-
patible technique in the taxonomy developed by Szekeres
et al. [44]. Two opportunities are afforded to us during
the compilation process. First, we can analyze the source
code and extract necessary pointer information, carrying it
along through the multi-stage compilation process as debug-
ging information. Second, we can minimize the amount of
debugging information for performance reasons. The reran-
domization stage itself must be triggered during runtime,
but it need not be integrated into the program as native
code, and is not in the case of TASR.

We chose rerandomization points by reasoning about the
threat model and following it to its natural conclusion. Our
threat model assumes that an unknown attacker has knowl-
edge of, and access to, both an arbitrary memory disclosure
vulnerability and a control flow redirection vulnerability, in
the targeted program. We assume that we cannot detect the
use of either vulnerability, and are likely entirely unaware of
their presence. Therefore, we must assume that knowledge
of the program’s memory layout may be undetectably leaked
in any output from the program, and that control flow may
be redirected at any point where the program acts upon ex-
ternal input.

Although we cannot identify the exact points at which
the attacker actually exercises either vulnerability, we can
identify every opportunity at which it is possible to do so.
Specifically, an attacker can redirect control flow on the first
input made to the program following the data leakage from

an output. Put more simply, the minimum interval to carry
out an attack is the time between the most recent output
and the following input. If rerandomization occurs at each
such interval, there is never an opportunity to use knowledge
of the previous memory state.

TASR uses a kernel component to invoke rerandomization
at these points. Because the kernel handles all external I/O
calls, it is in the best position to track I/O events across the
entire process, including events in multiple threads. It would
also have been possible to invoke rerandomization via code
injected during the compilation process, but that approach
would have required extra logic to handle the tracking of
I/O ordering.

Finally, the actual memory rerandomization step has com-
ponents that reside in both kernelspace and userspace. Al-
though we initially considered both kernel-only and userspace-
only approaches to rerandomization, we determined that a
hybrid approach offered the best tradeoff between security,
performance, and ease of implementation. The kernel selects
the new random locations to which the code segments will be
moved, carries out the actual movement, and injects a tem-
porary userspace component into the memory space of the
process being rerandomized. This userspace component is
logically separate from the target process, but is considered
to be the process for the duration of its existence, and it has
full memory access thereby. All rerandomization tasks aside
from the code movement are carried out by this userspace
component, which the kernel then removes before returning
control to the original program control flow.

The overall architecture of TASR is depicted in Figure 1.
A compiler component, implemented as a customized ver-
sion of GCC, compiles programs in a form suitable for reran-
domization through TASR. The kernel component controls
the timing of rerandomization and handles certain other
bookkeeping tasks. An injected userspace component per-
forms the bulk of the rerandomization in a way that is trans-
parent to the original program. Detail on each component
follows in the subsequent sections.

4.2 Compilation
The first two required steps in code rerandomization are

to produce code that is capable of being easily rerandomized,
and then to have sufficient information about that code to
carry out the actual rerandomization step. Fortunately, the
first step is not only a solved problem, but has been regu-
larly applied to production code for many years in the form
of PIE/PIC compiler options (Position Independent Exe-
cutable/Code) for UNIX-like systems, and the equivalents
in other major operating system environments. These com-
piler options are used to enable ASLR, and any program
that supports ASLR is randomizable at least once and thus
well-poised for future rerandomization. The second step,
having sufficient information about that code to enable re-
randomization, is more complicated.

At the time of rerandomization, all references to the code
(i.e. function pointers and return addresses) must be up-
dated to point at the new location of that code. To be
updated, those references must be fully tracked throughout
the lifetime of the program such that they can be identified
and updated at any time. Such tracking must be precise and
sound. Missed references will result in segmentation viola-
tions and thus program crashes, whereas falsely-identified
references will result in corrupted data.

1 int main() {
2 int x = 20, y;
3 uintptr_t x_loc, y_loc;
4 int *x_ptr;
5 x_loc = (uintptr_t)&x;
6 y_loc = (uintptr_t)&y;
7 x_ptr = (int *)x_loc;
8 printf("x and y are %" PRIuPTR
9 " bytes apart, and x = %d.\n",
10 (x_loc - y_loc), *x_ptr);
11 return(0);
12 }

Figure 2: Code with valid (ab)use of data pointers.

Code references come in two flavors. The first type is gen-
erated implicitly, and is comprised of inter-code references,
intra-code references, and return addresses on the stack.
None are explicitly declared in the C language, and are
only accessible by taking advantage of architecture-specific
knowledge of code and data layout. The second type is de-
clared explicitly as a function pointer, as in this example:
int (*fptr)(int, char *);. These references may be ma-
nipulated, set, and explicitly invoked at will by the program-
mer. So long as both reference types can be tracked and
updated when needed, rerandomization should be possible.

TASR is intended to protect against code reuse attacks,
and thus our focus is on code location rerandomization. The
question naturally arises: should program code alone be
moved, or should program data (possibly including dynami-
cally allocated data segments) also be moved? We elected to
move code only for two primary reasons: performance, and
the difficulties in precisely tracking data reference locations.
We discuss the security implications of this design choice in
Section 5.

For performance, we noted that the incidence of references
to code was extremely low compared to the incidence of ref-
erences to data. Code references typically number in the
hundreds, whereas it is common for a large program to have
many thousands of data pointers, and millions are not un-
usual. Since each reference must be updated at each reran-
domization point, this can impose significant performance
overhead.

According to the C standard, one cannot cast into a func-
tion pointer from any other data type. This is of particular
importance to us, because it ensures that a user-defined code
reference cannot exist outside of a function pointer vari-
able. Unfortunately, no corresponding restraint is placed
upon data references, which makes ambiguous data refer-
ences possible.

Consider the example in Figure 2. The integer variable
x_loc is first used to set an integer pointer to point at a
specific integer, and then used to calculate a byte offset. If
rerandomization is invoked at line 6, we have the choice of
treating x_loc as a data pointer (because we note that it
was assigned from a data pointer), or as an integer (which
is its native type). If x_loc is treated as a data pointer,
the printf statement’s calculation of x_loc - y_loc yields
an incorrect result according to the original programmer in-
tent. If x_loc is treated as an integer, line 7 yields an in-
correct result because x_loc now points to an outdated lo-
cation. There is no solution to this issue, short of requiring
explicit code annotations or forbidding the use of a valid and
common C construction. Neither solution is acceptable ac-
cording to our initial requirements. Movement of code only
avoids the need for either of these two undesirable options.

References to code can be divided into three major cate-
gories:

1. References to code residing within the same compila-
tion unit.

2. References to code residing in other compilation units.

3. References to code that are assigned at runtime, of
which there are three subtypes: (a) global variables,
(b) local variables and return addresses residing on the
stack, and (c) dynamic allocations.

Code references from category 1 require no special action
beyond compilation as PIE/PIC, using standard compiler
and linker flags. Position-independent code uses relative
offsets to access code within the same unit, rather than ab-
solute references. Because each code segment moves as a
block, relative offsets do not change and there are no refer-
ences that require updating.

Category 2 references similarly require no special action
beyond standard compilation and linking options. Refer-
ences to code in other compilation units are not resolvable
at the time of compilation, and thus are not assigned ab-
solute addresses. Instead, references are made by relative
offset into the Global Offset Table (GOT), a data structure
present in each compilation unit. Thereafter, only one well-
defined reference, residing at a known location in the GOT,
need be updated at each rerandomization.

Code references of subtypes 3(a) and 3(b) from category 3
can be identified at compilation time and pose a special
problem only in the context of unions. Global variables re-
side at permanent known locations, and items on the stack
exist in calculable locations. In the case of unions, a sin-
gle data location may contain a function pointer or may
contain some other data type, and its contents are non-
deterministic at compilation time. Therefore, during the
compilation phase, we use the technique proposed by Rafkind,
et al. [36] to add code to create tagged unions wherever such
unions may contain a function pointer. This incorporates an
extra data field to label the present type contained in the
union, and at each union assignment, the label is updated
to mark it as containing a function pointer, or some other
data type.

Finally, code references of subtype 3(c) from category 3
are non-determinable at compilation time. Therefore, a run-
time tracking component must be inserted into any program
that contains dynamically allocated function pointers. This
component is added automatically during compilation by in-
corporating the equivalent of a small library, through which
all dynamic allocations are routed. Instructions are auto-
matically generated to record the dynamically allocated lo-
cations of function pointers in a table established at runtime.
Entries are added and subtracted as they are allocated and
deallocated.

This solution comes at a price. Dynamic allocations must
make use of the sizeof() operator in order for the compiler
to understand what types are present. The statement void
*mem = malloc(10 * sizeof(struct some_structure)) is
interpreted as an allocation of a block of memory containing
ten elements of that particular structure, from which the
locations of function pointers are calculated. In contrast,
void *mem = malloc(800) has no such metadata present,
and nothing can be inferred about the location of poten-
tial function pointers within that block. Fortunately, in our

evaluation, we show that memory allocations without mak-
ing use of sizeof() are rare in practice for major programs
(none in the SPEC2006 suite; see Section 5), and are typi-
cally only used for char arrays, and can thus be assumed to
contain no function pointers in this context. If such alloca-
tions are discovered, the TASR compiler component issues a
visible warning and treats any such allocation as a character
array not containing function pointers.

The preceding code generation steps ensure that the pro-
gram can be rerandomized, so long as precise location in-
formation for non-dynamic code references is made avail-
able. Such tracking requires location information at every
single program instruction, including the exact memory ad-
dresses (calculable through an offset) and hardware regis-
ters in which the reference resides. As previously discussed,
missing even a single pointer sets up a segmentation viola-
tion crash situation, and false identifications corrupt data.

GCC has built-in compiler options that begin
to address this problem: the -fvar-tracking and
-fvar-tracking-assignments debugging options. These
options are intended to compute the locations at which vari-
ables are stored for each instruction, and that information
is carried through the compilation process and emitted as
debugging output at the end. The implementation of these
tracking options was not entirely complete in GCC 4.8.2,
which we used as a base. It did not properly track global
variables, variables that existed in multiple simultaneous
locations, certain transient locations where temporary vari-
ables were being used in a different stage of the compilation
process, around transition points when passing parameters
into functions, in certain structure operations, with arrays
of structures, and in certain other miscellaneous corner
cases. We modified GCC to track all of these cases and
emit the appropriate debugging information.

In standard compilation, objects in the data segment are
usually referenced by relative addressing from the text seg-
ment. This would normally represent a problem for TASR,
which repeatedly moves the text segment while leaving be-
hind the data segment at its original load-time position, be-
cause all relative references between the two sections are
invalidated after the first move. To handle this problem,
we modified GCC so that it treats all data segment object
references as if they were externally visible global references
residing in different compilation units. We then rely upon
GCC’s normal handling of such references, which is to route
them through the GOT. This converts all relative references
to the data section into relative references to the GOT, and
because TASR moves the GOT relative to the text segment,
all relative references remain valid after each runtime re-
randomization. As per references to code residing in other
compilation units, only this one well-defined reference need
be updated at each randomization. This results in an extra
level of indirection for all statically allocated variables; how-
ever, it contributed no significant penalty to CPU overhead
or program memory usage in our tests.

The final product of this process is a standard ELF ob-
ject file, including a debugging section in the DWARF for-
mat [15]. It also contains one extra program segment: the
“TASR GOT”. As previously mentioned, the Global Offset
Table is a data section that contains references to code, and
is accessed via relative offset from the code. This data sec-
tion is an exception to the code-only movement, and is itself
treated as if it were part of the code segment that references

it. It is safe to move this data segment, since user code
cannot normally gain direct reference to the GOT without
taking particularly convoluted actions, for which we have
been unable to identify any practical use, and nor have we
detected any instances of this happening in our testing. The
extra segment and name “TASR GOT” also serves a more
utilitarian purpose: it immediately identifies an ELF file as
being TASR-enabled.

4.3 Invocation and Kernel Support
TASR modifications to the Linux kernel include support

for TASR process start-up, appropriate triggers for reran-
domization, selection of new movement locations within the
address space, and maintenance of certain kernel-stored code
references. To do this, the kernel keeps a small amount of
per-process TASR information (proportional to the number
of TASR-enabled modules in the program), monitors I/O
related system calls, and initializes userspace code to han-
dle the actual rerandomization. The kernel itself does not
perform the rerandomization according to the principle of
least privileges; the rerandomization functionality has no
need for elevated privilege and its actions are easily handled
in userspace without kernel involvement beyond the initial
setup.

In Linux, all communication that crosses the process ad-
dress space boundary must route through the kernel by
means of a system call. Such communication occurs through
file descriptors (for both standard filesystem files and “spe-
cial files” like named pipes) through system calls in the
read() and write() families. Therefore, tracking those sys-
tem calls allows us to appropriately time rerandomization.
The system calls used for I/O are listed in Table 1. In the
remainder of this text, references to read() and write() are
intended to represent the entire family of calls unless other-
wise noted. Also note the inclusion of fork() and vfork()

system calls in the“Input”column. Although not technically
“input” system calls, treating them as such ensures that two
correlated processes have different memory layouts at the
time of their split.

Therefore, the rerandomization strategy is as follows: re-
randomize before any read() that follows one or more
write() calls. As previously discussed, this strategy is best
imposed by the kernel. Not only is the kernel involved in
each system call, but also it is in a position to correlate
read() and write() calls between processes in a process
group, without which multithreaded programs would go un-
randomized over multiple I/O cycles in split threads. The
rerandomization itself, also as previously discussed, takes
place in userspace. Although we initially considered kernel
space rerandomization, security best practices dictate that
we spend as little time as possible in kernel mode. There-
fore, we developed a method of code segment injection: re-
randomization code can be injected into the address space
and control flow transferred to that code. This also allows
the use of userspace libraries without the necessity of port-
ing them to the kernel and the risk of introducing additional
vulnerabilities thereby.

The initialization of a TASR process is recognized in the
kernel by the presence of the “TASR GOT” program seg-
ment in the ELF file, as generated during compilation. The
process is loaded normally with a small amount of TASR
data also associated with the process. Execution commences
normally.

Input Output
syscall # syscall

0 read() 1 write()
17 pread64() 18 pwrite64()
19 readv() 20 writev()
45 recvfrom() 44 sendto()
47 recvfrom() 46 sendmsg()
243 mq_timedreceive() 242 mq_timedsend()
295 preadv() 296 pwritev()
299 recvmmsg() 307 sendmmsg()

Input-like

57 fork()
58 vfork()

Table 1: System call numbers and names for input
and output on the x86 64 architecture.

Aside from startup and shutdown (including calls to
exec(), fork(), and the exit() family), kernel behavior
with regard to a TASR program differs in only two regards.
First, any use of a write() family system call (see Table 1)
toggles a flag in the process (or process group) to indicate
that output was produced. Second, any use of a read()

family system call checks that output flag, triggers a reran-
domization if it is set, and then clears the flag again.

Actual rerandomization works as follows. First, all vir-
tual memory areas are checked in order to determine if they
should be rerandomized. The addition of new areas is rel-
atively rare: standard linked libraries are examined at the
time of the first rerandomization and the list subsequently
changes only when new libraries are dynamically added or
subtracted. For each TASR-enabled object, a new random
address in memory is generated. This addressing informa-
tion is then placed into a userspace memory segment of ap-
propriate size, along with a copy of the original register set
and the addresses used for dynamic runtime tracking of code
references.

The kernel then injects a component called the “pointer
updater” into the process. This component consists of the
virtual memory areas of what could normally be considered
a separate process, along with certain other information that
allows it to be injected, in toto, into any other address space.
Control is transferred to this injected component with the
address of the aforementioned userspace memory segment as
an initial parameter. Specifics of the pointer updater compo-
nent are discussed in subsection 4.4, and do not involve the
kernel between setup and withdrawal from userspace. When
the pointer updater component completes its task and ex-
its, the kernel withdraws it from userspace, tidies up any
memory areas that were not part of the original process,
updates the register set of the original process if required,
and performs the actual move of the memory segments in
question. This movement is efficiently made by updating
the process page tables rather than copying the contents of
memory from one location to another. Control is then re-
turned to the original program. The rerandomization is thus
seamless to the original process.

The kernel must also maintain the location of any set
signal handling functions, a task easily accomplished since
the kernel is the one to choose new addresses for all TASR-
enabled code. Should correlation between processes be re-
quired in the context of multi-threaded programs sharing
address space, it also tracks I/O calls across an entire pro-
cess group.

4.4 Rerandomization Process
The pointer updater bears most hallmarks of a standalone

process, except that it runs in the address space of a TASR
process that is currently being rerandomized, rather than in
its own. It would ideally be a self-contained segment within
the kernel, but has been initially implemented in the pro-
totype as a standalone process for reasons of developmental
convenience. It is run once at startup for initialization pur-
poses, then withdrawn into the kernel.

Rerandomization requires that code references in the three
major categories enumerated in Section 4.2 be updated.
Code references most likely exist at specific addresses in
memory, but may also exist in the active register set if it
so happens that a code pointer is “in use” at the time of re-
randomization. The addresses to which code pointers must
be updated are calculable from the information provided by
the kernel. Each pointer location is examined in turn. When
the pointer contains a valid code address (it may not, if not
yet initialized), its new value is computed and updated.

The locations of dynamically allocated code pointers re-
side in a simple list, to which the pointer updater has a
reference by means of the kernel-passed parameter. Updat-
ing these pointers is merely a case of iterating through the
list and applying the transformation described above. Other
code references are more complicated.

As a result of changes discussed in subsection 4.2, the
DWARF debugging information contains a complete refer-
ence to all global and local variables. The data is assembled
into a data structure known as an “interval tree” which al-
lows fast variable lookup based on the program instruction
pointer. This data structure is used in conjunction with
stack unwinding to step back through each stack frame of
the process and determine what variables were in use during
each frame. For each stack frame, the instruction pointer is
used to query the interval tree and return a complete list of
code pointers in use, and the memory addresses (or regis-
ters) in which they are located at that time. Each pointer
is updated in turn. Global variables and other global refer-
ences, which reside at static locations, are also queried via
the DWARF interval tree but do not depend on the current
instruction pointer.

After all updates are made, the pointer updater returns
control to the kernel and shortly thereafter ceases to exist in
the address space of the program being rerandomized. No
state is maintained between runs of the pointer updater.

As a userspace component, we were able to make use of
a large body of existing code, most notably libunwind [30]
for the purpose of stack unwinding. This library is not par-
ticularly well-suited to this task, and required modification
to enable desired functionality. We speculate that moderate
performance improvement would be possible with the use of
a more efficient library. Similarly, we suspect that there are
opportunities for significant performance improvements in
DWARF parsing and variable tracking. Our current imple-
mentation of the DWARF interval tree includes all variables
rather than only code pointers, and must be assembled anew
on each run of the pointer updater. Significant performance
improvements could likely be achieved by optimization of
DWARF parsing and pre-generation of the needed interval
tree as a one-time compilation step. However, performance
results (see Section 5) are initially favorable even without
these optimizations, and we have instead concentrated our
efforts on other areas.

 0

 200

 400

 600

 800

 1000

 1200

 1400

bzip2
gcc mcf

gobmk
hmmer

sphinx3

sjeng
h264ref

milc
lbm libquantum

Ti
m

e
(s

)

Unmodified Program
TASR Rerandomized Program

Figure 3: Runtime overhead for TASR rerandomiz-
ation triggering at input/output system calls for the
SPEC CPU2006 Benchmark

4.5 Limitations
TASR is subject to certain caveats and limitations beyond

those that have already been discussed. The use of inline
assembly in a C program cannot be tracked by our current
methods and would require manual annotation of the as-
sembly snippets in order to allow DWARF information to
be generated. Should the author of a process manipulate
code pointers in a block of inline assembly, such manipula-
tion will not show up in DWARF tracking information and
it becomes possible that a code pointer will not be updated
during rerandomization. Naturally, the inability to update
even a single code pointer will likely result in eventual pro-
gram crash via segmentation violation when attempting to
run code at a location not presently allocated.

5. EVALUATION
The goals of our evaluation are to determine the perfor-

mance overhead of executing TASR-enabled binaries, exam-
ine the frequency of coding practices in common applica-
tions that would require manual modification in order to be
compatible with TASR, and to analyze the technique’s ef-
fectiveness against attacks that leverage memory disclosure
vulnerabilities in order to hijack control flow. These items
are addressed in the following subsections.

5.1 Performance
The CPU and memory overhead of TASR were evaluated

using the C programs in the SPEC CPU2006 benchmark,
with the exception of perlbench, which was excluded due
to TASR not currently supporting interpreted environments
as per Section 3 (see Section 5.2 for further details). We
acknowledge that the SPEC benchmark has certain limi-
tations in evaluating TASR’s overhead. Since SPEC CPU
is a compute-intensive benchmark, it is primarily useful in
evaluating the runtime performance impact of the allocator
instrumentation in both CPU and memory overhead, but
does not capture the full impact of rerandomization over-
head in an I/O-intensive program (such as a webserver).
Ideally, TASR should also be evaluated on an appropriate
I/O-intensive benchmark, but such benchmarks are unfor-
tunately not as widely used or available as SPEC.

All experiments were conducted on a Debian 7 machine
running Linux kernel 3.2.65 on a 4-Core Intel Xeon 2.66
GHz processor with 8 GB of RAM. The performance of
TASR-enabled programs is compared against the perfor-
mance of the same set of programs compiled using an
unmodified GCC 4.8.2 and using the default ASLR base
address randomization but without runtime rerandomiz-
ation. The baseline programs were compiled with GCC’s
unmodified DWARFv4 debugging information (-gdwarf-4
and -fvar-tracking flags) while the TASR-enabled set was
compiled with the additional debugging information and
runtime instrumentation code required for rerandomization.
Both the baseline and the TASR-enabled binaries were com-
piled using the -Og flag, which performs optimizations that
preserve debugging information.

As shown in Figure 3, the CPU overhead ranged from
negligible in more than half the cases to 10.1% in the worst
case, with an average overhead of 2.1%.

Note that in a few cases the difference was sufficiently
insignificant such that TASR binaries actually reported
marginally faster runtimes than unmodified binaries, within
the limits of expected variation. This is normal and, in
fact, expected due to layout randomization. A similar phe-
nomenon has been observed in the related work [11, 12].
Overhead in comparison to the total number of I/O pairings
during the program run, average number of function point-
ers that needed to be updated at rerandomization time, and
the average depth of the stack at rerandomization time are
detailed in Table 2. Virtual memory overhead ranged from
negligible in the best case up to 3.5MB in the worst case,
with an average overhead of 1MB. The increase in mem-
ory consumption is primarily attributable to the additional
DWARF debugging information that is added to binaries
for tracking function pointer locations and unwinding the
stack. The storage of debugging information was not opti-
mized in any way and the memory overhead could likely be
significantly reduced by performing such optimizations.

The very low overhead of TASR is because of its synchro-
nization with the I/O system calls. Note that the expensive
context switching cost (from userspace to kernelspace and
back) is already paid by the system call when rerandomiz-
ation is in-sync with read/write calls.

5.2 Compatibility
TASR successfully compiled and rerandomized all tested

programs with the exception of perlbench. The perlbench
component interprets code at runtime and TASR currently
does not have the mechanism for adding debug informa-
tion to track interpreted or runtime-generated code. Simi-
lar mechanisms that were added to GCC would need to be
added to the Perl interpreter in order to generate such de-
bug information at runtime. Moreover, we observed that
perlbench violated the C standard by treating function
pointers as data pointers in some areas, which prevents ac-
curate compilation under TASR without manual modifica-
tions. We thus did not evaluate perlbench under TASR.

As discussed in Section 4.2, there are certain cases where
TASR can miss pointers to code and thus would fail to up-
date the pointers at rerandomization time. Specifically, this
occurs when function pointers are stored as other types but
later used as function pointers, or where dynamic allocations
of function pointers cannot be automatically recognized by
TASR due to custom allocators or the lack of any type in-

formation passed to malloc(). These cases require manual
modifications of the source code such that function point-
ers are indeed declared as function pointer types. There
are four programming practices that could require manual
modification in order to be compatible with TASR: function
pointer casting, allocations without type information, union
type punning with function pointers, and custom memory
allocators.

Function pointer casting: TASR assumes strict com-
pliance with the C standard’s rules on conversions involv-
ing function pointers. Specifically, a program should not
cast a non-function pointer into a function pointer [23]; thus
TASR only modifies pointers that are declared as pointing
to a function. Pointers that are declared as pointing to a
non-function and later converted to pointers to functions
may cause the program to fail. Outside of a few specific in-
stances (interpreter implementations and usage of POSIX’s
dlsym) these conversions are not common. We analyzed the
frequency of casting between function pointers and object
pointers using GCC’s -pedantic flag. This flag enables all
warnings demanded by strict ISO C compliance. Several
of these warnings indicate the presence of a cast between
function pointers and object pointers. The total number of
function pointer casts found are shown in the two rightmost
columns of Table 2. Note that not all function pointer casts
enumerated in those columns actually cause a problem for
TASR. Typically only those cases where an object pointer is
upcast to a function pointer prove to be problematic in prac-
tice. In these cases, the mistyped function pointer would not
be updated during rerandomization and thus would contain
a stale address that would break the program if the function
pointer were subsequently called. While there were some
function pointer casts in the SPEC benchmark programs,
we found no actual problematic cases (i.e. upcasting) dur-
ing our evaluation.

Union type punning: TASR’s union tagging requires
that whenever a union member is accessed, that member
must be the same as the member last used to store a value
into the union. Occasionally programmers will intentionally
access a union member that does not correspond to the last
assigned union member to reinterpret the stored value as a
different type (a process known as type-punning). In prac-
tice, this does not pose a problem to TASR as the number of
union members of type pointer to function is low as shown
in the two rightmost columns of Table 2. While we did find
some cases of unions containing function pointers, we did
not find any actual instances of type-punning in our test
programs.

Malloc without type: TASR tracks function pointers
located on the heap by annotating all allocations with type
information. This type information is inferred via a syn-
tactic analysis on the call site of a heap allocation. The
syntactic analysis examines the arguments passed to the al-
locator, looking for a sizeof(). If a sizeof() is found, the
type inside the sizeof() will be used to annotate allocations
made from that site. If no sizeof() is found, it examines
the type of the pointer to which the newly allocated space
is assigned. If the pointer is of type pointer to void, our
analysis will display a warning as it is unable to determine
the type associated with the allocation. We did not find any
such instance in the SPEC benchmark programs.

Custom allocators: Many large programs use custom
allocators and these need to be instrumented for TASR to

Program CPU Over-
head

Memory
Overhead
(KB)

I/O Pairs Mean Code
Ptrs

Mean
Stack
Depth

Function
Ptr Casts

Unions
Containing
Function Ptrs

bzip2 ∼0% 28 6 144 5 0 0
gcc 5.5% 2512 0 0 0 175 0
mcf ∼0% 84 2 147 6 0 0
gobmk 4.8% 3156 551 2019 11 0 3
hmmer ∼0% 264 2 223 10 0 0
sphinx3 ∼0% 88 124 209 4 0 5
sjeng 10.1% 3436 2 169 6 0 0
h264ref .8% 1002 36 212 6 0 21
milc ∼0% 48 2 167 11 0 1
lbm 1.6% 680 0 146 7 0 1
libquantum ∼0% 0 0 0 0 1 1

Table 2: Overhead in relation to frequency of I/O Pairs (rerandomizations), code pointers requiring updat-
ing, and depth of the stack at rerandomization time. The two rightmost columns show the frequency of
function pointer casting and unions containing function pointers. Note that none of these cases were actually
problematic and thus no manual modification was necessary.

track dynamic allocations. Currently, this requires one to
determine the signatures of all custom allocators used by a
program and to add the signature to TASR. This usually
requires minimal manual effort as most programs tend to
have only a few custom allocators. Of the SPEC C pro-
grams, only gcc and perlbench contain custom allocators
and there are only 31 between them [10].

5.3 Security

5.3.1 Analysis

Traditional memory disclosures directly leak a memory
address or part of an address via benign but vulnerable code.
For example, a format string or buffer overread vulnerability
such as Heartbleed [19] could be used by attackers to coerce
the program to output return addresses or function pointers.
Following the output, the attacker can use the learned ad-
dresses to craft a subsequent payload that redirects control
flow to locations discovered via this leak. TASR triggers re-
randomization prior to allowing the process to complete an
input system call, thus preventing such attacks by rendering
the addresses used in the payload stale by the time the pro-
gram attempts to act upon them. In contrast to the case of
standard ASLR where such attacks succeed with certainty,
TASR effectively reverts the attacker’s use of a known ad-
dress to a mere guess of an address that succeeds with a
probability corresponding to the baseline entropy of the tar-
geted memory object. The guess will likely result in the
process crashing. While DoS attacks of this variety are still
possible under TASR, code execution attacks are prevented
with high probability.

Another form of memory disclosure allows an attacker to
indirectly leak memory addresses by guessing addresses and
observing whether or not a process crashes. There are tech-
niques that are more effective than simple brute force guess-
ing: they perform partial overwrites of existing addresses
and guess one byte of an address at a time rather than a
full 64-bit address, reducing the expected number of guesses
on 64-bit Linux from 227 to 640 [9]. This piecewise guess-
ing technique is commonly known as stack reading and was
generalized for use in a form of code reuse attacks known
as Blind ROP attacks [9]. These attacks rely upon the pro-
cess automatically invoking fork() after the crash and with
the same address layout. As TASR triggers rerandomiz-
ation each time fork() is called, any successful guesses of a

single byte of an address are immediately rendered stale at
the next I/O pairing or failed guess, preventing the attacker
from building upon piecewise guesses.

Similarly TASR prevents remote side-channel attacks
(timing and fault analysis) such as those proposed by Seib-
ert et al. [38] because they still rely on (side properties of)
system output to leak memory content. TASR rerandom-
izes the memory after every output rendering information
gained through these side-channels stale.

The recently proposed COOP attack [37] is also prevented
by TASR because it requires the knowledge of the memory
layout (at least for “the base addresses of a set of C++ mod-
ules”). COOP assumes the presence of a direct or indirect
memory disclosure vulnerability. TASR prevents COOP by
hindering an attacker’s ability to gain this knowledge.

5.3.2 Nginx Memory Disclosure Attack

We evaluated TASR on a version of Nginx vulnerable to a
stack-based buffer overflow [1] discovered in 2013. This vul-
nerability can be used to disclose the contents of the stack,
including return addresses, by writing a guessed value to
the stack and observing whether or not Nginx crashes, in an
attack known as Blind ROP [9]. We used a version of the
Braille [2] exploit tool optimized for conducting this attack
against ASLR-enabled Nginx binaries.

We found that TASR broke this attack in the first of the
six attack stages (disclosing the value of a return address).
Braille’s attack depends on being able to read a return ad-
dress byte-by-byte over the course of several requests. How-
ever, when Nginx is run with TASR each request triggers a
rerandomization due to either an I/O operation or a fork()
system call. Due to these rerandomizations, when Braille
finishes the first stage of its attack, it is left with a return
address that does not point to the text section of any run-
ning Nginx process. Braille then proceeds to the second
stage of its attack (finding both a stop gadget and the PLT).
Braille uses the return address it read in the first stage as
an origin and scans backwards looking for a stop gadget.
A stop gadget is any gadget which causes the program to
block, such as a sleep() system call. During our evaluation,
as expected, this stage never terminated when run against
a TASR-protected binary as the pointer Braille used as the
origin of its scan does not point to the text section of any
running Nginx process.

5.3.3 Limitations

An ideal rerandomization approach would rerandomize
the entire address space, including the data segments. How-
ever, TASR leaves data segments in fixed locations after the
initial load-time randomization has been applied by base
ASLR. The current state of C programs makes it challeng-
ing to definitively distinguish pointers to data segments from
non-pointer types. While the C standard places restric-
tions on casting between function pointer and non-function
pointer types, there are no such restrictions in casting point-
ers to data to non-pointer types. It is quite common for
programs to cast integer pointers into simple base integer
types and vice versa. This results in the inability to identify
at rerandomization time whether or not a variable contains
a pointer or a data value, and thus makes the movement
of data unreliable. Unfortunately, excluding data segments
from rerandomization affords minimal additional protection
from data-only modifications over base ASLR. An attacker
that leaks the location of a data object will be able to access
that object in its same location following the leak.

The ability to modify data additionally has implications
for control flow hijacking attacks. Attackers that leak the
location of a function pointer or return address may be able
to indirectly use the code pointer at that location. Attack-
ers can overwrite pointers to code pointers to point to the
location of a leaked code pointer. Should the benign applica-
tion later attempt to dereference and call the pointer to code
pointer, control will be redirected to the leaked code pointer
instead. While an attacker does not know which value to
use for the code pointer itself since it has been subject to re-
randomization, the layer of indirection makes it sufficient to
simply know the location of the code pointer, not the value
itself; this location is in the data segment which remains
fixed.

It is important to note that this attack is far weaker than
the ROP attacks. In particular, the attacker would not be
able to easily chain ROP gadgets that point to arbitrary
addresses as is currently possible. The attacker cannot use
ret or direct/indirect jmp instructions to reach arbitrary
gadgets since the attacker would not actually know the lo-
cation of any gadgets themselves. The attacker is limited
to using function pointers or return addresses that natively
exist in the benign program at the time of attack and whose
locations were leaked. Additionally, the attacker could only
reach them via existing double indirection code (i.e. code
that dereferences and calls a function pointer).

The TASR prototype is also constrained to protecting
against leaks that operate at I/O boundaries. This excludes
attacks from processes that already have shared access to
memory given that addresses could be leaked without any
system output from the vulnerable process. This would
also limit TASR’s effectiveness in environments where the
attacker’s code may be running in the the same address
space as the vulnerable program, such as web browsers in-
terpreting JavaScript. To protect these applications, the
I/O boundary would need to be set as the transition be-
tween the user-supplied JavaScript that is to be interpreted
and the vulnerable engine code that is being exploited. As
mentioned earlier in this section, TASR does not currently
support interpreted or runtime generated code but could be
extended to do so using the same principles described here.
We leave this component to future work.

Control flow hijacking attacks that do not rely upon mem-
ory disclosures naturally remain possible. One such attack
is a partial overwrite attack [14] in which an attacker is able
to overwrite part of an address in order to reach a target
object that is fixed relatively to that address. Rerandom-
ization does not impact the relative positioning of objects.
Fine-grained ASLR techniques that randomize the relative
positioning of objects [21, 46, 27] provide one promising ap-
proach that could complement TASR in order to protect
against these attacks, and in fact TASR already makes use
of whatever base ASLR technique that the system can sup-
port.

6. CONCLUSION
TASR is a technique that introduces the concept of “time-

liness” to the broader area of code randomization in order to
enable address space re-randomization. It builds upon the
concepts introduced by ASLR and allows programs to be
rerandomized at arbitrary points in their lifespan. By care-
ful selection of those rerandomization points, the impact of
memory disclosure vulnerabilities can be entirely mitigated
as applied to code reuse attacks. Because attackers never
have the opportunity to make use of the information dis-
closed, a successful code reuse attack cannot be carried out.

Application of TASR imposes a reasonable performance
overhead (2.1% on average) over a wide variety of tested
programs. Although not yet applicable to certain classes of
program, it requires only recompilation for many existing
codebases without requiring further manual changes.

Future work will focus on adding support for interpreted
environments and additional custom memory allocators.

7. REFERENCES

[1] Cve-2013-2028. Online, 2013.

[2] Blind return oriented programming. Online, 2014.

[3] Abadi, M., Budiu, M., Erlingsson, U., and

Ligatti, J. Control-flow integrity. In Proc. of ACM
CCS (2005).

[4] Akritidis, P. Cling: A memory allocator to mitigate
dangling pointers. In Proc. of USENIX Security
(2010).

[5] Anderson, J. P. Computer security technology
planning study. volume 2. Tech. rep., DTIC
Document, 1972.

[6] Backes, M., Holz, T., Kollenda, B., Koppe, P.,

Nürnberger, S., and Pewny, J. You can run but
you can’t read. In Proc. of ACM CCS (2014).

[7] Backes, M., and Nürnberger, S. Oxymoron:
Making fine-grained memory randomization practical
by allowing code sharing. Proc. of USENIX Security
(2014).

[8] Barrantes, E. G., Ackley, D. H., Palmer, T. S.,

Stefanovic, D., and Zovi, D. D. Randomized
instruction set emulation to disrupt binary code
injection attacks. In Proc. of ACM CCS (2003).

[9] Bittau, A., Belay, A., Mashtizadeh, A.,

Mazieres, D., and Boneh, D. Hacking blind. In
Proc. of IEEE S&P (2014).

[10] Chen, X., Slowinska, A., and Bos, H. Membrush:
A practical tool to detect custom memory allocators
in c binaries. In Proc. of WCRE (2013).

[11] Crane, S., Liebchen, C., Homescu, A., Davi, L.,

Larsen, P., Sadeghi, A.-R., Brunthaler, S., and

Franz, M. Readactor: Practical code randomization
resilient to memory disclosure. In IEEE S&P (2015).

[12] Curtsinger, C., and Berger, E. D. Stabilizer:
Statistically sound performance evaluation. In Proc. of
ASPLOS (2013).

[13] Davi, L., Liebchen, C., Sadeghi, A.-R., Snow,

K. Z., and Monrose, F. Isomeron: Code
randomization resilient to (just-in-time)
return-oriented programming. Proc. of NDSS (2015).

[14] Durden, T. Bypassing pax aslr protection, 2002.

[15] Eager, M. J. Introduction to the dwarf debugging
format. Group (2007).

[16] Evans, I., Fingeret, S., Gonzalez, J.,

Otgonbaatar, U., Tang, T., Shrobe, H.,

Sidiroglou-Douskos, S., Rinard, M., and

Okhravi, H. Missing the point(er): On the
effectiveness of code pointer integrity. In Proc. of
IEEE S&P (2015).

[17] Giuffrida, C., Kuijsten, A., and Tanenbaum,

A. S. Enhanced operating system security through
efficient and fine-grained address space randomization.
In Proc. of USENIX Security (2012).

[18] Göktas, E., Athanasopoulos, E., Bos, H., and

Portokalidis, G. Out of control: Overcoming
control-flow integrity. In Proc. of IEEE S&P (2014).

[19] Heartbleed.com. The heartbleed bug. Online, 2014.

[20] Hiser, J., Nguyen, A., Co, M., Hall, M., and

Davidson, J. Ilr: Where’d my gadgets go. In Proc. of
IEEE S&P (2012).

[21] Hiser, J., Nguyen, A., Co, M., Hall, M., and

Davidson, J. Ilr: Where’d my gadgets go. In Proc. of
IEEE S&P (2012).

[22] Hobson, T., Okhravi, H., Bigelow, D., Rudd, R.,

and Streilein, W. On the challenges of effective
movement. In Proceedings of the First ACM Workshop
on Moving Target Defense (2014), pp. 41–50.

[23] ISO. ISO/IEC 9899:2011 Information technology —
Programming languages — C. 2011.

[24] Jackson, T., Salamat, B., Homescu, A.,

Manivannan, K., Wagner, G., Gal, A.,

Brunthaler, S., Wimmer, C., and Franz, M.

Compiler-generated software diversity. Moving Target
Defense (2011), 77–98.

[25] Jim, T., Morrisett, J. G., Grossman, D., Hicks,

M. W., Cheney, J., and Wang, Y. Cyclone: A safe
dialect of c. In USENIX (2002).

[26] Kc, G. S., Keromytis, A. D., and Prevelakis, V.

Countering code-injection attacks with instruction-set
randomization. In Proc. of ACM CCS (2003).

[27] Kil, C., Jun, J., Bookholt, C., Xu, J., and Ning,

P. Address space layout permutation (aslp). In Proc.
of ACSAC (2006).

[28] Kuznetsov, V., Szekeres, L., Payer, M., Candea,

G., Sekar, R., and Song, D. Code-pointer integrity.

[29] Mohan, V., Larsen, P., Brunthaler, S., Hamlen,

K., and Franz, M. Opaque control-flow integrity. In
Proc. of NDSS (2015).

[30] Mosberger, D. The libunwind project, 2014.

[31] Nagarakatte, S., Zhao, J., Martin, M. M., and

Zdancewic, S. Softbound: Highly compatible and
complete spatial memory safety for c. In Proc. of
PLDI (2009).

[32] Nagarakatte, S., Zhao, J., Martin, M. M., and

Zdancewic, S. Cets: Compiler enforced temporal
safety for c. In Proc. of ISMM (2010).

[33] One, A. Smashing the stack for fun and profit. Phrack
magazine 7, 49 (1996), 14–16.

[34] Parno, B., McCune, J. M., and Perrig, A.

Bootstrapping trust in commodity computers. In Proc.
of IEEE S&P (may 2010), pp. 414 –429.

[35] PaX. Pax address space layout randomization, 2003.

[36] Rafkind, J., Wick, A., Regehr, J., and Flatt,

M. Precise garbage collection for c. In Proc. of ISMM
(2009).

[37] Schuster, F., Tendyck, T., Liebchen, C., Davi,

L., Sadeghi, A.-R., and Holz, T. Counterfeit
object-oriented programming: On the difficulty of
preventing code reuse attacks in c++ applications. In
Proc. of IEEE S&P (2015).

[38] Seibert, J., Okhravi, H., and Soderstrom, E.

Information leaks without memory disclosures:
Remote side channel attacks on diversified code. In
Proc. of ACM CCS (2014).

[39] Serebryany, K., Bruening, D., Potapenko, A.,

and Vyukov, D. Addresssanitizer: A fast address
sanity checker. In USENIX (2012).

[40] Shacham, H. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proc. of ACM CCS (2007).

[41] Shacham, H., Page, M., Pfaff, B., Goh, E.-J.,

Modadugu, N., and Boneh, D. On the effectiveness
of address-space randomization. In Proc. of ACM CCS
(2004).

[42] Snow, K. Z., Monrose, F., Davi, L., Dmitrienko,

A., Liebchen, C., and Sadeghi, A.-R. Just-in-time
code reuse: On the effectiveness of fine-grained
address space layout randomization. In Proc. of IEEE
S&P (2013).

[43] Strackx, R., Younan, Y., Philippaerts, P.,

Piessens, F., Lachmund, S., and Walter, T.

Breaking the memory secrecy assumption. In Proc. of
EuroSec’09 (2009), pp. 1–8.

[44] Szekeres, L., Payer, M., Wei, T., and Song, D.

Sok: Eternal war in memory. In Proc. of IEEE S&P
(2013).

[45] Tice, C., Roeder, T., Collingbourne, P.,

Checkoway, S., Erlingsson, Ú., Lozano, L., and

Pike, G. Enforcing forward-edge control-flow integrity
in gcc & llvm. In Proc. of USENIX Security (2014).

[46] Wartell, R., Mohan, V., Hamlen, K. W., and

Lin, Z. Binary stirring: Self-randomizing instruction
addresses of legacy x86 binary code. In Proc. of ACM
CCS (2012), pp. 157–168.

[47] Zhang, C., Wei, T., Chen, Z., Duan, L.,

Szekeres, L., McCamant, S., Song, D., and Zou,

W. Practical control flow integrity and randomization
for binary executables. In Proc. of IEEE S&P (2013).

[48] Zhang, M., and Sekar, R. Control flow integrity for
cots binaries. In Proc. of USENIX Security (2013).

