
Cross-Domain Entity Resolution in Social Media
W. M. Campbell, Lin Li, C. Dagli,

J. Acevedo-Aviles, K. Geyer,
J. P. Campbell

Human Language Technology Group
MIT Lincoln Laboratory

Lexington MA
{wcampbell,lin.li,cdagli,joel,kgeyer,jpc}@ll.mit.edu

C. Priebe
Department of Applied Math and Statistics

Johns Hopkins University
Baltimore MD

cep@jhu.edu

Abstract
The challenge of associating entities across multi-
ple domains is a key problem in social media under-
standing. Successful cross-domain entity resolu-
tion provides integration of information from mul-
tiple sites to create a complete picture of user and
community activities, characteristics, and trends.
In this work, we examine the problem of entity res-
olution across Twitter and Instagram using general
techniques. Our methods fall into three categories:
profile, content, and graph based. For the profile-
based methods, we consider techniques based on
approximate string matching. For content-based
methods, we perform author identification. Finally,
for graph-based methods, we apply novel cross-
domain community detection methods and gener-
ate neighborhood-based features. The three cate-
gories of methods are applied to a large graph of
users in Twitter and Instagram to understand chal-
lenges, determine performance, and understand fu-
sion of multiple methods. Final results demonstrate
an equal error rate less than 1%.

1 Introduction
We consider the problem of associating entities (typically
people and organizations) across multiple social media sites.
Specifically, given an entity’s username @org12 on Twit-
ter, can we identify, if it exists, the corresponding username
@org123 for the same entity on Instagram. We call this
problem cross-domain entity resolution.

Strategies for entity resolution are multifold. In a doc-
ument data set, cross-document entity coreference resolu-
tion [Bagga and Baldwin, 1998] seeks to identify text men-
tions that correspond to the same entity. In another task, en-
tity linking, the goal is to associate entity mentions in text to
a knowledge base [Han et al., 2011; Rao et al., 2013]. Entity
resolution, also known as record linkage or de-duplication,

†This work was sponsored by the Defense Advanced Research
Projects Agency under Air Force Contract FA8721-05-C-0002.
Opinions, interpretations, conclusions, and recommendations are
those of the authors and are not necessarily endorsed by the United
States Government.

in relational data and databases is addressed in [Bhattacharya
and Getoor, 2007; Christen, 2012].

The cross-domain entity resolution problem is strongly re-
lated to the above mentioned methods, but is distinct. In so-
cial media, information about an entity is present in multi-
ple forms as profiles, content, and graph structure. Profiles
give information about username, full name, profile pictures,
links, etc. Content shows the topics and idiolect of a particu-
lar entity. Finally, graph structure relates the local communi-
cations and interests of the entity.

Prior approaches to the entity resolution problem in social
media are given in [Bartunov et al., 2012; Goga et al., 2013;
Iofciu et al., 2011; Liu et al., 2013; Lyzinski et al., 2015;
Malhotra et al., 2012; Peled et al., 2013; Raad et al., 2010;
Tan et al., 2014; Zhang and Philip, 2015; Zhang et al., 2015].
Peled, et. al. is the most complete and explores entity reso-
lution with multiple features, including name, document sim-
ilarity, and graph features. Our approach focuses on more
challenging cross-domain platforms (Twitter and Instagram)
at large scale with noisy, incomplete information. In addition,
we use more advanced features in each category. We propose
multiple normalization methods for profile matching, includ-
ing a novel application of the Burrows-Wheeler transform,
and additional token-based string comparison metrics. On the
graph side, we construct a graph using both usernames and
hashtags. We then apply a recent cross-domain community
detection algorithm to generate additional graph features [Li
and Campbell, 2015]. Our extensive experiments on Twit-
ter and Instagram show the best within-category methods and
also demonstrate the fusability of the different features.

The outline of this paper is as follows. In Section 2, we
outline the basic problem and data setup. In Section 3, we
describe profile-based methods and our approximate string
matching techniques. In Section 4, we review author identi-
fication approaches. Section 5 discusses methods to perform
joint community detection and the resulting graph-based fea-
tures. Finally, Section 6 applies the methods to large Twitter
and Instagram data sets and fuses the results.

2 Problem Setup
2.1 Entity Resolution in Cross Media
Our goal is to match entities across different social media
platforms. Information from this process is obtained from

three sources. First, profile information from the JSON ob-
ject for a post is used to obtain attributes of the entity (we
use ‘post’ to describe posts on Instagram and tweets on Twit-
ter). To create a general approach, we use only the username
and (full) name of the entity as profile features. A second
source of information is the content of the posts. Third, we
construct a graph using mentions of hashtags and users and
extract graph-based features; see Section 5 for more details.

Our basic approach to the problem is to create comparison
scores between multiple features for entities and then fuse the
resulting scores. For the graph-based features, we assume the
presence of seeds. Seeds are known or high-confidence entity
matches between different social media platforms.

Multiple problems are encountered in the process of
matching. First, Twitter and Instagram are noisy platforms.
Information about a user is self-reported in many cases and
may be misleading or erroneous. Additionally, posts be-
tween users may not indicate a relation between individu-
als; this process creates a noisy graph. A second related
problem is incomplete information. Many profiles for users
are unavailable—their accounts are private or have been re-
moved. Also, individuals may leave profile fields blank, post
infrequently, or not communicate with others. These behav-
iors all create incomplete information in the proposed fea-
tures. A third challenge, which we do not address in this
paper, is sampling. Both the graph and content features are
dependent on the duration and coverage of the sampling of
posts. Overall, we address these challenges through feature
robustness and fusion.

2.2 Data Set
Geotagged Twitter and Instagram data from the Boston area
was collected for our experiments. Twitter data consist of ap-
proximately 4.65 million tweets collected from 1/1/2014 to
10/1/2014. Instagram data consist of 3.71 million posts (and
comments) collected between 12/31/2013 to 12/31/2014. For
Instagram, some comments on these posts extended into
2015.

3 Profile-Based Methods
Profile-based entity resolution relies upon comparing user at-
tributes and finding measures of similarity. Depending on the
social media platform, different profile information is avail-
able. For generality, we focus on usernames and full names.

Multiple observations can be made for these attributes. For
usernames that may not be available across platforms, a com-
mon strategy is for users to add a few extra characters to
their username on one platform to obtain a username on an-
other platform. As a result, approximate string matching is
an appropriate comparison method. Also, users may rear-
range substrings in a username; e.g., change @bobsmith to
@smithbob. For this case, we use a transform to normalize
the rearrangement—Burrows-Wheeler. Finally, variations in
case, unusual characters, etc., especially in full names, are
addressed with text normalization.

3.1 Approximate String Matching Techniques
Our pipeline for approximate string matching is as follows.
First, we optionally perform text normalization on the string.

Normalization converts any unusual UTF-8 characters to a
standardized form, eliminates emojis, and eliminates emoti-
cons. We also remove nonsentential punctuation, markup,
and long repeats (e.g., ‘cooooool’ to ‘cool’). Full names
are reordered to a standard form (e.g., ‘Smith, Bob’ to ‘Bob
Smith’). Second, we optionally lowercase the entire string.
Third, we compute a normalized similarity between strings.

For approximate string metrics, we use standard
methods—Damerau-Levenshtein, Levenshtein, Jaro,
Jaro-Winkler, and Jaro-Winkler with soft-TFIDF; see,
for example [Cohen et al., 2003]. To convert Levenshtein
and Damerau-Levenshtein to similarity measures with a [0, 1]
range, we apply the transform from [Yujian and Bo, 2007].
To obtain a similarity from Jaro and Jaro-Winkler, we use 1
minus the distance.

3.2 Burrows-Wheeler Transform
Users naturally segment and rearrange substrings in user-
names to create new usernames. Finding matches in this case
is an interesting and challenging problem. A natural solution,
which is difficult to implement, is to segment a username into
tokens and then perform approximate token matching. For
example, a username like @bobtsmithmight be segmented
to ‘bob’, ‘t’, and ‘smith’ and then comparisons could be based
on the match of these tokens. This process requires a trained
system to split the character stream; i.e., how do we infer
where spaces have been removed.

As an alternate to a full tokenization approach, we consider
only limited movement of tokens within a string. Specifi-
cally, only circular shifts of tokens are allowed. For example,
@bobtsmith to @smithbobt, but not to @tbobsmith.
We use a lossy version of the Burrows-Wheeler (BW) trans-
form [Burrows and Wheeler, 1994] on the input string. We
do not add a terminate character to the input. We then, as
in the standard BW transform, find all circular shifts of the
string. Next, the strings are sorted lexicographically. The
BW transform is the concatenation of the last character of
each string in the sorted list. For instance, in our example,
we obtain the same BW transform @hotmsbtib for both
inputs @smithbobt and @tbobsmith. Note this avoids
comparing all possible shifts of usernames to find the best
alignment.

4 Content-Based Methods
For content-based entity disambiguation, we use standard
methods for author identification based on idiolect [Camp-
bell et al., 2007]. For each Twitter user U , we collect all
tweets. We then perform text normalization to eliminate un-
usual UTF-8 characters (emojis, emoticons), links, and any
repeated characters. Then, counts of the words and hashtags
are found, count(wi|U), where wi is the ith word in the dic-
tionary of possible words (including hashtags).

As in standard text classification, the counts are converted
to a vector v with weighted probability entries

vi = cip(wi|U) (1)

where p(wi|U) = count(wi|U)∑
V count(wi|V) . We use a log weighting of

ci = log
(

1
p(wi|all)

)
+1, where p(wi|all) is the probability of

word wi across all Twitter users.
To train author identification models, we use a Support

Vector Machine (SVM) one-vs-rest approach; i.e., we train
each Twitter user U against the remaining Twitter users to
obtain an SVM fU (·). For our approach, a linear kernel is
used. Additionally, models are built only if a minimum num-
ber of words (200, empirically determined) was available for
that user. This minimum word count ensures that the train-
ing process is well-conditioned, but results in many users not
having models.

To produce scores, we again find a single vector per user
based on the Instagram posts. These vectors are scored with
the Twitter SVM models, fU (·), for all trials. Note that the
role of Twitter and Instagram for training and testing can be
switched, but we use only one direction for simplicity.

5 Graph-Based Methods
The graph-based approach extracts user features based on the
graph structure and computes a similarity between the graph
features. Examples of graph features are community mem-
bership and (weighted) neighborhood. Before describing the
extraction of different graph features, it is important to first
construct graphs that capture the richness of both Twitter and
Instagram data.

5.1 Content + Context Graph Construction
Graph construction is performed by designating both users
(e.g., @twitter) and hashtags (e.g., #fashion) as ver-
tices in the graph. For Twitter, edge types correspond to mul-
tiple categories—user-to-user tweets, user mentions of users
or hashtags, retweets, and co-occurrence of hashtags or users.
For Instagram, edge types correspond to—user comments on
user posts, user mentions of users, user mentions of hashtags,
and co-occurrence of users or hashtags. For both Twitter and
Instagram, the count of occurrence of various edge types is
saved in the graph. For final analysis, counts are summed
across edge types, resulting in a weighted undirected graph.

5.2 Cross-Domain Community Detection
Using the technique described above, we can construct a
Twitter graph Gtwitter and an Instagram graph Ginst. To ex-
tract community features, we perform cross-media commu-
nity detection to identify communities simultaneously across
Twitter and Instagram graphs. The key to achieving this is to
align the graphs using seeds. Seeds are known vertex matches
across graphs (e.g., one obvious choice of seeds is the com-
mon hashtags). We use a random walk-based approach to
align the graphs to form a single interconnected graph. There
are three general strategies: (1) aggregation that merges pairs
of vertices in the seed set; (2) linking that adds links to the
seed pairs; and (3) relaxed random walk that allows a random
walker to switch between graphs with some probability. Once
the graphs are aligned and connected, it is straightforward to
adapt Infomap [Rosvall and Bergstrom, 2008] for community
detection. Infomap is a random walk-based algorithm that
partitions the graph by minimizing an information-theoretic
based objective function.

For the experiment, we use the aggregation approach with
Infomap for community detection across Twitter and Insta-
gram graphs. Prior work [Li and Campbell, 2015] shows that
with a sufficient number of seeds, the aggregation approach
is the most faithful to the underlying community structure.
Specifically, we first associate a Markov transition matrix to
the union of Gtwitter and Ginst. Each element in the Markov
matrix represents the probability of a random walk of length
1 going from one vertex to the other; the Markov transition
probability is computed by normalizing the edge weights be-
tween a vertex and all of its adjacent vertices. Second, for
each vertex pair in seeds, we merge the two vertices and up-
date the transition matrix with probability p = 0.5 that a ran-
dom walk moves to the adjacent vertices in Gtwitter and prob-
ability 1−p that a random walk moves to the adjacent vertices
in Ginst. The resulting aligned and connected graph is de-
noted as Gjoin; it includes all the vertices from both Gtwitter

and Ginst and the edge weights are given by the Markov tran-
sition matrix. Additionally, we apply Infomap only on the
largest connected component of the aligned graph Gjoin; ver-
tices that are in the largest connected component have a com-
munity assignment.

5.3 Graph-Based Features and Similarity
Measures

As hinted earlier, we are interested in extracting two classes
of graph features: community features and neighborhood fea-
tures. Note that neighbors of a vertex in a graph are vertices
connected by an edge to the specified vertex; they are also
referred to as 1-hop neighbors. Generally, for a vertex v in a
graph, k-hop neighbors are defined as vertices that are reach-
able from v in exactly k hops.

Community Features and Similarity
The basic idea is to be able to represent the similarity in com-
munity membership between users across graphs. First, we
perform a cross-media community detection on Twitter and
Instagram graphs. One simple way to compare community
features of two users is to assign a value ‘1’ to the pair that
are in the same community and ‘0’ otherwise. However, this
binary-valued similarity score will likely cause confusion be-
cause it assigns a similarity score ‘1’ to all users belonging
to the same community. To mitigate this problem, we pro-
pose to represent a user’s community feature via the commu-
nity membership of all its (k-hop) neighbors in its respective
graph. For example, the community feature for a Twitter user
U is given by a count vector c(U) with entries

ci = |{N | comm(N) = i, N ∈ nbr(U |Gtwitter)}| (2)

where comm(·) indicates the community assignment of ver-
tex N and nbr(·) is the set of k-hop neighbors.

For the experiment, we set k = 1, 2 and use one of the two
methods to measure the similarity in community feature be-
tween users. One is to compute the dot product of normalized
count vectors, i.e., sim(c(Ui), c(Uj)) =

c(Ui)
T c(Uj)

‖c(Ui)‖2‖c(Uj)‖2
.

The other method is to use an SVM; it is similar to the method
for author identification discussed in Section 4, but replacing
a dictionary of words with a dictionary of communities.

Neighborhood Features and Similarity
Given the aligned and connected graph Gjoin (i.e., con-
structed from joining Gtwitter and Ginst using seeds), we seek
to compute the similarity between two users by analyzing the
proximity of their corresponding vertices in Gjoin. A popu-
lar approach is based on vertex neighborhoods [Liben-Nowell
and Kleinberg, 2003], e.g., common-neighbors approach and
its variants. The approach here is similar. However, instead of
simply counting the number of common neighbors, we repre-
sent the neighborhood feature using the transition probability
of the random walk in Gjoin. Specifically, the neighborhood
feature of a Twitter user U is given by p(U), whose ith entry
pi = p(U,Ui) represents the probability that a random walk
of a specified length k starting at U ends at the ith vertex Ui

in Gjoin. The neighborhood similarity is given by the normal-
ized dot product of the neighorhood features.

We choose to use k = 1, 2 hops for computing the neigh-
borhood similarity. Note that for k = 1, the edge probability
p(U1, U2) = 0 if U1 and U2 are not connected. Also, isolated
vertices are not considered.

6 Experimental Results
6.1 Setup
We use the Twitter and Instagram data sets in Section 2 for
our experiments. For both data sets, profiles are extracted
from the posts, and graphs are constructed using the method
in Section 5.1. This processing results in 141.7K Twitter pro-
files and 925K Instagram profiles. The Twitter graph has
860.8K vertices (280.5K hashtags, 580.3K users) and 2.56M
edges. The Instagram graph has 1.667M vertices (533.7K
hashtags, 1.134M users) and 9.706M edges. Note that not all
users have profile information because a user may be men-
tioned, but no post is observed from that user.

We construct a common set of trials to test all systems. The
trials consist of user pairs (ut, ui) where ut is a user from
Twitter and ui is a user from Instagram. True trials (i.e.,
same entity trials) are constructed with two strategies: (1)
self-reported Twitter-Instagram links in user profiles and (2)
links in tweets to Instagram to associate users across the dif-
ferent sites. False trials are constructed by taking a true trial
(ut, ui) and randomly sampling Instagram users vi 6= ui to
produce trials (ut, vi). Note that only users with one known
account on both Twitter and Instagram are used; users with
multiple accounts are discarded.

The resulting number of trials is 25,548 true trials and
255,480 false trials. We use five-fold cross validation
(train/test) to score all systems. Results are reported by pool-
ing all test scores across all five splits and evaluating the re-
sults. We report results for both all trials, which include all
of the trials above, and the non-trivial (NT) trials. Non-trivial
trials are trials where the usernames are not an exact string
match.

6.2 Evaluation
We use two methods for evaluation in the context of a detec-
tion problem. First, we look at miss Pm and false alarm Pfa

for a threshold T . Each trial results in a score. If that score
belongs to a true trial (i.e., should be an actual match) and

is below T , this results in a miss. If the trial is a false trial
(i.e., not an actual match) and the score is above the thresh-
old, then a false alarm occurs. Sweeping the threshold where
Pm equals Pfa gives our first method of evaluation, the equal
error rate (EER). Our second evaluation method is to show
detection error tradeoff (DET) curves. This allows a user to
view performance at multiple operating points; e.g., low false
alarm probability.

Two issues are addressed in evaluation. First, we use miss
and false alarm rate instead of precision and recall so that our
evaluation is not dependent on the priors for true and false
trials. Second, we note when missing trials occur because of
missing content or data. The main impact of missing trials is
that cross-feature performance is difficult to compare exactly.
We address this by comparing only per feature performance
and fusion performance. The relative merit of individual fea-
tures can be approximately inferred from their impact on fu-
sion.

6.3 Profile and Content-Based Features
We use the pipeline of four stages for comparing profile user-
names and full names as described in Section 3: norm, string
normalization; lower, conversion to lower case; bw, lossy
Burrows-Wheeler transform (non-invertible); and jw/nl/ndl,
the approximate match method–Jaro-Winkler, normalized
Levenshtein, and normalized Damerau-Levenshtein. A ‘no’
in front of the step indicates it is omitted. All trials specified
in Section 2 are scored for both profile features.

A plot comparing a representative set of systems for com-
paring usernames is shown in Figure 1. We make several
observations. First, only minor performance differences are
observed between Jaro and Jaro-Winkler. Also, the same is
true for Levenshtein and Damerau-Levenshtein. Second, nor-
malization and lower case conversion are not useful (as ex-
pected). Third, the biggest performance impact is the use
of the Burrows-Wheeler type transform. We observe across
many of the cross-validation splits that the BW transform
crosses over with the no BW case in the DET curve. Some-
times this cross-over is after the EER (as shown) or before.
This demonstrates that the usefulness of the BW transform
depends on the operating point.

A plot comparing a representative set of systems for full
name is shown in Figure 2. The performance is quite distinct
from the username case. The best performing system uses
Jaro-Winkler and normalizing transforms. Removing these
steps substantially impacts performance. In addition, the BW
step substantially lowers performance. This property might
be expected since name variation is not easily captured as a
circular string rotation. Finally, as before, normalized Lev-
enshtein and Damerau-Levenshtein do not perform as well as
the Jaro-type comparisons.

As a summary of performance at EER, see the results for
profile and content features in Table 1. As a convention in all
tables, we bold the metric per feature of the best performing
system. In the table, for the full name feature, we show all of
the variations of the pipeline for Jaro-Winkler approximate
string comparison. Results for the other cases are compara-
ble. For both username and full name, Jaro-Winkler with nor-
malization and lowercase with no Burrows-Wheeler are best

Figure 1: DET curve comparing the performance of multi-
ple approximate string matching methods on the profile user-
name. Note that the curves are for non-trivial trials.

Figure 2: DET curve comparing the performance of multi-
ple approximate string matching methods on the profile full
name. Note that the curves are for non-trivial trials.

at EER. The table also highlights performance for the content
features and the token-based soft-TFIDF method.

6.4 Graph-Based Features
Graph features include community features and neighbor-
hood features (NBR). We use two methods for computing the
community similarity: dot product of normalized feature vec-
tors (DP) and SVM. For seed selection, we look at two dif-
ferent choices of seeds to align Twitter and Instagram graphs.
One is to use common hashtags, for example, #Boston is
present in both graphs and, thus, vertices associated with
#Boston can be used as seeds. The performance of the
two graph features is summarized in Table 2, showing both
the EER for all trials and EER for the non-trivial trials. Note
that for community feature using 1-hop neighbors, the SVM
method gives better results, while DP gives better results for
community feature using 2-hop neighbors.

The other choice of seeds is to use both common hashtags

Table 1: Comparison of EERs for various profile and content
features and systems.

Feature System EER EER
All (%) NT (%)

Full jw, norm, lower, bw 18.73 16.94
Full jw, norm, lower, nobw 16.90 14.97
Full jw, norm, nolower, bw 20.13 18.69
Full jw, norm, nolower, nobw 18.41 16.86
Full jw, nonorm, lower, bw 19.07 17.39
Full jw, nonorm, lower, nobw 17.26 15.36
Full jw, nonorm, nolower, bw 20.32 18.95
Full jw, nonorm, nolower, nobw 18.71 17.13
Full ndl, nonorm, lower, nobw 21.61 20.04
Full nl, nonorm, lower, nobw 21.64 20.08
Full soft-tfidf 17.69 16.24
User jw, nonorm, lower, bw 2.64 7.54
User jw, nonorm, lower, nobw 2.03 6.45
User ndl, nonorm, lower, bw 3.17 9.06
User ndl, nonorm, lower, nobw 2.65 8.46
User nl, nonorm, lower, bw 3.14 9.24
User nl, nonorm, lower, nobw 2.66 8.52
Content* SVM 26.56 18.66

∗subset of all trials because of limited content

Table 2: Summary of EERs for various community and
neighborhood features and systems. Common hashtags are
used as seeds.

Feature System EER ALL (%) EER NT (%)
Comm 1-hop DP 50.13* 30.22*
Comm 1-hop SVM 30.47 23.56
Comm 2-hop DP 39.64 30.42
Comm 2-hop SVM 46.95 45.40
NBR 1-hop DP 60.04* 39.57*
NBR 2-hop DP 42.64 34.83

∗interpolated values

Table 3: Summary of EERs for various community and
neighborhood features and systems. Common hashtags and
users with exact usernames are used as seeds.

Feature System EER ALL (%) EER NT (%)
Comm 1-hop DP 6.65 20.90*
Comm 1-hop SVM 8.33 17.16
Comm 2-hop DP 36.46 29.11
Comm 2-hop SVM 43.75 44.92
NBR 1-hop DP 6.60 29.38*
NBR 2-hop DP 9.38 28.47

∗interpolated values

and users with the same usernames across graphs. Table 3
shows the performance of the two graph features. In particu-
lar, DP is better than SVM at EER (all trails) for both 1-hop
and 2-hop community feature. Note that the EER for all tri-
als is much less than the EER for non-trivial trials. Because
seeds are merged in the aligned graph, for users with the same
username, their neighborhood features are the same and their
community features tend to be similar.

Table 4: Summary of fusion results. Common hashtags are
used as seeds.

Fusion Model EER ALL (%) EER NT (%)
P Logit 2.07 6.07
P RandF 1.54 5.74*
P+C Logit 2.01 5.74
P+C RandF 1.47 5.18*
N1 Logit 26.74 25.31
N1 RandF 28.44 29.44
N1+N2 Logit 26.97 26.76
N1+N2 RandF 27.43 25.91
P+N1 Logit 1.64 4.82
P+N1 RandF 1.16 3.79
P+C+N1 Logit 1.64 4.87
P+C+N1 RandF 1.13 3.90*
P+N1+N2 Logit 1.68 4.85
P+N1+N2 RandF 1.01 3.18
P+C+N1+N2 Logit 1.68 4.92
P+C+N1+N2 RandF 1.00 3.32

∗interpolated values

6.5 Fusion

The goal for fusion is to combine the similarity scores from
different features to obtain a better entity disambiguation sys-
tem. The models we train are logistic regression and random
forest. The former builds a linear model that predicts the
probability of an outcome using the logistic distribution func-
tion; the latter is an ensemble learning method that constructs
a number of decision trees and averages the probabilities of
an outcome from these decision trees.

One issue for training the fusion models is the problem of
missing data. For example, the content features may be miss-
ing for some users due to an insufficient number of posted
words. Similarly, community (or neighborhood) features may
be missing because users are not in the largest connected
component (or they are isolates) in the aligned graph. One
simple strategy to address this issue is to train a separate
model for all combinations of present features using the train-
ing data, and then to test by breaking up the testing set accord-
ing to the present features and using the respective model to
compute the fusion score.

Results for fusion are summarized in Tables 4 and 5. Fea-
tures used in the fusion are greedily selected, i.e., the best sys-
tem over all trials per feature type. The variable ‘P’ denotes
the fusion of profile features (for the purposes of this paper,
username and full name), ‘C’ denotes content, ‘N1’ is the fu-
sion of 1-hop community and 1-hop neighborhood features,
and ‘N2’ is the fusion of 2-hop community and 2-hop neigh-
borhood features. Figure 3 shows the performances of fusing
selected features using the random forest model. Observe that
the fusion of profile, content and graph features significantly
improves the performance as compared to the performance
of individual features. Also, the addition of graph features
to the fusion model significantly lowers the miss probability,
particularly at the low false alarm probability. Another obser-
vation is that seeding using common hashtags fuses as well
as seeding using both common hashtags and users with the
same usernames.

Table 5: Summary of fusion results. Common hashtags and
users with exact usernames are used as seeds.

Fusion Model EER ALL (%) EER NT (%)
N1 Logit 6.54 19.93
N1 RandF 6.87 23.11
N1+N2 Logit 6.49 19.76
N1+N2 RandF 6.44 20.43
P+N1 Logit 1.47 4.56
P+N1 RandF 1.08 3.43
P+C+N1 Logit 1.53 4.66
P+C+N1 RandF 1.03 3.30*
P+N1+N2 Logit 1.44 4.44
P+N1+N2 RandF 0.94 3.18
P+C+N1+N2 Logit 1.48 4.56
P+C+N1+N2 RandF 0.89 3.08

∗interpolated values

Figure 3: DET curve comparing the performances of fusing
selected features using the random forest model. Note that
the curves are for non-trivial trials.

7 Conclusions
In this paper, we demonstrated profile-, content-, and graph-
based features for cross-domain entity resolution. Novel
methods for both profile and graph based features were pre-
sented. Fusion of these feature types showed that profile and
graph features worked best in combination. Excellent per-
formance was achieved for non-trivial entity resolution. We
demonstrated our methods on Twitter and Instagram, and we
expect our approach to generalize for other social media plat-
forms, as well.

Future work includes the use of additional features, such as
characteristics of profile images (e.g., properties and hashes),
patterns of life (e.g., geographic tracks over time and activ-
ity over time), and stylometrics (e.g., emojis, emoticons, and
unconventional writing).

Acknowledgements
The authors acknowledge inspiration and early collaboration
with Daniel Sussman (Harvard University), Vince Lyzinski
(JHU HLTCOE), and Jason Matterer (JHU, MIT LL).

References
[Bagga and Baldwin, 1998] Amit Bagga and Breck Baldwin.

Entity-based cross-document coreferencing using the vec-
tor space model. In Proceedings of the 17th international
conference on Computational linguistics-Volume 1, pages
79–85. Association for Computational Linguistics, 1998.

[Bartunov et al., 2012] Sergey Bartunov, Anton Korshunov,
Seung-Taek Park, Wonho Ryu, and Hyungdong Lee. Joint
link-attribute user identity resolution in online social net-
works. In Proceedings of the 6th International Conference
on Knowledge Discovery and Data Mining, Workshop on
Social Network Mining and Analysis. ACM, 2012.

[Bhattacharya and Getoor, 2007] Indrajit Bhattacharya and
Lise Getoor. Collective entity resolution in relational data.
ACM Transactions on Knowledge Discovery from Data
(TKDD), 1(1):5, 2007.

[Burrows and Wheeler, 1994] Michael Burrows and David
Wheeler. A block-sorting lossless data compression al-
gorithm. In Digital Equipment Corporation Technical Re-
port, number 124. Citeseer, 1994.

[Campbell et al., 2007] William M Campbell, Joseph P
Campbell, Terry P Gleason, Douglas A Reynolds, and
Wade Shen. Speaker verification using support vector
machines and high-level features. Audio, Speech, and
Language Processing, IEEE Transactions on, 15(7):2085–
2094, 2007.

[Christen, 2012] Peter Christen. A survey of indexing tech-
niques for scalable record linkage and deduplication.
Knowledge and Data Engineering, IEEE Transactions on,
24(9):1537–1555, 2012.

[Cohen et al., 2003] William W Cohen, Pradeep D Raviku-
mar, Stephen E Fienberg, et al. A comparison of string
distance metrics for name-matching tasks. In IIWeb, vol-
ume 2003, pages 73–78, 2003.

[Goga et al., 2013] Oana Goga, Howard Lei, Sree Hari Kr-
ishnan Parthasarathi, Gerald Friedland, Robin Sommer,
and Renata Teixeira. Exploiting innocuous activity for
correlating users across sites. In Proceedings of the 22nd
international conference on World Wide Web, pages 447–
458. International World Wide Web Conferences Steering
Committee, 2013.

[Han et al., 2011] Xianpei Han, Le Sun, and Jun Zhao. Col-
lective entity linking in web text: a graph-based method.
In Proceedings of the 34th international ACM SIGIR con-
ference on Research and development in Information Re-
trieval, pages 765–774. ACM, 2011.

[Iofciu et al., 2011] Tereza Iofciu, Peter Fankhauser, Fabian
Abel, and Kerstin Bischoff. Identifying users across social
tagging systems. In ICWSM, 2011.

[Li and Campbell, 2015] Lin Li and William M. Campbell.
Matching community structure across online social net-
works. In Proceedings of the NIPS Workshop: Networks
in the Social and Information Sciences, 2015.

[Liben-Nowell and Kleinberg, 2003] David Liben-Nowell
and Jon Kleinberg. The link prediction problem for social

networks. In Proceedings of the Twelfth International
Conference on Information and Knowledge Management,
CIKM ’03, pages 556–559. ACM, 2003.

[Liu et al., 2013] Jing Liu, Fan Zhang, Xinying Song,
Young-In Song, Chin-Yew Lin, and Hsiao-Wuen Hon.
What’s in a name?: an unsupervised approach to link users
across communities. In Proceedings of the sixth ACM in-
ternational conference on Web search and data mining,
pages 495–504. ACM, 2013.

[Lyzinski et al., 2015] Vince Lyzinski, Daniel L Sussman,
Donniell E Fishkind, Henry Pao, Li Chen, Joshua T Vo-
gelstein, Youngser Park, and Carey E Priebe. Spectral
clustering for divide-and-conquer graph matching. Par-
allel Computing, 47:70–87, 2015.

[Malhotra et al., 2012] Anshu Malhotra, Luam Totti, Wag-
ner Meira Jr, Ponnurangam Kumaraguru, and Virgilio
Almeida. Studying user footprints in different online so-
cial networks. In Proceedings of the 2012 International
Conference on Advances in Social Networks Analysis and
Mining (ASONAM 2012), pages 1065–1070. IEEE Com-
puter Society, 2012.

[Peled et al., 2013] Olga Peled, Michael Fire, Lior Rokach,
and Yuval Elovici. Entity matching in online social net-
works. In Social Computing (SocialCom), 2013 Interna-
tional Conference on, pages 339–344. IEEE, 2013.

[Raad et al., 2010] Elie Raad, Richard Chbeir, and Albert
Dipanda. User profile matching in social networks. In
Network-Based Information Systems (NBiS), 2010 13th In-
ternational Conference on, pages 297–304. IEEE, 2010.

[Rao et al., 2013] Delip Rao, Paul McNamee, and Mark
Dredze. Entity linking: Finding extracted entities in
a knowledge base. In Multi-source, Multilingual In-
formation Extraction and Summarization, pages 93–115.
Springer, 2013.

[Rosvall and Bergstrom, 2008] Martin Rosvall and Carl T
Bergstrom. Maps of random walks on complex networks
reveal community structure. Proceedings of the National
Academy of Sciences, 105(4):1118–1123, 2008.

[Tan et al., 2014] Shulong Tan, Ziyu Guan, Deng Cai,
Xuzhen Qin, Jiajun Bu, and Chun Chen. Mapping users
across networks by manifold alignment on hypergraph. In
AAAI, volume 14, pages 159–165, 2014.

[Yujian and Bo, 2007] Li Yujian and Liu Bo. A normal-
ized Levenshtein distance metric. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 29(6):1091–
1095, 2007.

[Zhang and Philip, 2015] Jiawei Zhang and S Yu Philip.
Multiple anonymized social networks alignment. Network,
3(3):6, 2015.

[Zhang et al., 2015] Yutao Zhang, Jie Tang, Zhilin Yang,
Jian Pei, and Philip S Yu. Cosnet: Connecting heteroge-
neous social networks with local and global consistency. In
Proceedings of the 21th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages
1485–1494. ACM, 2015.

