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Abstract— In this work, we propose a framework that au-
tomatically discovers dialect-specific phonetic rules. These rules
characterize when certain phonetic or acoustic transformations
occur across dialects. To explicitly characterize these dialect-
specific rules, we adapt the conventional hidden Markov model
to handle insertion and deletion transformations. The proposed
framework is able to convert pronunciation of one dialect to an-
other using learned rules, recognize dialects using learned rules,
retrieve dialect-specific regions, and refine linguistic rules. Poten-
tial applications of our proposed framework include computer-
assisted language learning, sociolinguistics, and diagnosis tools
for phonological disorders.

Index Terms—accent, phonological rules, informative dialect
recognition, phonotactic modeling, pronunciation model

I. INTRODUCTION

Dialect is an important, yet complicated, aspect of speaker
variability. In this work, we define dialects to be sub-varieties
of the same language where these sub-varieties are mutually
intelligible and their writing systems are convertible if not the
same (e.g., British English and American English; General
American English and African American Vernacular English;
Mandarin spoken in China, Singapore, Taiwan).1 While dialect
differences arise from every level of the linguistic hierarchy
(e.g., acoustic, phonetic, vocabulary, syntax, prosody [1]), we
focus on analyzing dialect differences at the phonetic and
acoustic levels.2

Dialect differences (at the phonetic and acoustic levels) are
often attributed as phonetic rules by sociolinguists through
manual analyses [3]. A phonetic rule specifies the phonetic
context of when a phone transforms to another phonetic or
acoustic identity [4], [5]. For example, the R-dropping rule of
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1Note that language varieties such as Mandarin and Cantonese are often
colloquially referred to as Chinese dialects. However, from the linguistic
viewpoint, Cantonese and Mandarin are two different Chinese languages [2],
since they have different phonological, tonal, and syntactic systems.

2Dialect differences at the phonetic and acoustic levels are also referred to
or perceived as accents.

the received pronunciation dialect in British English [6]: [r]
→ ∅/ [+consonant], specifies that the phone [r] is deleted
(∅) when it is followed by a consonant.

The motivation of our work is to automate the explicit
characterization of such phonetic rules, which currently relies
heavily on manual analysis in fields like sociolinguistics.
The time-consuming nature of manual analyses often lim-
its the amount of data analyzed, which could potentially
compromise the validity of these phonetic rules. Although
researchers [7] have advocated using automatic procedures to
increase efficiency and effectiveness in phonetic analysis, auto-
matic processing remains a rare practice in the sociolinguistic
community.

In addition to discovering scientific truth in sociolinguistics,
there are various practical applications for automating the
characterization of pronunciation patterns. For example, in
computer-assisted language learning, it is desirable to pin-
point non-native pronunciation patterns to help users acquire
a second language; in speech pathology, clinicians benefit
from automatic characterizations of atypical articulatory or
phonological patterns to diagnose and treat patients; and in
forensic phonetics, it is necessary that results of a dialect
recognizer are justifiable on linguistic grounds [8].

In this work, we focus on automatically analyzing dialect
differences in the form of phonetic rules. To this end, we
design an automatic system to discover possible phonetic rules,
to quantify how well these rules discriminate dialects, and
to provide human analysts (e.g., forensic phoneticians) with
regions-of-interest for further analysis and verification.

A. Background on Automatic Dialect Recognition
Automatic dialect recognition has historically been cast as

a language recognition problem. Thus, mainstream dialect
recognition approaches are ported from language recognition
[9], focusing on the acoustic level (e.g., [15], [13], [14], [10],
[11], [12], [17]) or phonetic level (e.g., [16], [21], [18], [19],
[20]).

Typical acoustic approaches model cepstral features, such
as mel-frequency cepstral coefficients (MFCC) and shifted
delta cepstrum (SDC) [22]. Common model choices include
Gaussian mixture models (GMM). While GMMs achieve
good performance, they do not provide insight into where
dialect differences occur. Adapted phonetic models [13] are
an extension of GMM, where acoustic information is modeled
in phonetic categories, making it easier to pinpoint where the
acoustic differences lie. In our previous work [15], acoustic
differences caused by phonetic context were further used to
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infer underlying phonetic rules, making the dialect recognizer
more informative to humans.

Phonetic approaches exploit phonotactic differences across
dialects. One classic system is Phone Recognition followed by
Language Modeling (PRLM) [9]. It exploits a larger range of
phonological differences than GMM by modeling N-grams of
decoded phone sequences. For example, the bigram {[aa] [r]},
found in words like park, heart, rarely occurs in British English
[6], while it is more common in American English. This
phonotactic difference is modeled implicitly3 in PRLM. Unlike
PRLM, in this work, we characterize these dialect differences
explicitly as rules, which are more human interpretable.

B. Proposed Framework for Automatically Analyzing Dialect-
Specific Rules

This paper extends our previously published conference
articles [16], [23], [24] and contains detailed experiments,
analyses, and discussions left out in the conference versions.
Below we sketch out the proposed model and the evaluation
framework.

1) Model: We adopt the concept of pronunciation modeling
[25] from automatic speech recognition (ASR) to analyze
dialects. We adapt the traditional HMM to explicitly model
phonetic transformations: substitutions, deletions, and inser-
tions. For example, the R-dropping rule [6] is a type of deletion
transformation (American: [p aa r k]⇒ British: [p aa k]). Fig.
1 shows a comparison between the traditional and proposed
HMM frameworks. Our proposed framework provides flexibil-
ity in characterizing phonetic transformations and can be easily
refined to accommodate particular considerations of interest.
For example, to learn more refined deletion rules, we propose
an arc clustering scheme for deletion transitions to determine
the tying structure used during parameter estimation in Section
II-D.

2) Evaluation and Analysis: We evaluate two pairs of
English dialects. The first pair is American and British English.
We conduct a pronunciation conversion experiment in Section
III, where we compare the different variants of the proposed
phonetic pronunciation models. In this experiment, it is as-
sumed that if a model is able to convert American English
pronunciation to British English, the model has learned the
phonetic rules governing the dialect differences well.

The second pair of dialects is African American Vernacular
English (AAVE) and non-AAVE American English. We break
down the experiments into two parts. The first part quantifies
how well the learned rules explain dialect differences via
dialect recognition tasks. The second part assesses how
well dialect-specific rules are characterized via information
retrieval tasks. In addition, we further analyze how the
proposed system might complement traditional linguistic
analyses of dialect-specific rules.

The rest of the paper is organized as follows. In Section II,
we present the mathematical framework to explicitly model
phonetic and acoustic transformations across dialects and

3Errors in phone decoding could disguise the underlying bigram ([aa] [r]) to
appear in different forms. However, this phonotactic difference is still modeled
as long as the phone recognition errors are consistent and not random.

refine the model to more appropriately characterize deletions.
We also discuss the relationship of our framework with other
systems. In Section III, we evaluate how well the learned
phonetic rules are able to convert American English pro-
nunciation to British English. In Section IV, we use dialect
recognition performance to quantify the dialect differences
characterized by learned rules. In Section V, we examine how
well the proposed framework retrieves dialect-specific regions
defined by linguistic rules and discuss how our framework
helps phoneticians analyze rules. In Section VI, we discuss the
limitations of the model assumptions and possible applications
of the proposed framework. Finally, we conclude our work in
Section VII.

II. PROPOSED MODEL

In Section II-A, we describe the input to the proposed model
and our aim. In Section II-B, we illustrate why the network
of traditional HMMs is not suitable in modeling dialect-
specific rules. In Section II-C, we describe how we alter the
traditional HMM network to explicitly characterize phonetic
transformations by further categorizing state transitions and
introducing insertion states. We also present a variant model
where arc clustering is used to refine deletion rules in Section
II-D. In Section II-E, we show that our proposed framework
can be extended to model acoustic differences. We compare
our models with other dialect recognition systems in Section
II-F.

A. Input and Aim of Model
Suppose we are given a dataset consisting of speech

utterances (e.g., British English), their corresponding word
transcriptions and a reference pronunciation dictionary (e.g.,
American English). For each speech utterance, we can gen-
erate reference phones C = c1, c2, ..., cn (obtained using the
word transcriptions and the reference pronunciation dictionary)
and surface phones O = o1, o2, ..., oT (which can be obtained
through either automatic or manual phonetic transcription,
depending on the available resources and the experimental
design).

We want to model the relationship between the reference
phones (e.g., American English pronunciation) and the surface
phones (e.g., British English pronunciation). Such a model will
inform us when and where these two dialects differ and how
often these dialect differences occur. These dialect differences
can be formulated into pronunciation rules, which can be
used to automatically recognize dialects and help phoneticians
discover new rules or refine/verify existing rules.

B. Traditional HMM

In Fig. 1 (a), a traditional HMM network is shown: reference
phones are modeled by states (denoted as circles) and the
surface phones are modeled by observations (denoted as
squares); the emission of an observation from a state is denoted
by a dotted line. An example is shown where the word is
part, reference phones are [p aa r t], and surface phones are
[p ih aa t]. This example illustrates why the traditional HMM
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network is not suitable for modeling insertions4 and deletions5:
the inserted [ih] surface phone has no corresponding state,
and the deleted [r] reference phone has no corresponding
observation; these non-correspondences are represented by the
green question marks.

C. Phonetic Pronunciation Model (PPM)

In contrast, the network of PPM is designed to model
deletions and insertions.

1) States: Suppose we are given a reference phone se-
quence C = c1, c2, ..., cn. Each reference phone ci corre-
sponds to two states, a normal state s2i−1 followed by an
insertion state s2i. The corresponding states of the reference
phone sequence C are S = s1, s2, ..., s2n.

6

In Fig. 1 (b), normal states are denoted by unshaded
circles and insertion states are denoted by shaded circles.
The reference phone sequence C = (c1, c2, c3, c4) =
([p], [aa], [r], [t]) corresponds to the state sequence S =
(s1, s2, s3, s4, s5, s6, s7, s8) = (p1, p2, aa1, aa2, r1, r2, t1, t2).

2) Observations: V = {v1, ..., vM} is the observation
alphabet; M is the total number of distinctive phones. The
given observation sequence O = o1, o2, ..., oT is illustrated as
squares in Fig. 1 (b), where T is the number of observations
(surface phones). Note that in general the length of the states
and observation length are different; i.e., 2n 6= T .

The emission of an observation from a state is denoted by
dotted lines connecting a circle to a square.

3) Alignment between States and Observations: We define
the auxiliary state sequence Q = q1, q2, ..., qT . Q takes on
values in the state sequence S by a monotonic order: if qt =
si, qt+1 = sj , then i ≤ j. Q can be viewed as a means to align
the state sequence S to the observation sequence O, so that
each observation oi corresponds to a state qi, where 1 ≤ i ≤
T . An alignment example is shown in Fig. 1 (c), where Q =
(q1, q2, q3, q4) = (s1, s2, s3, s7) = (p1, p2, aa1, t1) and emits
the observations O = (o1, o2, o3, o4) = ([p], [ih], [aa], [t]).

4) State Transitions: There are 3 types of phonetic trans-
formations: deletion, insertion, and substitution, which are
modeled by 3 types of state transitions: deletion, insertion,
and typical, respectively. A deletion state transition7 is defined
as a state transition skipping any number of normal states.
An insertion state transition is defined as a state transition
originating from a normal state and arriving at its insertion
state or a state transition that originates and returns to the
same insertion state (thus allowing consecutive insertions). All
other state transitions are considered typical. We denote state
transitions as r ∈ {del, ins, typ}. In Fig. 1 (b), the colors of
the arcs denote the different types of state transitions (red:
deletion; green: insertion; black: typical).

4An insertion is defined as a surface phone with no corresponding reference
phone.

5A deletion is defined as a reference phone with no corresponding surface
phone.

6In actuality, there are two additional special states s0 and s2n+1 that
allow for the states s1 and s2n to be deleted.

7While in principle we can allow for skipping multiple normal states in
a deletion state transition, in this work we only consider a single normal
state to be skipped. In practice, we find that skipping multiple normal states
consecutively does not occur often enough to reliably estimate its probability.

Traditional HMM NetworkTraditional HMM Network

Reference Phones [aa] [r][p] [t]

p aa rStates t

Observations
(surface phones)

ihp aa t

(a) Traditional HMM network. Insertion and deletion transformations are
not appropriately modeled: the inserted observation [ih] has no
corresponding state; the deleted state [r] has no corresponding emission.

Proposed HMM NetworkProposed HMM Network

Reference Phones [aa] [r][p] [t]

deldel

ins

typ

ins
States aa1 aa2 r2 t1 t2p1 p2 r1

p ih aa tObservations
(surface phones)

(b) Proposed HMM network: phonetic pronunciation model (PPM). Each
reference phone corresponds to a normal state (unshaded circle), followed
by an insertion state (shaded circle); squares denote observations. Arrows
are state transitions (black: typical; green: insertion; red: deletion); dotted
lines are possible emissions of observations from the states.

Proposed HMM NetworkProposed HMM Network

Reference Phones [aa] [r][p] [t]

aa1 aa2 r1 r2 t1 t2p1 p2States aa r tp p

Observations
p ih aa tObservations

(surface phones)

(c) A possible alignment path in PPM where Q = (q1, q2, q3, q4) =
(s1, s2, s3, s7) = (p1, p2, aa1, t1) and emits observations O =
(o1, o2, o3, o4) = ([p], [ih], [aa], [t]).

Fig. 1. Comparison between traditional and proposed HMM networks.

In Fig. 1 (c) the state transitions taken in the alignment
example are denoted by pink arcs. Note that for a given qt =
si, qt+1 = sj , the arc r joining si and sj can be inferred. For
example, in Fig. 1 (c), q3 = s3 and q4 = s7, implying that the
arc r joining s3 and s7 is a deletion arc.

5) Model Parameters: The model parameters are the state
transition probability and the emission probability. The state
transition probability from state x to state y through transition
arc type r is

Axry = P (qt+1 = y, r|qt = x), (1)

where 1 ≤ x, y ≤ N ,
∑
y

∑
r Axry = 1,∀x.
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The probability of emitting observation vk at any time t
given state x is

Bx(k) = P (ot = vk|qt = x), (2)

where 1 ≤ x ≤ N, 1 ≤ k ≤ M . The pronunciation model is
denoted as λ = {A,B}. The state transition probability A and
emission probability B can be derived similarly to traditional
HMM systems [26] by using the Baum-Welch algorithm. The
likelihood of the observations given the model P (O|λ) can be
computed using the forward and backward algorithms to sum
up all possible auxiliary state sequence Q.

6) Decision Tree Clustering: Phonetic context is impor-
tant both for recognizing dialects and understanding their
differences, so we want to consider triphones instead of just
monophones. However, because triphone modeling requires
more parameters, we use decision tree clustering [27] to tie
triphone states.

Assume we are given an initial HMM model. Consider a
reference (mono)phone modeled by the state x, which emits
observations Ok. The state x can be split into two subgroups
using attribute Hf : x ∈ Hf and x /∈ Hf , which emit
observations Ok1 and Ok2 , respectively; Ok1 ∪ Ok2 = Ok;
attribute Hf specifies the triphone context of state x. The log
likelihood increase of this split is

∆ logL = log
L(Ok1 |x ∈ Hf )L(Ok2 |x /∈ Hf )

L(Ok|x)
, (3)

where L represents likelihood. The attribute chosen to split
x is arg max

Hf

∆ logL; i.e., the attribute that provides the most

likelihood increase. Since the numerator is always greater than
the denominator in Eq. (3), this splitting procedure is done
recursively until a stop criterion is reached.

For example, consider the phone [r] and the attribute that
makes the likelihood increase the most after splitting is Ĥf .
In the R-dropping case of British English, Ĥf is likely to
specify that the phone following [r] is a consonant, splitting the
state x into two sub-groups: one representing [r] followed by
consonants and the other group representing [r] not followed
by consonants.

D. Model Extension: Arc Clustering for Deletions

1) Motivation: Triphone state clustering used in the previ-
ous section makes two implicit assumptions about deletion
transformations: (1) The phone preceding a deleted phone
changes its sound quality; (2) The phone following a deleted
phone does not specify when deletions occur. However, these
constraints do not always apply. For example, rhotic English
(e.g., General American English) pronounces /r/ in all posi-
tions, while non-rhotic English (e.g., Received Pronunciation
in UK) only pronounces /r/ when it is followed by a vowel
[6]. Therefore the word part is pronounced as [p aa r t] for
an American speaker, but [p aa: t]8 for a British speaker.
When modeling the deletion probability through triphone

8The colon symbol “:” indicates that the vowel is elongated.

Arc ClusteringState Clustering

p aa kpark r

[+const]k aa dcard rr *card

k ao tcourt r

[r] -> ø / [aa] _ 
L d [r] -> ø / _ [+const]

[ ] [ ]

[r] -> ø / [ao] _
Learned
Rules

Fig. 2. An example showing why arc clustering generalizes the R-dropping
rule in British English better than not using arc clustering. In state-clustering
(center column), two rules are learned: the first rule (in blue) specifies that
when [aa] is followed by [r], [r] is deleted; the second rule (in green) specifies
that when [ao] is followed by [r], [r] is deleted. Note that the crux of the
rule – the right context of the deleted phone [r] – is not used to characterize
the learned deletion rule. In contrast, a single rule, characterized by the right
context of [r], is learned by arc clustering shown in red (right column)..

Name Tying Procedure Section
Standard Tying Triphone state clustering for del, ins, typ II-C6
Refined Tying (a) Arc clustering for del II-D2

(b) Triphone state clustering for ins & typ

TABLE I
TYING PROCEDURE FOR STANDARD TYING AND REFINED TYING.

state clustering, the triphone state representing [p-aa+r]9 does
not include the right context of the deleted [r] (i.e., [t], a
consonant), even though the right context of [r] is crucial in
specifying the deletion rule. Recall that deletion transition arcs
originate from some state prior to the deleted state and arrives
at some state after the deleted state. Therefore, in the previous
example, it might make more sense to cluster all the deletion
arcs that skip [r] and arrive at a consonant (e.g., [t]), instead
of clustering triphone states such as [p-aa+r].

Fig. 2 shows an example of how R-dropping [6] is mod-
eled using triphone state clustering and arc clustering: After
triphone state clustering, two rules are learned. The first rule
(in blue) specifies that when [aa] is followed by [r], the [r] is
deleted. The second rule (in green) specifies that when [ao]
is followed by [r], the [r] is deleted. However, arc clustering
results in one single rule represented (in red), specifying that
[r] is deleted when followed by consonants. This rule learned
from arc clustering is more general than the fragmented rules
learned through state clustering.

2) Derivation for Refined Tying: Consider a triphone state
(sk−1 − sk + sk+1). Refined Tying is performed by the
following two steps: (a) We use arc clustering to determine
which deletion arcs to tie together and then estimate the tied
deletion probabilities accordingly; and (b) we estimate the

9[p-aa+r] represents a triphone where “−” denotes that monophone [aa] is
preceded by [p] and “+” denotes that [aa] is followed by [r].
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typical and insertion transition probabilities originating from
sk just as in the state-tying case, but with a new Lagrangian
constraint, as the total sum of deletion probabilities leaving sk
are predetermined by arc clustering. The comparison between
Standard Tying and Refined Tying is summarized in Table I.
(a) Arc Clustering for Deletion Transitions: Assume we are
given an estimated HMM model λ = {A,B}, which we use
to generate the most likely alignment between the given states
and observations in the training data. Assume Hf is some
feature that specifies the phonetic context of normal state x.
We want to compute the likelihood of the normal state x given
x ∈ Hf .

Given a normal state x, it can either be skipped or not
skipped. The expected counts of state x being skipped given
x ∈ Hf is

Cxskipped
= total soft counts of x skipped when x ∈ Hf .

The expected counts of state x not being skipped given
x ∈ Hf is

Cxnot−skipped
= total soft counts of x not skipped when x ∈ Hf .

The likelihood of the normal state x, given x ∈ Hf is

L(x|x ∈ Hf ) =

(
Cxskipped

Cxskipped
+ Cxnot−skipped

)Cxskipped

(
Cxnot−skipped

Cxskipped
+ Cxnot−skipped

)Cxnot−skipped

.

Similarly, L(x|x /∈ Hf ) and L(x) can also be obtained. The
likelihood increase of the split is

∆ logL = log
L(x|x ∈ Hf )L(x|x /∈ Hf )

L(x)
. (4)

Suppose that after arc clustering we obtain J groups of tied
deletion arcs. Group j is specified by Dj = (σj , ςj , τj), where
σj and τj specify the origin and target of the transition arc and
ςj specifies the skipped state. For example, when considering
the deletion of [r], a possible clustered deletion transition arc
might be σ specifying the phone before the deleted phone is
a back vowel (e.g., [aa]), ς specifying the deleted phone is a
rhotic liquid (i.e., [r]), and τ specifying the phone after the
deleted phone is either a consonant (e.g., [t]) or silence.

All deletion transitions that originate from state qt ∈ σj ,
skip state d ∈ ς , and arrive at qt+1 ∈ τj are tied; this deletion
probability is represented by the parameter ADj

:

ADj
= P (qt+1 ∈ τj , r = del, d ∈ ςj |qt ∈ σj)

=
∑T

t=0 P (O,qt∈σj ,r=del,d∈ςj ,qt+1∈τj |λ,C)∑T
t=0

∑
r P (O,r,qt∈σj |λ,C)

, (5)

where d is the deleted (skipped) normal state. Clustered
deletion probability ADj can be estimated using the Baum-
Welch algorithm similarly to traditional HMM systems.
(b) Triphone State Clustering for Insertion and Typical
Transitions: We previously estimated the deletion proba-
bility from arc clustering. Now we estimate the insertion
and typical transition probability. After state clustering, we

del

ins

ins

typ

States
(reference
phones)

Acoustic
Observations

aa aa r r t tp p

Fig. 3. HMM network of acoustic pronunciation model (APM), the acoustic
counterpart of PPM. The continuous acoustic observations are modeled by
Gaussian mixture models. All other elements use the same symbol as in Fig.
1.

assume triphone states are clustered into I groups. Group i is
specified by Gi = (ζi`, ζ

i
m, ζ

i
r), where ζi`, ζ

i
m, and ζir specify

the left-context, center, and right-context states. Similar to
using Baum’s auxiliary function in typical HMM systems
but applying a new Lagrangian constraint, it can be shown
that the tied typical and insertion transition probabilities are
redistributed proportionally as

AGi,r = P (qt ∈ Gi, r|qt ∈ ζim)

=

T∑
t=0

P (O, r, qt ∈ Gi|λ,C)

T∑
t=0

∑
r∈R

P (O, r, qt ∈ ζim|λ,C)

(1− PD(sk)), (6)

where R = {typ, ins} and PD(sk) is the sum of all clustered
deletion probabilities leaving the triphone state (sk−1 − sk +
sk+1). Refer to Appendix A for details of how to obtain
PD(sk).

Table I summarizes the two tying structures mentioned:
Standard Tying refers to the state clustering approach in Sec-
tion II-C6 and Refined Tying refers to the approach introduced
in Section II-D2.

E. Acoustic Pronunciation Model (APM)
1) Motivation: Some dialect differences are too subtle to

elicit phonetic transformations. For example, in American
English, the phone [p] is less aspirated when it is preceded
by a obstruent consonant (e.g.,[s]). Therefore, the [p] in pray
and spray acoustically differ in the amount of aspiration; the
former aspirates more air than the latter. This is not necessarily
true in other English dialects (e.g., Indian English). Since these
dialect differences are at the sub-phonetic level, it is crucial
to also characterize acoustic differences.

2) Model: To better characterize such subtle acoustic dif-
ferences, we propose APM, the acoustic counterpart of PPM.
APM can be derived from PPM by replacing the discrete
observation probability Bx(k) in Eq. (2) with a continuous
pdf Bx(z), modeled as a mixture of Gaussians:
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Bx(z) = P (Ot|qt = x) =

M∑
l=1

wxlN (z;µxl,Σxl), (7)

where 1 ≤ t ≤ T and T is the total number of time
frames in the observation utterance; N is the normal density;
wxl, µxl,Σxl are the mixture weight, mean vector, and covari-
ance matrix of state x; and mixture l, 1 ≤ x ≤ N , 1 ≤ l ≤M ,∑M
l=1 wxl = 1. The HMM network of APM is shown in Fig.

3. The same tying as before (i.e., Standard Tying and Refined
Tying) can be used, but in this work, we only show results
using Standard Tying.

F. Remarks: Comparison with Other Models
Fig. 4 is a diagram showing how our proposed systems re-

late with other dialect recognition systems. GMM is often the
basis of acoustic systems. Acoustic phonetic models (APM0)
[13] stem out from GMM by modeling acoustic information
in monophone categories. APM0 can be further extended to
our proposed APM system using context clustering to refine
acoustic characterization.

Though APM is akin to traditional GMM approaches, its
underlying framework is designed to make rule interpretation
and analysis intuitive to humans. On the other hand, models
such as Phone-GMM-Supervector-Based SVM Kernel in [17]
uses GMM as a basis to train discriminative classifiers, which
focus more on dialect recognition than rule interpretation.

PRLM (Phone Recognition followed by Language Mod-
eling) [9] represents a classic model in phonetic systems.
BinTree language modeling [19] and our proposed PPM both
refine PRLM by exploiting context clustering. In contrast
to BinTree, PPM focuses on the interpretation of dialect-
specific rules, instead of dialect recognition performance. In
addition, their probability models are different: in BinTree
language modeling, the probability of a current observation
is conditioned on a cluster of past observations [19], whereas
in PPM, the probability of a current observation is conditioned
on a reference phone and its context. Using reference phones
as a clean comparison basis, instead of noisy decoded phones
as in PRLM and BinTree, we can explicitly characterize what
kinds of dialect-specific transformations are occurring and how
often they occur. This trait makes PPM stand out among others
when it comes to interpreting dialect-specific rules.

Our proposed framework applies to both acoustic and pho-
netic approaches, making PPM and APM analogs of each

GMM based SVM KernelAn extension of GMM-based SVM Kernel
(Biadsy et al, 2010)Analog 

An extension of 

GMM APM0 APMGMM
(Torres-Carrasquillo et al, 2004)

APM0
(Shen et al, 2008)

APM
(Chen et al, 2011b)

PPM
PRLM

(Zissman 1996)

PPM
(Chen et al, 2011a)

(Zissman, 1996)

BinTree
(Navratil, 2006)

Fig. 4. How PPM and APM relate to each other and other dialect recognition
systems.

other. APM can thus be interpreted in two different perspec-
tives: (1) an extension of the monophone-based APM0 system
and (2) the acoustic counterpart of PPM.

III. PRONUNCIATION CONVERSION EXPERIMENT

The objective of this experiment is to learn the phonetic
rules that map American pronunciation (reference dialect) to
British pronunciation (dialect of interest). To do so, we gener-
ate estimated British surface phones from American reference
phones and evaluate how well they match the ground-truth
British surface phones. It is assumed that the system that
most accurately converts American pronunciation to British
pronunciation learned the phonetic rules the best. This pronun-
ciation conversion experiment shares a similar spirit to [28] in
automatically generating dictionary pronunciations.

A. Experiment Design

1) Corpus: WSJ-CAM0 (Wall Street Journal recorded at
the University of CAMbridge phase 0) [29] is the British
English version of the American English WSJ0 corpus [30].
WSJ-CAM0 is read speech recorded in quiet background and
sampled at 16 kHz. We used the data partition of WSJ-CAM0:
training set is 15.3 hr (92 speakers); the test and development
set are each 4 hr (48 speakers).

2) Phonetic Representation: The WSJ-CAM0 dataset in-
cludes ground-truth phonetic transcriptions using the extended
Arpabet [31], which was designed to include specific symbols
for British English. British and American pronunciation can
thus be represented with the same set of phone symbols from
the extended Arpabet [31]. We denote these ground-truth
phonetic transcriptions as ground-truth British pronunciation
surface phones O∗.

The reference phones C represent how a typical general
American English speaker would have produced the utterance
read by the British speakers. We therefore obtained reference
phones C (also represented using the extended Arpabet) by
converting the word transcriptions of WSJCAM0 to the most
common pronunciation in the CALLHOME American English
Lexicon (Pronlex) [32] without using any acoustic data10;
i.e., the entry with the highest occurrence frequency in the
dictionary was chosen. This frequency information is from
forced alignments of the Fisher corpus [47] used in [34].

Manual inspection confirms that major pronunciation differ-
ences between American and British English described in [6]
were represented in the dataset. For example, vowels in trap
and bath are represented as [ae] and [aa] in the ground-truth
surface phones O∗.

3) Pronunciation Conversion System Setup: The reference
phones C and ground-truth surface phones O∗ in the training
set were used to train different variants of the PPM systems
(monophone, standard tying, refined tying) described in Sec-
tion II.

Fig. 5 shows the system diagram during test time: given
the reference phones C in the test set and a trained PPM

10Since WSJCAM0 are recordings from British speakers, it is inappropriate
to use the acoustic data to derive the American pronunciation.
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Trained Trained Reference phones Estimated surface phones
(American pronunciation) (Converted British pronunciation)

PPMPPM
Reference phones Estimated surface phones 

[p] [aa] [r] [t]
[p] [aa] [t]

Align &Align &Align & Align & 
CompareCompare

Ground-truth surface phones

[p] [aa] [r] [t]

(British pronunciation)

Phone error rate: 25%

(British pronunciation)

Fig. 5. Procedure of pronunciation conversion experiment.

system, the PPM system generates the most likely observations
Ô (converted British pronunciation). Dynamic programming is
used to align estimated surface phones Ô with the ground-truth
surface phones O∗ to compute phone error rate. We also com-
puted a baseline where no pronunciation model was used: the
ground-truth surface phones O∗ (British pronunciation) were
directly compared against the reference phones C (American
pronunciation).

4) Statistical Test: We used the matched pairs test [35] to
assess if the performance differences between two systems
were statistically significant. Each type of error (deletion,
insertion, and substitution) was analyzed separately.

5) Remarks: In this experiment, we expect to learn the
R-dropping rule, which is characteristic of certain dialect
groups in British English (e.g., received pronunciation (RP)
[6]). When considering more than just the RP dialect, the
R-dropping rule can still be learned if the rule is still more
prevalent than in American English, which is the case in this
experiment. The probability of the rule occurring would be
lower than when considering merely the RP dialect. Note that
even if all the British speakers in WSJCAM0 belong to the RP
dialect, it is not necessarily true that the R-dropping rule will
always be followed since these phonetic rules are probabilistic,
not hard-and-fast binary rules. Note also that if there is an
utterance in the test set that does not follow the R-dropping
rule, and if our algorithm predicts a deletion of /r/, this is
counted as an error in the experiment.

B. Results and Analysis

1) Phonetic Context Improves Performance: The phone er-
ror rates for the baseline and variants of PPM are summarized
in Table II. The monophone PPM (System S1) outperforms
the baseline (System S0) by 30.4% relative. Relative gains
from triphone PPMs (System S2 and S3) are even greater,
both reducing the baseline phone error rate by 58.5% relative.
Both triphone PPM systems (System S2 and S3) outperform
the monophone PPM system (System S1) by 40.4% relative,
indicating the importance of phonetic context in modeling
dialect differences. All differences in performance are statis-
tically significant (p < 0.001).

2) Refined Tying Models Deletions Better: Table II shows
that the Standard Tying Triphone System S2 shows an increase
in deletion errors (5% relative, p < 0.001) compared to
Monophone PPM (System S1). This suggests that Standard
Tying over-generalizes deletion rules. In contrast, the Refined
Tying Triphone System S3 improves the deletion errors of the
monophone PPM system by 43% relative. When considering
deletion errors, Refined Tying outperforms Standard Tying

by 33% relative. These results support our intuition that arc
clustering is suitable in modeling deletions and is consistent
with the linguistic knowledge that a phone is generally affected
more by its right-context than left-context; e.g., R-dropping
in British English [6]. Among the [r]’s that were incorrectly
deleted (i.e., [r] was deleted in the converted British pronunci-
ation Ô but retained in the ground-truth British pronunciation
O∗) in Standard Tying, Refined Tying correctly generated 24%
of these [r]’s.

Although Refined Tying (System S3) reduces deletion er-
rors, its insertion errors increase when compared to Standard
Tying (System S2). This phenomenon might be caused by data
sparsity, since Refined Tying requires more model parameters.
The matched pairs test shows that these two systems make
statistically different errors (p < 0.001), implying that these
two systems could complement each other in learning rules.

C. Summary

In this section, we assess the rule learning ability of PPM
by examining how well it converts pronunciation from one
dialect to another. We show that phonetic context is important
for conditioning rules and Refined Tying is more suitable
for characterizing deletion rules than Standard Tying. In this
experiment, we analyzed dialect differences in read speech
between British and American English. In the next set of
experiments, we examine dialect differences in conversational
speech in American English.

IV. DIALECT RECOGNITION EXPERIMENT

In this section, we use dialect recognition as a tool to help us
analyze how well the proposed models explicitly characterize
rules. We want to understand whether the proposed models can
still achieve similar performance to baseline systems though
they are designed to explicitly characterize rules instead of
optimize dialect recognition performance. In addition, since
the proposed models characterize dialect-specific information
differently from standard dialect recognition techniques, we
want to assess if combining system scores can lead to fusion
gains.

A. Corpus
To the best of our knowledge, there is virtually no corpus

suitable for automatic dialect analysis. We originally intended
to use NIST LRE data [15], but realized the NIST data is
not suitable for developing rule-learning algorithms. Word
transcriptions and pronunciation dictionaries specifying dialect
variation are essential to establishing a well-defined reference
pronunciation for explicitly analyzing dialect differences. Un-
fortunately, the majority of the NIST data do not possess these
properties. In addition to the NIST LRE data, we have also
investigated over a dozen dialect corpora [36], but virtually
none were suitable for large-scale automatic dialect analysis.

Consequently, we constructed a corpus from StoryCorps
(raw data from [37]), consisting of (a) African American
Vernacular English (AAVE) spoken by self-reported African
Americans and (b) non African American Vernacular English
(Non-AAVE) spoken by self-reported white Americans. The
dataset was designed with the following desirable qualities:
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System Total Error (%) Del. Error (%) Ins. Error (%) Sub. Error (%)
S0 Baseline 21.7 4.0 3.6 14.2

S1 Monophone PPM 15.1 2.0 3.3 9.8
S2 Standard Tying Triphone PPM 9.0 2.1 1.9 5.0
S3 Refined Tying Triphone PPM 9.0 1.4 2.6 5.0

TABLE II
PPM system performance (in phone error rate) in converting American pronunciation to British pronunciation. Del: deletion; Ins: insertion; Sub:

substitution.

AAVE non-AAVE
Training 12.6 hr (43 spkrs) 9.8 hr (26 spkrs)

Development 4.2 hr (17 spkrs) 3.0 hr (11 spkrs)
Test 4.1 hr (14 spkrs) 2.8 hr (14 spkrs)

TABLE III
Duration and speaker number breakdown of the two dialects used in

StoryCorps Corpus.

1) Conversational speech, since natural and spontaneous
speaking style elicits non-mainstream dialects more eas-
ily [6].

2) Only conversations between friends or family members
of the same dialect were chosen to minimize accom-
modation issues. For example, this issue arises when
an AAVE speaker (subconsciously) suppresses AAVE
dialect characteristics when speaking with non-AAVE
speakers [38], [39].

3) Gender [6] and age [6] were controlled across all data
partitions.

4) Consistent channel conditions across recording sites and
high-quality recording (e.g., 16 kHz sampling rate).

5) Word-transcribed and sufficiently large enough to train
dialect recognition models with standard statistical tech-
niques [36].

6) The dialect of interest, African American Vernacular
English (AAVE), is a relatively well-studied dialect in
American English (e.g., [45], [46]).

7) Preliminary listening tests showed that native American
English speakers can perceive dialect differences.

The conversations are about the individuals’ life stories. The
topics cover a wide variety, including love stories of how
couples met, grandparents’ experiences in war, and struggles
people faced climbing up the social and economic ladder.

B. Training Phase
We consider the following baseline systems: GMM [10],

acoustic phonetic model (APM0) [13], and Parallel Phone
Recognition followed by Language Modeling (PPRLM) using
adapted tokenizers [13], referred to as PRLM in the rest of
the paper. In each of these systems, the goal of training is to
estimate separate models of AAVE and non-AAVE:

1) GMM: Each GMM has 2048 mixture components. Ex-
perimental setup is similar to [10]. The front-end features are
shifted delta cepstrum (SDC). A universal background model
was first trained on the training data of all dialects (AAVE
and non-AAVE), and then the means of the dialect-specific
GMMs were separately adapted to the AAVE and non-AAVE
data using Maximum A Posteriori (MAP) [40].

2) APM0: We denote adapted phonetic models [13] as
APM0 to avoid confusion with our proposed APM (acoustic
pronunciation model). We can think of APM0 as a sim-
plified version of APM with two differences: (1) APM0 is
monophone-based and (2) APM0 uses a root phone recognizer
(rather than forced alignment with word transcriptions) to
tokenize the speech signal to phonetic units (phone loop
decoding). We first train a general-purpose root phone rec-
ognizer on the WSJ0 corpus using the same acoustic features
(perceptual linear predictive (PLP) coefficients [41], 1st delta
features, and 2nd delta features) as in [13]. We used this
general-purpose WSJ0 root phone recognizer to decode the
StoryCorps dataset into 40 monophone classes. A universal
background model was trained for each of 40 monophone
classes using the StoryCorps data and then adapted to dialect-
specific data using 32 Gaussians/state, resulting in an APM0
adapted phone recognizer.

3) PRLM: In the PRLM (Parallel Phone Recognition fol-
lowed by Language Modeling) system, we used the APM0
adapted phone recognizer (from Section IV-B2) to tokenize
phone-lattices to train separate AAVE and non-AAVE trigram
language models, as in [13]. The phone-lattice encodes uncer-
tainties in the phone decoding by including not just the 1-best
phone sequences, but also the lower ranking sequences.

4) PPM: Fig. 6 shows the training procedure using surface
and reference phones as features. Reference phones were
obtained through forced alignment using the word transcripts
and the general-purpose WSJ0 root phone recognizer. We
applied the general-purpose WSJ0 root phone recognizer (from
Section IV-B2) to decode the 1-best surface phones from
the StoryCorps data using phone-loop grammar. This is in
contrast to the phone lattices used by PRLM. We used the
extracted surface and reference phones to separately train
AAVE and non-AAVE monophone PPM (MonoPPM) systems.
The dialect-specific MonoPPM systems were used to initialize
the training of dialect-specific triphone systems. Both Standard
Tying (PPM1) and Refined Tying (PPM2) listed in Table I
were separately applied to the trained dialect-specific triphone
systems, resulting in Tri-PPM1 and Tri-PPM2 respectively.11

5) APM: The training for APM is similar to PPM, resulting
in dialect-specific MonoAPM systems. The only difference
is that acoustic observations (i.e., front-end features as in
APM0), instead of surface phones, were used. Standard Tying
was used to cluster triphone states, resulting in dialect-specific
Tri-APM systems.

11The mainstream phonotactic approaches in language and dialect recogni-
tion do not adapt the phone recognizers. We follow this convention for PPM.
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Fig. 6. Training procedure for PPM and APM.

The training setup is summarized in Table IV. We see that the
different algorithms are not matched in multiple dimensions.
For example, GMM and APM variants (APM0, MonoAPM
and Tri-APM) use acoustic features, while PRLM and PPM
variants (monoPPM, Tri-PPM1 and Tri-PPM2) use phonetic
features. We also note that while PRLM uses surface lattice
phones, all PPM variants use 1-best surface phones. Our
rationale is that the baseline methods (GMM, APM0 and
PRLM) are well-established methods in the field, and so we
opted to match the setup used in the original publications for
consistency, rather than modify these published algorithms to
match every aspect of our proposed model’s implementation.

We also include the monophone-based systems (APM0,
MonoPPM, MonoAPM) to understand the trade-off between
computational complexity and the rule prediction power.

C. Recognition Phase

The developmental and test sets were segmented into 30-sec
trials. After training, each of the systems has separate models
of AAVE and non-AAVE. We used the likelihood ratio test to
perform dialect recognition on the trials.

1) Likelihood Ratio Test: Similar to language recognition,
dialect recognition is viewed as a detection task. Dialect
decisions are made via a likelihood ratio test. Given the test
utterance O, the target dialect model λAAV E , the reference
dialect model λnon−AAV E and a decision threshold θ, we infer
that test utterance O was produced by the AAVE dialect if

1

T
log

P (O|λAAV E)

P (O|λnon−AAV E)
> θ, (8)

where T is the normalization constant. In PPM, T refers to
the number of surface phones in observation O. In all other
systems, T denotes the duration of the test utterance.
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Fig. 7. Dialect recognition performance before and after baseline systems
fuse with APM. Light yellow bars: single systems; blue bars: fusion with
proposed APM. The error bars are 95% confidence interval; confidence
intervals are not necessarily symmetric.

2) Fusion: Fusion is widely used in speaker and language
recognition tasks to combine system outputs [42]. Here, we
used a Gaussian classifier with a diagonal covariance ma-
trix [43] to calibrate and fuse the score outputs from individual
systems. The developmental set was used to tune the weights
of the fusion classifier.

D. Results and Discussion
1) Individual Systems: Table IV summarizes the dialect

recognition results. We observed the following:
• All acoustic systems (GMM, APM0, MonoAPM and Tri-

APM) have similar performance and outperform phonetic
systems (PRLM, monoPPM, Tri-PPM1 and Tri-PPM2).

• The best APM system (Tri-APM) outperforms the best
PPM system (Tri-PPM2) by 57.2% relative. Among pho-
netic systems, PRLM is the best.

• Phonetic context improves performance: The triphone
systems outperform their monophone counterparts for
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System PRLM Mono PPM Tri PPM-1 Tri PPM-2 GMM APM0 Mono APM Tri APM

Features surface phone lattices surface phones surface phones surface phones SDC PLP PLP PLP

Modeling unit trigram monophone triphone triphone N/A monophone monophone triphone

Training setup Word transcripts N Y Y Y N N Y Y

WSJ0 root recognizer Y Y Y Y N/A Y N/A N/A

Tying structure N/A N/A standard refined N/A N/A N/A standard

Dialect recognition Equal error rate (%) 13.45 26.8 24.33 23.3 10.56 10.78 10.76 9.97

TABLE IV
COMPARISON OF TRAINING AND DIALECT RECOGNITION RESULTS

both PPM and APM. In particular, Tri-PPM1 and Tri-
PPM2 outperform MonoPPM by 9.2% and 13.1% rel-
ative, respectively. Tri-APM outperforms MonoAPM by
8.1% relative.

• Refined Tying outperforms Standard Tying: Tri-PPM2
(Refined Tying) compares favorably with Tri-PPM1
(Standard Tying): 4.4% improvement relative. These re-
sults are consistent with the pronunciation conversion
experiment in Section III.

2) Fusion with APM: We chose the best performing APM
system (Tri-APM) to fuse with other systems. The results are
shown in Fig. 7, suggesting that Tri-APM complements other
systems. We discuss this in more detail below.

• There is at least 25% relative gain when Tri-APM is
fused with GMM or APM0 (Fig. 7). The fused systems
performed better than individual systems, suggesting that
the error patterns of APM are different from other acous-
tic systems. This additional gain may have resulted from
explicitly modeling dialect-specific rules. Note that while
the fused results of GMM and APM0 are within the 95%
confidence interval of their unfused counterparts, they are
very near the lower boundary of the confidence interval.
This indicates that the performance difference is close to
statistical significance (p ≈ 0.05).

• The fusion of Tri-APM with PRLM produced more
than 46% relative gain. The fused results of PRLM are
outside the 95% confidence intervals of their unfused
counterparts, indicating the unfused and fused results
are statistically significant (p < 0.05). This result is
expected: since PRLM is a phonotactic system, it should
complement Tri-APM more than other acoustic systems.

• We expected Tri-PPM2 to also fuse well with Tri-APM.
However, while there is a relative gain of 57.2% when
compared to Tri-PPM2’s original performance (p <
0.05), the fused result is similar to that of Tri-APM
alone. We observed that Tri-PPM2 scores correlate with
those of Tri-APM. We think this is because the acoustic
characterizations from Tri-APM already incorporates the
phonotactic information modeled by Tri-PPM2, causing
no fusion gains from Tri-APM’s standpoint.

3) Why APM Performs Better Than PPM: Although the
proposed topology (Fig. 1) models the three types of phonetic
transformations explicitly, only using 1-best surface phones
in PPM may limit its ability to fully model subtle acoustic
characteristics of these transformations. This might explain
why lattice-based PRLM performs better than PPM. The use
of lattice surface phones in PPM is outside the scope of this

paper. We leave this extension to future work.
4) Improving APM: Since APM is an ASR-inspired model,

we used PLP features. SDC features have been reported to
outperform traditional cepstral features in language and dialect
recognition tasks [44], [10]. Incorporating SDC features in
APM will be explored in the future.

E. Summary

In this section, we showed that despite the additional
constraints of explicitly modeling dialect-specific rules, the
proposed APM system (i.e., Tri-APM) obtains comparable di-
alect recognition performance to classic systems. These results
suggest that dialect differences can be characterized as rules
and used to recognize dialects. In addition, the fusion gains
received from fusing APM with baseline systems imply that
APM is exploiting dialect-specific information not modeled by
conventional systems. This complementary information likely
results from the explicit characterization of dialect-specific
rules. In the next section, we examine what these rules are,
how well the different systems are able to retrieve these rules,
and how the proposed system can refine linguistic rules.

V. REGION-OF-INTEREST RETRIEVAL EXPERIMENT

In this section, we evaluate how well dialect recognition
systems retrieve regions of dialect differences defined by
linguists. We use the same StoryCorps data described in
Section IV-A.

A. Setup

1) Linguistic Rules: A set of phonetic rules describing
the AAVE dialect was developed by a team of collaborating
linguists.12 The development involved consulting the literature
(e.g., [45], [46]), consulting with other phoneticians, and
acoustic/perceptual analysis on a small set of transcribed data
from the Mixer corpus [47]. Rules that did not occur in the
StoryCorps data were excluded; the rest are listed in the 2nd
column of Table V. Note that these phonetic rules were the best
approximations the linguists came up with using the Arapbet
phone set. For example, in row 4 of Table V, the degliding of
[ay] might result in a phone close to [aa], a phone close to [ae],
or a phone with acoustic characteristics similar to a phone in

12Consultation of linguistic experts was necessary to bridge the gap
between existing literature and practical needs: (1) As dialects evolve with
time, some linguistic literature might be out-of-date. (2) Linguistic literature
might not always have comprehensive documentation of what is important
for engineering applications (e.g., exhaustive list of rules with frequency
occurrence statistics).
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Phone of Interest Linguistic rules for AAVE Dialect Example
[r] [r] → ∅/ [+vowel] [+vowel] or anything

[r] → ∅/ [+vowel] more
[r] → ∅/ [+consonant] [ao/ow/oy] throw

[ng] [ng] → [n] thing
[ay] [ay] → [ae || aa] / [+consonant] like
[eh] [eh] → [ih] / [+nasal] then

[eh] → [ey] / [+liquid] air
[l] [l] → ∅/ [+vowel] [+consonant] all the time

[l] → ∅/ [uw||uh] cool
[dh] [dh] → [v||d] / [+vowel] [+vowel] brother
[ih] [ih] → [ae || eh] / [th] [ng] thing
[aw] [aw] → [ow || ay || aa || uw] / [l] owl

[aw] → [ow || ay || aa || uw] / [t] about

TABLE V
LINGUISTIC RULES FOR THE AAVE DIALECT PROPOSED BY

PHONETICIANS. || REPRESENTS LOGICAL “OR”; THE COMMA SYMBOL “,”
REPRESENTS LOGICAL “AND”. THE PROBABILITY OF THE RULE

OCCURRING GIVEN THE PHONE OF INTEREST IS SHOWN IN FIG. 8.

between [ae] and [aa], thus both transformations are included.
In this section, we treat these linguistic rules as ground-truth
that we attempt to recover.

2) AAVE-extended American Pronunciation Dictionary:
We use the linguistic rules to augment the WSJ0 American
English pronunciation dictionary (from Section III-A2) to
include AAVE pronunciations, which we denote as the WSJ0
AAVE-extended American pronunciation dictionary.

3) Target vs. Non-Target Trials: Reference triphones were
obtained through forced alignment using word transcripts and
the general-purpose WSJ0 root phone recognizer (like the
training of PPM in Section IV-B4). Ground-truth surface
phones were obtained through forced alignment using the word
transcripts, the general-purpose WSJ0 root phone recognizer
and the AAVE-extended American pronunciation dictionary.
The reference and surface phones were aligned using dynamic
programming. The speech segment corresponding to each
reference triphone is considered a trial. A target trial occurs
when a reference triphone and corresponding surface phone
match the linguistic rules. All other trials are non-target trials.
Examples are shown in Table VI.

While we plan to treat the linguistic rules from Table V
as ground-truth rules we attempt to recover, we recognize
that these rules are not hard-and-fast rules that always occur
and that there might be potential oversights from manual
linguistic analyses. For example, while row 3 in Table V
predicts the degliding of [ay] in AAVE, this might only occur
sometimes in real AAVE speech. To quantify the validity
of these linguistic rules with our dataset, Fig. 8 shows the
probability of the phonetic transformations occurring in the
specified phonetic context (specified in Table V) given the
phone of interest in AAVE and non-AAVE data, respectively.
We observe that while these rules were devised for AAVE
speech, they also occur in non-AAVE speech. We also observe
that the rules occur more frequently (except for [ay]) in AAVE
data than in non-AAVE data, suggesting that the linguistic
rules in Table V are generally informative of AAVE and non-
AAVE differences. The exception of [ay] suggests that the [ay]
linguistic rule can be potentially refined to better manifest
dialect characteristics. We will come back to this issue in
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Fig. 8. Probability of the AAVE linguistic rule occurring given the phone of
interest in AAVE and non-AAVE speech.

Section V-C.
4) Retrieving Target Trials: For each AAVE trial (i.e.,

speech segment corresponding to a reference triphone), we
perform a log likelihood ratio (LLR) test. Let O be the
(acoustic or phonetic) observation of the trial obtained like in
Section IV. Let T be the duration of O. Therefore, in PPM, T
is the number of observed surface phones. In all other systems,
T is the duration of the reference triphone. Given a decision
threshold θ, we infer that the trial is a target trial if

1

T
log

P (O|λAAV E)

P (O|λnon−AAV E)
> θ, (9)

where λAAV E and λnon−AAV E are the trained models of all
dialect recognition systems in Table IV. The decision threshold
was tuned on the developmental set.

5) Standard Retrieval Metric: Recall is the proportion
of ground-truth target trials that are successfully retrieved.
Precision is the proportion of retrieved trials that are ground-
truth target rules. In these experiments, we use the F-measure
to represent the overall retrieval performance of a system.
The F-measure is the harmonic mean of recall and precision:
F =

2×precision×recall
precision+recall .

6) Baseline F-measure: We set the precision level to the
proportion of target trials in the test set, which represents the
chance level precision rate. Given this precision rate, we obtain
the value of recall that leads to the optimal F-measure. This
F-measure denotes the baseline.

B. Results

The retrieval results are summarized in Table VII. The F-
measure at chance level is 0.0547, which is similar to the
results of PRLM, GMM, APM0. Even though Tri-APM per-
forms similar to other acoustic systems in dialect recognition
tasks, its retrieval performance outperforms others (6.69%,
7.26% absolute gains when compared to GMM and APM0).
Similarly, although Tri-PPM2 performs worse than PRLM
in dialect recognition, its retrieval result compares favorably
(2.1% absolute gain) to PRLM. These results suggest that
explicit modeling of rules helps locate dialect-specific regions.

C. Discussion: Learned Rules Refine Linguistic Rules

In Section V-A3, for analysis purposes we assumed that the
AAVE linguistics rules are the ground-truth when conducting
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Reference Triphone Ground-truth Surface Phone Target/Non-Target Trial?
[eh+n] [ih] Target Trial because of phonetic rule [eh] —>[ih] � [+nasal]
[eh+g] [ih] Non-Target Trial because it does not match any linguistic rules
[eh+n] [eh] Non-Target Trial because it does not match any linguistic rules

TABLE VI
EXAMPLES OF TARGET AND NON-TARGET TRIALS.

System PRLM MonoPPM Tri-PPM1 Tri-PPM2 GMM APM0 MonoAPM Tri-APM
F-measure 0.0515 0.0640 0.0697 0.0725 0.0593 0.0536 0.0876 0.1262

TABLE VII
REGION-OF-INTEREST RETRIEVAL COMPARISON. F-MEASURE BASELINE (AT CHANCE LEVEL) IS 0.0547.

Linguistic rules for AAVE Dialect Example Top ranking triphones Example
[r] [r] → ∅/ [+vowel] [+vowel] or anything [+diphthong] - [r] + [+vowel] tiring

[r] → ∅/ [+vowel] more
[r] → ∅/ [+consonant] [ao/ow/oy] throw

[ng] [ng] → [n] thing [ih]-[ng]+[-silence] seemingly
[ay] [ay] → [ae || aa] / [+consonant] like [-glide] - [ay] + [+nasal] my mom

[ay] + [w] I was
[-liquid, -central] - [ay] + [+glide] that I had

[eh] [eh] → [ih] / [+nasal] then [-voiced, -vowel] - [eh] + [n] pen
[+voiced] - [eh] + [n] when

[eh] → [ey] / [+liquid] air
[l] [l] → ∅/ [+vowel] [+consonant] all the time [-back, -[ah]] - [l] + [+voiced, -sonorant, -vowel] all but

[l] → ∅/ [uw||uh] cool
[dh] [dh] → [v||d] / [+vowel] [+vowel] brother [+vowel] - [dh] +[er] brother
[ih] [ih] → [ae || eh] / [th] [ng] thing [th] - [ih] + [ng] thing
[aw] [aw] → [ow || ay || aa || uw] / [l] owl [aw] + [-nasal, +consonant] howl
[aw] [aw] → [ow || ay || aa || uw] / [t] about [-nasal, +consonant] out

TABLE VIII
COMPARISON BETWEEN LINGUISTIC AND LEARNED RULES. LEFT: LINGUISTIC RULES FOR THE AAVE DIALECT PROPOSED BY PHONETICIANS. MIDDLE,

RIGHT: TOP-RANKING TRIPHONES FROM APM USING LOG LIKELIHOOD RATIO (LLR). THE TOP-RANKING TRIPHONES OFTEN HAVE MORE REFINED
PHONETIC CONTEXT THAN THE LINGUISTIC RULES. “||” REPRESENTS LOGICAL OR; THE COMMA SYMBOL “,” REPRESENTS LOGICAL AND.

Learned rules:
[-glide] – [ay] + [+nasal]

Obey Rules m-ay+m
Disobey Rules l-ay+k, m-ay+g

l ay     m aa m ah dh er       ae        n      m          ay           g  r ae n    m ah dh   erSurface phones

R f h l ay k  m ay   m ah dh er ae n d   m          ay           g  r ae n d m ah dh   er

Like    my     mother                 and              my                   grandmother

Reference phones

Words

Fig. 9. Learned rules help refine existing rules: [ay] does not de-glide
when followed by any consonant; [ay] de-glides when followed by a nasal
consonant.

the retrieval experiments, though we observed that the lin-
guistic rules might not be perfect (e.g., the rule for [ay] does
not predict the AAVE dialect in Fig. 8). In this section, we
explore and discuss the possibility of refining linguistic rules
by comparing them with automatically learned rules.

In Tri-APM, dialect information is characterized as triphone
models. For example, assume an acoustic observation O
corresponds to a reference triphone [th-ih+ng]. If likelihood
score of O given the AAVE [th-ih+ng] model, P (O|λth-ih+ng

AAVE ), is
high, but the likelihood score of O given the non-AAVE [th-
ih+ng] model, P (O|λth-ih+ng

non-AAVE), is low, this triphone [th-ih+ng]

specifies where dialect-discriminating information is rich. This
triphone model acts as a rule learned from Tri-APM, because
it is able to predict which phonetic conditions AAVE and non-
AAVE speech possess different acoustic characteristics.

Therefore, to assess the most dialect-discriminating learned
rules, we rank triphones according to their log likelihood ratio
(LLR): For each occurring triphone in the test set of AAVE
trials, its duration-normalized LLR between AAVE and non-
AAVE models was computed. The average LLRs for each
clustered triphone group were then ranked.

Table VIII shows the top ranking triphones (4th column)
in descending order and compares them with the linguistic
rules. We see that the top-ranking triphones often have more
refined phonetic context than linguistic rules. For example,
while the linguistic rule says that [ay] de-glides when pre-
ceding consonants, our system suggests that [ay] only de-
glides when preceding certain consonants (e.g., [m].) Fig. 9
shows such an example, where there are three instances of [ay]
followed by a consonant, but only one of them is de-glided.
Therefore, phoneticians can potentially use learned rules to
further investigate if existing rules need to be refined.

VI. DISCUSSION: MODEL ASSUMPTIONS, POSSIBLE
EXTENSIONS, AND POTENTIAL APPLICATIONS

In this work, we focus on automatically learning pronunci-
ation differences across English dialects. The proposed model
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assumes that the writing system between the different dialects
are easily convertible and word transcriptions are available
during training. Given a word, the model assumes speakers
from different dialect groups might pronounce the word dif-
ferently either at the acoustic or phonetic level. It is assumed
that these differences can be probabilistically characterized as
pronunciation patterns, which are denoted as phonetic rules.

In this work, we only condition these rules on the immediate
left and right neighboring phones of the phone of interest.
This conditioning can be easily extended so that phonetic rules
can be potentially modeled more elegantly. Besides phonetic
context, other information, such as syllable-level position
and word boundaries, could also be further incorporated in
modeling phonetic rules.

While we only show results on English dialects, the pro-
posed model has also had some success on Arabic dialects
[16].13 In addition, our model can potentially be applied to
other languages such as Spanish dialects (spoken in different
regions of Spain and Latin America) and Mandarin dialects
(spoken in China, Singapore and Taiwan). For example,
phonetic rules characteristic of Caribbean Spanish include
syllable-final /s, f/ debuccalized to [h], word-final /n/ velarized
[48]. In Taiwanese Mandarin, schwa becomes backed when
followed by a velar nasal and preceded by a labial consonant:
[eng] → [ong]/ [b,p,f,m] [49], [50], where the phonetic
symbols are in hanyu pinyin [51]. We have in fact obtained
encouraging results on preliminary experiments on these lan-
guages, though we were hampered by limitation in available
resources to continue our efforts.

Since our model only focuses on acoustics and phonetics,
it is not suitable for analyzing dialect differences caused by
higher linguistic levels such as syntax and prosody. However,
our framework is not limited to analyzing dialects. It can
be applied to characterizing pronunciation variation across
different types of speaker groups, be they non-native accents,
speech disorders (articulatory or phonological disorders), or
individual speakers (e.g., speaker recognition). For non-native
accents, ground-truth phonetic rules could be hypothesized by
comparing the phonological systems in the first and second
language, but determining how non-native a speaker is might
require non-trivial perceptual evaluation. For speech disorders
and speaker recognition applications, it might be useful to
extend the framework to characterize pronunciation variation
using limited data. These issues remain open research ques-
tions worthy of future investigation.

VII. CONCLUSION

We proposed a framework that refines the hidden Markov
model to explicitly characterize dialect differences as phonetic
and acoustic transformations, which are interpreted as dialect-
specific rules. We demonstrated that the proposed PPM system
is able to convert American English pronunciation to British
pronunciation using learned rules. We also showed that the

13Our later experiments reveal that in addition to phonetic rule differences,
Arabic dialects also differ greatly at the vocabulary level. Therefore, dialect
recognition performance can be even greater if all sources of differences are
modeled.

proposed systems can recognize different varieties of Ameri-
can English. In addition, the proposed APM system is able to
retrieve and refine linguistic rules. The proposed framework of
automatically characterizing pronunciation variation explicitly
is potentially useful in fields such as sociolinguistics and
speech pathology, which currently rely heavily on manual
analysis.

APPENDIX A
DERIVATION DETAILS OF REFINED TYING

The clustered probability for insertion and typical transitions
in Eq.(6) in Section II-D2 depends on PD(sk):

PD(sk) =
∑
j

P (r = del|sk−1, sk ∈ σj , sk+1 ∈ ςj)

≡
∑
j

P (r = del|sk ∈ σj , sk+1 ∈ ςj) (10)

=
∑
j

P (sk+2 ∈ τj , r = del|sk ∈ σj , sk+1 ∈ ςj)

=
∑
j

P (sk+2 ∈ τj , r = del, d = sk+1 ∈ ςj |sk ∈ σj)
P (sk+1 ∈ ςj |sk ∈ σj)

=
∑
j

ADj

P (sk+1 ∈ ςj |sk ∈ σj)
, (11)

where P (sk+1 ∈ ςj |sk ∈ σj) is a bigram probability that can
be obtained empirically from the training set. The ≡ symbol
in Eq. (10) is used due to our modeling assumption that the
deletion of sk+1 only depends on the phone before and after
(i.e, sk andsk+1).
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