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Abstract: Counterfeit microelectronics present a 

significant challenge to commercial and defense supply 

chains. Many modern anti-counterfeit strategies rely on 

manufacturer cooperation to include additional 

identification components. We instead propose Side 

Channel Authenticity Discriminant Analysis (SICADA) to 

leverage physical phenomena manifesting from device 

operation to match suspect parts to a class of authentic 

parts. This paper examines the extent that power 

dissipation information can be used to separate unique 

classes of devices. A methodology for distinguishing device 

types is presented and tested on both simulation data of a 

custom circuit and empirical measurements of Microchip 

dsPIC33F microcontrollers. Experimental results show 

that power side channels contain significant distinguishing 

information to identify parts as authentic or suspect 

counterfeit. 
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Introduction and Background 
The prevalence of counterfeit microelectronics in 

government and commercial supply chains poses a 

significant threat to the reliability of government systems. 

The Department of Defense now mandates that 

organizations and contractors proactively detect and avoid 

counterfeit parts [1]. This is complicated by the fact that 

many current counterfeit detection methods are too 

expensive, time-consuming, or destructive to scale to a full 

acquisitions supply chain [2]. 

Counterfeit microelectronics are any electronic components 

that are misrepresented in sale. Counterfeit types include 

remarked parts, reproduced or “cloned” parts, and recycled 

parts that have been used in prior systems. The 

sophistication of counterfeits can vary from simple re-

etching and blacktopping to full netlist-level reproduction 

of parts [3]. 

Several current and developing technologies aim to prevent 

counterfeiting. In particular, DARPA’s SHIELD program 

[4] aims to add dielets to microelectronic components that 

assert the part’s identity and authenticity. Other 

technologies add additional circuitry [5] to give devices a 

unique, uncloneable signature. These anti-counterfeiting 

approaches require manufacturer participation and incur 

some additional overhead cost to execute. These 

approaches also cannot be easily applied to parts produced 

in the past. 

Instead of leveraging other components to assert identity, it 

may be possible to utilize a device’s intrinsic operational 

characteristics. Such a technique could be used to detect 

misrepresented parts regardless of manufacturer 

participation. In [6], Cobb et al. use electromagnetic side 

channels to uniquely identify small microcontrollers. Their 

work was successful in identifying individual parts based 

on generated templates, but also noted that parts of a given 

type demonstrated many similar characteristics. 

In this paper, we propose a methodology for utilizing 

power side channel information to compare devices. This 

approach expands [6] by matching entire classes of parts 

instead of individual devices, and also uses power 

information instead of electromagnetic emanations. This 

initial work investigates differences in similar device types 

in side channel space by analyzing both simulations and 

commercial devices. Our experiments test several 

counterfeit-relevant use cases to determine the 

effectiveness of this approach at distinguishing authentic 

classes of devices from misrepresented types. We also 

examine which waveform characteristics contribute most 

strongly to classification decisions. Due to sharing 

restrictions, please contact the authors for related work 

references. 

Methodology 
Our main approach was to identify and compare power 

signatures of similar devices with a focus on applicability 

to cases of misrepresented parts. This includes devices 

produced with different manufacturing processes, or 

functionally-equivalent devices with different internal 

structures. SPICE-level simulations are ideal for such cases 

since the manufacturing process and circuit can be altered 

relatively easily. We also collected empirical data from 

commercial microcontrollers. The experimental setup 

aimed to compare several variants of the same core 

architecture, for example one with more memory, and 

another with additional functional units. Different 

environmental grades and date codes of the same device 

type were also compared. 



Experimental Setup: Simulation data were collected from a 

custom low-power 32-bit Multiply-Accumulate (MAC) 

circuit designed in IBM’s 45nm process technology. The 

MAC was simulated with Cadence’s UltraSim accelerated 

SPICE simulator. The UltraSim speed and accuracy 

settings were chosen to balance simulation runtime with 

accuracy of the power dissipation estimate. A functionally 

equivalent variant of the MAC circuit requiring 3% fewer 

logic gates was also simulated. The larger circuit was also 

translated to IBM’s 65nm process to isolate the effects of 

process technology on power analysis results. All variants 

were measured at the average, slow-slow, and fast-fast 

process technology corners (Table 1). We collected 1000 

iterations of 40-cycle operational loops for each simulation. 

Table 1: MAC SPICE Simulation Type List 

Label Process Gate Count 

45nm IBM 45nm 15177 

loose IBM 45nm 14667 

65nm IBM 65nm 15177 

   

Empirical measurements were taken from Microchip’s 

dsPIC33F family of microcontrollers (Table 2). We used 

j12 parts as the base device, while j32 and j128 parts had 

larger memory sizes. j128 devices have more comparators, 

DACs, and timers compared to either j12 or j32 devices. 

Each type is further broken down by grade, where I-type 

parts are standard industrial grade and E-type parts are 

extended temperature grade parts. 

Table 2: Microchip dsPIC33F Type List 

Label Device Date Code Quantity 

j12i J12GP-202 I 074047Y 9 

j12i J12GP-202 I 13490M1 6 

j12e J12GP-202 E 13226M0 6 

j32i J32GP-202 I 1421134 18 

j32e J32GP-202 E 1332P0Q 6 

j128i J128GP-802 I 1431RK9 15 

j128i J128GP-802 I 1320J7W 6 

j128i J128GP-802 I 1526RBE 3 

j128e J128GP-802 E 1229MST 10 

j128e J128GP-802 E 1421YRM 6 

    

Power information was collected via custom sensing 

circuits and captured on an oscilloscope. Each 

microcontroller was loaded with a program to execute 1000 

iterations of a consistent operational loop utilizing a 

mixture of arithmetic, register, and memory operations. 

This operational loop comprised 53 individual clock cycles. 

Each device was clocked via an external pulse generator at 

10 MHz to avoid timing inconsistencies in factory 

calibration settings. 

Analysis Process: We processed both simulation and 

empirical data using a feature generation approach adapted 

from [5]. Power traces were broken down by clock cycle 

and transformed into Hilbert analytical signals, from which 

the instantaneous amplitude, instantaneous phase, and 

instantaneous frequency were derived (Figure 1). The first 

four statistical moments (mean, variance, kurtosis, and 

skewness) were gathered from each of these waveforms, in 

addition to the standard deviation. We also applied this 

analysis to the full signal. This generated a total of 615 

features for simulations and 810 features for empirical 

measurements. Each individual feature is considered a 

dimension of information, however many features were 

highly correlated. 

 

Figure 1: dsPIC33F Instantaneous Data Example 

We hypothesize that these features contain significant 

distinguishing information so that unlike parts can be 

differentiated from one another. We tested this hypothesis 

by using a support vector machine (SVM) classifier to 

attempt to separate a “golden” set of observations from 

other groups of observations. The null hypothesis is that 

both sets are different, and thus would be easy to separate. 

If cross-validation of the resulting model shows significant 

error, it means that the two sets could not be easily 

separated and are likely from the same type of device. 

For each comparison, we centered and normalized the data 

before projecting to a lower dimensionality using Principal 

Components Analysis (PCA). We settled on projecting 

down to 3 principal components to avoid overfitting, which 

typically explained more than 60% of variance. All 

projected observations were then used to create a 10-fold 

cross-validation SVM model.  

Another goal of this research was to identify which source 

features contribute the most towards correct classification 

decisions. Narrowing the number of features used in 

analysis can lead to more accurate classification decisions 

and a simplified methodology. Additionally, individual 

features could potentially be tied back to manufacturing 

process variation differences or other physical phenomena 



 

for a better understanding of what contributes to a device’s 

side intrinsic side channel characteristics. We used the 

Multiple Cluster Feature Selection (MCFS) [7] algorithm to 

generate ordered lists of features according to their 

contribution to a given comparison. A Naïve Bayes 

classifier was used for MCFS comparisons to allow for 

training with more than 2 classes.  

 

Results 
Simulation Results: We used the simulation data to test two 

primary counterfeit cases: slight circuit variations and 

“cloned” parts produced with a different manufacturing 

process. The former case deals with misrepresented parts, 

especially for authentic devices within the same 

architectural family but of a different model or grade. 

Cloned parts comprise any part reproduced with the exact 

netlist as an authentic part, but using a different 

manufacturing process. 

 

Figure 3: Simulation Data PCA Projection – 2 Principle 

Components 

Figure 3 is a PCA projection of the data down to 2 principal 

components and then re-centered and normalized for ease 

of presentation. Even without classification, each major 

device type is visibly distinct. The three unique clusters for 

each type represent the individual corners, so typical device 

performance would be expected to fall between the 

clusters. Note that the measurements are much more widely 

distributed with the 65nm part compared to either 45nm 

part. This makes sense that the larger processing node has a 

larger magnitude of variations in operating characteristics, 

but this is a significant observation in that detecting a part 

produced with a different node can be as simple as testing 

the variance of measurements. 

We achieved perfect classification for every comparison 

tested, meaning that there was no cross-validation loss. 

Instead, we report the cross-validation edge in Table 3, 

which is the average distance of observations from 

misclassification. 

Table 3: Simulation Data Edges and Best Features 

The best features for individual comparisons are also listed. 

For those specific comparisons, the listed feature alone was 

enough to achieve perfect classification. Using only the 

instantaneous frequency and amplitude skewness for clocks 

16 and 15, respectively, resulted in perfect classification of 

all 3 classes with a Naïve Bayes classifier. 

Empirical Results: We designed the experimental tests 

around determining how different individual authentic 

devices are from one another. Specifically, we tested 

whether devices exhibit substantially different operating 

characteristics from one another based on the presence of 

additional memory or functional units. We also tested 

whether different temperature grades of parts could be 

distinguished. Results for a subset of the comparisons are 

tabulated in Table 4. We consider error rates greater than 

0.05 to indicate parts as similar, and rates greater than 0.10 

to indicate likely equivalence. These values are not 

intended to be universal and would need to be tuned for 

other experiments. 

The first thing to note is that through most separability 

comparisons, j12i parts were not distinguishable from j32i 

parts. The difference between these parts is only memory 

size. However, j128i were easily distinguishable. j128i 

parts have additional functional units compared to j12i and 

j32i parts. Each E-type part is easily separated from other 

E-Types. However, different temperature grades of the 

same part are not easily separated. This makes sense as 

they likely are identical parts separated only by the binning 

process of the manufacturer. 

We applied MCFS to each comparison as well. We found 

that relatively few features were required to achieve perfect 

classification in most comparisons. Instantaneous 

frequency mean of the full signal was particularly strong at 

distinguishing E-type parts from each other as well as from 

their I-type counterparts. Figure 4 shows a few of the major 

Simulation 
Cross-

Validation 
Edge 

Best Feature 
1-Feature 
Error Rate 

45nm vs 
loose 

2.408 
Inst. Frequency 

Skew of clock 16 
0 

45nm vs 
65nm 

4.642 
Inst. Amplitude 

Skew of clock 15 
0 

loose vs 
65nm 

4.794 
Inst. Amplitude 

Skew of clock 28 
0 

    

Figure 2: SICADA Analysis Workflow 



distinguishing features for I-type parts; using these three 

features gives a 0.09 error rate. One observation from this 

set is that the most remote groupings of j12i measurements 

belong almost entirely to the parts manufactured in 2007. 

Other parts in the comparison were produced in 2013 or 

later, indicating that physical age may affect some features. 

 

Figure 4: dsPIC33F Data - 3 Features  

We also compared different date codes for the j128i part. 

The SVM classifier was unable to clearly separate the parts, 

and most cross-validation error rates were greater than 

0.30. However, using instantaneous phase skewness for the 

full signal as the only feature gives perfect classification for 

each of the 3 datecodes. Distinguishing by date code may 

be useful in specific counterfeit detection use cases.  

Conclusions and Future Work 
These initial results indicate that power side channels of 

devices contain significant distinguishing information. The 

presented experiments provide a basic example of using the 

SICADA methodology to investigate device differences 

and identify classes of devices. 

The simulation results provide evidence that SICADA 

could be used as a foundation for detection of certain types 

of clone parts. Simulations also support the ability to 

distinguish functionally-equivalent devices with differing 

implementations. The empirical results indicate an ability 

to differentiate parts with different functional units. Several 

features were very useful in differentiating device types. 

Currently, we are refining the SICADA approach as we 

expand it to other types of counterfeits, such as recycled 

parts. Other possible improvements include tying specific 

features to physical phenomena, including additional 

features, applying more advanced machine learning 

techniques, and examining other types of side channels. 
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Comparison Cross-Validation Error Rate Best Feature One-Feature Error Rate 

j12i vs j32i 0.3256 Inst. Amplitude StdDev of full signal 0.1718 

j12i vs j128i 0.0001 Inst. Amplitude Mean of clock 32 0 

j32i vs j128i 0 Inst. Amplitude Mean of clock 32 0 

j12e vs j32e 0.0001 Inst. Frequency Mean of full signal 0 

j12e vs j128e 0.0108 Inst. Frequency Mean of full signal 0 

j32e vs j128e 0 Inst. Frequency Mean of full signal 0 

j12i vs j12e 0.0533 Inst. Frequency Mean of full signal 0 

j32i vs j32e 0.1714 Inst. Frequency Mean of full signal 0 

j128i vs j128e 0.3754 Inst. Amplitude Kurtosis of clock 0 0.2833 

    

Table 4: dsPIC33F Comparison Error Rates and Best Features 


