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Abstract— The impressive gains in performance
obtained using deep neural networks (DNNs) for automatic
speech recognition (ASR) have motivated the application of DNNs
to other speech technologies such as speaker recognition (SR) and
language recognition (LR). Prior work has shown performance
gains for separate SR and LR tasks using DNN posteriors of
sub-phonetic units and DNN feature representations. In this
work we present the application of single DNN for both SR
and LR using the 2013 Domain Adaptation Challenge speaker
recognition (DAC13)and the NIST 2011 language recognition
evaluation (LRE11) benchmarks. Using a single DNN trained on
Switchboard data we demonstrate large gains on performance
in both benchmarks: a 55% reduction in EER for the DAC13
out-of-domain condition and a 48% reduction in Cy., on the
LRE11 30s test condition. It is also shown that further gains are
possible using score or feature fusion leading to the possibility
of a single i-vector extractor producing state-of-the-art SR and
LR performance

Index Terms: i-vector, DNN, bottleneck features, senone
posteriors, tandem features, speaker recognition, language
recognition

I. INTRODUCTION

The impressive gains in performance obtained using deep
neural networks (DNNs) for automatic speech recognition
(ASR) [1] have motivated the application of DNNs to other
speech technologies such as speaker recognition (SR) and
language recognition (LR) [2-10]. Two general methods of
applying DNN’s to the SR and LR tasks have been shown to
be effective. The first or “direct” method uses a DNN trained
as a classifier for the intended recognition task directly to
discriminate between speakers for SR [5] or languages for
LR [4]. The second or “indirect” method uses a DNN trained
for a different purpose to extract data that is then used to
train a secondary classifier for the intended recognition task.
Applications of the indirect method have used a DNN trained
for ASR to extract frame-level features [2, 3, 11], accumulate
a multinomial vector [7] or accumulate multi-modal statistics
[6, 8] that were then used to train an i-vector system [12, 13].
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An aim of this paper is to examine the use of a single DNN
for both SR and LR tasks, with the possibility of using a single
i-vector classifier. Prior published work has examined the
application of DNNs for SR or LR separately. In Section V we
describe development experiments which motivate the focus
on two indirect methods. The first indirect method (bottleneck
features or BNFs) uses frame-level features extracted from
a DNN with a special bottleneck layer [14] and the second
indirect method (DNN posteriors) uses posteriors extracted
from a DNN to accumulate multi-modal statistics [6]. The
features and statistics from these indirect methods are used
to train i-vector classifiers for each task and combinations of
methods. Contrastive and fusion experiments for well defined
SR and LR benchmarks are given in Section V.

II. DNN’S FOR SR AND LR

A DNN classifier is essentially a multi-layer perceptron
with more than two hidden layers that typically uses random
initialization and stochastic gradient descent to initialize and
optimize the weights [1, 15]. For speech applications, the
input to a DNN is a stacked set of spectral features (e.g.,
MFCCs, PLPs) extracted from short (20ms) segments (frames)
of speech. Typically a context of +/- 5 to 10 frames around
the current input frame are used. The output of the DNN is a
prediction of the posterior probability of the target classes for
the current input frame (see Figure 1)

In the direct method for LR and SR, a DNN is used to
predict the language or speaker class for a given frame of
speech. Since the entire speech waveform is considered to
belong to a single class, the frame-level DNN posteriors must
be combined to make a single decision score. This can be
accomplished either by simply averaging the DNN predictions
or by training a secondary classifier, such as a multinomial,
that uses statistics across the whole input derived from the
DNN as a single feature vector.

In contrast to the direct method, the indirect method uses a
DNN that was trained on a different data set and possibly for
a different purpose. In this work, we have used a DNN trained
for an ASR task for both LR and SR. The ASR DNN is to
predict sub-phonetic units or “senones” for each input frame
[1]. In the following two subsections we describe how we use
the ASR DNN output posteriors and BNFs in the context of
an i-vector classifier.

A. DNN posteriors

A typical i-vector system uses zeroth, first and second
order statistics generated using a Gaussian mixture model
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Fig. 1. Example DNN architecture

(GMM) [12]. Statistics are accumulated by first estimating the
posterior of each GMM component density for a frame and
using these posteriors as weights for accumulating the statistics
for each component of the mixture distribution. The zeroth
order statistics are the total occupancies across an utterance
for each GMM component and the first order statistics are the
occupancy weighted accumulations of feature vectors for each
component. The i-vector is then computed using a dimension
reducing transformation applied to the stacked first order
statistics that is non-linear with respect to the zeroth order
statistics.

An alternate approach to extracting statistics has been
proposed in [6]. Statistics are accumulated in the same way
as for the GMM but class posteriors from the DNN are used
in place of GMM component posteriors. Once the statistics
have been accumulated, the i-vector extraction is performed
in the same way as it is from the GMM based posteriors. This
approach has been shown to give significant gains for both SR
and LR [6, 7, 16].

B. DNN bottleneck features

A DNN can also be used as a means of extracting features
for use by a secondary classifier - including another DNN [17].
This is accomplished by sampling the activation of one of the
DNN’s hidden layers and using this as a feature vector. For
some classifiers the dimensionality of the hidden layer is too
high and some sort of feature reduction is necessary like LDA
or PCA. In [14], a dimension reducing linear transformation
is optimized as part of the DNN training by using a special
bottleneck hidden layer that has fewer nodes (see Figure 1).
The bottleneck layer uses a linear activation and behaves very
much like a LDA or PCA transformation on the activation of
the previous layer [14, 18]. Matrix factorization was originally
proposed in [18] to reduce the number of parameters of the
output layer, but in our work we have chosen to use the second
to last layer with the hope that the output posterior prediction
would not be too adversely affected by the loss of information
at the bottleneck layer. BNFs have been shown to work well
for both LR and SR [2, 3, 10, 11].

IITI. I-VECTOR SYSTEM

In the experiments, an i-vector classifier, configured as de-
scribed below, was used for baseline and integrated DNN sys-
tems. Speech activity segmentation generated using a GMM

based speech activity detector (GMM SAD) was used for
all systems. The front-end feature extraction for the baseline
LR system uses 7 static cepstra appended to 49 shifted delta
cepstra (SDC) for a total of 56 features. Unlike the front-end
described in [19], vocal track length normalization (VTLN)
and feature domain nuisance attribute projection (fNAP) are
not used. The front-end for the baseline SR system uses 20
MFCCs including CO and their first derivatives for a total of
40 features. Features extracted directly from the DNN bottle
neck layer are used for BNF experiments.

All i-vector systems use a 2048 component GMM and 600
dimensional i-vectors. For DNN posterior experiments, the
DNN output posteriors are used instead of those from the
GMM, but DNN posterior weighted statistics from the data
used to train the GMM are needed for normalization. After
extraction, i-vectors are length normalized [20], the mean of
enrollment files are used as target models, and PLDA is used
for scoring.

Hyperparameters for SR and LR tasks were trained using
their respective training data with the above i-vector configura-
tion. All LR systems use the discriminative backend described
in [19].

IV. DEVELOPMENT EXPERIMENTS

For our initial work towards developing a DNN for LR, we
used a small six language sub-set of the NIST 2009 Language
Recognition Evaluation (LREQ9) corpora that includes Farsi,
Hindi, Korean, Mandarin, Russian and Vietnamese [21, 22].
The training partition consists of 20 hours of data per language
(10 hours each of VoA and CTS data) for a total of 120 hours
of speech. The test data is the subset of the LRE09 evaluation
that matches the same six languages. This corpus was selected
to match experiments reported in [4]. In all the development
experiments we use a cheating backend on the test data and
report the EER at 30, 10 and 3 seconds.

We first focused on the direct approach discussed in Section
II. The DNN used here was trained using the training partition
of the data set and consisted of 819 input nodes (stack of 21
frames of 13 Gaussianized [23] PLP coefficient and their first
and second order derivatives), 2-5 hidden layers with 2560
nodes per layer, and 6 output nodes. All hidden layers used
a sigmoid activation. The DNN training is preformed on an
nVidia Tesla K40 GPU using custom software developed at
MIT/CSAIL. Scores for each language were generated by
averaging the 6 DNN frame-level output log posteriors for
each test file.

Results using the direct approach along with the baseline i-
vector system are given in Table I. While there is a substantial
degradation in performance relative to the baseline system
at the 30s and 10s durations using this technique, there is
a slight gain at the short 3s duration for the 2 layer DNN
which is consistent with results reported in [4]. It is not clear
why there is further performance loss for the 5 layer DNN.
Based on these results, we abandoned further direct approach
experiments.

We next examined the DNN BNF and the DNN posterior
technique discussed in Section II. The DNN for these exper-
iments was trained on 100 hours of Switchboard 1 data [24]



TABLE I
DEVELOPMENT DIRECT PERFORMANCE (EER %)

[ Layers [ Nodes [ 30 sec [ 10 sec [ 3 sec |

Baseline 0.684 2.84 11.4
2 2560 2.58 4.27 10.3
5 2560 3.24 5.65 12.8

TABLE II

DEVELOPMENT INDIRECT PERFORMANCE (EER %)

[ Features | Posteriors | 30 sec [ 10 sec [ 3 sec |

SDC GMM 0.684 2.84 11.4
BNF GMM 0.208 1.30 7.37
SDC DNN 0.268 1.58 10.1
BNF DNN 0.298 1.35 8.73

using 4,199 state cluster (senone) target labels generated using
the Kaldi Switchboard-1 tri4a example system [25]. The same
819 input features were used as the above direct approach
DNN. The DNN has 7 hidden layers of 1024 nodes each with
the exception of the 6% bottleneck layer which has 64 nodes.
All hidden layers use a sigmoid activation function with the
exception of 61 layer which is linear [14].

The results in Table II show that the BNFs together with
GMM posteriors give the best performance and that in general
all systems using the DNN significantly out perform the
baseline system. Based on these results we focused next on
applying this ASR DNN to more challenging LR and SR tasks.

Too many experiments were run during development to
present in full, but here are some of the interesting ob-
servations. Increasing the amount of training data and the
number of parameters in the DNN both by up to a factor of
three did not significantly improve performance. The inclusion
of the bottle neck layer did not adversely affect the DNN
posterior based results. Appending delta features to the PLP
features gave a small but significant performance gain. Most
interesting, without Gaussianization on the input PLP features
performance degraded by well over a factor of two.

V. SR AND LR BENCHMARK EXPERIMENTS

In this section we present experiments with the indirect
DNN approaches on some well defined SR and LR bench-
marks. The SR systems were trained and evaluated using
the 2013 Domain Adaptation Challenge (DAC13) [26]. The
DACI3 is a specified set of hyper-parameter, enroll, and test
lists developed to exhibit a data domain shift for a SR task
and has been reported on in several publications [16, 27, 28].
The LR systems were evaluated on the NIST 2011 Language
Recognition Evaluation (LRE11) data [29] which covers 24
languages coming from telephone and broadcast audio and
has test durations of 3, 10, and 30 seconds. Details on the LR
training and development data can be found in [19].

A. Speaker recognition experiments

Two sets of experiments were run on the DAC13 corpora:
“in-domain” and ‘“out-of-domain”. For both sets of exper-
iments, the UBM and T hyper-parameters are trained on
Switchboard (SWB) data. The other hyper-parameters (whiten-
ing, within, and across covariances) are trained on 2004-2008

TABLE III
IN-DOMAIN DAC13 RESULTS

[ Features | Posteriors | EER(%) [ DCF*1000 |

MFCC GMM 271 0.404

MFCC DNN 2.27 0.336

BNF GMM 2.00 0.269

BNF DNN 2.79 0.388
TABLE IV

OUT-OF-DOMAIN DAC13 RESULTS

[ Features | Posteriors | EER(%) [ DCF*1000 |

MFCC GMM 6.18 0.642
MFCC DNN 3.27 0.427
BNF GMM 2.79 0.342
BNF DNN 3.97 0.454

speaker recognition evaluation (SRE) data for the in-domain
experiments and SWB data for the out-of-domain experiments
(see [26] for more details). Tables III and IV summarize
the results for the in-domain and out-of-domain experiments
with the first row of each table corresponding to the baseline
system. While the DNN-posterior technique with MFCCs
gives a significant gain over the baseline system for both sets
of experiments, as also reported in [6] and [16], an even greater
gain is realized using BNF with a GMM. However, using both
BNFs and DNN-posteriors degrades performance.

B. Language recognition experiments

The experiments run on the LREI11 task are summarized
in Table V with the first row corresponding to the baseline
system and the last row corresponding to a fusion of 5
“post-evaluation” systems (see [19] for details). BNFs with
GMM posteriors out performs the other systems configurations
including the 5 system fusion. Interestingly, BNFs with DNN-
posteriors show more of an improvement over the baseline
system than in the speaker recognition experiments.

C. Score and feature fusion

Scores from the four speaker recognition systems in Ta-
bles III and IV were fused by combining them with uni-
form weights. Out of all possible pair-wise combinations,
the BNF/GMM-+MFCC/DNN systems yielded the best perfor-
mance. The results are summarized in Table VI. For the out-of-
domain case the 4 system fusion is actually worse than fusing
just the BNF/GMM+MFCC/DNN systems perhaps due to the
poorer performance of the MFCC/GMM system in this con-
dition. For the in-domain case the BNF/GMM+MFCC/DNN
system fusion comes very close to fusing all four systems.
While it is possible that better performance could be attained

TABLE V
LRE11 RESULTS Caug

[ Features | Posteriors | 30s [ 10s [ 3s |
SDC GMM 5.26 | 10.7 | 209
SDC DNN 4.00 | 8.21 19.5
BNF GMM 276 | 6.55 | 159
BNF DNN 3.79 | 7.71 18.2
5-way fusion [19] 327 | 6.67 | 17.1




TABLE VI
FUSION OF ALL SYSTEM AND THE TOP 2 SYSTEM ON DAC13. THE
SYSTEM NOTATION USED IS [FEATURE]/[POSTERIOR].

[ Fusion [ Condition | EER(%) [ DCF*1000 |
All 4 systems In-domain 1.61 0.236
BNF/GMM + MFCC/DNN In-domain 1.65 0.237
Tandem/GMM In-domain 1.55 0.229
All 4 systems Out-of-domain 2.88 0.355
BNF/GMM + MFCC/DNN | Out-of-domain 2.54 0.326
Tandem/GMM Out-of-domain 2.44 0.323
TABLE VII
LREI11 FUSION Caug
[ Fusion [ 30s [ 10s [ 3s ]

All 4 systems 222 | 541 | 145

BNF/GMM + SDC/DNN | 2.31 | 5.69 | 14.7

Tandem/GMM 2.67 | 6.71 | 15.9

by estimating the optimal weights for combining scores on
held-out data or via cross-validation, we believe that the naive
fusion using uniform weights is a good indication of how well
fusion works between these different systems. The best in-
domain score fusion gives a performance gain of almost 20%
relative to the BNF/GMM system alone while the best out-of-
domain score fusion gives a relative gain of only about 9%.

Also included in Table VI is the result of stacking 20
MFCC features with the 64 BNFs and retraining the GMM I-
vector system with the resulting 84 tandem features [30]. The
performance for the tandem feature system is slightly better
than score fusion for the DACI13 task. The tandem approach
may be of interest in limited resource scenarios where it is not
possible to run more than one i-vector system.

Score fusion experiments using the four language recog-
nition systems in Table V were carried out by training a
discriminative backend on the development data over all
two system combinations and comparing the top performing
pair to the fusion of all four systems. As in the DACI3
fusion experiments, the BNF/GMM+MFCC/DNN gave the
best performance of all two system combinations. The results
are summarized in Table VII. While the fusion gains are
relatively modest (roughly a 10% relative improvement across
the durations), the fusion of just the BNF/GMM+MFCC/DNN
is only slight worse than the fusion of all four systems. DET
plots for the out-of-domain performance of the baseline, DNN,
fused and tandem systems respectively are shown in Figure 2.

The tandem system performs worse than score fusion on
the LRE11 task but is on par with the BNF/GMM system.
This may be because the features used for score fusion and
for the tandem features are not the same. The MFCC features
used in the tandem system perform well on the SR task but
are not as suited to the LR task as the SDC features used in
the SDC/DNN system. However, the tandem/GMM system’s
result suggests that one could use the same tandem feature
representation for both LR and SR and still realize a gain on
the SR task. This may be of interest in situations where i-
vectors are extracted with one set of hyper parameters and
then used for both the LR and SR tasks.
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Fig. 2. DAC13 out-of-domain DET plot
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Fig. 3. LREII 30sec duration

VI. CONCLUSIONS

This paper has described the development of a DNN BNF
i-vector system and demonstrated substantial performance
gains when applying the system to both the DAC13 SR and
LRE11 LR benchmarks. For the DAC13 task the BNF/GMM
system was shown to reduce the error rates of the baseline
MFCC/GMM system by 26% for EER and 33% for DCF for
the in-domain task and 55% for EER and 47% for DCF for
the out-of-domain task. On LRE11, the same BNFs decreased
EERs at 30s, 10s, and 3s durations by 48%, 39%, and 24%,
respectively, and even out performed a 5 system fusion of
acoustic and phonetic based recognizers.

Further reductions in error were demonstrated on the
DACI13 SR task using score fusion or tandem features. Fusing
the BNF/GMM and MFCC/DNN system scores reduces the
error rates relative to the BNF/GMM system by 18% for EER
and 12% for DCF for the in-domain task and by 9% for EER
and 5% for DCF for the out-of-domain task. Using tandem
features lead to a larger reduction in error rate of 23% for EER
and 15% for DCF for the in-domain task and 13% for EER and
6% for DCF by for the out-of-domain task. Score fusion on
the LRE11 task lead to 16%, 13% and 8% reduction in Clyg
on the 30s, 10s and 3s durations conditions. While the tandem
features did not lead to significant changes in performance on
the LRE11 task, their good performance on DAC13 suggests
the possibility of a single tandem front-end and a single I-
vector extractor for both SR and LR applications.
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