
  

  

Abstract— Speech provides a potential simple and 
noninvasive “on-body” means to identify and monitor 
neurological diseases. Here we develop a model for a class of 
vocal biomarkers exploiting modulations in speech, focusing on 
Major Depressive Disorder (MDD) as an application area. Two 
model components contribute to the envelope of the speech 
waveform: amplitude modulation (AM) from respiratory 
muscles, and AM from interaction between vocal tract 
resonances (formants) and frequency modulation in vocal fold 
harmonics. Based on the model framework, we test three 
methods to extract envelopes capturing these modulations of 
the third formant for synthesized sustained vowels. Using 
subsequent modulation features derived from the model, we 
predict MDD severity scores with a Gaussian Mixture Model. 
Performing global optimization over classifier parameters and 
number of principal components, we evaluate performance of 
the features by examining the root-mean-squared error 
(RMSE), mean absolute error (MAE), and Spearman 
correlation between the actual and predicted MDD scores. We 
achieved RMSE and MAE values 10.32 and 8.46, respectively 
(Spearman correlation=0.487, p<0.001), relative to a baseline 
RMSE of 11.86 and MAE of 10.05, obtained by predicting the 
mean MDD severity score. Ultimately, our model provides a 
framework for detecting and monitoring vocal modulations 
that could also be applied to other neurological diseases. 

I. INTRODUCTION 

Speech is an easily obtainable physiological signal that 
results from complex neurological and motor production 
processes. With the brain driving the process, physiological 
production of speech involves air being pushed from the 
lungs, through vocal folds vibrating at the larynx, into a 
resonating vocal tract, with the acoustic output ultimately 
radiating from the lips. Thus, embedded in the speech signal 
is information about control and functioning of underlying 
production mechanisms. Consequently, speech represents an 
important biomarker that can be used to classify and monitor 
neurological disorders that affect speech production, such as 
Parkinson's disease [1]–[3], Traumatic Brain Injury [4], [5], 
and the more common Major Depressive Disorder (MDD) 
[6]–[8]. 
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In particular, for depression severity prediction, a 
modulation spectrum of speech has been shown to be a 
salient feature [7]. The modulation spectrum captures the 
frequency content of temporal envelopes of speech in 
different frequency bands across time. Underlying this 
representation is a premise that certain oscillations of speech 
production mechanisms are manifested as modulations 
(amplitude and/or frequency) of the acoustic signal. The 
current work aims to provide a principled framework for 
modeling and ultimately exploiting vocal modulations 
observable in the speech signal, with a direct link to specific 
underlying production mechanisms. 

Our proposed model addresses two mechanisms that lead 
to amplitude modulation (AM) in the temporal envelope of 
the speech signal. The first component of AM captures 
oscillations of the respiratory muscles used to push air 
through the vocal folds and into the vocal tract. The second 
AM component results from a more complex acoustic 
interaction between the source signal of the vocal folds and 
the resonance pattern of the vocal tract. This phenomenon is 
known as resonance-harmonics interaction (RHI). One 
primary cause of RHI is modulation of the frequency at 
which the vocal folds vibrate, where the frequency at which 
the vocal folds vibrate is known as the fundamental 
frequency (𝑓!). This results in the shifting of 𝑓! harmonics 
back and forth through vocal tract resonances, or formants 
(peaks), in the speech spectrum [9]. In this work, we 
introduce a modeling and synthesis framework explicitly 
capturing both sources of AM in the temporal envelope of the 
speech signal. 

To distinguish these two AM components in speech, 
several signal envelope estimation techniques are examined, 
including a novel iterative nonlinear approach we designed to 
capture modulations that are slowly varying in time, without 
fitting the speech signal pattern with excessive detail. In 
analyses of the simulated modulated speech, the resulting 
envelope estimation technique is shown to better resolve the 
different AM components than two standard methods. 
Finally, using this envelope estimation technique, vocal 
modulation features are generated for real speech and used to 
predict MDD severity. 
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Figure 1. AM-FM model components. 



  

II. FRAMEWORK 

In this section, we develop a framework for our envelope 
modulation model of the speech waveform. We begin with a 
brief review of the source-filter model of speech production 
and then describe a baseline model for the two AM 
contributions to the envelope: oscillations of the respiratory 
muscles, and interaction between the source signal of the 
vocal folds and the resonance pattern of the vocal tract. 

A. Source-Filter Model 
During the voicing state of speech, vibration of the vocal 

folds generates periodic, quasi-periodic, or irregularly spaced 
puffs of air that excite the vocal tract. Assuming a linear, 
time-invariant model of the vocal tract, the output at the lips, 
𝑥[𝑛], is given by the convolution of the source 𝑠[𝑛] and the 
vocal tract impulse response ℎ![𝑛] and is expressed as 
𝑥 𝑛 = 𝑠 𝑛 ∗ ℎ![𝑛]. In the frequency domain, with periodic 
or quasi-periodic fold motion, the source spectrum, denoted 
by 𝑆(𝑓), contains harmonics (or approximate harmonics) of 
𝑓!. The vocal tract transfer function (VTTF), denoted by 
𝐻!(𝑓), has resonances (formants) associated with peaks in 
|𝐻! 𝑓 |, and its output 𝑋(𝑓) is expressed by 

 𝑋 𝑓 = 𝑆 𝑓 𝐻! 𝑓 . 

B. Modulation Components 
 According to Stockham [10], an approach to model an 
acoustic signal, 𝑥 𝑛 , is to model it as the product of  an 
envelope 𝑒 𝑛 , where 𝑒 𝑛 > 0, that contains low frequency 
components, and  a high frequency signal, 𝑣 𝑛 : 

   𝑥 𝑛 = 𝑒 𝑛 𝑣[𝑛]. (1) 

Estimates of envelope AM frequency ranges vary. Some 
estimates are 4.5 Hz to 12.6 Hz [11] and 1.1 Hz to 24 Hz 
[12]. In our model, we interpret 𝑒 𝑛  to contain AM 
components due to oscillations of the respiratory muscles and 
interaction between the source signal of the vocal folds and 
the resonance pattern of the vocal tract. 

Contribution from respiratory muscles: The first source 
of AM originates from oscillations in subglottal pressure, 
causing the voice source to vary in amplitude. Assuming the 
fundamental frequency 𝑓! (and thus frequencies of the 
harmonics of 𝑓!) and the vocal tract are fixed, the amplitudes 
of the harmonics change together over time, resulting in AM 
[9]. As the subglottal pressure increases, the amplitude of the 
vibration of the vocal folds also increases [13], resulting in 
increased sound intensity [14]. In a study investigating the 
relationship between induced respiratory tremor and the 
acoustic characteristics of vocal tremor, Lester and Story set 
the induced respiratory modulation frequency to 5 Hz [15].  

 

 
Figure 3. Block diagram of Stockham’s method. 

Contribution from resonance-harmonics interaction: One 
cause of resonance-harmonic interaction (RHI) is a change in 
the shape of the vocal tract. For example, the tongue and 
pharynx can move, causing a change in the formant 
frequencies. If 𝑓! remains fixed, AM can occur as the 
formant frequencies of 𝐻! 𝑓  move through the harmonics of 
𝑓!. Likewise, AM can arise from changes to the rate and 
extent of the 𝑓! via changes in vocal fold motion, i.e., 
harmonics move through the formants. The AM component 
contributed by the RHI tends to be faster than that of the 
respiratory muscles and often is on the order of 𝑓! or its 
multiples depending on how harmonics and formants interact 
[9], [16]. Numerous rates of 𝑓! change have been reported, 
varying from 1.1 Hz to 25 Hz in both normal and 
pathological phonation [11], [12], although recent literature 
cites frequencies up to 12 Hz [17]. In this work, we will 
assume only the latter RHI, where frequency-modulated 
(FM) harmonics move through a fixed vocal tract. We will 
denote its envelope component as 𝑒! 𝑛 . 

C. Signal Processing Model 
In this section, we develop a speech signal-processing 

model with the above two modulation components. To begin, 
we model the source signal from the vocal folds as a 
frequency-modulated (FM) set of harmonics of 𝑓! and denote 
it by 𝑝! 𝑛 . This source signal is then shaped by the envelope 
𝑒! 𝑛 , due to the respiratory component, and the resulting 
AM source 𝑝!" 𝑛  = 𝑒! 𝑛 𝑝! 𝑛  drives the vocal tract 
transfer function (VTTF). This general framework involving 
an AM envelope 𝑒! 𝑛 , multiplying the FM pulse train 
𝑝![𝑛], and convolving with vocal tract impulse response 
ℎ! 𝑛  to generate an output 𝑥!" 𝑛 , is illustrated in Fig. 1. 

For illustration, both 𝑒! 𝑛  and 𝑝![𝑛] are chosen to be 
sinusoidal. For 𝑒! 𝑛 , the depth of modulation (𝑎!) and rate 
of modulation (𝑓!) are constants; for the FM pulse train from 
the vocal folds 𝑝![𝑛], the rate of FM (𝑓!) and extent of FM 
(𝑎!), and center fundamental frequency (𝑓!) are also 
constants. 𝑓! is the sampling frequency. These parameter 
specifications are summarized in Fig. 1.  

 Figure 4. Frequency components in the log of the magnitude of the 
envelope, plotted over two frequency ranges. Left panel: the frequency 

range is 0 to 600Hz. Right panel: the frequency range is 0 to 50Hz. 

 

 
Figure 2. xAF[n] in the time domain, with f0=200 Hz, ff=11 

cycles/sec2, af=5 Hz, aa=0.1, and fa=3 Hz. The formants are 820 Hz, 
1220 Hz, and 2810 Hz, with bandwidths of 125 Hz, 125 Hz, and 250 

Hz. 



  

 
Figure 5. Block diagram the Hilbert-Stockham method. 

The equation for the AM signal from the respiratory 
muscles is given by 

   𝑒! 𝑛 = !
!
+ 𝑎! cos 2π𝑓!

!
!!

 (2) 

and letting K be the total number of synthesized harmonics, 
the FM pulse train,  𝑝! 𝑛 , is given by 

   𝑝! 𝑛 = cos 2𝜋𝑘𝑓!
!
!!
+

!!!

!!
sin 2𝜋𝑓!

!
!!

!
!!!  (3) 

where the vocal tract input 𝑝!" 𝑛  is 𝑝! 𝑛  shaped by the 
envelope e! 𝑛 .   

 Fig. 2 displays an example simulation. The 3-Hz 
component from 𝑒! 𝑛  is clearly present in the envelope of 
𝑥!" 𝑛 , while the RHI contributes the higher frequency 
components to the envelope due to the 11 cycles/s2 FM 
frequency component of the source. Envelope extraction 
must be performed to distinguish the AM components in the 
envelope. 

III. ENVELOPE EXTRACTION 

To distinguish the AM component due to the respiratory 
muscles from the component due to RHI, we isolate a single 
formant and evaluate its envelope using three methods: (1) 
Stockham’s method, (2) the Hilbert-Stockham method, in 
which the Hilbert envelope extraction method is performed, 
followed by Stockham’s method, and (3) a novel, nonlinear 
iterative (NLI) envelope algorithm followed by Stockham’s 
method.  

We analyze the envelope of a single formant under the 
assumption that the limited bandwidth leads to less complex 
RHI over a limited bandwidth. We select the third formant 
(F3) in particular because harmonic FM is greater at higher 
frequencies. This is due to harmonics of the modulated 𝑓! 
having a greater depth of FM than the harmonics at lower 
frequencies, i.e., lower formants. With these two properties, 
we assume there to be greater discriminability of the RHI and 
respiratory envelope components. 

A.  Stockham’s Method 
Stockham’s method is based on his waveform model, 

provided in (1), and the property that the logarithm (log) of a 
product of two variables is the sum of the log of each 
variable. A block diagram of Stockham’s method is 
illustrated in Fig. 3, where a bandpass filter 𝐻! 𝑓  is applied. 
𝐻! 𝑓  has a bandwidth of 250 Hz and is centered at the F3 
frequency. 

Our envelope separation problem is now posed with 
respect to the output of the combined filter 𝐻 𝑓 =
𝐻! 𝑓 𝐻!(𝑓)  (Fig. 3), which we write as 

   𝑏!" 𝑛 = 𝑒 𝑛 𝑣 𝑛  (4) 

 

 
Figure 6. Comparison of bAF[n] and |yAF[n]|. Top: bAF[n] and |yAF[n]|, 

plotted between 0 and 3 sec. Bottom: bAF[n] and yAF[n], plotted between 0.4 
and 0.6 sec. 

where we have used Stockham’s waveform model (1). 
However, 𝑒 𝑛  and 𝑣 𝑛  now refer to the envelope and the 
high frequency signal associated with F3, 𝑏!" 𝑛 .  

We assume 𝑒 𝑛  is represented by the product of two 
components: the AM due to the respiratory muscles, 
𝑒! 𝑛 , and the AM due to the interaction of the source with 
the vocal tract’s third formant, 𝑒! 𝑛 : 

    𝑒 𝑛 = 𝑒! 𝑛 𝑒! 𝑛 . (5) 

Therefore, 

    𝑏!" 𝑛 ≈ 𝑒 𝑛 𝑣 𝑛 ≈ 𝑒![𝑛]𝑒![𝑛] 𝑣 𝑛   (6) 

where 𝑣[𝑛] can be modeled as a series of (constant-height) 
impulses convolved with the combined vocal tract-bandpass 
filter impulse response ℎ 𝑛  [18]. Taking the log of (6) and 
computing the Fourier transform of the logarithm, we obtain 

    ℱ{log 𝑏!"[𝑛] } = ℱ{log 𝑒! 𝑛 } + (7) 

ℱ{log 𝑒! 𝑛 } + ℱ{log 𝑣 𝑛 }. 

For the example signal in Fig. 3 (with inputs (2) and (3)), the 
spectrum of log (|𝑏!" 𝑛 |) is computed from the short-time 
Fourier transform (STFT) using a 1-second Hamming 
window with 50% overlap, and is displayed in the left panel 
of Fig. 4. The envelope region primarily consists of 
components belonging to the log-envelope, log (𝑒 𝑛 ). This 
contains components from both log (𝑒! 𝑛 ) and log (𝑒! 𝑛 ). 
The “fast-moving” region corresponds to the frequency 
components belonging to log 𝑣 𝑛 , showing a periodicity 
at the 200-Hz fundamental frequency as well as impulses 
with spacing at the rate of the FM: 11 cycles/s2. 

The right panel of Fig. 4 shows the regions to which 
𝑒! 𝑛  and 𝑒! 𝑛  map within the envelope region. The first 
major peak is at a frequency of 3 Hz, which corresponds to 
the frequency of the AM due to the respiratory muscles. The 
next peak is at a frequency of 11 Hz, the FM rate. Subsequent 
peaks occur at multiples of 11 Hz.  

 
Figure 7. Top:  bAF[n] and zAF[n], plotted between times 0 and 3 
sec. Bottom: bAF[n] and zAF[n], plotted between 0.4 and 0.6 

seconds. 
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The short-time spectrum of log (|𝑏!" 𝑛 |) contains peaks 

at the AM and FM frequencies and their harmonics, but they 
also contain a high-frequency artifact between the peaks. 
This artifact is due to computing the magnitude of 𝑣 𝑛  in 
𝑏!" 𝑛  (6), which causes the negative time-domain 

components of ℎ 𝑛  to become positive, and introduces 
additional high-frequency components, associated with F3, 
that can leak into the low-frequency component (see 
Appendix and [18]). 

B. Hilbert-Stockham Method 
 Incoherent envelope detection is one approach to reduce 
artifacts from the basic Stockham method. This can be 
performed by bandpass filtering around a carrier frequency, 
computing the Hilbert transform of the filter output, and 
taking the magnitude [19]. As before, we compute the log of 
the magnitude in an effort to further separate the fast-moving 
component from 𝑒 𝑛 . Fig. 5 shows a block diagram that 
combines the Hilbert transform and Stockham’s method. 
Given the Hilbert envelope operator g[n], we can show 
(Appendix and [18]) that the magnitude of output 𝑦!" 𝑛  is  

    𝑦!" 𝑛 ≈ 𝑒 𝑛 𝑣 𝑛 ≈ 𝑒![𝑛]𝑒![𝑛] 𝑣 𝑛   (8) 

where we define 𝑣 𝑛  to be the Hilbert transform of 𝑣[𝑛]. 
Therefore, to distinguish the two AM components, we 
compute the Fourier transform of the log of each of the 
components in (8):  

ℱ log 𝑦!"[𝑛] = ℱ log (𝑒![𝑛]) + 

+ℱ log (𝑒![𝑛]) + ℱ log ( 𝑣 𝑛 )  

In contrast to 𝑣 𝑛  in (6), which follows individual zero 
crossings of the formant and thus the formant frequency, 
𝑣 𝑛  provides a smooth formant envelope, reflecting its 

bandwidth but not frequency. 
 

Figure 9. RMSEs, MAEs, and Spearman correlations of the average STFT 
magnitude of the LM-NLI-Stockham envelope of F3, excluding frequencies 
above 50 Hz, with feature adaptation. For all plots except the bottom left, a 

cooler color indicates a lower value, which is desirable. 

For the example signal in Fig. 2, Fig. 6 compares 𝑏!" 𝑛  
to the magnitude of its Hilbert transform, |𝑦!" 𝑛 |. In the 
bottom plot, |𝑦!" 𝑛 | appears on a local scale to follow the 
periodicity of 𝑏!" 𝑛  and not the F3 frequency of ℎ 𝑛 . 

C. NLI-Stockham Algorithm 
To further reduce artifacts from high-frequency leakage 

with 𝑣 𝑛 , we apply a novel nonlinear, iterative (NLI) 
algorithm to estimate the envelope of a signal. The result is a 
temporal envelope that rides over both the high frequency of 
the 3rd formant as well as pitch periodicity. This approach can 
be interpreted as a temporal rendition of the iterative spectral 
envelope estimator given in [20]. As in the other two 
approaches, we first bandpass filter the vocal tract output to 
obtain 𝑏!" 𝑛 . Then, assuming the waveform magnitude 
representation in (6), we compute the NLI envelope by 
convolving |𝑏!" 𝑛 | with an equal-weight moving average 
filter of an empirically determined length of 2.5 ms. For each 
point k along the length of |𝑏!" 𝑛 |, the maximum value 
between |𝑏!" 𝑘 | and the convolution is retained in a buffer. 
The subsequent convolutions are between the buffer and the 
equal-weight moving average filter. After several iterations 
(150 appeared sufficient to capture a smooth, slowly varying 
shape), the result is a signal we denote by 𝑧!" 𝑛 . As before, 
since it is desirable for the log of the AM from the respiratory 
muscles and the AM from the RHI to be additive, the log of 
|𝑧!" 𝑛 | is computed. 

Fig. 7 displays 𝑏!" 𝑛  and the NLI envelope, 𝑧!" 𝑛 , for 
the earlier example. The NLI envelope appears to accurately 
estimate the envelope in the time domain. Compared to the 
Hilbert envelope in Fig. 6, it removes additional high 
frequencies that are present in the periodicity of the Hilbert 
envelope, thus removing artifacts that are not components of 
the “true envelope” of the speech waveform.  

D. Comparison of Envelope Extraction Techniques 
Fig. 8 compares the log-magnitudes of the outputs of the 

three processing methods. Each method yields peaks at 3 Hz, 
the rate of the AM, and peaks at integer multiples of 11 Hz, 
the rate of the FM. However, the 11 Hz component decays 
more quickly and there is less high-frequency leakage when 
the NLI -Stockham envelope is extracted due to the ability 
of the NLI-Stockham envelope to track the “true envelope” 
of the signal, without capturing information from the pitch 
periods. 

Our analysis indicates that the Stockham, Hilbert-
Stockham, and NLI-Stockham methods are effective in 
distinguishing the two sources of AM in synthetic FM-and-
AM signals, but the NLI-Stockham algorithm appears to best 
reduce high-frequency artifacts. 

 

IV. DEPRESSION PREDICTION 

Motivated by the model and envelope extraction 
techniques discussed in Sections 2 and 3, and also by the 
work of Cummins [7], we hypothesized that features 
associated with the log-envelope of F3 would predict MDD. 
The features that provided the most accurate MDD prediction 
were computed by performing principal component analysis 
(PCA) on the average STFT magnitude of the F3 envelope, 

 Figure 8. Comparison of the three envelope extraction methods. 



  

extracted using the NLI-Stockham method. This comparative 
analysis, along with results obtained using other types of 
features, and features derived from the other two envelope 
extraction methods can be found in [18]. Although it is 
difficult to extract physiological meaning from features 
obtained by performing PCA on spectrum of the F3 
envelope, these features might lay the groundwork for 
features that provide physiological meaning. 

A. The AVEC Database 
Feature selection and classification/regression were 

performed on speech samples from the 2013 Audio/Visual 
Emotion Challenge (AVEC) database. We used 87 sessions 
of audio recordings from the AVEC database, which contains 
recordings from males and females with various MDD 
severities. The 16-bit audio was recorded using a laptop’s 
sound card at a sampling rate of either 32 or 41.1 kHz [21]. 
For this work, we extracted the middle three seconds of 
sustained /a/ vowels from the recordings. 

The subjects’ MDD severity ratings were scored with the 
self-reported Beck assessment, where a higher Beck score 
corresponds to higher severity. Among the 87 sessions from 
the AVEC database, Beck scores vary between 0 and 45. 

B. Feature Extraction 
After downsampling the waveforms sampled at 41.8 

kHz to 32 kHz, the first task in extracting the average STFT 
magnitude of the log of the magnitude (LM) of the envelope 
was to extract the NLI-Stockham envelopes from the 87 raw 
waveforms. Using a Kalman-based autoregressive moving 
average framework [22], the formants of each of the 
waveforms were computed, a bandpass filter that isolated F3 
± 250 Hz was applied, and the LM of the NLI-Stockham 
(LM-NLI-Stockham) envelopes were computed. Finally, to 
compute the average STFT of the LM-NLI-Stockham 
envelopes, we applied 1-second Hamming windows with 
50% overlap, and computed a very long (262,144-point) 
Discrete Fourier Transform to each segment in an effort to 
maximize our ability to visualize the spectral content.  

We extracted the average STFT values corresponding to 
frequencies below 50 Hz, which is half the fundamental 
frequency of a male, leading to 410 average STFT values. 
We also computed the average STFT values corresponding 
to frequencies below 20 Hz, the upper limit of the majority 
of the spectral content. For results obtained using those 
features, refer to [18]; here, we focus on the results obtained 
using frequencies below 50 Hz, as they predicted MDD most 
accurately. 

C. Regression and Prediction Procedure 
 As a basis for prediction, we used a Gaussian Mixture 

Model (GMM). To train the GMM, we used Gaussian 
Staircase Regression, a technique that utilizes multiple data 
partitions to create a GMM for two classes and has 
successfully been used to predict MDD on the AVEC data 
[23]. We added a constant, the Gaussian regularization 
factor (GRF), to the diagonal of the covariance matrix to 
prevent over-fitting the data. Since some subjects appeared 
more than once, the means in the Gaussian model were 
adapted toward the mean for the subject. This process has 

been called feature adaptation [23]. The purpose of feature 
adaptation is to mitigate the effects of intersubject feature 
variability when prior information is available from the 
training set about a subject’s feature values. Feature 
adaptation is similar to the widely used speaker recognition 
technique by which speaker models are created from a 
Universal Background Model [24]. We also performed the 
regression and prediction procedure without using feature 
adaptation; for those results, refer to [18]. 

The training and testing procedure consisted of 
performing leave-one-session-out cross-validation. We 
utilized the following three metrics to assess prediction 
accuracy: mean absolute error (MAE), root mean square 
error (RMSE), and Spearman correlation (ρ) between the 
actual Beck scores and predicted Beck scores. To establish a 
baseline to compare our results against, we predicted the 
mean Beck score for each session. This led to baseline 
RMSE and MAE values of 11.86 and 10.05, respectively. 

D. LM-NLI-Stockham Envelope Performance 
Among the numerous types of modulation features we 

tested, the average STFT magnitude of the LM-NLI-
Stockham envelope yielded the lowest RMSE and MAEs, 
and the highest Spearman correlation. Without performing 
PCA, the average STFT magnitudes of the LM-NLI-
Stockham envelope comprise 410 features from the STFT. 
The dimensionality of this feature space needs to be reduced 
to effectively apply the GMM approach. To reduce 
dimensionality, we applied Principal Component Analysis 
(PCA), varying the number of components from 2 to 7. 
Values for the Gaussian regularization factor (GRF) were 
simultaneously varied from 0.1 to 1.5 in steps of 0.1. Fig. 9 
displays the results from this global optimization procedure. 
  With the GRF at 0.2 and with 2 PCA components, we 
achieved RMSE and MAE values 10.32 and 8.46, 
respectively (Spearman correlation=0.487, p<0.001), relative 
to the baseline RMSE of 11.86 and MAE of 10.05. 

V. CONCLUSIONS 
We proposed a model of vocal modulation as a basis for 

developing biomarkers of neurological disease and, in 
particular, Major Depressive Disorder (MDD).  The 
modulation model was developed in the context of a 
sustained vowel, assuming that two components contribute 
to AM: oscillations of respiratory muscles and AM resulting 
from RHI. The two AM components were represented in the 
model as multiplicative contributions to the speech signal’s 
envelope. We produced a synthetic speech signal 
incorporating these components. To explore the separability 
of the modulation contributions, we bandpass filtered the 
synthesized speech signal to isolate the third formant, F3, 
thus accentuating the envelope contribution from the RHI. 
We applied three envelope extraction techniques to the F3 
signal: (1) Stockham’s method, where the natural logarithm 
of the magnitude of the signal is extracted [10], (2) the 
Hilbert-Stockham method, in which the magnitude of the 
Hilbert transform of the signal is computed and Stockham’s 
method is subsequently applied, and (3) the NLI method (a 



  

temporal rendition of [20]), combined with the Stockham 
approach, referred to as the NLI-Stockham method.  

We derived features from the third formant of real 
speech signals from depressed subjects, and predicted 
depression severity using Gaussian Staircase Regression 
[23] while globally optimizing parameters. Of all features 
tested, we found that using 2 PCA components from the 
average STFT of the LM-NLI-Stockham envelope yielded 
the most accurate Beck score prediction. This most accurate 
prediction obtained was a decrease of 1.54 points from 
baseline (from 11.86 to 10.32) in the RMSE, and a decrease 
of 1.59 (from 10.05 to 8.46) in the MAE. The corresponding 
Spearman correlation between the predicted Beck score and 
actual Beck score was 0.487 (p<0.001).  

The modeling and prediction methodologies described 
provide a foundation for the future work, which includes 
improving the underlying model, implementation of the 
model, the pre-processing methods, feature extraction 
methods, and machine learning. Although cross-validation 
evaluation was performed, since global optimization was 
also performed, it is important to note that these results are 
preliminary, and additional analysis must be performed to 
assess generalization.  In particular, the optimal parameters 
we found must be tested on a new held-out data. Our 
ultimate goal is for results from future work to be applied 
toward diagnosing and monitoring depression and other 
neurological disorders using a simple, noninvasive “on-
body” platform. 

APPENDIX: DERIVATION OF ENVELOPE REPRESENTATION 
[18] 

The rapidly-varying component of the speech signal in (4), 
𝑣[𝑛], can be approximated by a flat-amplitude series of 
impulses, denoted by 𝑝 𝑛 , convolved with the combined 
vocal tract-bandpass filter impulse response ℎ 𝑛  [10]. The 
spacing of each impulse in 𝑝[𝑛] is equal to the reciprocal of 
the fundamental frequency. An expression for 𝑣 𝑛  is thus 
given by 

    𝑣 𝑛 ≈ 𝑝[𝑛] ∗ ℎ[𝑛].  (Α1) 

Substituting (A1) into (4), we have 

    𝑏!" 𝑛 ≈ 𝑒 𝑛 𝑝 𝑛 ∗ ℎ 𝑛 .  (Α2) 

From (A2) and the block diagram in Fig. 6, the Hilbert 
transform of 𝑏!" 𝑛 , denoted by 𝑦!" 𝑛 , is obtained through: 

𝑦!" 𝑛 ≈ 𝑒 𝑛 𝑝 𝑛 ∗ ℎ 𝑛 ∗ 𝑔[𝑛] 
 
where 𝑔 𝑛  is the Hilbert transform operator. Since we are 
interested in the magnitude and not the phase, we obtain the 
following approximation [25]:  

 𝑦!" 𝑛 ≈ 𝑒 𝑛 𝑝 𝑛 ∗ (ℎ 𝑛 ∗ 𝑔 𝑛 ).  (Α3) 

Letting ℎ[𝑛] = ℎ 𝑛 ∗  𝑔[𝑛], (i.e. ℎ[𝑛] is the Hilbert 
transform of h[n]):  

 𝑦!" 𝑛 ≈ 𝑒[𝑛]𝑝 𝑛 ∗ ℎ[𝑛].  (Α4) 

Using the same approximation to obtain (A3) from (A2), we 
obtain: 

 𝑦!" 𝑛 ≈ 𝑒[𝑛](𝑝 𝑛 ∗ ℎ 𝑛 ).  (Α5) 

Substituting (A1) into (A5), defining 𝑣 𝑛  to be the Hilbert 
transform of v[n], and assuming 𝑒[𝑛] ≥ 0: 

 𝑦!" 𝑛 ≈ 𝑒 𝑛 𝑣 𝑛 ≈ 𝑒! 𝑛 𝑒! 𝑛 𝑣 𝑛 .  (Α6) 

In contrast to 𝑣 𝑛  in (6) which follows individual zero 
crossings of the formant and thus the formant frequency, 
𝑣 𝑛  provides a smooth formant envelope, reflecting its 

bandwidth but not frequency. 
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