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Abstract
Detecting accurately when a person whose face is visible in
an audio-visual medium is the audible speaker is an enabling
technology with a number of useful applications. These in-
clude fused audio/visual speaker recognition, AV (audio/visual)
segmentation and diarization as well as AV synchronization.
The likelihood-ratio test formulation and feature signal process-
ing employed here allow the use of high-dimensional feature
sets in the audio and visual domain, and the approach appears
to have good detection performance for AV segments as short
as a few seconds. Computation costs for the resulting algo-
rithm are modest, typically much less than the front-end face-
detection system. While the resulting system requires model
training, only true condition training (i.e. video where the talk-
ing speaker is audible) is required.

1. Introduction
The audio track of a video recording may or may not be re-
lated to a face visible on the screen. Determining when this
is the case has a surprising number of interesting applications.
For example automatic meeting transcription systems could use
such a system in addition to audio localization to properly at-
tribute transcripts to individual speakers. Visual verification
systems can employ such an algorithm as part of a liveness test
to prevent replay attacks by asking a subject to respond to a
variable prompt. Systems that automatically diarize video and
the related audio streams, segmenting them by speaker and face
change can also make use of this information. Finally biomet-
rics that are available in one domain, e.g. voice-prints, can be
used to locate video samples of the same subject present in an
AV stream, allowing multi-modal user searches.

A number of different approaches have been tried to this
problem. A detailed review may be found in [1], and more re-
cent work has extended and improved the approaches portrayed
there, e.g. [2]. This work approaches the problem in a way re-
lated to one of the earlier ideas tried, that is, using mutual in-
formation as a decision statistic[3]. The results presented here
are conceptually similar, but permit the use of much higher-
dimensional feature sets.

Many previous approaches to this problem have relied on
least-squared modeling and correlation analysis, e.g. the CAN-
COR approach of FaceSync [4]. [2] presents a method that com-
bines using feature selection derived by CANCOR with joint
least-squared prediction of the resulting low-dimensional fea-
tures used to compute a decision statistic. Other approaches use
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direct parametric modeling of joint AV features, e.g. via Gaus-
sian Mixture models [5] or HMM models [6]. The likelihood
score from these models can then be used to detect synchronic-
ity, however these methods are not typically founded on classi-
cal Bayesian decision theory.

2. Likelihood Ratio Correlation Detection
The approach used here is parametric, involves trained models,
and is very similar conceptually to a mutual information statis-
tic. Following [2], we can denote by A a multi-dimensional
random variable derived from an audio information stream, and
by V a similar variable putatively derived from a related video
channel. The mutual information I(A, V ) of A and V may be
defined as

I(A, V ) =

ˆ
p(a, v) log

p(a, v)

p(a)p(v)
da dv.

If we are given an audio-visual segment, we can assume single-
Gaussian densities for p(a, v), p(a) and p(v), estimate them
from the same segment and then use this to estimate I(A, V ):

I(A, V ) ≈ 1

2
log
|ΣA| |ΣV |
|ΣAV |

, (1)

where ΣA,ΣV ,ΣAV are the sample covariances of the seg-
ment. This method requires no pre-trained models, but requires
at a minimum enough data to reliably estimate the covariances,
especially for high-dimensional A and V. Using trained para-
metric models we can avoid this difficulty. If we view the
problem as performing a likelihood ratio test comparing two
hypotheses, (A) that the audio-visual features are statistically
dependent, or (B) that they are independent, and we have T sam-
ples of data {at,vt| t ∈ {1 . . . T}}, at different times t, then the
log likelihood-ratio decision statistic becomes

log

N∏
t=1

p(at, vt)

p(at)p(vt)
=

N∑
t=1

log
p(at, vt)

p(at)p(vt)
. (2)

Here we are implicitly assuming the independence of data sam-
ples at different times. If single-Gaussian models are used
for the densities, the result is conceptually very similar to
the mutual information approach. However a single-Gaussian
likelihood-ratio test uses statistics that may be estimated on
large amounts of held-out training data, and so we would ex-
pect to be able to use much higher-dimensional feature vectors.

In practice the desired feature dimension for video features
vt is likely to be much higher than for the audio. This frame-
work accommodates this situation. Writing the likelihood ratio
in (2) as

log
p(a, v)

p(a)p(v)
= log

p(a|v)

p(a)
. (3)



we see that just estimates of p(a|v) and p(a) are required.
The approach we take is equivalent to carrying out a maxi-
mum likelihood estimate of p(a, v) and then computing the
needed marginals. If maximum-likelihood estimation is used
to estimate p(a, v) = p(a, v|λ1, λ2), for appropriate model pa-
rameters λ1, λ2, then we can write w.l.o.g. p(a, v|λ1,λ2) =
p(a|v, λ1)p(v|λ2). The maximum log-likelihood then becomes

max
λ1,λ2

∑
t

log p(at, vt) = max
λ1

∑
t

p(at|vt) + max
λ2

∑
t

p(vt).

Thus finding maximum likelihood estimates of p(a|v) and p(v)
is mathematically equivalent to a finding a maximum-likelihood
estimate of p(a, v) and then computing the needed marginals. A
similar argument also implies that the maximum likelihood es-
timate of p(a) is equivalent to the marginal computed from the
estimate of p(a, v). Therefore we may directly estimate maxi-
mum likelihood estimates of p(a|v) and p(a) use them in (3)
with the added advantage that they may have non-singular co-
variance even when the estimated p(a, v) and p(v) would be
problematic.

2.1. Single-Gaussian Parameter Estimation

In the single Gaussian case, formulas can be derived for esti-
mation of the parameters of both p(a|v) and p(a) in Equation
3. We use the convention that the last element of the video fea-
ture vector v always has a constant value 1 and may be written
v =

(
v′

1

)
. This allows us to write affine transformations of v′

as a linear transformation of v, e.g.

Mv =

(
M ′

µ

)
v = M ′v′ + µ.

Without loss of generality, we may then write a single Gaussian
model for p(a|v) and p(a) in the following form:

p(a|v) = N(a,Mv,Σav) =

1√
|2πΣav|

exp

(
−1

2
(a−Mv)tΣ−1

av (a−Mv)

)
.

and
p(a) = N(a, µa,Σa)

If we define sample covariances

vvT =
1

N

N∑
t=1

vtv
T
t

avT =
1

N

N∑
t=1

atv
T
t

aaT =
1

N

N∑
t=1

ata
T
t

where t ranges over all the frames in the training set, then a
straight-forward calculation derives maximum likelihood esti-
mates for M and Σav :

M = avT
(
vvT

−1
)

(4)

Σav = aaT − avTMT . (5)

In practice, vvT may well be singular and a pseudo-inverse is
employed instead of vvT

−1
.

3. Gaussian Mixture Modeling
Gaussian mixture modeling can be used to extend the model-
ing power of the single-Gaussian framework above. A straight-
forward approach would be to use maximum-likelihood esti-
mation via the EM algorithm to estimate a mixture model for
p(a, v), and then derive marginals from this. The likelihood ra-
tio scoring would then use equation (2), rather than in (3). This
again presents the problem of dealing directly with very high
combined AV feature dimensions. Here we tried two different
approaches based on the single-Gaussian modeling used in sec-
tion 2.1. The first approach is to use a mixture model for

p(a|v) =
∑
i

wiN(a,Miv,Σ
i
av) (6)

and to directly estimate the parameters wi,Mi and Σiav via the
EM algorithm. Posterior probabilities from this model are then
used to compute counts for a mixture model

p(a) =
∑
i

wiN(a, µia,Σ
i
a) (7)

where wi are perforce the same mixture weights as in equa-
tion (6). This approach appears to work better than one where
p(a) is estimated as an independent mixture model, and has in-
dependently estimated weights.

4. Experiments
Two corpora were used to evaluate the algorithms described
here. The first was a 1000-video subset of the XM2VTS
database [7] which is a high-quality database of isolated indi-
viduals. It was partitioned into a 640 video training set amount-
ing to 182434 frames of video and the rest used for test. In
order to construct false examples for testing, for each test video
10 false examples were created by randomly picking the audio
from another element of the test set and creating a new video
clip using the incorrect audio.

The second corpora was derived from the Youtube Faces
database[8]. This is a database of found video in flash for-
mat that was extracted from Youtube. We worked with a small
304 video manually annotated subset, where we marked short
segments where isolated individuals were visible speaking and
used only the video data from these subsets for training and
test. Total video data amounted to 303149 frames of video with
detected faces. Audio was substituted in the same way as for
XM2VTS to create false trials. Facial poses were variable as
was the video quality, which generally was rather poor. We
used 30-fold cross validation with randomly chosen 250-video
subsets of this data used as training and the remainder as test.

We used the OpenCV[9] face detector to detect faces in
both datasets. The OpenCV detector performed extremely well
on XM2VTS. It was generally less successful on the Youtube
data, nevertheless it permitted an initial evaluation of the algo-
rithm.

The XM2VTS database consists of relatively short video
segments with a median duration of 12 seconds, which provides
only limited information for the the matching system. The me-
dian duration of annotated single-speaker data in the Youtube
dataset was 27 seconds, and we only evaluated videos where a
minimum of 100 frames containing faces were detected.

4.1. Features

Some experimentation with possible audio and video features
were carried out. Audio features were composed overlapping
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Figure 1: The video feature processing pipeline

blocks of 20 audio frames, extracted 100 frames a second.
Log energy, and three causal mean-removed mel-cepstral co-
efficients were extracted from each frame of audio data. The
video feature set was extracted from a rather involved pro-
cessing pipeline depicted in Figure 1. A number of alterna-
tives were tried in terms of stacking windows of video fea-
tures and using PCA derived features, but the best perform-
ing alternative to date on XM2VTS is a single vector of 373
log-magnitude spectral features derived from a single frame.
For the much noiser Youtube dataset, the best performance was
achieved with a smaller 145-dimensional feature vector. The
processing pipeline in both cases can be described in detail be-
low as follows:

1. The OpenCV face detector is used to locate the face
within the video. In XM2VTS and the annotated seg-
ments of Youtube, only one face is visible at a time in
the video, so in the case of multiple detections, picking
the maximum size bounding box is an adequate strategy
for selecting between them.

2. The OpenCV detection rectangle is a square that in-
cludes the eyes and mouth and includes regions with gen-
erally low correlation with the audio signal. Reducing
the bounding box to an area more focused on the lips re-
sults in higher performance. Ideally a separate lip tracker
would be used. On XM2VTS it seemed likely that ade-
quate performance would be achieved by carrying out a
deterministic affine transformation of the bounding box.
We verified that this would likely be the case by running
the OpenCV face detector on 2503 mostly vertically-
posed faces from the FERET face database [10] which
is annotated for lip position. We found that in coor-
dinates normalized so that OpenCV bounding box is
[0, 1] × [0, 1], the mouth position was at coordinates
(0.5, 0.83), with standard deviations (0.025, 0.039). This
suggested that a bounding box [0.1, 0.8] × [0.5, 1.1]
would likely always contain the lip region.

3. Once a bounding box is found, a greyscale version of

the contained image is resized to a fixed 42 × 32 size
and multiplied by a 2D sine-window. A 2D-FFT is
then calculated, and the log magnitude of the resulting
coefficients computed. Finally all coefficients with a
wavenumber magnitude greater than a fixed threshold
were dropped. For XM2TVS, we dropped wavenum-
bers ≥ 11. For Youtube we dropped those ≥ 7, in both
cases leaving just the spectral modes in the corners.

4. These features are also causal-mean removed, i.e. sub-
ject to a single-pole high-pass IR filter to approximately
remove any mean offset. This mean removal operation
performs a form of automatic gain control and was es-
sential for good performance. Given inputs xt, the out-
puts yt of this filter can be computed by

yt = (1− α)(yt−1 − xt−1 + xt)

where α = 0.1.

The details of this processing pipeline were the result of some
optimization over the course of a number of experiments. It
is likely that further refinement would provide better perfor-
mance. Certainly much more variable face poses are problem-
atic in Youtube and a new face-detector would be desirable.
One aspect of the current face detection system that is worri-
some is that there is a high-degree of interframe jitter in terms
of bounding box size and position. Smoothing via a Kalman
filter and 1-pole IIR filtering were tried, but they did not lead
to improved performance. In any event, this inter-frame jitter
may explain why the log-power spectrum features (which ig-
nore phase information) were observed to perform better than
PCA-based features.

A number of things were not tried and might improve per-
formance further. For example, a 3D FFT approach across win-
dows including the time axis would also be worth trying. Ap-
proaches to feature selection in the literature like CANCOR or
latent semantic indexing might also prove useful.

4.2. Results

The likelihood ratio statistic in equation (2) assumes frame-wise
independence of features. In practice one would expect consid-
erable inter-frame and session dependence. In order to com-
pensate for this effect, the actual statistic used in scoring was a
frame-average likelihood ratio

1

N

N∑
t=1

log
p(at|vt)
p(at)

,

which amounts to taking the N -th root of the statistic in (2).
The detection performance for a single Gaussian system on
XM2VTS may be seen in the DET curve [11] in Figure 2. The
equal error rate (EER) is about 5%. The best results to date
for a Gaussian mixture system do perform slightly better than
this, yielding a 4.6% EER for a two Gaussian system, but this is
unfortunately not a statistically significant improvement.

As might be expected, detection performance is quite sen-
sitive to video duration. We were able to explore this effect on
the XM2VTS test set used by limiting the duration of the video
scored. In figure 3 the results can be seen. EER performance is
already fairly good by 4 seconds.

The results of 30-fold cross validation on the Youtube
database are presented below in Figure 4. The Youtube database
is obviously much more challenging that XM2VTS. One partic-
ular area of concern was the level of audio-visual synchroniza-
tion present. Most Youtube video has be re-encoded, and many
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Figure 2: The XM2VTS single-Gaussian DET curve
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Figure 3: XM2VTS EER as maximum scored duration in-
creases

of the toolsets used do not maintain accurate synchronization.
For test data we computed likelihood of the match statistic at a
number of different fixed temporal offsets ranging from ±0.2
second and picked the maximum score. This reduced the test
equal error rate from 28% to the 18% depicted here.

5. Conclusions
A single-Gaussian likelihood-ratio test appears to provide ade-
quate performance for a talking face detection task, at least on
clean controlled video databases like XM2VTS. Gaussian mix-
ture extensions to this approach may provide a modest boost in
performance.

Results on more realistic databases derived from web video
data are considerably worse, but are still promising. The exist-
ing OpenCV face detector may need work for best performance
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Figure 4: DET results for the proposed approach using Gaus-
sian distributions on the Youtube corpus.

on the task. Additionally the highly variable face poses that
are present in realistic video may be providing challenges to the
current modeling framework. Various approaches could be used
to address this problem, including scoring alternate rotations of
the video.

Finally the pre-trained model approach taken here is one
end of a spectrum of possibilities. MAP adaptation could be
used to create a compromise between it and the MLLR approach
of Equation (1).
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