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Abstract 
This paper presents an analysis of factors affecting system 
performance in the ASpIRE (Automatic Speech recognition In 
Reverberant Environments) challenge. In particular, overall 
word error rate (WER) of the solver systems is analyzed as a 
function of room, distance between talker and microphone, and 
microphone type. We also analyze speech activity detection 
performance of the solver systems and investigate its 
relationship to WER. The primary goal of the paper is to provide 
insight into the factors affecting system performance in the 
ASpIRE evaluation set across many systems given annotations 
and metadata that are not available to the solvers. This analysis 
will inform the design of future challenges and provide insight 
into the efficacy of current solutions addressing noisy 
reverberant speech in mismatched conditions. 

Index Terms: speech recognition, reverberant rooms, 
microphone audio 

1. Introduction 
 The development of automatic speech recognition (ASR) that is 
able to perform well across a variety of acoustic environments 
and recording scenarios is the focus of many research efforts [1, 
2]. Previous work with the AMI meetings room corpus [3], the 
ICSI meeting corpus [4, 5], and the MC-WSJ-AV corpus [6], for 
example, have shown that ASR performance degrades in various 
room and microphone conditions and also when data used for 
training is mismatched with data used in testing. 

In this paper, we analyze ASR performance of the solver 
systems submitted to the ASpIRE challenge using word error 
rate (WER) as the performance metric. For a full description of 
the details of the ASpIRE challenge, see [7]. Toward the goal of 
evaluating ASR system performance with mismatched training 
and test conditions, the solver systems were trained on the Fisher 
conversational telephone training corpus [8]. Solver systems 
were then evaluated on a new speech corpus, the Mixer 8 Pilot 
corpus, recorded for IARPA by the Linguistic Data Consortium 
(LDC). The Mixer 8 Pilot corpus consists of conversational 
American English speech recorded via multiple simultaneous 
microphones spread across seven different rooms in an office-
suite environment. Each room exhibited different shapes, sizes, 
surface properties, and noise sources. The goal of collecting data 
in this environment was to capture variability that can be 
observed in real-world speech, and to provide a significant 
mismatch to the training dataset. 

 

The purpose of our analysis is to identify the factors that 
contribute to the performance of the solver systems. Namely, we 
analyze performance as a function of recording room, talker 
placement, and microphone type and placement. The impact of 
speech activity detection (SAD) on performance is also 
investigated. 

The rest of this paper is organized as follows: Section 2 gives a 
brief description of the Mixer 8 Pilot corpus used for evaluation 
and presents the overall performance of the solver systems on 
the corpus. Section 3 presents the effects of recording conditions 
on ASR performance. Section 4 evaluates the relationship 
between SAD and ASR performance. Discussion and 
conclusions are presented in Section 5. 

2. Methods 

2.1. Mixer 8 Evaluation corpus 

Data evaluated in this paper consists of 120 sessions broken into 
two different evaluation sets: ASpIRE_single_eval and 
ASpIRE_multi_eval. Each evaluation set consists of roughly 10 
hours of audio, with ASpIRE_single_eval containing one 
microphone recording per session and ASpIRE_multi_eval 
containing a selection of six of the eight microphone recordings 
per session. A simultaneous close-talking telephony channel was 
recorded as well, but not provided to solvers. The evaluation 
data was hand-transcribed by Appen Butler Hill for use in 
scoring. 

In addition to the transcripts provided by Appen, LDC provided 
detailed floor plans and measurements that proved useful in our 
analysis. Some of these measurements include: 

• Distances between talkers and microphones 

• Talker positions and angles, relative to the floor plans 

• Microphone positions and angles, relative to the floor 
plans 

Special care was taken during the recordings to ensure proper 
microphone calibration. The microphone gains were calibrated 
relative to a reference microphone in a special enclosure. This 
allows a given power measurement relative to full scale to be 
approximately mapped to dB SPL. Audio calibration sequences 
(including clicks, tone sweeps, and other stimuli) were recorded 
in each room on each day and provided to us, along with the 
sound-meter level recordings of the audio calibration sequences. 
None of the transcriptions, measurements, or calibration 
information were provided to the solvers. 

*This work is sponsored by Intelligence Advanced 
Research Projects Activity (IARPA) under Air Force 
Contract FA8721-05-C-0002. Opinions, interpretations, 
conclusions, and recommendations are those of the authors 
and are not necessarily endorsed by the United States 
Government. 

512978-1-4799-7291-3/15/$31.00 ©2015 IEEE ASRU 2015



2.2. Solver Systems and Performance 

Conversational Time Marked files (CTMs) for twelve single-
microphone systems and one multi-microphone system were 
submitted to the ASpIRE challenge. In this paper, we confine 
our analysis to the single-microphone systems. The systems 
came from five solvers whose overall system performance is 
anonymously summarized in Table 1 with the nth scoring 
solver’s mth best system receiving the id n-m. Primary systems 
were identified by the solvers as the systems they felt would 
perform best on the evaluation data. 

 

Solver-System Primary WER 

1-1 No 43.9 

1-2 No 44.0 

1-3 Yes 44.3 

2-1 Yes 44.3 

3-1 Yes 44.8 

4-1 No 50.7 

4-2 Yes 52.7 

4-3 No 52.8 

5-1 Yes 53.4 

5-2 No 54.1 

4-4 No 54.4 

4-5 No 54.7 

Table 1. Solver-system coding with WER. 

3. Effect of Recording Conditions 

3.1. Significance of Experimental Setup 

The ASpIRE experimental setup varied factors including 
microphone model and orientation, speaker position relative to 
the microphone, room, and system, and we wished to investigate 
whether any of these factors had a significant effect. To explore 
this question, we ran a multifactor repeated measures Analysis of 
Variance (ANOVA). The within subject variable was system and 
the between-subject variables were channel, room, and speaker 
position. The dependent variable was WER. Table 2 summarizes 
the ANOVA output, where interactions are specified with 
colons. 

Our ANOVA results indicate that the main effects of room and 
channel on WER are significant; the interaction effect of room 
and channel is also significant, suggesting that microphone 
position as well as microphone audio characteristics affect WER. 
The main effect of speaker position is not significant, which is as 
expected since speaker position labels are arbitrary. However, 
speaker position does have a significant three-way interaction 
effect with room and channel, again suggesting a relationship 
between distance between speaker and microphone and WER. 
The strength of the interaction effects implies that varying room, 
channel, and speaker position in the experimental setup did have 
an effect on WER; this will be explored in more detail in the 
next section. 

The system effect of the ANOVA implies that solver systems did 
differ significantly in WER. Also, the interactions between room 
and system and channel and system suggest that solver systems 
had significantly different per-room and per-channel outputs.  

 

 

Audio file Effect 

Factor 
Degrees of 
Freedom F Value Pr(>F) 

room 6 9.667 0.0000028*** 

channel 7 4.395 0.001372** 

spkr_pos 2 0.1 0.904875 

room:channel 38 2.6 0.002632** 

room:spkr_pos 9 0.712 0.694311 

channel:spkr_pos 13 1.409 0.204064 

room:channel:spkr_pos 9 4.546 0.000519*** 

System Effect 

Factor 
Degrees of 
Freedom F Value Pr(>F) 

system 11 130.046 <2.00E-16*** 

room:system 66 4.638 <2.00E-16*** 

channel:system 77 1.702 0.000629*** 

spkr_pos:system 22 0.424 0.990572 

room:channel:system 418 0.831 0.968421 

room:spkr_pos:system 99 0.812 0.893565 

channel:spkr_pos:system 143 0.919 0.720409 

room:channel:spkr_pos:system 99 0.684 0.988062 

Table 2. Output of repeated measures ANOVA. *** 
indicates significance at p ≤ 0.001 and ** indicates 
significance at p ≤ 0.01. 

3.2. Room Setup Attenuation Metrics 

In an effort to understand how to characterize the interaction of 
room, channel, and speaker position, we investigated the 
correlation between system WER and various metrics aimed at 
capturing the effect of microphone and speaker orientation on 
attenuation of the direct sound. In particular, we examined the 
distance attenuation (due to the distance between the talker and 
the microphone), the head directional attenuation (due to the 
way the speaker was facing relative to the microphone), and the 
microphone directional attenuation (due to the way the 
microphone was oriented relative to the speaker).  

As the angle of the microphone moves behind the talker, an 
effect called head shadow begins to occur, causing a frequency-
dependent attenuation of the signal. Loosely based on a 
summary of measurements at 2 kHz in [9], we modeled the head 
directional attenuation in dB as a simple linear function of angle 
from 0 dB to 10 dB, moving from in-front-of to directly behind 
the head on the horizontal plane (Figure 1).  

 

 

  

 

 

Figure 1. Head directional attenuation: 10*θ/180. 
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To calculate the microphone directional attenuation, we used 
linear piecewise functions to approximate the microphone polar 
attenuation patterns at 1000 Hz. Figure 2 shows the polar 
attenuation of microphone 5, a Shure MX158, and Figure 3 
shows our linear approximation. For omnidirectional 
microphones, the microphone directional attenuation was zero. 
The complete set of ASpIRE microphones is listed in Table 3. 

                      

Figure 2. Polar attenuation of microphone 5, a Shure 
MX158 [10]. 

    

              
Figure 3. Piecewise linear approximation of microphone 
5 directional attenuation vs angle. 

Microphone ID Model Notes 

1 Earthworks M23 Omnidirectional 

2 DPA 4090 Omnidirectional 

3 Samson SAC02 Directional (Pencil Mic) 

4 R0DE NT6 Directional (Miniature) 

5 Shure MX185 Directional (Diaphragm 
condenser) 

6 Sony ECMAW3 Omnidirectional (Bluetooth) 

7 Canon WM-V1 Omnidirectional (Bluetooth) 

8 Audio Technica AT8035 Directional (Shotgun Mic) 

 

Table 3. ASpIRE microphones. 

Our final room setup attenuation metric was total attenuation, 
which is the sum of the distance, head directional, and 
microphone directional attenuation. To evaluate the relationship 
between the attenuation metrics and WER, we calculated the 
Spearman’s rank correlation coefficient, which was chosen for 
its ability to detect correlations in nonlinear relationships. The 
rho values are included in Table 4; with the exception of 
microphone directional attenuation, all metrics achieve 
significance at the p ≤ 0.05 level. The positive Spearman’s rho 
values imply that recordings from microphones close to the 
subject (and oriented toward the subject’s mouth) tend to 
perform better than recordings from microphones further away 
from the subject. 

Total attenuation or the sum of distance attenuation and head 
directional attenuation show the strongest correlation for all 
systems, suggesting that taking into account head orientation as 
well as the distance between speaker and microphone provides 
an improved model of the effect of distance attenuation on 
WER. The significance of microphone directional attenuation is 
less clear, which is notable considering the strong directionality 
of some of the microphones in the experimental setup. Variation 
in microphone attenuation at different frequencies could be 
causing the speech to be filtered rather than broadly attenuated. 
The significance of microphone orientation for directional 
microphones on WER is worth further study for future data 
collections; if orientation is not significant it may not be worth 
carefully varying, and if it is more significant than it appears 
under our current investigation, it may be worth recording in 
more detail. 

 

System WER 
ρ(D. 
Atten) 

ρ(HD 
Atten.) 

ρ(D + 
HD 
Atten) 

ρ(MD 
Atten.) 

ρ(Total 
Atten.) 

1-1 43.9 0.309 0.196 0.349 0.095 0.361 

1-2 44.0 0.342 0.191 0.375 0.105 0.385 

1-3 44.3 0.36 0.202 0.395 0.125 0.411 

2-1 44.3 0.366 0.218 0.431 0.079 0.408 

3-1 44.8 0.286 0.232 0.355 0.150 0.408 

4-1 50.7 0.305 0.227 0.376 0.071 0.360 

4-2 52.7 0.273 0.259 0.37 0.062 0.343 

4-3 52.8 0.277 0.257 0.373 0.065 0.347 

5-1 53.4 0.388 0.194 0.419 0.126 0.422 

5-2 54.1 0.38 0.185 0.409 0.113 0.409 

4-4 54.4 0.282 0.244 0.364 0.054 0.334 

4-5 54.7 0.27 0.253 0.357 0.060 0.335 

Table 4. Spearman’s Rho values between WER and 
direct signal attenuation metrics (D = distance, HD = 
head directional, MD = microphone directional). Values 
that pass a significance test of p ≤ 0.05 are in bold. 

3.3. Noise Effects 

While our signal attenuation metrics are correlated with solver 
WER, they do not account for all of the variability. Room noise 
is known to have an effect on ASR performance and we 
analyzed the effect of noise on WER across systems. To measure 
room noise, we calculated the average noise background level 
and the ratio of speech plus noise power to noise power, which 
we will hereafter refer to as SNRp. The distribution of SNRp 
over the single-microphone ASpIRE data is shown in Figure 4. 
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To detect speech and noise, audio files were filtered using A-
weighting in Matlab and the noise-only regions were split out 
using ground-truth SAD labels (see description in section 4). The 
power of the resulting noise and non-noise signals were found by 
calculating the mean of the squared values.  

 
Figure 4. Histogram of SNRp over the single-
microphone ASpIRE data. 

The Spearman’s rank correlation coefficients between WER and 
noise background level, and WER and SNRp, are included in 
Table 5. Table 5 also includes a column for SAD proportion 
correct which will be discussed in Section 4. At p ≤ 0.05, 
background level fails to achieve significance; however, SNRp 
does achieve significance. 
 
SNRp is strongly negatively correlated to system WER, 
implying that system performance was affected by ambient 
noise. The signal component measured in SNRp contains the 
direct speech plus all other reflected speech, including energy in 
the reverberant field, and the noise field. High values of SNRp 
do not necessarily imply highly intelligible speech, so it is 
interesting that it is strongly correlated with WER. We compared 
the average WER of each system over the 30 highest and 30 
lowest files ordered by SNRp. We found that the best and worst 
systems showed similar relative performance on both sets, 
although their exact ordering varied, suggesting that differences 
in overall system performance cannot wholly be explained by 
differences in system performance under challenging SNRp. 
 
SNRp and total attenuation are also significantly correlated as 
shown in Figure 5; their Spearman rank correlation coefficient is 
-0.524, p ≤ 0.05. This could imply that manipulating the direct 
sound in the experimental setup also affected SNRp. However, 
when we compared the correlation coefficients of a linear model 
predicting WER from SNRp with the multiple correlation 
coefficient of a linear model predicting WER from both SNRp 
and total attenuation (Table 6), we saw only a small difference. 
This pairs with the stronger correlation of SNRp to WER than 
total attenuation to WER to suggest that SNRp is related to ASR 
performance in a manner beyond what is predictable by total 
attenuation. 
 
 

 

System WER ρ(Noise Background 
Level) 

ρ(SNRp) ρ(Prop. 
Correct) 

1-1 43.9 0.125 -0.621 -0.550 
1-2 44.0 0.136 -0.607 -0.602 
1-3 44.3 0.151 -0.622 -0.580 
2-1 44.3 0.125 -0.711 -0.424 
3-1 44.8 0.184 -0.621 -0.556 
4-1 50.7 0.115 -0.587 -0.542 
4-2 52.7 0.108 -0.579 -0.531 
4-3 52.8 0.112 -0.585 -0.536 
5-1 53.4 0.106 -0.577 -0.554 
5-2 54.1 0.089 -0.571 -0.581 
4-4 54.4 0.076 -0.581 -0.591 
4-5 54.7 0.076 -0.577 -0.586 

Table 5. Spearman’s Rho values between WER and 
noise background level, SNRp, and proportion correct 
on SAD judgments. Values that pass a significance test 
of p ≤ 0.05 are in bold. 

 
Figure 5. Total Attenuation vs SNRp. 

System WER R(Total 
Atten.) 

R(SNRp) R(Total Atten. 
* SNRp) 

1-1 43.9 0.372 0.672 0.691 
1-2 44.0 0.392 0.664 0.685 
1-3 44.3 0.412 0.673 0.695 
2-1 44.3 0.399 0.724 0.736 
3-1 44.8 0.385 0.675 0.688 
4-1 50.7 0.363 0.661 0.673 
4-2 52.7 0.354 0.653 0.665 
4-3 52.8 0.352 0.658 0.678 
5-1 53.4 0.422 0.639 0.654 
5-2 54.1 0.401 0.631 0.640 
4-4 54.4 0.346 0.657 0.665 
4-5 54.7 0.346 0.654 0.662 

Table 6. Correlation coefficients and coefficients of 
multiple correlation between WER, total attenuation, and 
SNRp. All values are significant at p ≤ 0.05. 

4. Efficacy of Speech Activity Detection 
A key component of the ASpIRE Challenge is the ability of 
systems to implicitly or explicitly extract speech regions from 
which to hypothesize transcripts. In this section, we estimate 
speech activity detection performance (SAD) for each system 
across a range of speech conditions and relate that detection 
performance to system WER. 
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To compute reference SAD values, we divided the audio file into 
1 millisecond chunks which we annotated to show whether the 
chunk occurred during transcribed speech. We computed SAD 
values for solver system outputs using the same method, and 
then computed the number of SAD true hits, misses, false 
alarms, and correct rejections for each system, which are 
included in Table 7. Three files were omitted from the SAD 
analysis due to incomplete system outputs from some 
performers. 

 

System 
WER 

Average 
Prop. 
Correct 

Average 
Prop. Miss 

Average 
Prop. False 
Alarm 

1-1 43.9 0.848 0.131 0.022 

1-2 44.0 0.828 0.154 0.018 

1-3 44.3 0.829 0.153 0.018 

2-1 44.3 0.848 0.133 0.019 

3-1 44.8 0.841 0.149 0.010 

4-1 50.7 0.785 0.210 0.005 

4-2 52.7 0.795 0.195 0.010 

4-3 52.8 0.796 0.195 0.010 

5-1 53.4 0.789 0.191 0.020 

5-2 54.1 0.786 0.192 0.022 

4-4 54.4 0.782 0.209 0.009 

4-5 54.7 0.780 0.211 0.009 

Table 7. System SAD performance. 

Table 5 contains the Spearman’s rank correlation coefficient for 
the per-file relationship between system WER and the proportion 
of correct SAD judgments (true hits + correct rejections). At a p-
value of 0.05, system WER and correct SAD judgments are 
significantly correlated for all single-microphone systems.  

 
Figure 6. Average system SAD accuracy versus system 
WER. 

 
Figure 7. DET plot for system average SAD 
performance 

Focusing on the proportion of correct SAD judgments (which we 
will refer to as the “SAD accuracy” below), we include a plot of 
average system SAD accuracy against WER in Figure 6. The 
systems show two clusters, with top performing systems also 
achieving the best SAD performance. Although we cannot claim 
that this shows that SAD performance determines WER, it 
implies that solvers might try improving their SAD systems as 
they seek to improve their WER. Figure 7 shows that although 
all submitted systems had very low false alarm SAD rates, top-
performing systems cluster in their SAD operating point at a 
lower miss rate, suggesting a possible direction for some solvers 
to explore in improving their performance on the ASpIRE task. 

In an effort to investigate whether high SNR conditions might be 
correlated to degradations in SAD performance as well as WER, 
we computed the Spearman’s rank correlation coefficients 
between SNRp and solver SAD. Table 8 shows that the two are 
indeed significantly correlated. These results further suggest that 
if solvers improve their SAD systems on higher SNR conditions, 
they might expect to see gains in WER. 

 

System WER ρ(SNRp, SAD 
Performance) 

1-1 43.9 0.463 

1-2 44.0 0.473 

1-3 44.3 0.457 

2-1 44.3 0.397 

3-1 44.8 0.456 

4-1 50.7 0.469 

4-2 52.7 0.464 

4-3 52.8 0.464 

5-1 53.4 0.522 

5-2 54.1 0.531 

4-4 54.4 0.470 

4-5 54.7 0.464 

Table 8. Spearman’s rho for the relationship between 
SNRp and system SAD performance. All values are 
significant at p ≤ 0.05.  
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5. Discussion and Conclusion 
From the analysis conducted in this paper, we observed that the 
experimental factors of room, channel, and speaker position 
varied in the ASpIRE challenge have a significant interactional 
effect on ASR performance. 

We demonstrated that the total distance between microphone and 
speaker, taking into account orientation of both, is better-
correlated with ASR system performance than simpler distance 
metrics. We showed that room noise measured through SNRp 
has a strong correlation to degradations in WER, and that total 
attenuation is strongly correlated with SNRp. Finally, we 
showed that system SAD performance also shows a strong 
correlation to WER as well as to SNRp and naturally partitions 
the better-performing systems in the ASpIRE challenge from the 
rest. This result implies that solvers might perform better in 
conditions similar to those in the ASpIRE challenge by doing 
further work to improve their SAD systems under high SNR. 

Work remains to be done to further investigate the effect of 
microphone direct signal attenuation on ASR performance in 
order to inform the care with which it is treated in future data 
collections. Additionally, although top solver systems were very 
similar in WER, the solvers used highly varied ASR algorithms. 
It would be interesting to do a more detailed analysis of 
differences (if any) in how various ASR techniques are affected 
by the experimental conditions varied in the ASpIRE challenge. 
Finally, further analysis could be done to see what gain in WER 
would be possible from a combined system. 
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