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ABSTRACT 

The automatic determination of emotional state from multimedia 

content is an inherently challenging problem with a broad range 

of applications including biomedical diagnostics, multimedia 

retrieval, and human computer interfaces.  The Audio Video 

Emotion Challenge (AVEC) 2016 provides a well-defined 

framework for developing and rigorously evaluating innovative 

approaches for estimating the arousal and valence states of 

emotion as a function of time.  It presents the opportunity for 

investigating multimodal solutions that include audio, video, and 

physiological sensor signals.  This paper provides an overview of 

our AVEC Emotion Challenge system, which uses multi-feature 

learning and fusion across all available modalities.  It includes a 

number of technical contributions, including the development of 

novel high- and low-level features for modeling emotion in the 

audio, video, and physiological channels.  Low-level features 

include modeling arousal in audio with minimal prosodic-based 

descriptors.  High-level features are derived from supervised and 

unsupervised machine learning approaches based on sparse 

coding and deep learning.  Finally, a state space estimation 

approach is applied for score fusion that demonstrates the 

importance of exploiting the time-series nature of the arousal and 

valence states.  The resulting system outperforms the baseline 

systems [10] on the test evaluation set with an achieved 

Concordant Correlation Coefficient (CCC) for arousal of 0.770 vs 

0.702 (baseline) and for valence of 0.687 vs 0.638. Future work 

will focus on exploiting the time-varying nature of individual 

channels in the multi-modal framework.   
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1. INTRODUCTION  
The 2016 Audio-Visual Emotion Challenge (AVEC 2016) [10] 

aims to compare multimedia processing and machine learning 

methods for automatic speech, video, and physiological analysis 

of human emotion measured in arousal and valence.   

Our audio channel approach is first based on acoustic 

analysis of a subject’s speech utterance. In addition to the 

precomputed acoustic features that come with the dataset, we use 

our speech tools to extract acoustic features such as auditory 

loudness, pitch variation, and speaking rate along spectral tilt 

captured in the low cepstral coefficients. Moreover, we apply 

sparse coding, an unsupervised learning method, on the extracted 

audio speech features to compute the input vectors for our 

regressors based on support vector machine (SVM) and softmax 

regression neural network. We find that these features computed 

on the acoustic analysis are particularly superior in arousal 

prediction.  
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Both SVM and (recurrent) neural network based regression 

have been known for their robustness in emotion prediction tasks 

[16, 17]. Despite its simplicity, linear SVM (or SVM regression) 

is proven effective for the past AVEC challenges and chosen as 

the baseline method [10, 18], yielding on par with or better 

prediction performance with many other state of the art machine 

learning approaches.  Mel-Frequency Cepstral Coefficient 

(MFCC) and Shifted Delta Cepstrum (SDC) features are popular 

for many language and speaker identification tasks [20] when 

coupled with higher-level feature learning frameworks such as 

Gaussian mixture model (GMM) [21]. For our case, we employ 

sparse coding as a higher-level learning mechanism for SDC to 

discover useful representations for regressing the emotion 

dimensions by spectro-temporal decomposition of speech signals. 

Sparse coding has been known for state-of-the-art performances in 

discriminative computer vision and object recognition tasks [22, 

23, 24].  

For our video channel processing our approach primarily 

uses the deep neural network models from Khorrami et al. [6] to 

predict the arousal and valence scores from the video data. 

Previous methods [2, 4, 9] have shown the benefits of using 

recurrent neural networks (RNNs) to improve performance, 

however their methods were trained on hand-crafted features (e.g., 

LGBP-TOP). Recent evidence from various areas of computer 

vision including emotion recognition [5, 7] has shown how 

learned feature representations like convolutional neural networks 

(CNNs) can achieve superior performance to hand-crafted 

features. Despite these findings, few works [1, 3] have considered 

the merit of passing CNN features as input to the RNN.Our model 

first trains a single frame CNN to predict the output label. The 

pre-trained network is then used as a frame-wise feature extractor 

in order to generate input for an RNN.  

The evaluation criteria for the AVEC Emotion Challenge are 

dependent upon an estimation of the subject’s arousal and valence 

states as a function of time.  Various fusion approaches [34, 35] 

have been applied to this challenge, including state space 

approach such as Kalman Filtering [12-14] and Particle Filtering 

[14].  Kalman Filters are the optimal solution to the recursive 

linear systems estimation problem where process and 

measurement noise are Gaussian [11], and are utilized in our 

score fusion approach. 

1.1 RECOLA Dataset 
The Remote Collaborative and Affective Interactions (RECOLA) 

database [15] provides the dataset for the AVEC 2016 Emotion 

Challenge [10]. The corpus contains multimodal signals–audio, 

video, electro-cardiogram (ECG), and electro-dermal activity 

(EDA)–recorded synchronously from 27 French-speaking 

subjects. The subjects have French, Italian or German 

nationalities to provide some diversity in the expression of 

emotion.  The 27 subjects were broken into three groups of 9 

different subjects each: a train (TRAIN) set, a development 

(DEV) set, and a test (TEST) set. 

Ground-truth labeling of the corpus has been performed by 

six gender balanced French-speaking assistants. Time-continuous 

ratings of emotional arousal and valence measures are recorded 

using a 40-msec frame. The corpus provides inter-rater reliability 

measured by the intra-class correlation coefficient and the 

Cronbach’s α. Ratings are concatenated over all subjects. The 

root-mean-square error (RMSE), the Pearson Correlation 

Coefficient (CC), and the Concordant Correlation Coefficient 

(CCC) values are averaged over all possible pair of raters. In 

particular, the CCC is chosen as the emotion challenge measure 

The rest of this paper is organized as follows. Section 2 

provides an overview of the system architecture.  Next, we present 

technical overviews of our audio (Section 3), video (Section 4), 

physiological (5), and fusion (Section 6) approaches.  This 

includes descriptions of our data processing pipelines, features, 

and machine learning approaches for training arousal and valence 

regressors.   Section 7 reports our results for an evaluation on the 

AVEC Emotion Challenge development set and makes 

comparisons with the AVEC baseline results.  Section 8 provides 

concluding remarks for this work.   

2. MITLL-UIUC AVEC ARCHITECTURE 
An architectural overview for the channel-level processing of our 

emotion recognition system for AVEC 2016 is illustrated in 

Figure 1. Our approach is to integrate multiple machine learning 

pipelines as well as several different data input processes. Our 

system takes as input precomputed audio, video, and 

physiological features from the AVEC 2016 corpus.  

 

Figure 1. Emotion Recognition System Architecture 

 

Sections 3-5 will discuss the specifics of each of these pipelines, 

while Section 6 will discuss how to fuse the outputs of each of 

these systems into a single fused estimate of emotional state. 

 

3. AUDIO PROCESSING 
 

3.1 Overview 
For the audio channel, four different sets of audio features were 

considered for our system, which are discussed later in this 

section: 

1. Baseline AVEC features [10]. 

2. MFCC features. 

3. SDC features 

4. Prosody-based audio features. 

For each of these audio feature sets, higher-level features are 

extracted.  Our approach is principled in statistical machine 

learning and discussed in greater detail later in this section. In 

particular, we employ SVM-based regression. We have 

implemented high-level feature learning, namely sparse coding, 

on both the precomputed and extracted multimodal features. This 

is due to our hypothesis that regression on the learned high-level 

feature vectors should be more beneficial to emotion recognition 

than regressing directly on the raw features.    

Another important aspect of our system is the early and late 

fusion. Since we allow multiple feature formats, it is natural to 

integrate these features before a regression algorithm. This is 

known as early fusion. Also, since we implement multiple 

regression algorithms, it makes sense to combine their different 

regression outputs in a complementary way for the overall 



improvement in prediction. This late fusion comprises our 

system’s post-processing. 

3.2 Audio Feature Extraction 

3.2.1 MFCC Feature Extraction 
MFCCs of speech frames are computed using a mel-scale 

filterbank. We extract 20-dimensional cepstral coefficients with a 

sliding Hamming window that takes in a 20-msec speech frame. 

The Hamming window is shifted forward with a 10-msec frame 

rate, resulting in a 50% overlap between the consecutive 

windowed frames.  In addition, we extract 20-dimensional delta 

cepstral coefficients. The final feature vectors have 40 dimensions 

formed by stacking the cepstral and delta cepstral coefficients. 

3.2.2 SDC  Feature Extraction 
We perform the shifted delta cepstral feature extraction using 

a spectral-based technique by Torres et al. [28]. Speech is 

analyzed with a Hamming window of 20-msec duration at a 10-

msec frame rate. The windowed speech waveforms pass through a 

mel-scale filterbank and RASTA filtering with per-utterance 

normalization to zero mean and unit variance. The SDC 

coefficients are calculated using the 7-1-3-7 scheme [19]. 

Concatenating with static cepstra, the spectral features extracted 

from speech form a 56-dimensional vector.  

3.2.3 Prosody Feature Extraction      
Using our audio/speech tools, we extract audio features from the 

wave files provided in the corpus. The audio preprocessing used 

in acoustic feature extraction involved estimation of low-level 

crosstalk in the signal. To isolate regions in which the person of 

interest is speaking, a simple energy-based method was used as 

follows.  First, the absolute value of the signal is raised to the 1/3 

power (an approximation to auditory loudness processing used 

Todd and Brown [29]) and convolved with a 100 ms Gaussian 

window. The result is normalized to have a maximum value of 1 

and, after informal analysis a threshold of 0.45 was applied to 

indicate low-energy regions of the audio. Finally, the cross talk 

regions were estimated as contiguous regions of detected low-

energy that were greater than 150ms. Subsequent acoustic 

analyses of the individual’s speech do not consider these crosstalk 

regions. Rather, for feature time instants that lie within these 

crosstalk regions, nearest neighbor interpolation was performed. 

The acoustic analyses follow a simple, interpretable 

framework similar to the ideas in [32].  Features are based on 

vocal effort, variations in intonation and speaking rate. First, 

vocal effort is captured by loudness and spectral tilt. The loudness 

is the total loudness output from the perceptual evaluation of 

audio quality (PEAQ) standard [25]. The spectral tilt is captured 

with the low order cepstral coefficients (CC0, CC1, and CC2) 

from a True envelope analysis [26]. The corresponding features 

are the mean loudness and cepstral coefficients in a 3 second 

trailing time interval with a 40ms step (to match challenge scoring 

conditions). Second, variations in intonation are captured by the 

range and standard deviation of pitch within these 3 second 

trailing analysis windows. The pitch is extracted using Praat and 

the top and bottom 5% of the values are removed to mitigate 

doubling and halving effects. The range (Rf0) and standard 

deviation (Sf0) of the (log) pitch form the intonation variation 

features. Finally, in the absence of phonetic alignments, an 

acoustic measure for speaking rate was estimated by counting the 

mean number of peak nonstationarities over the 3 second trailing 

window intervals. Peak nonstationarities are detected from the 

measure described in [27], smoothed with an 80 ms Gaussian 

window (to limit any variation within individual phones, e.g. sub 

50ms). Together, the loudness, low order cepstral, pitch variation 

and acoustic speaking rate features represent a set of simple, 

interpretable measures that inform the emotion prediction.  

3.3 High-level audio feature learning 
We adopt a semi-supervised approach that uses an unsupervised 

method, namely sparse coding, followed by a rather simplistic 

linear regression. The premise of unsupervised learning is to 

figure out a useful representational mapping by running through 

unlabeled and unbiased (e.g., uniform mix of various ground-truth 

labels) examples.  To avoid overfitting resulting from inevitably 

many learned features; we perform max or average pooling before 

regression. 

3.3.1 Sparse coding 
Sparse coding aims to learn an efficient data representation 

using a small number of basis vectors. Given a data input x ∊ RN, 

sparse coding solves a representation y ∊ RK (i.e., sparse feature 

vector of x) while simultaneously updating the dictionary D ∊ 

RNxK of K basis vectors in the L1-regularized optimization: 

idtsyDyx i
yD

 ,1..min
21

2

2,
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where di is the ith dictionary atom in D, and λ is the penalty that 

induces a sparse solution y for a given x. We note that the sparse 

coding dictionary is an overcomplete matrix, meaning K > N. 

Hence, the solution y is larger in dimensionality than the input x, 

but only S << N elements in y are nonzeros. Sparse coding can 

alternatively be based on the L0-regularization, although the 

optimization problem that minimizes the L0 pseudo-norm of a 

solution in general is known to be intractable. We use the least 

angle regression (LARS) algorithm for solving the sparse coding 

problem and Mairal’s online dictionary learning method [30].  

3.4 Regression methods 
We use a linear support vector machine (SVM) to perform the 

regression task for arousal and valence. Under this regression 

framework, we optimize the following:  

2

2
1min w  

  tbxwandbxwtts ,,..  

where w is the regression weight applied to an input x for 

regression target t within a margin parameter ξ. Note the bias unit 

b for the regression. Specifically, we consider the L2-regularized 

L2-loss linear SVM with a unit bias. The SVM complexity 

parameter has been chosen between 10–5 and 1.  

We also use support vector regression (SVR). There are two 

commonly used versions of SVM regression, namely -SVR and 

-SVR. The original SVM formulations for regression use the 

cost parameter C with penalty  for the points that are incorrectly 

predicted. An alternative version of the SVM regression applies a 

slightly different penalty . The  value represents an upper 

bound on the fraction of training examples that are errors 

(significantly deviated predictions) and a lower bound for the 

support vector data points. Nevertheless, the same optimization 



problem is solved for either case. We have empirically decided to 

go with -SVR.  

4. VIDEO PROCESSING 

4.1 Regression using video data 

4.1.1 Single Frame Regression CNN 
We first train a CNN on a single frame to regress the output label. 

The CNN has 3 convolutional layers consisting of 64, 128, and 

256 filters respectively, each of size 5x5. The first two 

convolutional layers are followed by a 2x2 max pooling while the 

third layer is followed by quadrant pooling. After the 

convolutional layers is a fully-connected layer with 300 hidden 

units and a linear regression layer to estimate the arousal/valence 

label. All layers save the last one use a rectified linear unit 

(ReLU) as the nonlinearity function. Our cost function is the mean 

squared error (MSE). All of our CNNs were trained using 

stochastic gradient descent with batch size of 128, momentum 

equal to 0.9, weight decay of 1e-5, and a constant learning of 

0.01. All of our CNN models were trained using the anna software 

library2. 

Prior to passing the video frame to the CNN, we first detect the 

face in each video frame using face and landmark detector in 

Dlib-ml [8]. Frames where the face was not detected were 

dropped. Their scores are later computed by linearly interpolating 

the scores from adjacent frames. We then use the detected 

landmarks to normalize the eye and nose locations across faces. 

We apply mean subtraction and contrast normalization prior to 

passing each face image through the CNN.  

4.1.2 CNN Features as input to an RNN 

In order to incorporate temporal information, we have the CNN 

act as a feature extractor for each video frame and use the 

resulting feature representation as inputs to an RNN. Specifically, 

we fix all of the CNN parameters and remove the regression layer. 

This way, when a frame is passed to the CNN, we extract a 300 

dimensional vector from the fully-connected layer. Then, for a 

given time t, we consider T frames from the past (i.e. [t-T, t]). We 

pass each frame from time t-T to t to the CNN and extract T 

vectors in total, each of size 300 dimensions. Each of these 

vectors is then passed as input (xt) to a node (ht) of the RNN. The 

hidden state (ht) is computed as the sum of the input via the input 

weight matrix (Wx) and the previous hidden state via the recurrent 

matrix (Wh) and a bias (b). The sum is then passed through a 

nonlinearity (f).  Each hidden state in the RNN then regresses the 

output label (ot).  Once again we use the mean squared error 

(MSE) as our cost function during optimization. 

 

1( )t x t h th f W x W h b    

t o to W h  

Our CNN+RNN model has a single layer RNN with 100 hidden 

units and a temporal window of size T=100 frames. The model we 

use for predicting arousal initializes its weights using a Normal 

distribution, has biases equal to 0, and uses a hyperbolic tangent 

(tanh) nonlinearity. In contrast, our model for predicting valence 

initializes its weights using a Uniform distribution, has no bias, 

and uses a rectified linear unit (ReLU) nonlinearity. 

                                                                 

2 https://github.com/ifp-uiuc/anna 

Like our single frame CNN models, our RNN models are trained 

using stochastic gradient descent with a constant learning rate of 

0.01, a batch size of 128 and momentum equal to 0.9. All of the 

RNNs in our experiments were trained using the Lasagne library.3 

 

5. PHYSIOLOGICAL SENSORS 
When considering the physiological sensor modalities (ECG, 

HRHRV, EDA, SCR, SCL), we used the features extracted by the 

challenge organizers [10]. We elected to use the provided baseline 

predictions for the ECG, SCR, and SCL features and for the 

HRHRV and EDA features we trained a Long Short Term 

Memory network (LSTM) [31], to perform the regression 

operation.  

An LSTM is comprised of a series of cells, each of which has an 

internal state (ct) that is updated based on the current input (xt) 

and the previous cell state (ct-1). The network then determines 

how much the previous cell state and the current input contribute 

to the new cell state using gates. The forget gate (ft) calculates a 

value between 0 and 1 using a sigmoid function (σ), which 

determines the contribution of the previous cell state (ct-1). The 

input gate (it) performs the same operation, but for the current 

input (xt). The equations for these operations are shown below: 
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1 1
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The model then uses the cell state (ct) to compute its output 

representation for time t (ht). The current cell state’s contribution 

is determined by an output gate (ot). 

1( )

tanh( )

t xo t ho t co t o

t t t

o W x W h W c b

h o c

    

 
 

In our experiments, we trained single layer LSTM networks. For 

the HRHRV features, our networks had 50 hidden units and used 

a window length of 10 samples. Our arousal model normalized the 

input data on a per-subject basis and used a constant learning rate 

of 0.01, while our valence model normalized the input data using 

all of the subjects in the training set and also had a constant 

learning rate of 0.001.  

For the EDA features, our models, once again, had 50 hidden 

units. Both models normalized the input data on a per-subject 

basis and used a constant learning rate of 0.01. Our arousal model 

had a window length of 10 samples while our valence model had a 

window length of 50 samples. 

All of the models were trained using stochastic gradient descent 

with momentum. We used a batch size of 128 and momentum 

value of 0.9. All of the LSTM models were trained using the 

Lasagne library.3 

                                                                 

3  https://github.com/Lasagne/Lasagne 
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6. MULTIMODAL FUSION 
The previous audio, video, and physiological sections discussed 

distinct and complementary approaches for estimating emotional 

state as a function of time.  Fusing those emotional measures [34, 

35] into a single fused measure is important for improving overall 

performance and providing robustness in time regions where any 

given sensor may be faulty or does not provide meaningful 

information.  For example, there are regions where the face is not 

visible to support feature extraction for the video modality; 

regions where the person is not speaking to support the audio 

modality; and instances where there is poor contact for various 

physiological modalities.  Our multimodal fusion approach is used 

to combine the estimates from these individual channels AND 

exploit the time-series nature of the data.  Our approach leverages 

a Kalman Filter-based approach [11] for estimating the emotional 

state (x) as a function of time from the information (z) from the 

respective channels using the standard state space framework.  

The state transition equation models the time-varying nature of 

the emotional states, where A is the transition matrix and w(k) is 

the zero-mean process noise perturbing the system: 

        )()()1( kwkAxkx   

The measurement equation relates how the measures (z) from the 

individual measurement channels relate to the underlying 

emotional state (x): 
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The measurement matrix (C) relates the underlying emotional 

states to the measurements and v(k) is the zero-mean measurement 

noise term.  In practice, we found that the measurement noise was 

often non-zero, so a bias term () has been added to the model, 

which has proven useful to the AVEC problem. 

Held out data is used to perform the system identification problem 

of determining the system matrices and noise terms.  Held out 

data from the TRAIN and/or DEV sets are used to model x from 

the gold standard (annotated truth for the emotions) and z from 

the corresponding measurements from the individual channels:   

         NN xxX 1,1   

         NN zzZ 1,1   

In some cases the different z’s may correspond to different sensor 

channels, though may also be different models for the same sensor 

channel (e.g. audio MFCC and audio SDC).  For example, xm 

would correspond to a scalar value representing the emotional 

state (e.g. arousal, valence) for sample m, while zm would 

correspond to a vector of emotional state measurements 

corresponding to each of the applied sensor channels/models.  

This enables us to model the state transition matrix (A) and the 

variance of the process noise (Q): 
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If we make the following substitutions: 
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         CC   

We can rewrite the measurement equation as follows: 

        )(,1,1 kvXCZ NN   

This enables a convenient form factor for deriving the 

measurement matrix (C), the bias term (), and the variance of the 

measurement noise (R): 

           1

,1,1,1,1




T

NN
T

NN XXXZC  

            NN CXZvvR ,1,1cov,cov  

This model provides a useful approach for fusing sensor channel 

measurements per time step, and also models the time-varying 

nature of the model to further improve system performance.  

Backward smoothing [11] was also used to further improve 

system performance by leveraging future measurements to 

improve current estimates. 

 

7. RESULTS 

7.1 Dataset and Evaluation 
The experiments in this section use the RECOLA dataset [15] for 

training and evaluation.  The experiments in this section use the 

evaluation protocol defined in the AVEC 2016 Emotion 

Challenge [10].  Our models were trained on the provided TRAIN 

set and were evaluated on the DEV set.  Note that baseline system 

results are available for this evaluation paradigm [10], as listed in 

Table 1. 

Table 1. Baseline CCC results [10] for AVEC Emotion 

Challenge on the DEV Set 

Modality Arousal Valence 

Audio 0.796 0.455 

Video (appearance) 0.483 0.474 

Video (geometric) 0.379 0.612 

ECG (electrocardiogram) 0.288 0.153 

HRHRV (heart rate & heart rate 

variability) 

0.382 0.293 

EDA (electrodermal activity) 0.077 0.104 

SCL (skin conductance level) 0.101 0.124 

SCR (skin conductance resistance) 0.071 0.110 

Multimodal 0.820 0.702 

 

7.2 Audio Results 
We report the emotion prediction performance by the audio 

features only. We have achieved particularly strong performance 



from the MFCC and SDC feature sets, both of which are followed 

by sparse coding. These results exceed the arousal score for the 

baseline system.  For valence, we also achieve the best 

performance for the MFCC and SDC feature sets. We have 

optimized sparse coding for SDC using 256 to 512 dictionary 

atoms with the regularization parameter λ = 0.2.  A linear kernel 

was used for the SVM that performed the back end regression.  

 

Table 2. Performance on AVEC 2016 DEV Set Using only 

Audio Features 

  RMSE PCC CCC 

 

 

Arousal 

Baseline Features 0.138 0.771 0.751 

MFCC Features 0.107 0.846 0.846 

SDC Features 0.123 0.807 0.800 

Prosody Features 0.186 0.718 0.608 

 

Valence 

Baseline Features 0.135 0.441 0.433 

MFCC Features 0.132 0.456 0.450 

SDC Features 0.133 0.445 0.443 

 

7.3 Video Results 
In Table 3, we show how well our CNN+RNN architecture 

performs at predicting the arousal and valence scores of subjects 

in the DEV set. We see that the CNN+RNN does a much better 

job at predicting valence than arousal. This is not surprising as 

many previous works have shown this to be the case. We also see 

that our learned CNN+RNN feature representation outperforms 

the baseline trained on handcrafted video appearance features 

(CCC=0.511 vs. CCC=0.474). 

 

Table 3. CNN+RNN Performance for video appearance on the 

AVEC 2016 DEV Set 

 RMSE PCC CCC 

CNN+RNN 

(arousal) 
0.201 0.415 0.346 

CNN+RNN 

(valence) 
0.107 0.549 0.511 

 

7.4 Physiological Results 
We report the performance on the DEV set for our LSTM models 

trained on the HRHRV and EDA features in Table 4. When 

generating our predictions, we employed the same post-processing 

pipeline used by the challenge organizers [10] which is described 

in [33]. It consists of (i) smoothing with a median filer (ii) 

centering (iii) scaling and, in the case of the EDA features, (iv) 

time-shifting the predictions. Each post-processing step was kept 

and applied to the TEST set if it improved the CCC score on the 

DEV set.  We see that by using an LSTM we achieve comparable 

performance with baseline when estimating arousal and improve 

performance considerably when estimating valence. The reason 

for the marked improvement in valence may be due to the fact that 

predicting valence requires more temporal information (longer 

window lengths), thus, having a model that explicitly models the 

temporal dynamics of the features (LSTM) is preferable to a 

model that considers the time window all at once. 

 

Table 4. LSTM Performance for physiological sensors on the 

AVEC 2016 DEV Set. 

  RMSE PCC CCC 

 

Arousal 

HRHRV 0.218 0.407 0.357 

EDA 0.250 0.089 0.082 

 

Valence 

HRHRV 0.117 0.412 0.364 

EDA 0.124 0.267 0.177 

 

7.5 Multimodal Results 
Our multimodal system fuses the emotional states derived from 

the individual audio, video, and physiological sensors discussed 

in the previous subsections using the Kalman Filter framework 

discussed in Section 6.  Models for the transition matrix (A), 

measurement matrix (C), measurement bias (), process noise (Q), 

and measurement noise (R) are estimated from the TRAIN and 

DEV set subjects.  (For DEV set evaluation we have 9 partitions 

of the DEV subjects where we hold out the subject under 

evaluation and use the remaining DEV subjects and all of the 

TRAIN subjects.)  Backward smoothing was found to improve 

performance, as did the bias compensation for the individual 

channels.  The channels fused for arousal and valence for the 

multimodal system include the feature channels discussed in 

Sections 3-5, as well as the AVEC baseline features [10] for video 

appearance, video geometric, and ECG.  We also included a 

sparse coding backend to the baseline video geometric system, as 

we did for the audio channels as discussed in Section 3.  

The arousal and valence results for our multimodal systems are 

contained in Table 5 for both DEV set and TEST set data.  The 

DEV set results are self-reported, while the TEST set results are 

official results from the AVEC Evaluation.  For comparison, 

baseline system performance results [10] are also included in 

Table 5. 

The multimodal results exhibit meaningful improvements over the 

unimodal results, particularly for valence.  They also demonstrate 

significant performance results over the baseline cases for both 

arousal and valence on both the DEV set and TEST set partitions. 

 

Table 5. Multimodal results on the DEV and TEST sets, 

including MITLL-UIUC and Baseline scores 

  RMSE PCC CCC 

(Baseline) 

 

Arousal 

DEV SET 0.103 0.862 0.862 

(0.820) 

TEST SET 0.115 0.774 0.770 

(0.702) 

 

Valence 

DEV SET 0.089 0.751 0.750 

(0.682) 

TEST SET 0.100 0.689 0.687 

(0.638) 

 



8. CONCLUDING REMARKS 
This paper provided an overview of our AVEC 2016 Emotion 

Challenge technical approaches and corresponding results that 

exceeded the CCC baseline results on the TEST set.  The MFCC 

and SDC audio approaches with sparse coding backends provided 

significant performance improvements for arousal on the DEV set 

over the baseline scores.  Likewise, the deeply learned models for 

video appearance, HRHRV, and EDA provided significant 

performance improvements for valence on the DEV set over the 

baseline scores.  The fusion approach enabled the multi-sensor 

fusion of emotional state while leveraging the time-varying nature 

of the emotional states. 

Near term work includes further refinement to the individual 

sensor channel approaches introduced in this paper.  It will also 

include an improved noise model to account for the non-

stationary nature of the noise in the various sensor channels.  This 

would include the exploitation of speech activity detection (SAD) 

and adjusting the video noise model where the face is 

unobservable. 
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