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Abstract
Significant performance gains have been reported separately for
speaker recognition (SR) and language recognition (LR) tasks
using either DNN posteriors of sub-phonetic units or DNN fea-
ture representations, but the two techniques have not been com-
pared on the same SR or LR task or across SR and LR tasks
using the same DNN. In this work we present the application of
a single DNN for both tasks using the 2013 Domain Adaptation
Challenge speaker recognition (DAC13) and the NIST 2011
language recognition evaluation (LRE11) benchmarks. Using a
single DNN trained on Switchboard data we demonstrate large
gains in performance on both benchmarks: a 55% reduction in
EER for the DAC13 out-of-domain condition and a 48% reduc-
tion in Cavg on the LRE11 30s test condition. Score fusion and
feature fusion are also investigated as is the performance of the
DNN technologies at short durations for SR.
Index Terms: i-vector, DNN, bottleneck features, speaker
recognition, language recognition

1. Introduction
The impressive gains in performance obtained using deep neu-
ral networks (DNNs) for automatic speech recognition (ASR)
[1] have motivated the application of DNNs to other speech
technologies such as speaker recognition (SR) and language
recognition (LR) [2, 3, 4, 5, 6, 7, 8, 9, 10]. Two general methods
of applying DNN’s to the SR and LR tasks have been shown to
be effective. The first or “direct” method uses a DNN trained as
a classifier for the intended recognition task directly to discrim-
inate between speakers for SR [5] or languages for LR [4]. The
second or “indirect” method uses a DNN trained for a differ-
ent purpose to extract data that is then used to train a secondary
classifier for the intended recognition task. Applications of the
indirect method have used a DNN trained for ASR to extract
frame-level features [2, 3, 11], accumulate a multinomial vector
[7] or accumulate multi-modal statistics [6, 8] that were then
used to train an i-vector system [12, 13].

In this paper we investigate the use of a single DNN for both
SR and LR tasks using two indirect methods. The first indirect
method (bottleneck features or BNFs) uses frame-level features
extracted from a DNN with a special bottleneck layer [14] and
the second indirect method (DNN posteriors) uses posteriors
extracted from a DNN to accumulate multi-modal statistics [6].
While performance gains have been reported in prior published
work using each of these indirect methods separately on differ-
ent SR and LR tasks, in this work we compare both methods
on the same recognition task using the same DNN. In Section 4
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we confirm that both indirect methods yield substantial reduc-
tions in error rates on SR and LR tasks with the largest gains
realized using the BNF method. In Section 4.3 we show that
further gains are possible by combining MFCC and BNF fea-
tures into a tandem feature vector which is compared to fusing
scores from multiple systems. In Section 4.4 the tandem fea-
tures are shown to address a performance issue with the BNF
approach for short duration test cuts.

This work is motivated by the need to attain high perfor-
mance SR and LR under tight storage and computation con-
straints. The DNN feature extraction is more expensive than
MFCC extraction and i-vector extraction also comes at a high
cost. The possibility of using a single DNN to extract BNF fea-
tures for both SR and LR is compelling when the same data
is processed for both tasks. While we report some significant
gains for system fusion in this work, the cost of extracting mul-
tiple i-vectors is high, so it is preferable to attain better per-
formance with fewer i-vector extractions. The tandem systems
shows the most promise as a single front end for SR and LR
since it doesn’t suffer from performance issues on SR at short
durations and it sustains the performance gains realized by the
BNF system for LR at all durations.

2. DNN’s for SR and LR
A DNN classifier is essentially a multi-layer perceptron with
more than two hidden layers that typically uses random ini-
tialization and stochastic gradient descent to initialize and op-
timize the weights [1, 15]. For speech applications, the input
to a DNN is typically a stacked set of spectral features (e.g.,
MFCCs, PLPs) extracted from short (20ms) segments (frames)
of speech. Typically a context of +/- 5 to 10 frames around the
current input frame are used. The output of the DNN is a pre-
diction of the posterior probability of the target classes for the
current input frame.

In the direct method for LR and SR, a DNN is used to pre-
dict the language or speaker class for a given frame of speech.
Since the entire speech waveform is considered to belong to a
single class, the frame-level DNN posteriors must be combined
to make a single decision score. This can be accomplished ei-
ther by simply averaging the DNN predictions or by training a
secondary classifier that uses statistics derived from the DNN
across the whole input as a single feature vector.

In contrast to the direct method, the indirect method uses a
DNN that was trained on a different data set and possibly for a
different purpose. In this work, we have used a DNN trained
for an ASR task for both LR and SR. The ASR DNN is trained
to predict sub-phonetic units or “senones” for each input frame
[1]. In the following two subsections we describe how we use
the ASR DNN output posteriors and BNFs in the context of an
i-vector classifier.



2.1. DNN posteriors

A typical i-vector system uses zeroth, first and second or-
der statistics generated using a Gaussian mixture model
(GMM) [12]. Statistics are accumulated by first estimating the
posterior of each GMM component density for a frame and us-
ing these posteriors as weights for accumulating the statistics
for each component of the mixture distribution. The zeroth or-
der statistics are the total occupancies across an utterance for
each GMM component and the first order statistics are the occu-
pancy weighted accumulations of feature vectors for each com-
ponent. The i-vector is then computed using a dimension re-
ducing transformation applied to the stacked first order statistics
that is non-linear with respect to the zeroth order statistics.

An alternate approach to extracting statistics has been pro-
posed in [6]. Statistics are accumulated in the same way as for
the GMM but class posteriors from the DNN are used in place of
GMM component posteriors. Once the statistics have been ac-
cumulated, the i-vector extraction is performed in the same way
as it is from the GMM based posteriors. This approach has been
shown to give significant gains for both SR and LR [6, 7, 16].

2.2. DNN bottleneck and tandem features

A DNN can also be used as a means of extracting features for
use by a secondary classifier - including another DNN [17].
This is accomplished by sampling the activation of one of the
DNN’s hidden layers and using this as a feature vector. For
some classifiers the dimensionality of the hidden layer is too
high and some sort of feature reduction is necessary like LDA
or PCA. In [14], a dimension reducing linear transformation is
optimized as part of the DNN training by using a special bot-
tleneck hidden layer that has fewer nodes. The bottleneck layer
uses a linear activation without an offset and behaves very much
like a LDA or PCA transformation on the activation of the previ-
ous layer [18, 14]. Matrix factorization was originally proposed
in [18] to reduce the number of parameters of the output layer,
but in our work we have chosen to use the second to last layer
with the hope that the output posterior prediction will not be too
adversely affected by the loss of information at the bottleneck
layer. BNFs have been shown to work well for both LR and
SR [2, 3, 10].

Tandem features consist of BNF features augmented with
traditional MFCC or PLP feature. Tandem features provide
a way of combining the benefits of both BNF and traditional
front-end feature extraction into a single system. They have
been shown to perform well for SR [11] but have not been eval-
uated on LR prior to this work.

One would expect to be able to train a classifier using BNFs
that can perform at least as well as the original DNN given the
same task and training data. As an example, if the last layer of
a DNN is a linear bottleneck, then the final softmax layer is a
simple linear classifier that is optimized for the BNFs. A DNN
trained to discriminate between senones must attenuate the non-
senone related information such as the channel, speaker, gender
and sessions information so that the final linear classifier can ef-
fectively discriminate between senone classes. BNFs extracted
from such a classifier should perform well as phonotatic fea-
ture for LR but may not perform as well for SR where speaker
related information in the original signal is also needed. How-
ever, as shown later in experiments, with long enough utterances
BNFs can perform well for SR possibly because we are able to
observe enough data to learn a speakers’ pronunciation charac-
teristics.

3. Experimental Setup
Three different corpora are used in our experiments. The DNN
itself is trained using a 100 hours subset of Switchboard 1
[19]. The 100 hour Switchboard subset is defined in the exam-
ple system distributed with Kaldi [20]. The SR systems were
trained and evaluated using the 2013 Domain Adaptation Chal-
lenge (DAC13) data [21]. The LR systems were evaluated on
the NIST 2011 Language Recognition Evaluation (LRE11) data
[22]. Details on the LR training and development data can be
found in [23].

All systems use the same speech activity segmentation gen-
erated using a GMM based speech activity detector (GMM
SAD). The i-vector system uses MAP and PPCA to estimate
the T matrix. Scoring is performed using PLDA [24]. With
the exception of the input features or multi-modal statistics, the
i-vector systems are identical and use a 2048 component, di-
agonal covariance GMM UBM and a 600 dimensional i-vector
subspace. All LR systems use the discriminative backend de-
scribed in [23].

The front-end feature extraction for the baseline LR system
uses 7 static cepstra appended with 49 SDC. Unlike the front-
end described in [23], vocal track length normalization (VTLN)
and feature domain nuisance attribute projection (fNAP) are not
used. The front-end for the baseline SR system uses 20 MFCCs
including C0 and their first derivatives for a total of 40 features.

The DNN was trained using 4,199 state cluster (“senone”)
target labels generated using the Kaldi Switchboard 1 “tri4a”
example system [20]. The front-end for the DNN uses 13 Gaus-
sianized PLP coefficients and their first and second order deriva-
tives (39 features) stacked over a 21 frame window (10 frames
to either side of the center frame) for a total of 819 input fea-
tures. The GMM SAD segmentation is applied to the stacked
features.

The DNN has 7 hidden layers of 1024 nodes each with the
exception of the 6th bottleneck layer which has 64 nodes. All
hidden layers use a sigmoid activation function with the excep-
tion of 6th layer which is linear and has no offset [14]. The
DNN training is preformed on an nVidia Tesla K40 GPU using
custom software developed at MIT/CSAIL.

4. SR and LR Experiments
In this section we present experiments with the indirect DNN
approaches on some well defined SR and LR benchmarks. The
SR systems were trained and evaluated using the 2013 Domain
Adaptation Challenge (DAC13) [21]. The DAC13 is a speci-
fied set of hyper-parameter, enroll, and test lists developed to
exhibit a data domain shift for a SR task and has been reported
on in several publications [16, 25, 26]. The LR systems were
evaluated on the NIST 2011 Language Recognition Evaluation
(LRE11) data [22] which covers 24 languages coming from
telephone and broadcast audio and has test durations of 3, 10,
and 30 seconds. Details on the LR training and development
data can be found in [23]. The metrics reported are equal error
rate (EER) and minimum decision cost functions (DCF) with
a prior or 0.01 for SR and the Cavg (language averaged DCF)
with a prior of 0.5 for LR.

4.1. Speaker recognition experiments
Two sets of experiments were run on the DAC13 corpora: “in-
domain” and “out-of-domain”. For both sets of experiments,
the UBM and T hyper-parameters are trained on Switchboard
(SWB) data. The other hyper-parameters (whitening, within,
and across covariances) are trained on 2004-2008 speaker



Features Posteriors EER(%) DCF*1000
MFCC GMM 2.71 0.404
MFCC DNN 2.27 0.336
BNF GMM 2.00 0.269
BNF DNN 2.79 0.388

Table 1: In-domain DAC13 results

Features Posteriors EER(%) DCF*1000
MFCC GMM 6.18 0.642
MFCC DNN 3.27 0.427
BNF GMM 2.79 0.342
BNF DNN 3.97 0.454

Table 2: Out-of-domain DAC13 results

recognition evaluation (SRE) data for the in-domain experi-
ments and SWB data for the out-of-domain experiments (see
[21] for more details). The DAC13 test data consists of con-
dition 5 of the NIST 2010 SRE (SRE10) [27]. Tables 4.1 and
4.1 summarize the results for the in-domain and out-of-domain
experiments with the first row of each table corresponding to
the baseline system. While the DNN-posterior technique with
MFCCs gives a significant gain over the baseline system for
both sets of experiments, as also reported in [6] and [16], an
even greater gain is realized using BNF with a GMM. However,
using both BNFs and DNN-posteriors degrades performance.

4.2. Language recognition experiments
The experiments run on the LRE11 task are summarized in Ta-
ble 4.2 with the first row corresponding to the baseline system
and the last row corresponding to a fusion of 5 “post-evaluation”
systems (see [23] for details). BNFs with GMM posteriors
out performs the other systems configurations including the 5
system fusion. Interestingly, BNFs with DNN-posteriors show
more of an improvement over the baseline system than in the
speaker recognition experiments.

4.3. Score and feature fusion
Scores from the four speaker recognition systems in Ta-
bles 4.1 and 4.1 were fused by combining them with uni-
form weights. Out of all possible pair-wise combinations,
the BNF/GMM+MFCC/DNN systems yielded the best perfor-
mance. The results are summarized in Table 4.3. For the out-of-
domain case the 4 system fusion is actually worse than fusing
just the BNF/GMM+MFCC/DNN systems perhaps due to the
poorer performance of the MFCC/GMM system in this condi-
tion. For the in-domain case the BNF/GMM+MFCC/DNN sys-
tem fusion comes very close to fusing all four systems. While it
is possible that better performance could be attained by estimat-
ing the optimal weights for combining scores on held-out data
or via cross-validation, we believe that the naive fusion using
uniform weights is a good indication of how well fusion works
between these different systems. The best in-domain score fu-

Features Posteriors 30s 10s 3s
SDC GMM 5.26 10.7 20.9
SDC DNN 4.00 8.21 19.5
BNF GMM 2.76 6.55 15.9
BNF DNN 3.79 7.71 18.2
5-way fusion [23] 3.27 6.67 17.1

Table 3: LRE11 results Cavg

Fusion EER(%) DCF*1000
BNF/GMM 2.00 0.269

All 4 systems 1.61 0.236
BNF/GMM + MFCC/DNN 1.65 0.237

Tandem/GMM 1.55 0.229

Table 4: Fusion of all system and the top 2 system on DAC13 in
domain task. The system notation used is [feature]/[posterior].

Fusion EER(%) DCF*1000
BNF/GMM 2.79 0.342

All 4 systems 2.88 0.355
BNF/GMM + MFCC/DNN 2.54 0.326

Tandem/GMM 2.44 0.323

Table 5: Fusion of all system and the top 2 system on
DAC13 out-of-domain task. The system notation used is [fea-
ture]/[posterior].

sion gives a performance gain of almost 20% relative to the
BNF/GMM system alone while the best out-of-domain score
fusion gives a relative gain of only about 9%.

Also included in Table 4.3 is the result of stacking 20
MFCC features with the 64 BNFs and retraining the GMM i-
vector system with the resulting 84 tandem features [28]. The
performance for the tandem feature system is slightly better
than score fusion for the DAC13 task. The tandem approach
may be of interest in limited resource scenarios where it is not
possible to run more than one i-vector system.

Score fusion experiments using the four language recogni-
tion systems in Table 4.2 were carried out by training a discrim-
inative backend on the development data over all two system
combinations and comparing the top performing pair to the fu-
sion of all four systems. As in the DAC13 fusion experiments,
the BNF/GMM+MFCC/DNN gave the best performance of all
two system combinations. The results are summarized in Ta-
ble 4.3. While the fusion gains are relatively modest (roughly
a 10% relative improvement across the durations), the fusion of
just the BNF/GMM+MFCC/DNN is only slight worse than the
fusion of all four systems. DET plots for the SR out-of-domain
task and LRE11 30s duration of the baseline, DNN, fused and
tandem systems are shown in Figures 4.3 and 4.3 respectively.

The tandem system performs worse than score fusion on
the LRE11 task but is on par with the BNF/GMM system. This
may be because the features used for score fusion and for the
tandem features are not the same. The MFCC features used in
the tandem system perform well on the SR task but are not as
suited to the LR task as the SDC features used in the SDC/DNN
system. However, the tandem/GMM system’s result suggests
that one could use the same tandem feature representation for
both LR and SR and still realize a gain on the SR task. This
may be of interest in situations where i-vectors are extracted
with one set of hyper parameters and then used for both LR and
SR.

Fusion 30s 10s 3s
BNF/GMM 2.76 6.55 15.9

All 4 systems 2.22 5.41 14.5
BNF/GMM + SDC/DNN 2.31 5.69 14.7

Tandem/GMM 2.67 6.71 15.9

Table 6: LRE11 fusion Cavg



Figure 1: DAC13 out-of-domain DET plot

Figure 2: LRE11 30sec duration

4.4. Duration impact on SR performance
The DAC13 test data consists of 5 minute telephone conversa-
tion from SRE10 with an average of about 2.5 minutes of speech
data per a test cut. Since the BNFs for SR may be sensitive to
having enough data to learn a speaker’s pronunciation charac-
teristics, we next examined the impact of shorter test durations
on SR performance. A test set was created by extracting one
15 second segment from each of the DAC13 test cuts. The set
of test trials were the same as for DAC13 except that the mod-
els were scored against the 15sec test cuts instead of the full
conversation sides. The GMM SAD segmentation was used to
ensure that each 15 second segment contained as much speech
as possible. The performance and DET curves for the baseline
system, both indirect DNN methods, their fusion, and the tan-
dem system are shown in Table 4.4 and Figure 4.4. The fusion
of the two DNN systems is significantly better than any of the
other systems, but the performance gain comes at the cost of
extracting two i-vectors. The performance of the BNF/GMM
system is much worse than the baseline MFCC/GMM and the
MFCC/DNN systems. One explanation is that the 15 second ut-
terances do not contain enough phonotactic information to dis-
criminate between different speakers effectively. Fortunately
the combination of the MFCC and BNF features in the tandem
approach appears to compensate for this performance loss using
just BNFs.

5. Conclusions
This paper has described the development of a DNN BNF i-
vector system and demonstrated substantial performance gains
when applying the system to both the DAC13 SR and LRE11
LR benchmarks. For the DAC13 task the BNF/GMM sys-
tem was shown to reduce the error rates of the baseline

Fusion EER(%) DCF*1000
MFCC/GMM 6.07 0.790
MFCC/DNN 6.10 0.783
BNF/GMM 7.72 0.861

BNF/GMM+MFCC/DNN 4.84 0.680
Tandem/GMM 5.70 0.739

Table 7: DAC13 in domain results for the 15 sec task.

Figure 3: DAC13 in-domain DET plots for 15sec duration cuts

MFCC/GMM system by 26% for EER and 33% for DCF for the
in-domain task and 55% for EER and 47% for DCF for the out-
of-domain task. On LRE11, the same BNFs decreased EERs
at 30s, 10s, and 3s durations by 48%, 39%, and 24%, respec-
tively, and even out performed a 5 system fusion of acoustic and
phonetic based recognizers.

Further reductions in error were demonstrated on the
DAC13 SR task using score fusion or tandem features. Fusing
the BNF/GMM and MFCC/DNN system scores reduces the er-
ror rates relative to the BNF/GMM system by 18% for EER and
12% for DCF for the in-domain task and by 9% for EER and
5% for DCF for the out-of-domain task. Using tandem features
lead to a larger reduction in error rate of 23% for EER and 15%
for DCF for the in-domain task and 13% for EER and 6% for
DCF by for the out-of-domain task. Score fusion on the LRE11
task lead to 16%, 13% and 8% reduction in Cavg on the 30s,
10s and 3s durations conditions. While the tandem features did
not lead to significant changes in performance on the LRE11
task, their good performance on DAC13 along with their appar-
ent robustness at short duration SR suggests the possibility of
developing a single tandem front-end and a single i-vector ex-
tractor for both SR and LR applications. Future work will inves-
tigate the impact of data selection and hyper-parameter training
on SR and LR performance when using the same i-vectors for
both tasks.
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