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Abstract—A common problem in modern graph analysis is the

detection of communities, an example of which is the detection

of a single anomalously dense subgraph. Recent results have

demonstrated a fundamental limit for this problem when using

spectral analysis of modularity. In this paper, we demonstrate

the implication of these results on subgraph detection when

a cue vertex is provided, indicating one of the vertices in

the community of interest. Several recent algorithms for local

community detection are applied in this context, and we compare

their empirical performance to that of the simple method used

to derive the theoretical detection limits.

I. INTRODUCTION

In many applications, the data of interest take the form of
entities and the relationships between them. These may rep-
resent a broad, diverse set of data types, from communication
between people to interactions between proteins. In all of these
diverse contexts, the relational data are typically represented
as a graph.

One of the common problems among analysts working with
graph-based data is subgraph detection. Given a large set of
entities and their relationships, connections, or interactions,
it can be difficult to determine if there is a particular subset
of entities that requires special attention [1], [2]. Typically,
the objective is to find a relatively small set of vertices whose
topology is inconsistent with some notion of expected behavior
in the graph. The classical planted clique problem embodies
this in a simple form.

In the planted clique problem, the objective is to locate a
subset where all possible connections exist, while connections
across the rest of the graph occur with a fixed probability.
This simplified scenario has enabled the derivation of hard
detectability limits [3], [4], and has yielded valuable insight
into detectability in more complicated networks derived from
real data.

The planted clique problem is traditionally focused on
uncued detection, i.e., determining the nodes that comprise
the clique without any additional information about which
entities are interesting. In practice, however, some additional
knowledge priors are frequently available. For example, in an
advertising application in a social network, a company may
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have knowledge that a person uses their product, and wants to
advertise to other network users who have close relationships
with their current customer. Upfront knowledge priors enable
more efficient use of resources by targeting a search that could
consider the entire graph, having it prioritize entities in the
graph that are close to the cue. Understanding the implications
that recent subgraph detection bounds have on the setting
where a cue is present will improve our understanding of
detectability in this common alternative context.

In this paper, we investigate the implication of recent
spectral limits of planted clique detection to cases where one
entity in the clique is revealed. Using a simple method to
reduce the number of entities considered, we can directly apply
current bounds for uncued detection to the reduced dataset.
The resulting bounds show that, depending on how the edge
probability varies with the size of the graph, it is possible
to detect cliques of size beyond the uncued detectability
bound. We demonstrate empirically that several popular cued
subgraph detection methods go through a detectability phase
transition at the same point as the simple filtering method,
suggesting that the analysis applied here has implications on
subgraph detectability using a variety of techniques.

The remainder of this paper is organized as follows. Sec-
tion II formalizes the problem and defines our notation. In
Section III, we review the recent spectral bounds on uncued
planted clique detection, and their extension to planted dense
subgraph detection. Section IV derives an extension of these
results to cases where a cue provides a simple up-front entity
filtering method. In Section V, we define a set of experiments
in which we compare several cued subgraph detection algo-
rithms from the open literature to the simple filtering method,
and Section VI presents the results of these experiments. We
conclude the paper in Section VII with a brief summary and
directions for future work.

II. PROBLEM MODEL

A. Definitions and Notation

In the problem we consider, we are given a graph G =
(V,E), which is comprised of a set of vertices V (representing
entities), and a set of edges E (the relationships between the
entities). We denote the number of vertices in the graph by
N = |V |. There is a subgraph of interest, whose vertices are
denoted by VS ⇢ V , and its size is denoted k = |VS |. The

1530978-1-4673-8576-3/15/$31.00 ©2015 IEEE Asilomar 2015



graphs considered in this paper are unweighted (meaning con-
nections either exist or do not, with no notion of magnitude)
and undirected (meaning all connections are bidirectional).

Since the bounds we derive are based on spectral methods,
we will make use of matrix representations of the graph. The
adjacency matrix A = {aij} of the graph G is an N⇥N matrix
where aij is nonzero only if there is an edge in E between
vertices vi and vj (assuming an arbitrary labeling of the
vertices with integers from 1 to N ). Since G is unweighted, A
will be binary, and since G is undirected, A will be symmetric.
The degree of vi (the number of edges connected to it) is
denoted by di.

Other matrix representations of graphs have been used in
the community detection literature. The graph Laplacian has
been used to approximate the solution to the min-cut problem,
where the objective is to disconnect the graph by removing the
smallest number of edges. The Laplacian is defined as:

L := D �A, (1)

where D is a diagonal matrix of degrees. The modularity
matrix has also been used for community detection when the
expected probability of connections is known [5]. This matrix
is used to optimize the partition of a graph according to a
different criterion: creating a partition where there is a greater-
than-expected number of edges on either side of the partition,
and fewer edges than expected crossing it. The modularity
matrix is defined as:

B := A� E [A] . (2)

Thus, B represents the residuals obtained when subtracting the
expected adjacency matrix from the observed. In the traditional
planted clique problem, the background graph is an Erdős-
Rényi random graph, i.e., a graph where each pair of vertices
shares an edge with equal probability p.

B. Cued Subgraph Detection

In the cued subgraph detection problem, we observe the
graph G and are given a cue vertex vc 2 VS . Our objective
is to determine the remainder of VS . This is typically done
by computing a test statistic z(v) for each v 2 V \ {vc}, and
estimating the subgraph of interest to be:

V̂S = {vc} [ {v 2 V \ {vc} : z(v) > t},

where t is a threshold that can be varied. Each of the algo-
rithms we consider in Section V follows this format. In this
paper, we evaluate performance based on receiver operating
characteristic (ROC) metrics. Here, empirical probability of
detection is:

pd =
|VS \ V̂S |� 1

|VS |� 1
,

where 1 is subtracted in the numerator and denominator since
we do not account for the cue vertex in the evaluation. The
empirical false alarm rate is:

pfa =
|V̂S \ VS |
|V \ VS |

,

and overall performance of a detection algorithm is evaluated
based on the area under the ROC curve (AUC).

III. UNCUED SUBGRAPH DETECTION BOUNDS

We will specifically consider recent spectral bounds for
planted clique detection [4]. This work proposed a simple
algorithm for planted clique detection by thresholding the
principal eigenvector of the modularity matrix B, and showed
that there is a sharp detectability threshold that can be derived
via random matrix theoretic analysis of the problem. The
algorithm is as follows. Compute the principal eigenvector u

of the modularity matrix B, with respect to an Erdős-Rényi
random graph. The estimated subgraph is then given by:

V̂S =
n

vi : |
p
Nui| > F�1

N (0,1)

⇣

1� ↵

2

⌘o

, (3)

where F�1
N (0,1) is the inverse cumulative density function of a

standard normal distribution and ↵ is the desired false alarm
rate. This algorithm is based on the fact that the modularity
matrix of a planted clique in an Erdős-Rényi graph is well
approximated by a rank-1 perturbation of a Wigner matrix,
a symmetric random matrix where all entries have zero mean
and equal variance. The Wigner matrix has a known eigenvalue
distribution and the entries in the eigenvectors appear normally
distributed as N �! 1. These observations yielded the
following theorem.

Theorem 3.1 (Nadakuditi [4]): Consider a k-vertex clique
planted in an N -vertex graph with edge probability p, where
the clique vertices are identified using (3) for a significance
level ↵. Then, for fixed p, as k,N ! 1 such that k/

p
N !

� 2 (0,1) we have:

P(clique discovered) a.s.��!
(

1 if � > �crit. :=
q

p
1�p

↵ otherwise.
(4)

The detection threshold is based on the relationship between
the nonzero eigenvalue of the rank-1 perturbation, ✓ = k(1�
p), and the maximum eigenvalue of the random background,
R =

p

4Np(1� p). This can easily be extended to cases
where a dense subgraph is embedded rather than a clique. If
the subgraph has a probability of internal connection pin > p,
it will be detectable if:

k(pin � p) >
p

Np(1� p), (5)

as N �! 1. Note that, if p �! 0 as N �! 1, then the right
hand side of (5) will approach the square root of the average
degree. The left hand side will approach the average internal
degree of the subgraph if p = o(pin), and will approach a
constant multiple of this quantity if p = ⇥(pin).

IV. CUED SUBGRAPH DETECTION BOUNDS

A. Cued Planted Clique Detection

We will start by considering the planted clique problem
when one of the clique vertices is revealed. Since all possible
edges exist between clique vertices, we know that all clique
vertices are in the one-hop neighborhood of the cue vertex. We
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denote by Ni(v) the i-hop neighborhood of v, i.e., the vertices
that can be reached from v via a path of length i or less. This
allows a simple filtering procedure to incorporate the cue: We
can consider only N1(vc) rather than all of V . Since the edges
in the background are all independent, when considering the
induced subgraph of N1(vc)\{vc} (i.e., the graph consisting of
all edges in E that occur between the vertices in the subset),
the objective it to solve another planted clique problem. In
this case, the clique has k � 1 vertices, and the size of the
background follows:

|N1(vc) \ {vc}| = k � 1 + d̂c, (6)

where d̂c is drawn from the binomial distribution B(N�k, p).
We can use this fact to derive bounds for the cued case when
applying the simple spectral algorithm to the cue’s one-hop
neighborhood.

B. Bound Derivation

There are a few interesting cases for planted clique detec-
tion, which consider different growth rates for the background
probability. First, consider the case where the background
probability remains constant as the graph grows. In this
scenario, the average degree of the graph grows linearly with
N and the distribution B(N � k, p) will approach a normal
distribution N ((N � k)p, (N � k)p(1 � p)). We want to
determine when the k � 1 clique in the cue’s neighborhood
will be discovered with high probability, that is:

(k � 1)(1� p) >
q

(k � 1 + d̂c)p(1� p). (7)

Assuming k = o(N), d̂c will dominate the (k� 1+ d̂c) term.
As N grows, (N � k)p + C

p
N � k for a constant C will

be a fixed number of standard deviations from the mean of
d̂c, meaning that d̂c will take on values greater than this with
fixed probability. Thus, by considering a threshold (N�k)p+
C(N � k)0.5+� , 0.5 < � < 1, we capture a polynomially
increasing number of standard deviations, which will result in
an exponential reduction in the probability of d̂c crossing the
threshold as N increases. The asymptotic bound, therefore, is:

k >
p

(Np2)/(1� p).

The threshold value for the clique size still scales as the square
root of the number of total vertices, but it can be a constant
factor (pp) smaller than in the uncued case.

In practice, graphs typically do not increase their average
degree linearly as the number of vertices increases. Studies
have shown that the average degree often follows a sublinear
polynomial with respect to the number of vertices [6]. Thus, it
is also important to consider cases where the average degree
davg is O(N �), 0 < � < 1. In this scenario, p = O(N ��1), so
the (1�p) terms in (7) will approach 1. By a similar argument
to the constant p case, assuming the neighborhood size is a
sublinearly increasing number of standard deviations above the
mean, we asymptotically approach a detection threshold:

k >
p
CN2��1, (8)

for a constant C. In this case, it is possible that the detectable
clique size can actually get smaller as the graph grows, since
the one-hop neighborhood, although it grows slowly, is sparser.
Using a variable � helps demonstrate behavior for various
growth patterns: If the density is maintained (� �! 1), the
minimum detectable clique size grows as the square root of
the size of the graph, whereas if the average degree grows
very slowly (� �! 0), the size of the clique can decrease at
a rate close to 1/

p
N and be detected by the cued method.

C. Extension to Dense Subgraphs

Considering dense subgraphs rather than cliques, it may
not be the case that the entire subgraph is in the one-hop
neighborhood. One interesting question in this case is when
multiple hops improve detectability. For the sake of simplicity,
consider the expected value of the neighborhood size, E[d̂c] =
kpin + (N � k)p, which, for large N , will be approximately
Np. The number of additional background nodes added in the
second hop is approximated by (N �k�Np)(1� (1�p)Np).
For small p and large N , this is asymptotically quadratic in
p and N , behaving like ⇥(N2p2), i.e., the average degree
squared. For large pin, most of the dense subgraph will be
captured in the first hop, and the additional vertices will
hurt performance. If, on the other hand, the subgraph edge
probability is relatively small, then multiple hops will similarly
expand the number of subgraph vertices available for the
spectral algorithm to detect. The number of subgraph vertices
gained from neighbors within the subgraph is O(k2p2in), and
the number gained from external neighbors is O(Nkp2). The
planted cluster will be detectable in the two-hop neighborhood
if either k2p3in or Nkp2pin grows faster than Np3/2.

V. EXPERIMENTS

In the previous section we theoretically analyzed the per-
formance gain achieved by providing a cue vertex to the
spectral method. In recognition of the importance of localized
community detection approaches, there has been a prolif-
eration of techniques that follow different perspectives of
incorporating partial knowledge in the solution. We consider
a few representative techniques from this literature, two local
spectral algorithms (MOVCUT and Quadratic Programming),
and two local random walk algorithms (Approximate Person-
alized PageRank and Threat propagation). We compare their
empirical performance to the cue-based spectral method in
both the clique and subgraph detection setting, for various
degrees of problem difficulty. We first give a brief description
of each algorithm and show in Section VI that the different
notions of locality they utilize lead to different empirical
performance for hard to detect cases.

A. MOVCUT

The MOVCUT algorithm [7] extends the traditional
Laplacian-based spectral clustering formulation by adding a
constraint that only considers solution vectors x that correlate
well with the cue vector v

c

. Given a correlation parameter k,
the local spectral optimization problem is written as follows:
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min
x

x

TLx

subject to x

T
x = 1,

x

TD1/2
1 = 0,

(xTD1/2
v

c

)2 � k.

The solution vector is expressed by:

x

⇤ = �(L� �D)+Dv

c

,

where � 2 (0,1) is a normalization constant to make the
solution x

⇤ a unit normed vector, and � ensures that x

⇤ is
found exactly on the boundary of the feasible region (and is
less than the second smallest eigenvalue of L). [7] showed that
sweeping through the locally biased solution x

⇤ has analogous
theoretical guarantees to the traditional spectral clustering
solution. The MOVCUT algorithm combines both global and
local aspects of graph structure. The x⇤ vector is still a solution
to a global optimization problem, yet the restriction that it
correlates to the cue vertex by at least k ensures that volume
of the cut is no bigger than k therefore localizing the output.

B. Quadratic Programming

The quadratic programming algorithm is another local spec-
tral algorithm that we consider. In contrast to MOVCUT, it
uses the modularity matrix which emphasizes the fact that we
would like to identify subgraphs with unexpected density. In
addition, the objective of this algorithm directly incorporates
the knowledge of the cue vertex in the solution vector. For-
mally, the quadratic program optimizes the following:

min
x

x

T (⇢I �B)x

subject to xi  0, i 6= vc,

xs  �1,

where ⇢ is the 2-norm of the modularity matrix B.

C. Approximate Personalized PageRank

Within the class of random walk partitioning algorithms, the
personalized PageRank algorithm [8] has been used to rank the
importance of vertices relative to an input cue vertex v

c

. The
solution to the personalized PageRank problem is expressed
as follows:

r = ↵v
c

+ (1� ↵)D�1Ar,

where ↵ is the teleportation probability to v

c

. This solution
can be re-written in the form:

r = (L+
1� ↵

↵
D)�1Dv

c

to emphasize the connection between the spectral and random
walk solutions with � = �(1� ↵)/↵.

Andersen et al. [9] developed an algorithm that approxi-
mates the personalized PageRank solution by iteratively dis-
tributing probabilities (vertex ranking scores) in a way that
favors the region near the cue vertex. The PageRank solution
r is expressed as an approximate vector r̃ plus a residual
vector e: r = r̃ + e. The initial residual vector is the

indicator vector for the cue vertex v

c

. Given vc, the algorithm
moves an ↵ fraction of the probability from evc to r̃vc .
It then distributes the remaining 1 � ↵ probability, half to
itself and half to its neighbors in magnitude proportional
to their degree. The algorithm repeats until a large portion
of the probability has been pushed back to the approximate
solution vector r̃. [9] showed that sweeping through their local
approximation PageRank vector offers similar guarantees to
the known Cheeger inequality. Note that this algorithm is a
true local algorithm in that it only uses local knowledge of
the neighborhood around a vertex to update PageRank scores.

D. Threat Propagation

Threat propagation algorithm [10] is similar to the class
of personalized PageRank algorithms, but has the following
distinguishing features. It views the graph partitioning problem
as a 2N multiple hypothesis test problem, where membership
(to the cut set) or non-membership needs to be determined
for all the vertices. It maximizes the Bayesian probability of
detection by computing the harmonic solution to Laplace’s
equation, but treats this as a boundary value problem with
cue vertices representing the boundary values and unknown
values representing the interior. Also, instead of considering a
constant diffusion probability 1�↵, it considers non-uniform
diffusion probabilities inversely proportional to the average
path lengths between the cue vertex and other vertices. This
modification biases diffusion towards regions of the graph that
are tightly connected to the cue vertex, therefore implicitly
leading to localized, sparse solutions around that vertex. The
algorithm is proved to be optimum in the Neyman-Pearson
sense of maximizing the probability of detection at a fixed
false alarm probability [10]. This method is distinct from the
others in that it does not search for local community structure,
but rather prioritizes vertices based on an assumed model for
threat movement through the network.

VI. EMPIRICAL RESULTS

Results, in the form of a ROC curve for a single parameter
setting, are given in Fig. 1. This figure shows the average
ROC curves of each methodology over 100 graphs with N =
1000 and p = 0.2. The mean and standard deviations of the
area under the ROC curves across all parameter settings are
given in Table I. Best performing methodologies in a specific
parameter setting are highlighted in bold. This table outlines
the algorithmic performance for the 20 vertex planted clique
and planted dense subgraph experiments, evaluated within the
1-hop neighborhood of the cue. We observe good detection
performance on the sparser background networks (p = 0.1 to
p = 0.2). On these relatively simple problems, variation on
detection performance as measured by mean AUC is low.

For the planted dense subgraph experiment, we observe that
as networks grow more dense, the most effective methodology
shifts from the Quadratic Programming based algorithm to
Approximate PageRank. In the planted clique experiments, we
observe the same two algorithms generally outperforming the
rest. It is important to note, that the Approximate PageRank
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TABLE I
TABLE OF AUC MEANS (STANDARD DEVIATIONS) FOR 20-VERTEX PLANTED SUBGRAPH

Planted Dense Subgraph pin = 0.8
p

Method 0.1 0.2 0.3 0.4 0.5 0.6

ApproxPR 0.972 (0.021) 0.863 (0.056) 0.785 (0.074) 0.733 (0.096) 0.718 (0.114) 0.692 (0.120)
MovCut 0.997 (0.009) 0.837 (0.086) 0.689 (0.085) 0.635 (0.097) 0.563 (0.084) 0.556 (0.071)
OneHop 0.900 (0.058) 0.887 (0.071) 0.663 (0.151) 0.549 (0.083) 0.513 (0.067) 0.511 (0.053)

QuadProg 1.000 (0.0001) 0.947(0.046) 0.811 (0.073) 0.701 (0.077) 0.615 (0.088) 0.575 (0.095)
ThreatProp 0.835 (0.182) 0.722 (0.147) 0.646 (0.121) 0.618 (0.086) 0.566 (0.091) 0.538 (0.089)

Planted Clique
p

Method 0.1 0.2 0.3 0.4 0.5 0.6

ApproxPR 0.999 (0.001) 0.946 (0.024) 0.861 (0.053) 0.793 (0.084) 0.728 (0.117) 0.698 (0.107)
MovCut 1 (0) 0.992 (0.011) 0.874 (0.077) 0.750 (0.083) 0.678 (0.078) 0.617 (0.086)
OneHop 1 (0) 1 (0) 1.000 (0.0003) 0.901 (0.135) 0.558 (0.128) 0.519 (0.088)

QuadProg 1 (0) 1.000 (0.0005) 0.980 (0.016) 0.892 (0.053) 0.797 (0.075) 0.699 (0.077)
ThreatProp 0.921 (0.123) 0.883 (0.112) 0.760 (0.136) 0.705 (0.094) 0.656 (0.084) 0.607 (0.074)
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Fig. 1. Detection performance of vertices in the neighborhood of a cue vertex
from a subgraph with pin = 0.8. The background network generated is an
Erdős-Rényi network with an edge probability of 0.2.

algorithm confines its solution incremental updates to 1-hop
neighborhoods and its robust behavior might be attributed to
the algorithms emphasis on locality.

VII. SUMMARY

In this paper, we extend recent bounds based for planted
clique detection to cases where one of the clique vertices is
revealed. We show that this reduces to the problem of finding
a smaller clique within a smaller random background, and
that the same random matrix theory analysis holds after an
initial filtering of the vertices. The resulting bounds show that
a clique can be detected that grows more slowly than required
in the uncued case by a factor of the edge probability, which
implies that, when the average degree grows very slowly,
smaller cliques can be detected as the total number of vertices
increases. Considering 4 cued subgraph detection methods
from the open literature, we show that a phase transition

occurs for these methods as it also occurs for the simple
method of applying a spectral detection method to the one-
hop neighborhood of the graph.

A number of future directions are possible for this research.
Understanding the limits of cued detection in graphs with
community structure and arbitrary degree distributions is one
important area. This will be complicated by the dependence on
where the subgraph is placed (on high- or low-degree vertices,
within a single background community or across several, etc.).
Another interesting direction would be to consider methods
for proving cued detectability not relying on the same random
matrix theoretic analysis as used here. It is possible that, for
flow-based algorithms, other analytic techniques may be more
appropriate. Considering random matrix theory techniques, it
would be ideal to compute a bound directly for the cued case,
rather than using the uncued bound on a filtered subset.
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