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Abstract—Graph fusion has emerged as a promising research

area for addressing challenges associated with noisy, uncertain,

multi-source data. While many ad-hoc graph fusion techniques

exist in the current literature, an analytical approach for analyz-

ing the fundamentals of the graph fusion problem is lacking. We

consider the setting where we are given multiple Erd

˝

os-R

´

enyi

modeled adjacency matrices containing a common hidden or

planted clique. The objective is to combine them linearly so that

the principal eigenvectors of the resulting matrix best reveal the

vertices associated with the clique. We utilize recent results from

random matrix theory to derive the optimal weighting coefficients

and use these insights to develop a data-driven fusion algorithm.

We demonstrate the improved performance of the algorithm

relative to other simple heuristics.

I. INTRODUCTION

In a wide variety of applications, important data take the
form of connections, relationships, or interactions between
discrete entities. This relational structure provides additional
context, improving situational awareness and enhancing the
information that can be inferred from the data. A dataset rich
in relational information is represented mathematically as a
graph.

One particular problem of interest when working with
graph-based data is subgraph detection [1]. Given a graph, the
objective is to determine whether the relationships observed
are consistent with “normal” behavior in the network, or if
there is a subset of vertices—comprising a subgraph within
the overall graph—that exhibits a topology that is contrary to
the expectation. Several applications are focused on finding
denser-than-usual subgraphs within larger graphs, such as
detecting communities in social networks [2] and finding
highly interactive subsets among proteins [3]. A simplified
form of this problem is planted clique detection, where the
objective is to detect a fully connected subgraph placed within
a larger graph with edges that occur with equal probability.
This subset of the more general subgraph detection problem
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provides mathematical tractability that enables analysis of the
fundamental limits of subgraph detectability.

Planted clique detection has a long history within theoretical
computer science. Algorithms have been developed using a
variety of techniques, including combinatorial search meth-
ods [4], spectral methods [5], and statistical query methods
[6]. Recent work has focused on deriving analytical bounds
for subgraph detectability, including technique-independent
bounds [7], and bounds on detection using spectral techniques
[8]. Spectral methods are particularly interesting, since they
are computationally efficient and yield principled analytical
bounds using random matrix theory. Similar bounds for the
planted partition model have also been shown to predict
a detectability phase transition in other efficient detection
methods [9].

While the planted clique problem has traditionally been
studied in the context of detection within a single graph, in
practice, a network is often the result of fused information
from multiple disparate sources. Understanding the implica-
tions that the algorithms for a single observation have on
multi-source data is extremely important as data analysts are
increasingly required to make decisions in this setting.

The objective of this paper is to extend the recent spectral
detection bounds to cases where multiple graphs are observed.
In this setting, the clique exists in each graph, each of which
has a different edge probability. We adopt a linear fusion
model in which we analyze a convex combination of the
adjacency matrices of the graphs. Within this context, we
demonstrate that the optimal fusion method is highly intuitive:
weighting the graphs in inverse proportion to their expected
background degrees. In a set of experiments on random graphs,
we test subgraph detectability at several levels of difficulty,
varying the relative density of the background graphs, the
clique size, and the weights. In all cases, the optimality of
the solution we derive is verified.

The remainder of this paper is organized as follows. In
Section II, we define the problem model and formalize the
mathematical context in which the graphs are fused. Section III
provides a derivation of the formula for optimal fusion within
this context. In Section IV, we outline several experiments
that empirically validate the derived optimal fusion method.
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Section V concludes the paper with a brief summary and
directions for future work.

II. PROBLEM MODEL

A. Planted Clique Detection

In the planted clique problem, we are given a graph G =
(V,E), where V is the set of vertices (representing the entities)
and E is the set of edges (representing connections). We will
denote N = |V | and M = |E|. The degree of a vertex is the
number of edges connected to it. We will denote the average
degree of the graph by c. A subset of vertices, VS ⇢ V ,
comprise the clique, meaning that for all v, u 2 VS , there
is an edge between v and u in E. We will denote the clique
size by k = |VS |. In this paper, we will only consider graphs
that are undirected (so edges are unordered pairs of vertices)
and unweighted (so edges either exist or not, with no notion of
connection strength). If either v /2 VS or u /2 VS , then an edge
exists between v and u with probability p, which is constant
across all pairs of vertices and independent of the existence
of other edges.

Spectral methods make use of matrix representations of a
graph. The most basic matrix representation of a graph is the
adjacency matrix. For an unweighted, undirected graph, the
adjacency matrix A = {aij} is an N ⇥ N binary matrix
where aij = 1 if there is an edge between vertices i and
j, and aij = 0 otherwise. (This requires an arbitrary labeling
of vertices with integers from 1 to N .) Since we consider
undirected graphs, A will be symmetric.

A modification of the adjacency matrix used for community
detection is the modularity matrix [10]. The modularity matrix
is a residuals matrix: the observed adjacency matrix minus
its expected value. Since the planted clique problem assumes
a background with equal probability, we use the modularity
matrix with respect to the Erdős-Rényi model:

B := A� p1N⇥N . (1)

This technique cancels out the effects of typical background
behavior and allows the detection of deviations from the
expectation; in this case the planted clique.

The form of (1) is a rank-1 perturbation of a Wigner matrix,
and recent work has defined a sharp threshold for detectability
of such a perturbation [11]. This analysis was applied to
planted clique detection in [8], where a simple algorithm
was used to detect the clique: compute the (unit-normalized)
principal eigenvector of B, denoted by u. Since the entries in
the principal eigenvector of a Wigner matrix appear normally
distributed, u is thresholded, with a false alarm rate based on
this distribution, and the estimate of the clique vertices is given
by:

V̂S =
n

vi : |
p
Nui| > F�1

N (0,1)

⇣

1� ↵

2

⌘o

, (2)

where F�1
N (0,1) is the inverse cumulative density function of a

standard normal distribution and ↵ is the desired false alarm
probability. Using this algorithm, the following bound was
derived.

Claim 2.1 (Nadakuditi [8]): Consider a k-vertex clique
planted in an N -vertex graph with edge probability p, where
the clique vertices are identified using (2) for a significance
level ↵. Then, for fixed p, as k,N ! 1 such that k/

p
N !

� 2 (0,1) we have

P(clique discovered) a.s.��!
(

1 if � > �crit. :=
q

p
1�p

↵ otherwise.
(3)

B. Multi-Source Graph Fusion

Our objective is to derive a bound analogous to Claim 2.1
for fusion of multiple graphs. For the multi-source setting, we
assume we have m graphs Gi = (V,Ei) for 1  i  m. Note
that the vertex set is the same for all graphs (and, in matrix
form, the indices are consistent across observations). The non-
clique edges are generated independently in each graph. To
analyze the multigraph in the same context as the claim, we
combine the adjacency matrices of the graphs into a single
matrix, and compute the principal eigenvector of its residuals.
We take a linear combination of the adjacency matrices Ai

with weights wi to create a fused adjacency matrix:

Ã =
m
X

i=1

wiAi. (4)

We consider only positive weights that sum to 1, meaning
that Ã is a convex combination of the adjacency matrices.
Using this convention, the value on the edges between clique
vertices remains 1, since these edges exist in each observation.
Applying the same weighting to the expected values (pi
being the background edge probability for Gi), we maintain a
residuals matrix where the majority of the entries (all of those
not part of the clique) have the same zero-mean distribution.
The fused residuals matrix is given by:

B̃ :=
m
X

i=1

(Ai � pi1N⇥N ) = Ã�
 

m
X

i=1

wipi

!

1N⇥N . (5)

By applying the algorithm defined in Section II-A to the princi-
pal eigenvector of B̃, we can improve detection performance
over what would be possible with a single observation. As
demonstrated in the next section, we can derive analytically
optimal weights in this setting by minimizing the variance of
the entries.

III. OPTIMAL LINEAR FUSION

We begin by modeling the fused adjacency matrix Ã in a
way that enables random matrix theoretic analysis. Without
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loss of generality, we can permute the vertex indices so that
the clique vertices have indices 1 to k. We have:

Ã =
m
X

i=1

wi



1k⇥k Bk⇥N 0(pi)
BN 0⇥k(pi) BN 0⇥N 0(pi)

�

(6)

=



Pm
i=1 wi1k⇥k

Pm
i=1 wiBk⇥N 0(pi)

Pm
i=1 wiBN 0⇥k(pi)

Pm
i=1 wiBN 0⇥N 0(pi)

�

(7)

=



Pm
i=1 wi1k⇥k

Pm
i=1 wipi1k⇥N 0

Pm
i=1 wipi1N 0⇥k

Pm
i=1 wipi1N 0⇥N 0

�

(8)

+



0k⇥k
Pm

i=1 wiBc
k⇥N 0(pi)

Pm
i=1 wiBc

N 0⇥k(pi)
Pm

i=1 wiBc
N 0⇥N 0(pi)

�

(9)

=E
h

Ã
i

+X, (10)

where BN1⇥N2(p) is an N1 ⇥ N2 matrix of Bernoulli ran-
dom variables, each drawn independently with probability p,
Bc
N1⇥N2

(p) is the centered version of this matrix, where the
random variables have had their expected value subtracted.
For convenience, we define X to be the random deviations
from the mean from the matrix on line (9). Thus, E[Ã] is a
rank-2 matrix, and Ã is a random deviation from this low-
rank structure. The random entries in X (i.e., those outside
of the clique) have variance

Pm
i=1 w

2
i pi(1� pi). If k grows

more slowly than N , then X will tend toward a Wigner
matrix, where the support of the eigenvalue distribution (which
determines the noise power, and, thus, the detectability of the
clique) scales with the standard deviation of these entries.
Subtracting the expected value of the fused matrix, we are
left with a rank-1 perturbation of the random matrix. This
rank-1 perturbation has values of 1�

Pm
i=1 wipi in the entries

where both vertices are part of the clique, and 0 elsewhere.
The nonzero eigenvalue of this matrix is:

✓1 = k

 

1�
m
X

i=1

wipi

!

.

At this point, we have a similar setting as in [8]. In this case,
the Wigner matrix has an eigenvalue distribution that tends to
a semicircle with radius:

R =

v

u

u

t4N
m
X

i=1

w2
i pi (1� pi) =

v

u

u

t4
m
X

i=1

w2
i ci (1� pi), (11)

whereas in the single-source case the radius is
p

4Np(1� p).
The rank-1 perturbation in the new setting is ✓1 rather than
simply k(1 � p). We can apply similar reasoning to develop
a new bound for planted clique detection using the fused
modularity matrix with given weights. First, we introduce
an approximation that will enhance the interpretability of the
result. As graphs grow large, their density tends to decrease.
That is, the average degree of the vertices grows slowly, not
proportionally to N as it would if p remained constant. Thus,
we will focus on a case where p �! 0 as N �! 1.
Specifically, we consider the case where the average degree
c remains constant. This allows us to express the detectability
bound in terms of the average degrees of the graphs, ci, for
large values of N .

The relationship between the maximum eigenvalue of
the rank-1 perturbation and the radius of the semicircle in
Claim 2.1 is:

k(1� p) >
p

Np(1� p).

Thus, in the similar setting for fused graphs, we want ✓1 >
R/2. Since we are assuming ci remains constant, we can use
(1�pi) ⇡ 1 to approximate the quantities of interest as ✓1 ⇡ k
and R/2 ⇡

p

Pm
i=1 w

2
i ci. Since the approximate eigenvalue

of the rank-1 perturbation is independent of the weights, the
objective to maximize detectability is equivalent to that of
minimizing R.

To incorporate the constraint that the weights sum to 1, we
optimize the Lagrange function:

L(w,�) =

v

u

u

t

m
X

i=1

w2
i ci + �

 

m
X

i=1

wi � 1

!

. (12)

Setting @L/@wj to zero yields:

wjcj = ��

v

u

u

t

m
X

i=1

w2
i ci. (13)

Since the right hand side of (13) is constant across weights,
this critical point exists where each weight is inversely pro-
portional to the average degree of its associated graph. Thus,
the optimal weighting scheme for minimizing the support of
the eigenvalues is given by:

wj =
1/cj

Pm
i=1 1/ci

=
1

1 +
P

i 6=j cj/ci
. (14)

This result provides a mathematical justification for what
would be an intuitive heuristic: giving the observations that
are noisier a proportionally lower weight. For example, if all
graphs have equal average degree, then they will be weighted
equally. Conversely, if one graph has a much smaller average
degree than the others, its weight will be close to 1 while the
others will be close to 0. In conjunction with the value of R,
this also demonstrates how additional information improves
detectability. Indeed, if Gi has substantially lower degree
than the other graphs, the detection threshold will remain
approximately

p
ci, since the other information is much noisier

and most of the emphasis will be placed on the graph with the
sparsest background. On the other hand, if all of the graphs
have equal average degree, the detection threshold will be
reduced by

p
m. As we show in the next section, the optimality

of this weighting scheme is verified by empirical detection
performance.

IV. SIMULATION RESULTS

In each of the following experiments, we fuse two Erdős-
Rényi graphs, each with a planted clique. The graphs each
have 10,000 vertices, and we vary the clique size, the average
degrees of the backgrounds, and the weights to demonstrate
the optimality of the solution derived in Section III. In each
case, we set the false alarms rate ↵ from (2) to 0.05, and
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Fig. 1. Probability of detection for a clique of varying size, embedded into
one graph with average degree 70 and one with average degree that varies.
The optimized weights are used to fuse the graphs. The detection probability
is shown on a base-10 logarithmic scale, and the detection threshold is drawn
in white.

compute the empirical probability of detection of the clique
vertices when thresholding the principal eigenvector of B̃ at
the corresponding level.

We begin by demonstrating that the improved bound cor-
rectly predicts where the clique becomes detectable. In this
experiment, we set the average degree of one graph to 70, and
vary the average degree of the other graph from 10 to 120. We
independently vary the size of the clique from 2 to 12. For each
trial, the optimized weights from (14) are used. The empirical
probability of detection is shown in Fig. 1. Probability of
detection is compared to the detectability threshold:

k =
q

w2
1c1 + w2

2c2.

Once k becomes larger than the threshold, its detectability
begins to increase until the probability of detection eventually
reaches 1. Using only the graph with varying degree, the detec-
tion threshold would be the square root of the average degree
on the horizontal axis (e.g., a clique of size 10 at an average
degree of 100). Using the additional information provided by
the other graph, the detection threshold is substantially lowered
on the right side of the plot, where the graph with variable
average degree is the densest.

Our second experiment demonstrates the optimality of the
derived solution. We again fix the average degree of one of
the graphs (in this case c2 = 80), and now fix the clique
size to k = 7. We then vary the average degree of G1

and its corresponding weight w1 = 1 � w2. We consider
c1 2 {20, 40, 60, 80}. Probability of detection is shown in
Fig. 2, where the empirical results are compared to the derived
optimal weight w1 = 1/(1+(c1/70)). For all values of c1, the
empirical detection rate is maximized at the derived weight.
This is true when c1 is small, and most of the weight is placed
on w1, and when c1 is large and the weights are approximately
equal.

This behavior holds for various clique sizes. Fig. 3 illustrates
detection probability for three cases. In each case, two graphs

Fig. 2. Probability of detection for a 7-vertex clique, embedded into one
graph with average degree 80 and one with average degree that varies. The
weights used for fusion are varied to demonstrate optimality of the derived
solution, which is drawn in white.

are fused, with a planted clique whose size is at the detection
threshold for the sparser graph (i.e., k =

p
c1, where c1  c2).

We choose a case where the optimal weighting has w1 = 0.5,
one with w1 = 0.7, and one with w1 = 0.9. By simply aver-
aging the graphs, we would achieve the detection probability
at w1 = 0.5, and the only case where this is optimal is the
case where the average degrees are equal. In the other cases,
while the improvement over only considering the sparser graph
(the detection probability achieved at the extreme right of the
plot), is more subtle, there is a substantial improvement that
is maximized at the theoretically determined weighting.

Finally, we consider a case where we vary the average
degrees of both graphs independently, and use the optimal
weighting. In this experiment, the size of the planted clique is
k = 9. Detection probabilities are shown in Fig. 4. First, note
that the probability of detection increases as either graph gets
sparser. Curves indicating the detection thresholds for cliques
of size 5 to 8 are overlayed in the plot. These curves follow
the formula:

c2 =
1

1/k2 � 1/c1
.

As we expect, at the thresholds for smaller cliques, the 9-
vertex clique is more likely to be detected. It is also note-
worthy that, along the curve where the threshold is the same,
the empirical detection probability remains consistent. This
provides additional validation that the optimal weighting is
correct: Using the optimal weighting at a given threshold gives
a consistent detection probability, regardless of the densities
of the individual graphs.

V. CONCLUSION

This paper extends recent spectral bounds for planted clique
detection to cases where multiple graphs are observed. Operat-
ing in a multi-source setting has become extremely important
in recent years, as correlating observations from multiple
datasets has become more common. We demonstrate that the
intuitive approach of weighting each graph in inverse propor-
tion to its average degree is, in fact, the optimal technique
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Fig. 3. Probability of detection with respect to the weight of G1 in three scenarios. In each case, the theoretically optimal weighting is indicated by a vertical
dashed line of the same color as the curve.

Fig. 4. Probability of detection for a 9-vertex clique, embedded into two
graphs of varying degree. Optimized weights are used to fuse the graphs.
Detection thresholds for smaller cliques (5 to 8 vertices) are drawn in white.

under a linear weighting scheme. Empirical results confirm
the theory in a wide range of settings.

There are many possible future directions for this work.
A simple extension of the result to dense subgraphs, rather
than cliques, follows rather directly. Extending results to
more complicated background models—such as Chung-Lu
models, with arbitrary average degree, or stochastic block-
models, with inherent community structure—would be another
natural progression. This could also apply to cases where the
subgraph changes over the observations, as in [12]. As data are
often correlated across sources, extending to a setting where
there are dependencies across the observations would also be

beneficial.
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