Project Report ATC-425

# Revised Multifunction Phased Array Radar (MPAR) Network Siting Analysis

J.Y.N. Cho

26 May 2015

# Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Lexington, Massachusetts



Prepared for the Federal Aviation Administration, Washington, D.C. 20591

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161 This document is disseminated under the sponsorship of the Department of Transportation, Federal Aviation Administration, in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

#### TECHNICAL REPORT STANDARD TITLE PAGE

| 1. Report No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2. Government Accession No.                                                             | 3. Recipient's Catalog No.                              |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| ATC-425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                                         |  |  |  |  |
| 4. Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         | 5. Report Date                                          |  |  |  |  |
| Revised Multifunction Phased Array Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dar (MPAR) Network Siting Analysis                                                      | 26 May 2015       6. Performing Organization Code       |  |  |  |  |
| 7. Author(s)<br>John Y.N. Cho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         | 8. Performing Organization Report No.<br>ATC-425        |  |  |  |  |
| 9. Performing Organization Name and Addr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ress                                                                                    | 10. Work Unit No. (TRAIS)                               |  |  |  |  |
| MIT Lincoln Laboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         |                                                         |  |  |  |  |
| 244 Wood Street<br>Lexington, MA 02420-9108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         | 11. Contract or Grant No.                               |  |  |  |  |
| Lexington, MA 02420-9106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                         | FA8721-05-C-0002                                        |  |  |  |  |
| 12. Sponsoring Agency Name and Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                         | 13. Type of Report and Period Covered                   |  |  |  |  |
| Department of Transportation<br>Federal Aviation Administration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                         | Project Report                                          |  |  |  |  |
| 800 Independence Ave., S.W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         | 14. Sponsoring Agency Code                              |  |  |  |  |
| Washington, DC 20591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                         |                                                         |  |  |  |  |
| 15. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                         |                                                         |  |  |  |  |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ned at Lincoln Laboratory, a federally fund<br>gy, under Air Force Contract FA8721-05-C | ded research and development center operated<br>Z-0002. |  |  |  |  |
| 16. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         |                                                         |  |  |  |  |
| As part of the NextGen Surveillance and Weather Radar Capability (NSWRC) program, the Federal Aviation Administration (FAA) is<br>currently developing the solution for aircraft and meteorological surveillance in the future National Airspace System (NAS). A potential<br>solution is a multifunction phased array radar (MPAR) that would replace some or all of the single-purpose radar types used in the NAS<br>today. One attractive aspect of MPAR is that the number of radars deployed would decrease, because redundancy in coverage by single-<br>mission sensors would be reduced with a multifunction system. The lower radar count might then result in overall life cycle cost savings,<br>but in order to estimate costs, a reliable estimate of the number of MPARs is needed. |                                                                                         |                                                         |  |  |  |  |
| Thus this report addresses the question, "If today's weather and aircraft surveillance radars are replaced by a single class of multimission radars, how many would be needed to replicate the current air space coverage over the United States and its territories?" Various replacement scenarios must be considered, since it is not yet determined which of the organizations that own today's radars (the FAA, the National Weather Service (NWS), the different branches of the U.S. military) would join in an MPAR program. It updates a previous study using a revised set of legacy systems, including 81 additional military airbase radars.                                                                                                                                           |                                                                                         |                                                         |  |  |  |  |

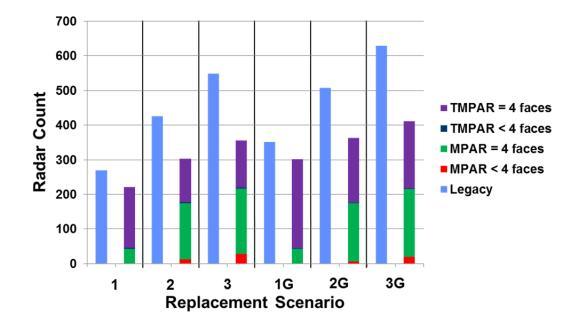
Six replacement scenarios were considered, depending on the radar mission categories. Scenario 1 would replace terminal radars only, i.e., the Airport Surveillance Radars (ASRs) and the Terminal Doppler Weather Radar (TDWR). Scenario 2 would include the Scenario 1 radars plus the long-range weather radar, commonly known as NEXRAD. Scenario 3 would add the long-range aircraft surveillance radars, i.e., the Air Route Surveillance Radars (ARSRs), to the Scenario 2 radars. To each of these three scenarios, we then add the military's Ground Position Navigation (GPN) airbase radars for Scenarios 1G, 2G, and 3G.

We assumed that the new multimission radar would be available in two sizes—a full-size MPAR and a scaled-down terminal MPAR (TMPAR). Furthermore, we assumed that the new radar antennas would have four sides that could be populated by one, two, three, or four phased array faces, such that the azimuthal coverage provided could be scaled from 90° to 360°. Radars in the 50 United States, Guam, Puerto Rico, U.S. Virgin Islands, Guantanamo Bay (Cuba), and Kwajalein (Marshall Islands) were included in the study.

Our analysis results can be summarized in the following bar graph and table.

| 17. Key Words                          |                       | 18. Distribution Statement                         |                  |           |
|----------------------------------------|-----------------------|----------------------------------------------------|------------------|-----------|
|                                        |                       | This document is availa<br>Technical Information 5 |                  |           |
| 19. Security Classif. (of this report) | 20. Security Classif. | (of this page)                                     | 21. No. of Pages | 22. Price |
| Unclassified                           | Unclas                | ssified                                            | 84               |           |

This page intentionally left blank.


#### **EXECUTIVE SUMMARY**

As part of the NextGen Surveillance and Weather Radar Capability (NSWRC) program, the Federal Aviation Administration (FAA) is currently developing the solution for aircraft and meteorological surveillance in the future National Airspace System (NAS). A potential solution is a multifunction phased array radar (MPAR) that would replace some or all of the single-purpose radar types used in the NAS today. One attractive aspect of MPAR is that the number of radars deployed would decrease, because redundancy in coverage by single-mission sensors would be reduced with a multifunction system. The lower radar count might then result in overall life cycle cost savings, but in order to estimate costs, a reliable estimate of the number of MPARs is needed.

Thus this report addresses the question, "If today's weather and aircraft surveillance radars are replaced by a single class of multimission radars, how many would be needed to replicate the current air space coverage over the United States and its territories?" Various replacement scenarios must be considered, since it is not yet determined which of the organizations that own today's radars (the FAA, the National Weather Service (NWS), the different branches of the U.S. military) would join in an MPAR program. It updates a previous study using a revised set of legacy systems, including 81 additional military airbase radars.

Six replacement scenarios were considered, depending on the radar mission categories. Scenario 1 would replace terminal radars only, i.e., the Airport Surveillance Radars (ASRs) and the Terminal Doppler Weather Radar (TDWR). Scenario 2 would include the Scenario 1 radars plus the long-range weather radar, commonly known as NEXRAD. Scenario 3 would add the long-range aircraft surveillance radars, i.e., the Air Route Surveillance Radars (ARSRs), to the Scenario 2 radars. To each of these three scenarios, we then add the military's Ground Position Navigation (GPN) airbase radars for Scenarios 1G, 2G, and 3G.

We assumed that the new multimission radar would be available in two sizes—a full-size MPAR and a scaled-down terminal MPAR (TMPAR). Furthermore, we assumed that the new radar antennas would have four sides that could be populated by one, two, three, or four phased array faces, such that the azimuthal coverage provided could be scaled from 90° to 360°. Radars in the 50 United States, Guam, Puerto Rico, U.S. Virgin Islands, Guantanamo Bay (Cuba), and Kwajalein (Marshall Islands) were included in the study.



#### **Reduction in Number of Radars**

| Scenario | Legacy | MPAR + TMPAR    | Change | % Reduction |
|----------|--------|-----------------|--------|-------------|
| 1        | 270    | 43 + 178 = 221  | -49    | 18%         |
| 2        | 426    | 174 + 129 = 303 | -123   | 29%         |
| 3        | 548    | 217 + 139 = 356 | -192   | 35%         |
| 1G       | 351    | 43 + 258 = 301  | -50    | 14%         |
| 2G       | 507    | 174 + 189 = 363 | -144   | 28%         |
| 3G       | 629    | 215 + 196 = 411 | -218   | 35%         |

For Scenario 1, the reduction in radar count comes from the elimination in coverage overlap of ASRs and TDWRs at TDWR airports. In Scenario 2, additional reduction results from removing the overlap between NEXRADs located near airports and the ASRs at those airports. Even more redundancy can be taken out in Scenario 3, because much of the en route coverage targeted by the ARSRs is already covered by the NEXRAD replacement from Scenario 2. Similar fractional radar count reductions are achieved when GPN sites are added.

Despite the reduction in radar count, the projected coverage volume for weather and aircraft surveillance would increase modestly for the MPAR network. This is an inevitable by-product of constraining ourselves to duplicating the existing coverage for both weather and aircraft surveillance. Comparing legacy to Scenario 3G coverage over all of the air space considered in this study, weather observation coverage would increase from 89% to 91% and aircraft surveillance coverage would improve from 71% to 81%. Peaks in coverage enhancement occur at altitude slices of 2,500 ft AGL for weather (35% to 50%) and 60,000 ft MSL for aircraft (83% to 100%).

In addition to the increase in coverage, the observation performance inside the coverage volume will improve due to the dual-polarization weather measurement and aircraft altitude finding capabilities of MPAR. (In contrast, only the NEXRAD has the former and the ARSR-4 has the latter capability among the legacy radars.) And even though the total radar counts would decrease, overlapping Doppler weather coverage will increase overall, which will benefit echo tops and wind vector determination. Comparing legacy to Scenario 3G over all of the air space considered in this study, overlapping Doppler weather coverage would increase from 59% to 75% and dual-polarization coverage would improve from 84% to 91%.

Terminal aircraft surveillance coverage would be strictly preserved under this MPAR siting scheme. Airports currently equipped with an ASR but no wind-shear observation system would gain wind-shear detection coverage through a TMPAR or MPAR. Airports currently equipped with an ASR but without a nearby NEXRAD would get high-quality dual-polarization Doppler weather data. On average, terminal air spaces will have more overlapping Doppler weather coverage, increased dual-polarization weather radar data, and gain the capability for aircraft altitude estimation.

Finally, low-altitude urban air space coverage will be improved with MPAR for all replacement scenarios. More overlapping Doppler weather radar coverage, better spatial resolution for weather and aircraft surveillance, and, most of all, enhancements in dual-polarization coverage and vertical accuracy of aircraft detection will be obtained compared to the legacy radar network.

This page intentionally left blank.

# **TABLE OF CONTENTS**

|     | Executive Summary                                           | iii |
|-----|-------------------------------------------------------------|-----|
|     | List of Illustrations                                       | ix  |
|     | List of Tables                                              | xi  |
| 1.  | INTRODUCTION                                                | 1   |
| 2.  | ASSUMPTIONS AND METHODOLOGY                                 | 3   |
| 3.  | SITING ANALYSIS RESULTS                                     | 11  |
| 4.  | STATISTICAL ANALYSIS RESULTS                                | 21  |
|     | 4.1 Coverage over En Route Air Space                        | 22  |
|     | 4.2 Coverage over Civil Terminal Air Space                  | 33  |
|     | 4.3 Coverage over Urban Areas                               | 35  |
| 5.  | CONCLUSIONS                                                 | 41  |
| API | PENDIX A: SITE-BY-SITE LISTING OF PROPOSED RADAR DEPLOYMENT | 43  |
|     | Glossary                                                    | 69  |
|     | References                                                  | 71  |
|     |                                                             |     |

This page intentionally left blank.

# LIST OF ILLUSTRATIONS

| Figure<br>No. |                                                                                                                                                                                                                                     | Page |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2-1           | Locations of the legacy radars in the CONUS, Alaska, Guam, Kwajalein, Hawaii, and Puerto Rico/U.S. Virgin Islands/Guantanamo Bay.                                                                                                   | 7    |
| 2-2           | Illustration of MPAR and TMPAR coverage provided by each of the five possible antenna configurations.                                                                                                                               | 9    |
| 3-1           | Total radar count vs. scenario.                                                                                                                                                                                                     | 14   |
| 3-2           | Locations of MPAR (blue) and TMPAR (red) for Scenario 1. Clockwise from top<br>left: Alaska, CONUS, Puerto Rico/Virgin Islands/Guantanamo Bay, Hawaii,<br>Kwajalein, and Guam.                                                      | 15   |
| 3-3           | Locations of MPAR (blue) and TMPAR (red) for Scenario 2. Clockwise from top<br>left: Alaska, CONUS, Puerto Rico/Virgin Islands/Guantanamo Bay, Hawaii,<br>Kwajalein, and Guam.                                                      | 16   |
| 3-4           | Locations of MPAR (blue) and TMPAR (red) for Scenario 3. Clockwise from top<br>left: Alaska, CONUS, Puerto Rico/Virgin Islands/Guantanamo Bay, Hawaii,<br>Kwajalein, and Guam.                                                      | 17   |
| 3-5           | Locations of MPAR (blue) and TMPAR (red) for Scenario 1G. Clockwise from<br>top left: Alaska, CONUS, Puerto Rico/Virgin Islands/Guantanamo Bay, Hawaii,<br>Kwajalein, and Guam.                                                     | 18   |
| 3-6           | Locations of MPAR (blue) and TMPAR (red) for Scenario 2G. Clockwise from<br>top left: Alaska, CONUS, Puerto Rico/Virgin Islands/Guantanamo Bay, Hawaii,<br>Kwajalein, and Guam.                                                     | 19   |
| 3-7           | Locations of MPAR (blue) and TMPAR (red) for Scenario 3G. Clockwise from<br>top left: Alaska, CONUS, Puerto Rico/Virgin Islands/Guantanamo Bay, Hawaii,<br>Kwajalein, and Guam.                                                     | 20   |
| 4-1           | Illustration of percentage coverage missed metric. The blue and red circles represent legacy and MPAR coverages, respectively. The legacy missed percentage is computed by dividing the lower right crescent-shape area by the area |      |

|     | of the red circle. The MPAR missed percentage is calculated by dividing the upper<br>left crescent-shape area by the area of the blue circle.                                                                                                                                                                                                            | 24 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4-2 | CONUS dual-polarization weather coverage at 1,000 ft AGL for (left) legacy and (right) Scenario 3G.                                                                                                                                                                                                                                                      | 32 |
| 4-3 | Height profiles of coverage percentage for minimum detectable weather<br>reflectivity <18 dBZ (upper left), minimum detectable aircraft cross section <3.4<br>dBsm (upper right), Doppler weather coverage overlap $\geq$ 2 (lower left), and dual-<br>polarization weather coverage (lower right). Heights are MSL above 5,000 ft and<br>AGL otherwise. | 32 |
| 4-4 | CONUS map of the civil airports included in this study. Airports served by TDWR are green, airports with WSP are blue, airports with LLWAS only are red, and those without a dedicated wind-shear detection system are black.                                                                                                                            | 35 |
| 4-5 | CONUS population density map.                                                                                                                                                                                                                                                                                                                            | 36 |

# LIST OF TABLES

| Table<br>No. |                                                                    | Page |
|--------------|--------------------------------------------------------------------|------|
| 2-1          | Legacy Radar Characteristics                                       | 5    |
| 2-2          | Assumed MPAR Characteristics                                       | 6    |
| 2-3          | Legacy Radar Count                                                 | 6    |
| 3-1          | Scenario 1: Legacy vs. MPAR/TMPAR Number of Radars                 | 11   |
| 3-2          | Scenario 2: Legacy vs. MPAR/TMPAR Number of Radars                 | 11   |
| 3-3          | Scenario 3: Legacy vs. MPAR/TMPAR Number of Radars                 | 12   |
| 3-4          | Scenario 1G: Legacy vs. MPAR/TMPAR Number of Radars                | 12   |
| 3-5          | Scenario 2G: Legacy vs. MPAR/TMPAR Number of Radars                | 12   |
| 3-6          | Scenario 3G: Legacy vs. MPAR/TMPAR Number of Radars                | 13   |
| 3-7          | Reduction in Number of Radars                                      | 13   |
| 4-1          | Legacy Performance Parameter Coverage Percentage                   | 23   |
| 4-2          | Scenario 2 Performance Parameter Coverage Percentage               | 24   |
| 4-3          | Scenario 3 Performance Parameter Coverage Percentage               | 25   |
| 4-4          | Scenario 2G Performance Parameter Coverage Percentage              | 26   |
| 4-5          | Scenario 3G Performance Parameter Coverage Percentage              | 26   |
| 4-6          | Legacy Low-Altitude Performance Parameter Coverage Percentage      | 27   |
| 4-7          | Scenario 2 Low-Altitude Performance Parameter Coverage Percentage  | 28   |
| 4-8          | Scenario 3 Low-Altitude Performance Parameter Coverage Percentage  | 29   |
| 4-9          | Scenario 2G Low-Altitude Performance Parameter Coverage Percentage | 30   |

| 4-10 | Scenario 3G Low-Altitude Performance Parameter Coverage Percentage   | 31 |
|------|----------------------------------------------------------------------|----|
| 4-11 | Average Terminal Air Space Performance Parameter Coverage Percentage | 33 |
| 4-12 | Legacy Urban Area Coverage Percentage vs. Height                     | 36 |
| 4-13 | Scenario 1 Urban Area Coverage Percentage vs. Height                 | 37 |
| 4-14 | Scenario 2 Urban Area Coverage Percentage vs. Height                 | 37 |
| 4-15 | Scenario 3 Urban Area Coverage Percentage vs. Height                 | 38 |
| 4-16 | Scenario 1G Urban Area Coverage Percentage vs. Height                | 38 |
| 4-17 | Scenario 2G Urban Area Coverage Percentage vs. Height                | 39 |
| 4-18 | Scenario 3G Urban Area Coverage Percentage vs. Height                | 39 |
| A-1  | ASR Sites                                                            | 43 |
| A-2  | TDWR Sites                                                           | 52 |
| A-3  | NEXRAD Sites                                                         | 54 |
| A-4  | CARSR Sites                                                          | 61 |
| A-5  | ARSR-4 Sites                                                         | 64 |
| A-6  | GPN Sites                                                            | 65 |

#### **1. INTRODUCTION**

As weather and aircraft surveillance radars age, they must be sustained through service life extension programs or be replaced. One possibility for the latter option is to replace the current singlemission radars with scalable multifunction phased array radars (MPARs) (Benner et al., 2009). State-ofthe-art active phased array systems have the potential to provide improved capabilities such as earlier detection and better characterization of hazardous weather phenomena, 3D tracking of noncooperative aircraft, better avoidance of unwanted clutter sources such as wind farms, and more graceful performance degradation with component failure. As the U.S. aviation community works toward realizing the Next Generation Air Transportation System (NextGen), achieving improved capabilities for aircraft and weather surveillance becomes critical, because stricter observation requirements are believed to be needed (Souders et al., 2010). Hence, the Federal Aviation Administration (FAA) is considering the MPAR as a possible solution to their NextGen Surveillance and Weather Radar Capability (NSWRC).

Cost is a major hurdle to the deployment of a modern phased array radar network. One way of lowering the overall cost is to reduce the total number of radars. Because of the overlap in coverage provided by the current radar networks, a unified MPAR replacement network can potentially decrease the total number of radars needed to cover the same airspace. This problem was previously studied by MIT Lincoln Laboratory. Since then, however, the FAA has revised the list of Airport Surveillance Radars (ASRs) that would be candidates for replacement by MPAR. Furthermore, it was decided that the military-equivalent airbase surveillance systems should be included in separate scenarios as the military services may join as stakeholders for MPAR. Therefore, this study revisits the siting analysis using an updated list of legacy radars. The aim is to provide an estimate of the minimum number of MPARs needed to replace the existing radar coverage. We will also provide a statistical compilation of legacy versus MPAR coverage for various observational performance parameters.

This page intentionally left blank.

# 2. ASSUMPTIONS AND METHODOLOGY

The assumptions made in the analysis has not changed since the previous study except for the change in the list of FAA ASRs and the inclusion of military airbase radars, but we will list them here for easy reference.

- Legacy radars included in the study were the ASRs, the military-equivalent Ground Position Navigation (GPN) systems, Air Route Surveillance Radars (ARSRs), Terminal Doppler Weather Radar (TDWR), and Next Generation Weather Radar (NEXRAD).
- Only operational radars were included (e.g., no support and training facility radars).
- Domain of interest was all 50 states plus U.S. territories that have any relevant legacy radars. (No radars under foreign control were included.)
- Relevant legacy radars in domain of interest were included regardless of owner (Department of Commerce, Department of Defense, and Department of Transportation).
- Study was conducted relative to existing weather and surveillance requirements (not future NextGen requirements).
- Secondary radars and their requirements were not included.
- Performance characteristics of the legacy radars were based on completion of all ongoing and planned upgrades.
- Two sizes of MPARs were used: full size (MPAR) and terminal (TMPAR).
- MPAR/TMPAR sites were limited to existing radar sites.
- Antenna heights were constrained to the height of the existing antenna.
- Current operational elevation angle coverages were used for the legacy radars. MPAR/TMPARs were assumed to have 0° to 60° elevation coverage when sited at non-ARSR-4 sites. At ARSR-4 sites, MPAR/TMPAR coverage was assumed to extend from -7° to 60° elevation.
- MPARs and TMPARs were assumed to be scalable in azimuthal coverage. In other words, the basic building block would be a planar array covering 90° in azimuth. Thus, an MPAR could have one to four faces with corresponding azimuthal coverage of 90°, 180°, 270°, and 360°.

Terrain and structural blockages were calculated using the Shuttle Radar Tomography Mission (SRTM) Level 1 data as the primary elevation data source. Where SRTM was unavailable, we used the Level 1 Digital Terrain Elevation Data (DTED). Beam propagation geometry assumed the 4/3-Earth-radius model to account for atmospheric refraction (e.g., Skolnik, 2008). Radar coverage parameters were computed at 1/120 deg (lat/lon) horizontal and variable vertical resolution (100 ft for 0–10,000 ft MSL,

1,000 ft for 11,000–25,000 ft MSL, 5,000 ft for 30,000–70,000 ft MSL, and 10,000 ft for 80,000–100,000 ft MSL). Radar range coverage extent was determined by the instrumented range or the range at which the target sensitivity equaled the threshold value, whichever was shorter. We chose a sensitivity threshold of  $1 \text{ m}^2$  for aircraft and 5 dBZ for weather. (The exact values used are not crucial as this is a comparative analysis.)

Note, also, that we used the top-of-tower height for the antenna height. The actual antenna feed height for a mechanically scanned dish will be a bit higher than the tower top and vary somewhat with elevation angle. The phase centers of the MPAR and TMPAR antennas would also be slightly higher than the tower top by some still undetermined amount. For the purposes of this comparative coverage analysis, the key factor is to use a consistent metric for all radars, which the tower height gives.

The legacy radar characteristics are listed in Table 2-1, while the assumed MPAR parameters are shown in Table 2-2. The GPN models are the military equivalent of the ASR series (GPN-20 = ASR-8, GPN-27 = ASR-9, GPN-30 = ASR-11). The NEXRAD has recently been upgraded with dual-polarization capability (Istok et al., 2009), while the TDWR has been retrofitted with an enhanced radar data acquisition system (Cho and Weber, 2010). The ARSR-1, ARSR-2, ARSR-3, and the military-equivalent Fixed Position System (FPS) series are being updated through the Common ARSR (CARSR) program (Wang et al., 2009). Thirty-four out of 122 FAA ASR-9s have the Weather Systems Processor (WSP), which enables Doppler measurements for wind-shear detection (Weber, 2002). Other references for the legacy systems are as follows: NEXRAD (ROC, 2010), TDWR (Michelson et al., 1990), ASR-9 (Taylor and Brunins, 1985), ASR-11 (Raytheon, 1999), and ARSR-4 (Lay et al., 1990). Note that the formal name for NEXRAD is the Weather Surveillance Radar-1988 Doppler (WSR-88D).

#### **TABLE 2-1**

## Legacy Radar Characteristics

| Parameter                                         | NEXRAD                                                                                           | TDWR                                                                                                  | ASR/GPN                          | CARSR                                                                                | ARSR-4                                       |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------|
| Minimum<br>Observation Range                      | 1 km                                                                                             | 0.5 km 0.93 km                                                                                        |                                  | 9.3 km                                                                               | 9.3 km                                       |
| Maximum<br>Observation Range                      | 460 km                                                                                           | 90 km <sup>a</sup>                                                                                    | 110 km                           | 444 km                                                                               | 463 km <sup>b</sup> ,<br>246 km <sup>c</sup> |
| Maximum<br>Observation Range<br>(Wx Doppler)      | 300 km                                                                                           | 90 km                                                                                                 | 110 km <sup>d</sup>              | N/A                                                                                  | N/A                                          |
| Range Resolution<br>(Wx)                          | 0.25 km                                                                                          | 0.15 km                                                                                               | 0.93 km,<br>0.15 km <sup>d</sup> | 0.46 km                                                                              | 0.46 km                                      |
| Range Resolution<br>(A/C)                         | N/A                                                                                              | N/A                                                                                                   | 0.23 km                          | 0.23 km                                                                              | 0.23 km                                      |
| Maximum Elevation<br>Angle                        | 19.5°                                                                                            | 60°                                                                                                   | N/A <sup>e</sup>                 | N/A <sup>e</sup>                                                                     | 5° <sup>b</sup> , 30° <sup>c</sup>           |
| Elevation Angle<br>Resolution (Wx)                | 1° (0 < EL ≤6.2°)<br>1.3° (6.2 < EL ≤ 10°)<br>2° (10 < EL ≤ 14°)<br>2.8° (EL > 14°) <sup>f</sup> | 0.6° (0 < EL ≤ 1°)<br>0.7° (1 < EL ≤ 2.6°)<br>1.6° (2.6 < EL ≤ 6.1°)<br>4.9° (EL > 6.1°) <sup>9</sup> | N/A                              | N/A                                                                                  | N/A                                          |
| Azimuthal Resolution<br>(Wx) <sup>h</sup>         | 1° (0 < EL < 2°)<br>1.4° (EL ≥ 2°)                                                               | 1.2°                                                                                                  | 2°, 2.5° <sup>d</sup> 1.7°       |                                                                                      | 1.7°                                         |
| Azimuthal Resolution (A/C)                        | N/A                                                                                              | N/A                                                                                                   | 1.5°                             | 1.5°                                                                                 | 1.5°                                         |
| Vertical RMS<br>Accuracy at 175 nmi<br>(A/C)      |                                                                                                  |                                                                                                       | N/A                              | N/A                                                                                  | 3,000 ft                                     |
| Minimum Detectable<br>Wx Reflectivity at<br>20 km | –18 dBZ                                                                                          | –19 dBZ <sup>i</sup> –1 dBZ <sup>j</sup>                                                              |                                  | –8 dBZ                                                                               | –9 dBZ                                       |
| Maximum A/C<br>Detection Range <sup>k</sup>       | N/A                                                                                              | N/A                                                                                                   | 100 km<br>(1 m <sup>2</sup> )    | 430 km (2.2 m <sup>2</sup> ,<br>FPSs)<br>380 km (2.2 m <sup>2</sup> ,<br>ARSR-1,2,3) | 420 km<br>(1 m <sup>2</sup> )                |

<sup>a</sup>Surface scan has maximum reflectivity range of 460 km.

<sup>b</sup>Low stack antenna beams.

<sup>c</sup>High stack antenna beams. <sup>d</sup>For WSP output.

<sup>6</sup>For WSP output.
 <sup>6</sup>Fixed elevation fan beam.
 <sup>f</sup>From elevation beam spacing of Volume Coverage Pattern (VCP) 11.
 <sup>9</sup>From elevation beam spacing of monitor volume scan.
 <sup>h</sup>Includes scan broadening and data windowing effects.
 <sup>i</sup>Sensitivity Time Control (STC) limits minimum detectable reflectivity to –26 dBZ for range <9 km.</li>
 <sup>j</sup>Sensitivity drops by 17 dB for range <12 km due to short pulse mode on ASR-11/GPN-30.</li>
 <sup>k</sup>Detection range varies with elevation angle.

#### **TABLE 2-2**

#### **Assumed MPAR Characteristics**

| MPAR                       | TMPAR                                                                                        |
|----------------------------|----------------------------------------------------------------------------------------------|
| 0.5 km                     | 0.5 km                                                                                       |
| 460 km                     | 90 km                                                                                        |
| 0.15 km                    | 0.15 km                                                                                      |
| 0.23 km                    | 0.23 km                                                                                      |
| 60°                        | 60°                                                                                          |
| 1°                         | <b>2</b> °                                                                                   |
| 1°                         | <b>2</b> °                                                                                   |
| 1°                         | <b>2</b> °                                                                                   |
| 1,900 ft                   | 3,700 ft                                                                                     |
| –19 dBZ                    | –1 dBZ                                                                                       |
| 420 km (1 m <sup>2</sup> ) | 100 km (1 m <sup>2</sup> )                                                                   |
|                            | 0.5 km<br>460 km<br>0.15 km<br>0.23 km<br>60°<br>1°<br>1°<br>1°<br>1°<br>1,900 ft<br>-19 dBZ |

<sup>a</sup>These are approximate values. They will actually vary with scan angle.

<sup>b</sup>Assumes 1:10 monopulse improvement in intrabeam accuracy.

<sup>c</sup>These values are for horizon scans. They will be degraded with increasing elevation angle due to deliberate transmit beam widening that speeds up volume scan rates.

MPAR sensitivity at 0° elevation angle was assumed to equal the maximum ARSR-4 aircraft sensitivity and the TDWR's weather sensitivity (i.e., the best weather sensitivity of the legacy radars). TMPAR sensitivity at 0° elevation angle was assumed to equal the maximum ASR-9 aircraft sensitivity and a weather sensitivity of 7 dBZ at 50 km. The MPAR/TMPAR sensitivities were degraded with increasing elevation angle to account for the deliberate beam spoiling that decreases the volume scan time while maintaining the required power on target. They were also assumed to operate in a long pulse/short pulse mode, with the latter covering the short-range blind zone of the former. The transition range between the two modes was 6 km for MPAR and 2 km for TMPAR. The minimum detectable weather reflectivity for the short pulse mode was -14 dBZ at 6 km for MPAR and -14 dBZ at 2 km for TMPAR.

The numbers of legacy radars by type are given in Table 2-3, and maps of their locations are displayed in Figure 2-1. Note that of the 81 GPN sites, 16 actually have ASRs. The "GPN" categorization simply indicates primary ownership by the military. (None of the ASR sites have GPN radars.)

# TABLE 2-3

Legacy Radar Count

| NEXRAD | TDWR | ASRs | GPNs | CARSR | ARSR-4 | Total |
|--------|------|------|------|-------|--------|-------|
| 156    | 45   | 225  | 81   | 79    | 43     | 629   |

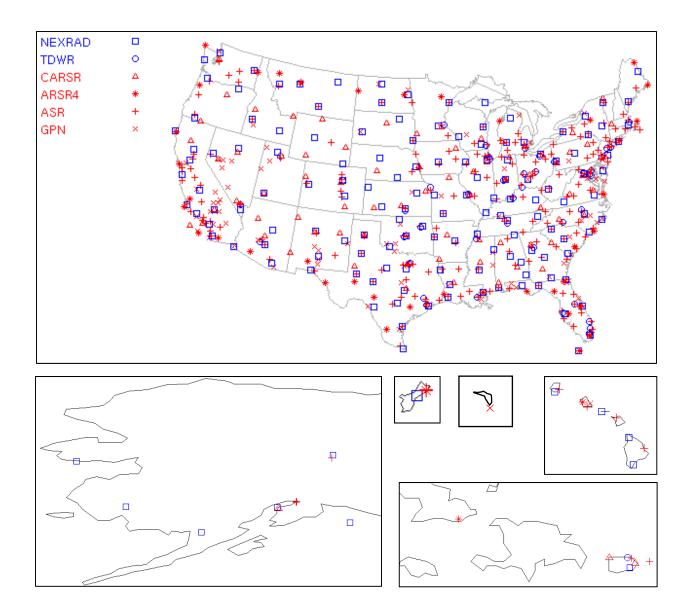



Figure 2-1. Locations of the legacy radars in the CONUS, Alaska, Guam, Kwajalein, Hawaii, and Puerto Rico/U.S. Virgin Islands/Guantanamo Bay.

Six replacement scenarios were examined. Scenario 1 had terminal radars only (ASRs and TDWRs). Scenario 2 included terminal radars and national-scale weather radars (ASRs, TDWRs, and NEXRADs). Scenario 3 had terminal radars, national-scale weather radars, and long-range aircraft surveillance radars (ASRs, TDWRs, NEXRADs, CARSRs, and ARSR-4s). Scenarios 1G, 2G, and 3G

added the GPN sites to the first three replacement scenarios. In terms of stakeholders corresponding to the radars to be replaced, Scenario 1 is the FAA only, Scenario 2 is primarily the FAA and the National Oceanic and Atmospheric Administration (NOAA), and Scenario 3 adds the Air Force to the mix. For Scenarios 1G, 2G, and 3G, all the armed services branches are added to the Scenarios 1, 2, and 3 stakeholder compositions, respectively.

The basic procedure for selecting MPAR and TMPAR sites was to (1) compute the 3D weather and aircraft surveillance coverage provided by the legacy radars for each scenario, (2) start with a trial placement of new radars, (3) compare the new coverage with the legacy coverage, (4) add or subtract radars to better match the coverages, and (5) repeat steps 3 and 4 until coverage redundancy was minimized but legacy coverage was maintained.

For terminal area coverage, we took the conservative approach of essentially requiring every airport with an ASR to have at least a TMPAR, and TDWR airports to be covered by MPARs. The latter radars were sited at the airport ASR and not the TDWR off-airport location, so that low-altitude terminal aircraft coverage would not be compromised. This arrangement, however, moves the cone of silence over the airport, which may affect the ability of the microburst detection algorithm to mitigate false alarms by screening for storm-like reflectivity aloft (Huang et al., 2009). Fortunately, we were able to show that the cone of silence would be covered adequately by neighboring radars for this purpose (Cho et al., 2013). The choice of MPAR (instead of TMPAR) to cover TDWR airports stems from the uncertainty of whether a TMPAR would be able to match the wind-shear detection performance of TDWR. A recent study suggests that, for microburst detection, a TMPAR may be an acceptable replacement for TDWR at wet microburst sites; however, the range of gust front detection and tracking would be much worse than with a TDWR, so a full-size MPAR should be placed at sites that experience dry microbursts.

For Scenario 2, we started with the Scenario 1 placements and added MPARs at NEXRAD sites that were not close to airports already covered in Scenario 1. We then focused on the 5,000 ft AGL level in weather coverage, because that is the level at which the NEXRAD network provides a nearly seamless coverage over flat terrain.

In Scenario 3, we began with the Scenario 2 placements and filled in gaps observed in en route aircraft coverage. Sometimes NEXRAD locations would be swapped with CARSR sites if better overall coverage could be generated. Along the national perimeter we preferentially used ARSR-4 sites over nearby NEXRAD sites to ensure that both low-altitude (down to 100 ft AGL) and long-range national border surveillance would remain unscathed as facilitated by the high-elevation location and look-down capability provided by the ARSR-4 sites. For the interior weather coverage, we again used the 5,000 ft AGL level coverage as an initial metric and the 10,000 ft level for en route aircraft coverage.

For Scenarios 1G, 2G, and 3G, we started with the respective scenarios without the GPN sites, then added TMPARs to the GPN sites. Wherever a GPN site could also be used to replace one of the MPAR sites, the MPAR site was removed and the TMPAR at the GPN site was replaced by an MPAR. The

resulting coverages were checked and the siting adjusted if necessary in the manner described above until an optimal solution was reached.

At times, two sites that were very close together could not be replaced by one radar, because a large difference in altitude combined with high-relief terrain prevented the replication of the legacy coverage. In other instances, wedge-shaped coverage gaps were observed for which a full 360° azimuth radar would not be necessary. Unlike the legacy radars that mechanically rotate a single antenna in azimuth, the MPAR and TMPAR could be scaled down in coverage and cost by having less than the full number of antenna faces needed to observe all azimuths. Thus, we made the assumption that the new radars would be composed of planar antenna arrays that would cover a 90° azimuth sector each, and that five different configurations would be available (Figure 2-2). In the site placement procedure, we allowed the use of these five configurations positioned at any azimuthal orientation.

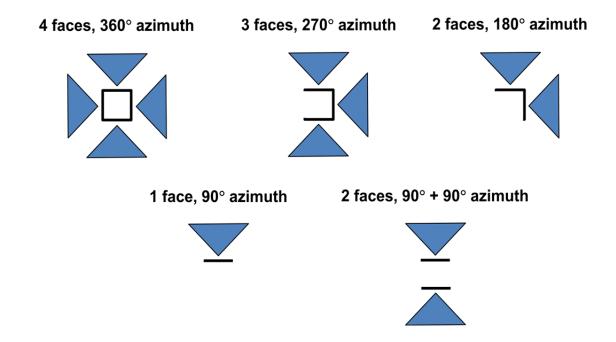



Figure 2-2. Illustration of MPAR and TMPAR coverage provided by each of the five possible antenna configurations.

This study is only a first-order siting analysis, used mainly for the purposes of planning and cost estimation. If the MPAR solution to NSWRC is officially adopted, then a more careful site-by-site analysis would have to be conducted for optimal (and feasible) placement of each radar.

This page intentionally left blank.

### **3. SITING ANALYSIS RESULTS**

By constraining ourselves to duplicating the existing coverage for both weather and aircraft surveillance, the new multifunctional coverage inevitably improves upon the legacy coverage. This is because the existing weather and aircraft surveillance coverages do not occupy exactly the same airspace, and the multifunctional coverage is essentially the union of the two disparate volumes. Detailed statistical comparisons between legacy and proposed MPAR coverages are given in Section 4. In this section, we present the proposed siting results.

The site-by-site placement of MPARs and TMPARs, and the number of antenna faces on each, are tabulated in Appendix A. For number of faces less than four, the number of faces and the azimuthal coverage range (increasing clockwise from due north) are given in parentheses. The total radar counts are summarized by scenario in Tables 3-1 through 3-6. The reductions in the number of radars are listed in Table 3-7 and graphically displayed in Figure 3-1.

| Turno  |     | Total |     |     |       |  |  |
|--------|-----|-------|-----|-----|-------|--|--|
| Туре   | 1   | 2     | 3   | 4   | TOtal |  |  |
| Legacy | N/A | N/A   | N/A | N/A | 270   |  |  |
| MPAR   | 0   | 0     | 0   | 43  | 43    |  |  |
| TMPAR  | 0   | 2     | 1   | 175 | 178   |  |  |

#### **TABLE 3-1**

#### Scenario 1: Legacy vs. MPAR/TMPAR Number of Radars

#### **TABLE 3-2**

#### Scenario 2: Legacy vs. MPAR/TMPAR Number of Radars

| Туре   |     | Total |     |     |       |
|--------|-----|-------|-----|-----|-------|
|        | 1   | 2     | 3   | 4   | Total |
| Legacy | N/A | N/A   | N/A | N/A | 426   |
| MPAR   | 1   | 3     | 9   | 161 | 174   |
| TMPAR  | 0   | 2     | 1   | 126 | 129   |

# **TABLE 3-3**

# Scenario 3: Legacy vs. MPAR/TMPAR Number of Radars

| Туре   |     | Total |     |     |       |
|--------|-----|-------|-----|-----|-------|
| туре   | 1   | 2     | 3   | 4   | TOtal |
| Legacy | N/A | N/A   | N/A | N/A | 548   |
| MPAR   | 1   | 11    | 16  | 189 | 217   |
| TMPAR  | 0   | 2     | 1   | 136 | 139   |

# TABLE 3-4

# Scenario 1G: Legacy vs. MPAR/TMPAR Number of Radars

| Туре   |     | Total |     |     |       |
|--------|-----|-------|-----|-----|-------|
|        | 1   | 2     | 3   | 4   | Total |
| Legacy | N/A | N/A   | N/A | N/A | 351   |
| MPAR   | 0   | 0     | 0   | 43  | 43    |
| TMPAR  | 0   | 2     | 0   | 256 | 258   |

#### **TABLE 3-5**

# Scenario 2G: Legacy vs. MPAR/TMPAR Number of Radars

| Туре   |     | Total |     |     |       |
|--------|-----|-------|-----|-----|-------|
|        | 1   | 2     | 3   | 4   | TOtal |
| Legacy | N/A | N/A   | N/A | N/A | 507   |
| MPAR   | 1   | 1     | 5   | 167 | 174   |
| TMPAR  | 0   | 2     | 0   | 187 | 189   |

## TABLE 3-6

# Scenario 3G: Legacy vs. MPAR/TMPAR Number of Radars

| Туре   |     | Total |     |     |       |
|--------|-----|-------|-----|-----|-------|
|        | 1   | 2     | 3   | 4   | TOtal |
| Legacy | N/A | N/A   | N/A | N/A | 629   |
| MPAR   | 1   | 6     | 11  | 197 | 215   |
| TMPAR  | 0   | 2     | 0   | 194 | 196   |

# TABLE 3-7

# **Reduction in Number of Radars**

| Scenario | Legacy | MPAR + TMPAR    | Change | % Reduction |
|----------|--------|-----------------|--------|-------------|
| 1        | 270    | 43 + 178 = 221  | -49    | 18%         |
| 2        | 426    | 174 + 129 = 303 | -123   | 29%         |
| 3        | 548    | 217 + 139 = 356 | -192   | 35%         |
| 1G       | 351    | 43 + 258 = 301  | -50    | 14%         |
| 2G       | 507    | 174 + 189 = 363 | -144   | 28%         |
| 3G       | 629    | 215 + 196 = 411 | -218   | 35%         |

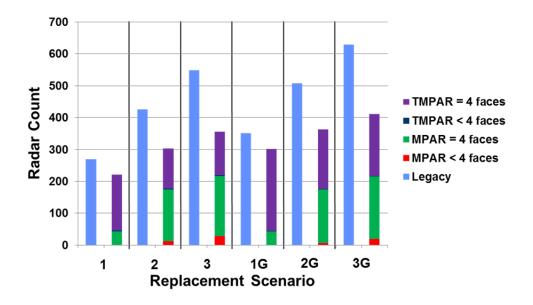



Figure 3-1. Total radar count vs. scenario.

For Scenarios 1 and 1G, the reduction in radar count mainly comes from the overlap of ASRs and TDWRs at TDWR airports. For Scenarios 2 and 2G, additional reductions result from NEXRADs located near airports (ASRs) and military airbases (GPNs). Even more redundancy can be eliminated in Scenarios 3 and 3G, because much of the en route coverage targeted by the CARSRs and ARSR-4s is already covered by the NEXRAD replacements from Scenarios 2 and 2G.

Although the minimum antenna beam elevation angle specification for the ARSR-4 is  $-7^{\circ}$ , the lowest angle used in operation today is  $-3^{\circ}$  (K. Roulston, private communication). Near-range legacy radar coverage may be affected by the difference in minimum elevation angle, so we reran the Scenario 3 siting analysis in regions with ARSR-4s. Because the minimum observation range of the ARSR-4 is 9.3 km, only sites that were more than ~1,600 ft above nearby terrain were affected. We concluded that our final siting set would remain the same. Finally, Figures 3-2 to 3-7 show maps of the MPAR and TMPAR locations for all replacement scenarios.

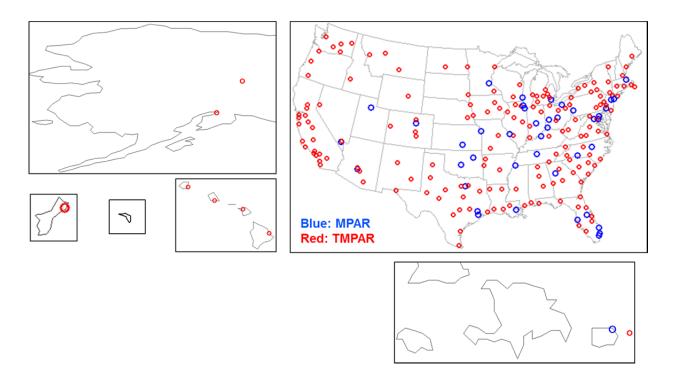



Figure 3-2. Locations of MPAR (blue) and TMPAR (red) for Scenario 1. Clockwise from top left: Alaska, CONUS, Puerto Rico/Virgin Islands/Guantanamo Bay, Hawaii, Kwajalein, and Guam.

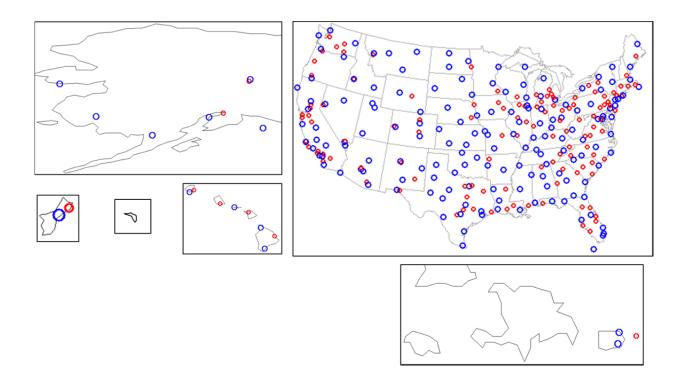



Figure 3-3. Locations of MPAR (blue) and TMPAR (red) for Scenario 2. Clockwise from top left: Alaska, CONUS, Puerto Rico/Virgin Islands/Guantanamo Bay, Hawaii, Kwajalein, and Guam.

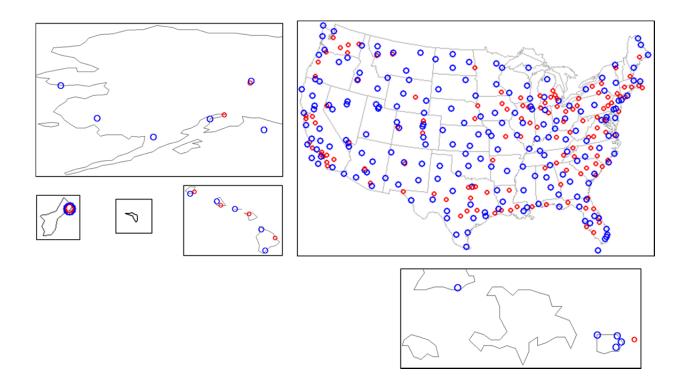



Figure 3-4. Locations of MPAR (blue) and TMPAR (red) for Scenario 3. Clockwise from top left: Alaska, CONUS, Puerto Rico/Virgin Islands/Guantanamo Bay, Hawaii, Kwajalein, and Guam.

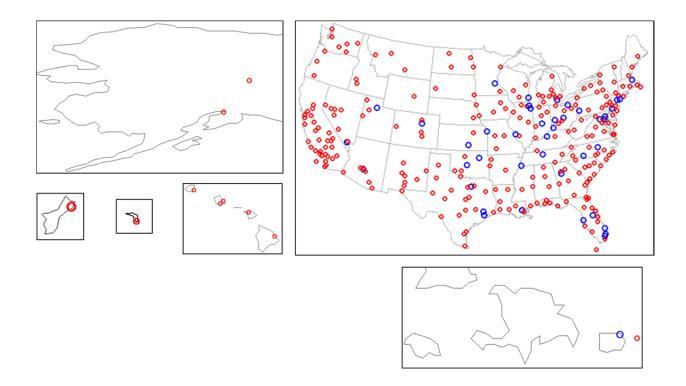



Figure 3-5. Locations of MPAR (blue) and TMPAR (red) for Scenario 1G. Clockwise from top left: Alaska, CONUS, Puerto Rico/Virgin Islands/Guantanamo Bay, Hawaii, Kwajalein, and Guam.

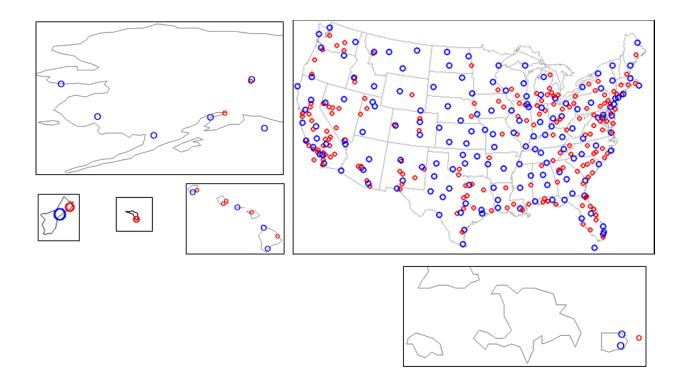



Figure 3-6. Locations of MPAR (blue) and TMPAR (red) for Scenario 2G. Clockwise from top left: Alaska, CONUS, Puerto Rico/Virgin Islands/Guantanamo Bay, Hawaii, Kwajalein, and Guam.

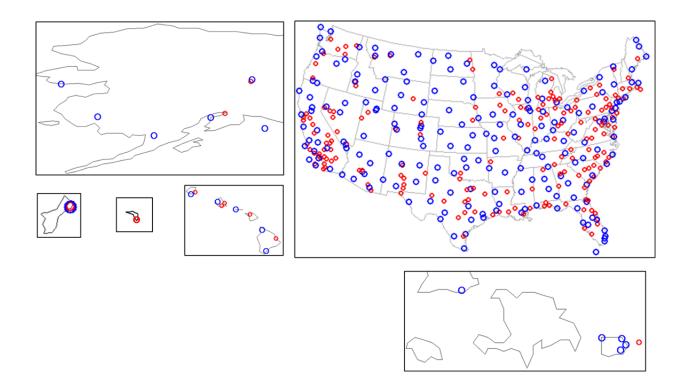



Figure 3-7. Locations of MPAR (blue) and TMPAR (red) for Scenario 3G. Clockwise from top left: Alaska, CONUS, Puerto Rico/Virgin Islands/Guantanamo Bay, Hawaii, Kwajalein, and Guam.

## 4. STATISTICAL ANALYSIS RESULTS

We now quantify and compare the legacy and MPAR coverages for various parameters. The following parameters were computed: number of Doppler coverage, number of dual-polarization coverage, minimum detectable weather reflectivity, minimum detectable aircraft cross section, and geometric-mean horizontal resolution for weather, vertical resolution for weather, worst-dimension horizontal resolution for aircraft, and vertical accuracy for aircraft.

The number of Doppler coverage is the number of radars with visibility to a coverage grid cell that outputs Doppler weather parameters (radial velocity and spectral width) for this location. This value has a strong influence on how accurately the wind vector is measured at this point. For example, the Integrated Terminal Weather System (ITWS) Terminal Winds product shows dramatic improvement in wind vector accuracy when coverage is provided by two or more Doppler radars (Cho and Martin 2007). Although the ASR-9 WSP generates Doppler data, because its vertical resolution is poor (and, thus, is not suitable for wind vector estimation), we did not include it in this parameter.

The number of dual-polarization coverage is the number of radars that are within range and visibility to a grid cell that yield dual-polarization weather parameters. The primary significance of this value is determined by whether it is zero or greater than zero. (There may be some product quality improvement when there is multiple overlap.) Dual-polarization data yield hydrometeor type differentiation capability (as well as improvement in other estimates such as rainfall rate and icing potential) lacking in single-polarization data.

The minimum detectable weather reflectivity is a measure of the sensitivity of the observing radar. It is based on the reflectivity that would generate a single-pulse signal-to-noise ratio of about unity at the receiver output. The minimum detectable aircraft cross section was estimated for a Swerling 1 target with detection rate of 80% and false alarm probability of  $10^{-6}$ .

The horizontal resolution parallel to and perpendicular to the radar beam are given by

$$\Delta h_{\parallel} = \frac{\Delta r}{r} r_h + \Delta \theta \sqrt{r^2 - r_h^2}$$
(4-1)

and

$$\Delta h_{\perp} = r \Delta \phi \quad , \tag{4-2}$$

where *r* is slant range,  $r_h$  is horizontal range,  $\Delta r$  is range resolution,  $\Delta \phi$  is azimuthal resolution, and  $\Delta \theta$  is range from the radar multiplied by the elevation beam width (converted to radians). To distill the asymmetric orthogonal resolution values given by (4-1) and (4-2), we computed the geometric-mean horizontal resolution ( $\Delta h_{\parallel} \Delta h_{\perp}$ )<sup>1/2</sup> and the "worst dimension" horizontal resolution (the maximum of  $\Delta h_{\parallel}$ 

and  $\Delta h_{\perp}$ ). Since weather is a diffuse target usually spanning multiple horizontal resolution units, we used the geometric mean parameter to characterize its effective resolution. For aircraft detection, we used the worst dimension metric because it is virtually a point target within the horizontal resolution. Note that we did not attempt to capture the best possible horizontal accuracy estimate for aircraft observation, as this would entail a more complex analysis involving multilateration.

Vertical resolution for weather observation is determined by the range times the elevation angle resolution given in Tables 2-1 and 2-2. For the legacy radars, this parameter is limited by their sparse volume scanning strategies. For aircraft, vertical accuracy is the more relevant parameter, and measurement within a beam width is made possible by angle-of-arrival techniques like monopulse and beam-space maximum likelihood estimation.

#### 4.1 COVERAGE OVER EN ROUTE AIR SPACE

First, we will examine the various performance parameter coverages for horizontal slices at absolute altitudes above mean sea level. All air space considered in this study is included. Table 4-1 gives the results for the 629 legacy radars. Each entry shows how much of the air space satisfies the given column heading condition. Some of the conditional values have clear rationales. Number of Doppler  $\geq 2$  allows direct wind vector measurement. Weather reflectivity = 18 dBZ is the lower boundary of Level 1 (light or mist) precipitation. And minimum detectable aircraft cross section of 2.2 m<sup>2</sup> (3.4 dBsm) is often used for en route surveillance radar coverage specification. Coverage percentages are over area at each height slice, but are over all valid air space volume for the last row ("All"). Weather observation parameters are shown up to 70,000 ft MSL, which is the coverage ceiling for legacy radars. The ARSR-4 has a mission ceiling of 100,000 ft MSL, so we extend the tables to this height for aircraft surveillance parameters.

| Height<br>(kft<br>MSL) | Doppler<br>≥2 | Dual<br>Pol. ≥1 | Min.<br>dBZ<br><18 | Min. dBsm<br><3.4 | Wx Mean<br>Horiz. Res.<br>≤1 km | Wx Vert.<br>Res.<br>≤2,000 ft | A/C Worst<br>Horiz. Res.<br>≤1 km | A/C Vert. Acc.<br>≤500 ft |
|------------------------|---------------|-----------------|--------------------|-------------------|---------------------------------|-------------------------------|-----------------------------------|---------------------------|
| 10                     | 35            | 67              | 67                 | 63                | 64                              | 3                             | 7                                 | 3                         |
| 20                     | 60            | 88              | 89                 | 80                | 50                              | 0.1                           | 4                                 | 2                         |
| 30                     | 68            | 91              | 95                 | 82                | 35                              | 0                             | 3                                 | 2                         |
| 40                     | 68            | 91              | 98                 | 83                | 27                              | 0                             | 2                                 | 2                         |
| 50                     | 68            | 91              | 99                 | 83                | 20                              | 0                             | 1                                 | 2                         |
| 60                     | 68            | 91              | 99                 | 83                | 13                              | 0                             | 0.6                               | 1                         |
| 70                     | 67            | 90              | 99                 | 83                | 6                               | 0                             | 0.2                               | 0.7                       |
| 80                     | N/A           | N/A             | N/A                | 58                | N/A                             | N/A                           | 0.01                              | 0.1                       |
| 90                     | N/A           | N/A             | N/A                | 58                | N/A                             | N/A                           | 0                                 | 0                         |
| 100                    | N/A           | N/A             | N/A                | 58                | N/A                             | N/A                           | 0                                 | 0                         |
| All                    | 59            | 84              | 89                 | 71                | 31                              | 0.7                           | 2                                 | 1                         |

Legacy Performance Parameter Coverage Percentage

Scenario 2 results are given in Table 4-2. (Scenarios 1 and 1G are not considered in this subsection, because they only cover terminal air space.) As en route aircraft surveillance radars are not replaced in Scenario 2, we focus on the weather observation parameters. The altitude coverage only goes up to 70,000 ft MSL, because Scenario 2 does not include the ARSR-4 mission. The Guantanamo Bay air space is also excluded, because there is only an ARSR-4 there. The last two columns are a way to assess how much the exact coverage spaces diverge between the MPAR and legacy cases. The seventh column shows the percentage of <18 dBZ legacy coverage grid points not covered by MPAR, and the final column shows the percentage for the inverse condition. For these "percentage missed" comparisons, the MPAR coverage is compared to the coverage provided by the legacy radars that they would replace (Figure 4-1). The MPAR coverage replicates the legacy coverage extremely well. Comparison with Table 4-1 shows an improvement in coverage for all weather observation parameters listed.

| Height<br>(kft MSL) | Doppler<br>≥2 | Dual<br>Pol. ≥1 | Min. dBZ<br><18 | Wx Mean<br>Horiz. Res.<br>≤1 km | Wx Vert.<br>Res.<br>≤2,000 ft | <18 dBZ<br>Coverage<br>MPAR Missed | <18 dBZ<br>Coverage<br>Legacy Missed |
|---------------------|---------------|-----------------|-----------------|---------------------------------|-------------------------------|------------------------------------|--------------------------------------|
| 10                  | 40            | 68              | 68              | 68                              | 5                             | 0.3                                | 1                                    |
| 20                  | 64            | 89              | 89              | 81                              | 5                             | 0.1                                | 0.4                                  |
| 30                  | 79            | 96              | 96              | 73                              | 4                             | 0.002                              | 0.2                                  |
| 40                  | 85            | 98              | 98              | 64                              | 3                             | 0.003                              | 0.2                                  |
| 50                  | 87            | 99              | 99              | 54                              | 2                             | 0.004                              | 0.3                                  |
| 60                  | 87            | 99              | 99              | 45                              | 2                             | 0.005                              | 0.4                                  |
| 70                  | 87            | 100             | 100             | 37                              | 1                             | 0.005                              | 0.5                                  |
| All                 | 72            | 90              | 90              | 59                              | 3                             | 0.1                                | 0.8                                  |

Scenario 2 Performance Parameter Coverage Percentage

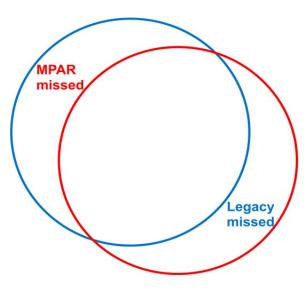



Figure 4-1. Illustration of percentage coverage missed metric. The blue and red circles represent legacy and MPAR coverages, respectively. The legacy missed percentage is computed by dividing the lower right crescent-shape area by the area of the red circle. The MPAR missed percentage is calculated by dividing the upper left crescent-shape area by the area of the blue circle.

Table 4-3 displays the Scenario 3 results. Again, the MPAR coverage generally provides significant improvement over the legacy coverage. Weather observation coverage would increase from 89% to 91% and aircraft surveillance coverage would improve from 71% to 81%. As can be seen from the "coverage legacy missed" columns, the gain is substantial, especially for aircraft surveillance. The sharp decrease in coverage above 70,000 ft is due to the required coverage ceiling for TMPAR being set at that height. The 5% aircraft coverage missed by MPAR at 100,000 ft is an artifact generated by our particular choice of beam broadening (gain loss) with elevation angle that we assumed for MPAR. This could be easily adjusted to eliminate the difference in coverage; it is not a performance limitation imposed by the MPAR itself.

#### **TABLE 4-3**

| Height<br>(kft<br>MSL) | Doppler<br>≥2 | Dual<br>Pol.<br>≥1 | Min.<br>dBZ<br><18 | Min.<br>dBsm<br><3.4 | Wx<br>Mean<br>Horiz.<br>Res.<br>≤1 km | Wx<br>Vert.<br>Res.<br>≤2,000<br>ft | A/C<br>Worst<br>Horiz.<br>Res.<br>≤1 km | Acc.<br>≤500 | <18 dBZ<br>Coverage<br>MPAR<br>Missed | <18 dBZ<br>Coverage<br>Legacy<br>Missed | <3.4<br>dBsm<br>Coverage<br>MPAR<br>Missed | <3.4<br>dBsm<br>Coverage<br>Legacy<br>Missed |
|------------------------|---------------|--------------------|--------------------|----------------------|---------------------------------------|-------------------------------------|-----------------------------------------|--------------|---------------------------------------|-----------------------------------------|--------------------------------------------|----------------------------------------------|
| 10                     | 48            | 74                 | 74                 | 74                   | 73                                    | 6                                   | 14                                      | 31           | 0.2                                   | 9                                       | 0.3                                        | 13                                           |
| 20                     | 73            | 92                 | 92                 | 92                   | 83                                    | 5                                   | 13                                      | 32           | 0.008                                 | 5                                       | 0.05                                       | 13                                           |
| 30                     | 81            | 97                 | 97                 | 97                   | 76                                    | 5                                   | 13                                      | 32           | 0.0001                                | 3                                       | 0.03                                       | 15                                           |
| 40                     | 85            | 99                 | 99                 | 99                   | 68                                    | 4                                   | 12                                      | 31           | 0.0002                                | 3                                       | 0.003                                      | 16                                           |
| 50                     | 86            | 99                 | 99                 | 99                   | 59                                    | 3                                   | 11                                      | 30           | 0.001                                 | 3                                       | 0.002                                      | 16                                           |
| 60                     | 87            | 100                | 100                | 100                  | 51                                    | 2                                   | 10                                      | 29           | 0.005                                 | 3                                       | 0.0006                                     | 16                                           |
| 70                     | 87            | 100                | 100                | 100                  | 42                                    | 1                                   | 9                                       | 28           | 0.005                                 | 3                                       | 0.0003                                     | 16                                           |
| 80                     | N/A           | N/A                | N/A                | 64                   | N/A                                   | N/A                                 | 2                                       | 6            | N/A                                   | N/A                                     | 0.3                                        | 5                                            |
| 90                     | N/A           | N/A                | N/A                | 59                   | N/A                                   | N/A                                 | 1                                       | 5            | N/A                                   | N/A                                     | 0.5                                        | 0.9                                          |
| 100                    | N/A           | N/A                | N/A                | 69                   | N/A                                   | N/A                                 | 1                                       | 5            | N/A                                   | N/A                                     | 5                                          | 0.7                                          |
| All                    | 75            | 91                 | 91                 | 81                   | 64                                    | 4                                   | 9                                       | 22           | 0.08                                  | 5                                       | 0.7                                        | 11                                           |

Scenario 3 Performance Parameter Coverage Percentage

In addition to the increase in coverage, the observation performance inside the coverage volume will improve due to the dual-polarization weather measurement and aircraft altitude finding capabilities of MPAR. (In contrast, only the NEXRAD has the former and the ARSR-4 has the latter capability among the legacy radars.) And even though the total radar counts would decrease, overlapping Doppler weather coverage will increase overall, which will benefit echo tops and wind vector determination. Comparing legacy to Scenario 3 over all of the air space considered in this study, overlapping Doppler weather coverage would increase from 59% to 75% and dual-polarization coverage would improve from 84% to 91%.

Scenarios 2G and 3G results are given in Tables 4-4 and 4-5. The overall values are very similar to those of Scenarios 2 and 3, respectively.

### TABLE 4-4

| Scenario 2G Performance Parameter | Coverage Percentage |
|-----------------------------------|---------------------|
|-----------------------------------|---------------------|

| Height<br>(kft MSL) | Doppler<br>≥2 | Dual<br>Pol. ≥1 | Min. dBZ<br><18 | Wx Mean<br>Horiz. Res.<br>≤1 km | Wx Vert.<br>Res.<br>≤2,000 ft | <18 dBZ<br>Coverage<br>MPAR Missed | <18 dBZ<br>Coverage<br>Legacy Missed |
|---------------------|---------------|-----------------|-----------------|---------------------------------|-------------------------------|------------------------------------|--------------------------------------|
| 10                  | 41            | 69              | 69              | 69                              | 5                             | 0.4                                | 3                                    |
| 20                  | 65            | 90              | 90              | 81                              | 5                             | 0.2                                | 0.6                                  |
| 30                  | 79            | 96              | 96              | 74                              | 4                             | 0.002                              | 0.2                                  |
| 40                  | 85            | 98              | 98              | 64                              | 3                             | 0.004                              | 0.2                                  |
| 50                  | 87            | 99              | 99              | 55                              | 3                             | 0.004                              | 0.3                                  |
| 60                  | 87            | 99              | 99              | 46                              | 2                             | 0.005                              | 0.4                                  |
| 70                  | 87            | 100             | 100             | 37                              | 1                             | 0.005                              | 0.5                                  |
| All                 | 73            | 90              | 90              | 60                              | 3                             | 0.2                                | 1                                    |

#### **TABLE 4-5**

# Scenario 3G Performance Parameter Coverage Percentage

| Height<br>(kft<br>MSL) | Doppler<br>≥2 | Dual<br>Pol.<br>≥1 |     | dBsm | Wx<br>Mean<br>Horiz.<br>Res.<br>≤1 km | Wx<br>Vert.<br>Res.<br>≤2,000<br>ft | A/C<br>Worst<br>Horiz.<br>Res.<br>≤1 km | A/C<br>Vert.<br>Acc.<br>≤500<br>ft |        | <18 dBZ<br>Coverage<br>Legacy<br>Missed | <3.4<br>dBsm<br>Coverage<br>MPAR<br>Missed | <3.4<br>dBsm<br>Coverage<br>Legacy<br>Missed |
|------------------------|---------------|--------------------|-----|------|---------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------|--------|-----------------------------------------|--------------------------------------------|----------------------------------------------|
| 10                     | 50            | 75                 | 75  | 75   | 74                                    | 6                                   | 15                                      | 32                                 | 0.3    | 10                                      | 0.4                                        | 12                                           |
| 20                     | 74            | 92                 | 92  | 92   | 83                                    | 6                                   | 14                                      | 33                                 | 0.01   | 5                                       | 0.08                                       | 13                                           |
| 30                     | 81            | 97                 | 97  | 97   | 76                                    | 5                                   | 13                                      | 33                                 | 0.0001 | 3                                       | 0.03                                       | 15                                           |
| 40                     | 85            | 99                 | 99  | 99   | 68                                    | 4                                   | 12                                      | 32                                 | 0.0002 | 3                                       | 0.003                                      | 16                                           |
| 50                     | 86            | 99                 | 99  | 99   | 60                                    | 3                                   | 12                                      | 31                                 | 0.001  | 3                                       | 0.002                                      | 16                                           |
| 60                     | 87            | 100                | 100 | 100  | 51                                    | 2                                   | 11                                      | 30                                 | 0.005  | 3                                       | 0.0006                                     | 16                                           |
| 70                     | 87            | 100                | 100 | 100  | 43                                    | 1                                   | 9                                       | 28                                 | 0.005  | 3                                       | 0.0003                                     | 16                                           |
| 80                     | N/A           | N/A                | N/A | 64   | N/A                                   | N/A                                 | 2                                       | 5                                  | N/A    | N/A                                     | 0.6                                        | 5                                            |
| 90                     | N/A           | N/A                | N/A | 59   | N/A                                   | N/A                                 | 1                                       | 5                                  | N/A    | N/A                                     | 0.8                                        | 0.9                                          |
| 100                    | N/A           | N/A                | N/A | 53   | N/A                                   | N/A                                 | 1                                       | 4                                  | N/A    | N/A                                     | 6                                          | 0.7                                          |
| All                    | 75            | 91                 | 91  | 81   | 64                                    | 4                                   | 9                                       | 23                                 | 0.1    | 5                                       | 0.9                                        | 11                                           |

We can also analyze coverage at low altitudes using height slices above local ground level. Boundary layer weather observations are crucial for improving weather forecasts (NRC, 2008), while low-altitude aircraft surveillance is important for detecting and tracking rogue flyers. Tables 4-6 to 4-10 give the low-altitude coverage results for the legacy, Scenarios 2, 3, 2G, and 3G cases. As with the high-altitude cases, the low-altitude MPAR coverage improves on the legacy coverage. For weather, the coverage improvement peaks at around 2,500 ft AGL (+7% for Scenario 2, +9% for Scenario 2G, +14% for Scenario 3, +15% for Scenario 3G), and it is reassuring to note that there is no overall loss of overlapping Doppler coverage, which is helpful for wind vector measurements. In Scenarios 3 and 3G, there is a dramatic enhancement in the ability to determine the vertical position of aircraft, which is not surprising, since only the ARSR-4 has this capability among the legacy radars. Finally, the maximum percentage of legacy coverage missed by MPAR for either weather or aircraft surveillance does not exceed 2% at any altitude.

#### **TABLE 4-6**

| Height<br>(ft<br>AGL) | Doppler<br>≥2 | Dual<br>Pol. ≥1 | Min.<br>dBZ<br><18 | Min. dBsm<br><3.4 | Wx Mean<br>Horiz. Res.<br>≤1 km | Wx Vert.<br>Res.<br>≤2,000 ft | A/C Worst<br>Horiz. Res.<br>≤1 km | A/C Vert.<br>Acc. ≤500 ft |
|-----------------------|---------------|-----------------|--------------------|-------------------|---------------------------------|-------------------------------|-----------------------------------|---------------------------|
| 100                   | 0.2           | 2               | 3                  | 8                 | 3                               | 2                             | 5                                 | 2                         |
| 200                   | 0.4           | 3               | 4                  | 11                | 4                               | 3                             | 6                                 | 2                         |
| 300                   | 0.6           | 5               | 6                  | 14                | 6                               | 4                             | 7                                 | 2                         |
| 400                   | 0.9           | 6               | 7                  | 16                | 7                               | 4                             | 8                                 | 2                         |
| 500                   | 1             | 8               | 9                  | 19                | 9                               | 5                             | 8                                 | 2                         |
| 1,000                 | 3             | 15              | 17                 | 29                | 16                              | 5                             | 9                                 | 2                         |
| 1,500                 | 5             | 22              | 24                 | 37                | 23                              | 5                             | 9                                 | 2                         |
| 2,000                 | 7             | 29              | 30                 | 42                | 29                              | 5                             | 9                                 | 2                         |
| 2,500                 | 8             | 34              | 35                 | 45                | 35                              | 4                             | 9                                 | 2                         |
| 3,000                 | 10            | 40              | 41                 | 49                | 40                              | 4                             | 9                                 | 3                         |
| 3,500                 | 13            | 45              | 46                 | 52                | 44                              | 4                             | 9                                 | 3                         |
| 4,000                 | 16            | 50              | 50                 | 55                | 48                              | 4                             | 9                                 | 3                         |
| 4,500                 | 20            | 54              | 54                 | 58                | 52                              | 4                             | 8                                 | 3                         |
| 5,000                 | 23            | 58              | 58                 | 60                | 54                              | 4                             | 8                                 | 3                         |

Legacy Low-Altitude Performance Parameter Coverage Percentage

| Height<br>(ft AGL) | Doppler<br>≥2 | Dual<br>Pol. ≥1 | Min. dBZ<br><18 | Wx Mean<br>Horiz. Res.<br>≤1 km | Wx Vert.<br>Res.<br>≤2,000 ft | <18 dBZ<br>Coverage<br>MPAR Missed | <18 dBZ<br>Coverage<br>Legacy Missed |
|--------------------|---------------|-----------------|-----------------|---------------------------------|-------------------------------|------------------------------------|--------------------------------------|
| 100                | 0.2           | 4               | 4               | 4                               | 2                             | 0.6                                | 2.3                                  |
| 200                | 0.4           | 6               | 6               | 6                               | 3                             | 0.9                                | 3                                    |
| 300                | 0.6           | 9               | 9               | 9                               | 4                             | 1                                  | 4                                    |
| 400                | 1             | 11              | 11              | 11                              | 4                             | 1                                  | 5                                    |
| 500                | 1             | 13              | 13              | 13                              | 4                             | 1                                  | 6                                    |
| 1,000              | 4             | 23              | 23              | 23                              | 5                             | 2                                  | 8                                    |
| 1,500              | 8             | 30              | 30              | 30                              | 5                             | 1                                  | 8                                    |
| 2,000              | 13            | 36              | 36              | 36                              | 5                             | 1                                  | 8                                    |
| 2,500              | 17            | 42              | 42              | 41                              | 5                             | 1                                  | 7                                    |
| 3,000              | 21            | 46              | 46              | 45                              | 5                             | 0.9                                | 6                                    |
| 3,500              | 24            | 50              | 50              | 49                              | 5                             | 0.8                                | 5                                    |
| 4,000              | 28            | 55              | 55              | 53                              | 5                             | 0.7                                | 4                                    |
| 4,500              | 31            | 59              | 59              | 56                              | 5                             | 0.6                                | 3                                    |
| 5,000              | 35            | 62              | 62              | 59                              | 5                             | 0.6                                | 2                                    |

## Scenario 2 Low-Altitude Performance Parameter Coverage Percentage

| Height<br>(kft<br>AGL) | Doppler<br>≥2 | Dual<br>Pol.<br>≥1 | Min.<br>dBZ<br><18 | Min.<br>dBsm<br><3.4 | Wx<br>Mean<br>Horiz.<br>Res.<br>≤1 km | Wx<br>Vert.<br>Res.<br>≤2,000<br>ft | A/C<br>Worst<br>Horiz.<br>Res.<br>≤1 km | A/C<br>Vert.<br>Acc.<br>≤500<br>ft | <18 dBZ<br>Coverage<br>MPAR<br>Missed |    |     | <3.4 dBsm<br>Coverage<br>Legacy<br>Missed |
|------------------------|---------------|--------------------|--------------------|----------------------|---------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------|---------------------------------------|----|-----|-------------------------------------------|
| 100                    | 0.4           | 7                  | 7                  | 7                    | 7                                     | 3                                   | 5                                       | 6                                  | 0.6                                   | 5  | 0.7 | 0.9                                       |
| 200                    | 0.8           | 10                 | 10                 | 10                   | 10                                    | 4                                   | 7                                       | 8                                  | 0.9                                   | 7  | 0.9 | 1                                         |
| 300                    | 1             | 12                 | 12                 | 12                   | 12                                    | 4                                   | 9                                       | 10                                 | 1                                     | 8  | 1   | 2                                         |
| 400                    | 2             | 15                 | 15                 | 15                   | 15                                    | 5                                   | 10                                      | 12                                 | 1                                     | 9  | 1   | 2                                         |
| 500                    | 2             | 17                 | 17                 | 17                   | 17                                    | 5                                   | 11                                      | 14                                 | 1                                     | 10 | 1   | 3                                         |
| 1,000                  | 6             | 28                 | 28                 | 28                   | 28                                    | 5                                   | 13                                      | 21                                 | 1                                     | 14 | 2   | 4                                         |
| 1,500                  | 11            | 37                 | 37                 | 37                   | 37                                    | 5                                   | 14                                      | 26                                 | 1                                     | 15 | 2   | 6                                         |
| 2,000                  | 17            | 44                 | 44                 | 44                   | 43                                    | 6                                   | 14                                      | 28                                 | 1                                     | 16 | 2   | 8                                         |
| 2,500                  | 21            | 49                 | 49                 | 49                   | 49                                    | 6                                   | 14                                      | 29                                 | 0.9                                   | 15 | 2   | 9                                         |
| 3,000                  | 26            | 54                 | 54                 | 54                   | 53                                    | 6                                   | 15                                      | 30                                 | 0.7                                   | 15 | 1   | 9                                         |
| 3,500                  | 30            | 58                 | 58                 | 58                   | 57                                    | 6                                   | 15                                      | 30                                 | 0.6                                   | 14 | 1   | 10                                        |
| 4,000                  | 34            | 61                 | 61                 | 61                   | 61                                    | 6                                   | 15                                      | 31                                 | 0.5                                   | 13 | 1   | 10                                        |
| 4,500                  | 38            | 64                 | 64                 | 64                   | 64                                    | 6                                   | 15                                      | 31                                 | 0.4                                   | 12 | 1   | 10                                        |
| 5,000                  | 41            | 67                 | 67                 | 67                   | 67                                    | 6                                   | 15                                      | 31                                 | 0.3                                   | 11 | 0.9 | 10                                        |

# Scenario 3 Low-Altitude Performance Parameter Coverage Percentage

| Height<br>(ft AGL) | Doppler<br>≥2 | Dual<br>Pol. ≥1 | Min. dBZ<br><18 | Wx Mean<br>Horiz. Res.<br>≤1 km | Wx Vert.<br>Res.<br>≤2,000 ft | <18 dBZ<br>Coverage<br>MPAR Missed | <18 dBZ<br>Coverage<br>Legacy Missed |
|--------------------|---------------|-----------------|-----------------|---------------------------------|-------------------------------|------------------------------------|--------------------------------------|
| 100                | 0.3           | 5               | 5               | 5                               | 3                             | 0.7                                | 3                                    |
| 200                | 0.6           | 8               | 8               | 8                               | 4                             | 1                                  | 4                                    |
| 300                | 1             | 10              | 10              | 10                              | 4                             | 1                                  | 6                                    |
| 400                | 2             | 12              | 12              | 12                              | 4                             | 1                                  | 7                                    |
| 500                | 2             | 15              | 15              | 15                              | 5                             | 1                                  | 7                                    |
| 1,000              | 6             | 25              | 25              | 25                              | 5                             | 2                                  | 10                                   |
| 1,500              | 11            | 32              | 32              | 32                              | 5                             | 2                                  | 10                                   |
| 2,000              | 16            | 38              | 38              | 38                              | 5                             | 1                                  | 10                                   |
| 2,500              | 20            | 44              | 44              | 43                              | 5                             | 1                                  | 9                                    |
| 3,000              | 24            | 48              | 48              | 47                              | 5                             | 1                                  | 8                                    |
| 3,500              | 27            | 52              | 52              | 51                              | 5                             | 0.9                                | 5                                    |
| 4,000              | 31            | 56              | 56              | 55                              | 5                             | 0.9                                | 5                                    |
| 4,500              | 34            | 60              | 60              | 58                              | 5                             | 0.8                                | 4                                    |
| 5,000              | 38            | 63              | 63              | 60                              | 5                             | 0.8                                | 4                                    |

# Scenario 2G Low-Altitude Performance Parameter Coverage Percentage

| Height<br>(kft<br>AGL) | Doppler<br>≥2 | Dual<br>Pol.<br>≥1 | Min.<br>dBZ<br><18 | Min.<br>dBs<br>m<br><3.4 | Wx<br>Mean<br>Horiz.<br>Res.<br>≤1 km | Wx<br>Vert.<br>Res.<br>≤2,000<br>ft | A/C<br>Worst<br>Horiz.<br>Res.<br>≤1 km | A/C<br>Vert.<br>Acc.<br>≤500<br>ft | <18 dBZ<br>Coverage<br>MPAR<br>Missed | <18 dBZ<br>Coverage<br>Legacy<br>Missed | <3.4 dBsm<br>Coverage<br>MPAR<br>Missed | <3.4 dBsm<br>Coverage<br>Legacy<br>Missed |
|------------------------|---------------|--------------------|--------------------|--------------------------|---------------------------------------|-------------------------------------|-----------------------------------------|------------------------------------|---------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|
| 100                    | 0.5           | 8                  | 8                  | 8                        | 8                                     | 3                                   | 6                                       | 6                                  | 0.7                                   | 6                                       | 0.8                                     | 0.8                                       |
| 200                    | 1             | 11                 | 11                 | 11                       | 11                                    | 4                                   | 8                                       | 9                                  | 1                                     | 8                                       | 1                                       | 1                                         |
| 300                    | 2             | 14                 | 14                 | 14                       | 13                                    | 5                                   | 9                                       | 11                                 | 1                                     | 9                                       | 1                                       | 1                                         |
| 400                    | 2             | 16                 | 16                 | 16                       | 16                                    | 5                                   | 11                                      | 13                                 | 1                                     | 10                                      | 1                                       | 2                                         |
| 500                    | 3             | 19                 | 19                 | 19                       | 19                                    | 5                                   | 12                                      | 15                                 | 1                                     | 11                                      | 2                                       | 2                                         |
| 1,000                  | 8             | 30                 | 30                 | 30                       | 30                                    | 6                                   | 14                                      | 22                                 | 2                                     | 15                                      | 2                                       | 3                                         |
| 1,500                  | 14            | 38                 | 38                 | 38                       | 38                                    | 6                                   | 15                                      | 26                                 | 1                                     | 17                                      | 2                                       | 4                                         |
| 2,000                  | 19            | 45                 | 45                 | 45                       | 45                                    | 6                                   | 15                                      | 29                                 | 1                                     | 17                                      | 2                                       | 6                                         |
| 2,500                  | 24            | 50                 | 50                 | 50                       | 50                                    | 6                                   | 15                                      | 30                                 | 0.8                                   | 16                                      | 1                                       | 8                                         |
| 3,000                  | 28            | 55                 | 55                 | 55                       | 54                                    | 6                                   | 15                                      | 31                                 | 0.7                                   | 15                                      | 1                                       | 8                                         |
| 3,500                  | 33            | 59                 | 59                 | 59                       | 58                                    | 6                                   | 15                                      | 31                                 | 0.7                                   | 15                                      | 1                                       | 8                                         |
| 4,000                  | 36            | 62                 | 62                 | 62                       | 61                                    | 6                                   | 15                                      | 32                                 | 0.6                                   | 14                                      | 1                                       | 9                                         |
| 4,500                  | 40            | 65                 | 65                 | 65                       | 64                                    | 6                                   | 15                                      | 32                                 | 0.6                                   | 13                                      | 1                                       | 9                                         |
| 5,000                  | 43            | 68                 | 68                 | 68                       | 66                                    | 6                                   | 15                                      | 32                                 | 0.5                                   | 12                                      | 0.9                                     | 9                                         |

Scenario 3G Low-Altitude Performance Parameter Coverage Percentage

To highlight the increase in boundary layer dual-polarization coverage with MPAR, we plot the legacy and Scenario 3G dual-polarization coverages at 1,000 ft AGL over the CONUS in Figure 4-2. Coverage is doubled from 15% to 30%. Note especially the improvement in highly populated areas.

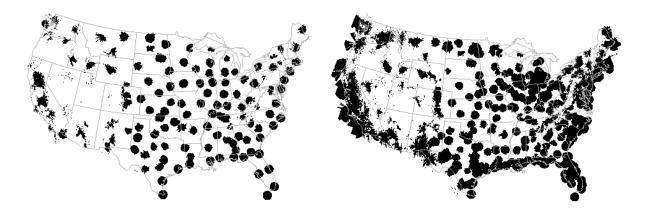



Figure 4-2. CONUS dual-polarization weather coverage at 1,000 ft AGL for (left) legacy and (right) Scenario 3G.

For ease of comparison between the legacy and MPAR cases, we plotted four of the parameters from Tables 4-1, 4-4, and 4-5 in Figure 4-3.

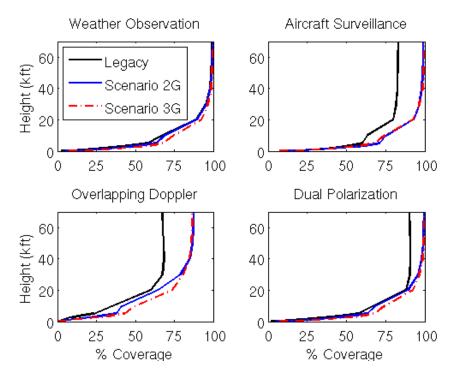



Figure 4-3. Height profiles of coverage percentage for minimum detectable weather reflectivity <18 dBZ (upper left), minimum detectable aircraft cross section <3.4 dBsm (upper right), Doppler weather coverage overlap  $\geq 2$  (lower left), and dual-polarization weather coverage (lower right). Heights are MSL above 5,000 ft and AGL otherwise.

#### 4.2 COVERAGE OVER CIVIL TERMINAL AIR SPACE

Landing and take-off are the riskiest phases of flight. Flying more closely to the Earth's surface than during the en route phase, the aircraft has less time to recover after encountering a dangerous weather phenomenon, and there is a higher density of other aircraft from which safe distance must be maintained. Radar surveillance data for both aircraft tracking and hazardous weather detection in terminal air space are crucial for maintaining aviation safety and efficiency. With these points in mind, we compiled terminal air space coverage statistics for primary ASR- and TDWR-associated civil airports in this study. LGA was also added to this list, since it is a super density operations (SDO) airport that relies on the JFK ASR-9 and TDWR. Military airbases/GPN sites were excluded. The overall means are collected in Table 4-11.

| Parameter                                     | ≤1,500 f | t and 6 | i nmi ra | adius | ≤24,000 ft and 60 nmi<br>radius |       |       |       |  |
|-----------------------------------------------|----------|---------|----------|-------|---------------------------------|-------|-------|-------|--|
|                                               | Legacy   | Sc. 1   | Sc. 2    | Sc. 3 | Legacy                          | Sc. 1 | Sc. 2 | Sc. 3 |  |
| Doppler Coverage ≥1                           | 47       | 93      | 93       | 93    | 84                              | 91    | 90    | 92    |  |
| Doppler Coverage ≥2                           | 16       | 45      | 21       | 27    | 57                              | 82    | 74    | 79    |  |
| Dual Polarization Coverage ≥1                 | 37       | 93      | 93       | 93    | 82                              | 91    | 90    | 92    |  |
| Minimum Detectable Wx Reflectivity <-10 0 dBZ | 41       | 50      | 53       | 52    | 81                              | 83    | 82    | 85    |  |
| Minimum Detectable A/C Cross Section ≤0 dBsm  | 93       | 93      | 93       | 93    | 89                              | 91    | 92    | 92    |  |
| Wx Mean Horizontal Resolution ≤0.25 0.5 km    | 27       | 83      | 84       | 83    | 26                              | 37    | 51    | 54    |  |
| Wx Vertical Resolution ≤500 1,000 ft          | 11       | 26      | 29       | 27    | 1                               | 3     | 3     | 3     |  |
| A/C Worst Horizontal Resolution ≤0.25 0.5 km  | 57       | 64      | 70       | 68    | 5                               | 8     | 10    | 10    |  |
| A/CVertical Accuracy ≤100 200 ft              | 0.1      | 61      | 70       | 68    | 0.7                             | 9     | 14    | 14    |  |
| <–10 0 dBZ Coverage MPAR Missed               | N/A      | 2       | 4        | 5     | N/A                             | 0.7   | 4     | 3     |  |
| <–10 0 dBZ Coverage Legacy Missed             | N/A      | 14      | 17       | 17    | N/A                             | 17    | 4     | 7     |  |
| ≤0 dBsm Coverage MPAR Missed                  | N/A      | 0.1     | 0.1      | 0.2   | N/A                             | 0.1   | 0.09  | 0.6   |  |
| ≤0 dBsm Coverage Legacy Missed                | N/A      | 0.3     | 0.8      | 0.6   | N/A                             | 9     | 12    | 3     |  |

#### **TABLE 4-11**

Average Terminal Air Space Performance Parameter Coverage Percentage

Statistics were compiled over two subvolumes within the terminal air space: (1) altitude  $\leq 1,500$  ft AGL and range  $\leq 6$  nmi from the airport, and (2) altitude  $\leq 24,000$  ft AGL and range  $\leq 60$  nmi from the airport. These subvolumes correspond to the required coverage volume for hazardous wind-shear detection (FAA, 1995) and terminal aircraft surveillance (Raytheon, 1999). Different performance parameter thresholds were used for the two subvolumes as indicated in Table 4-7 (divided by a "|"). Note that this table is different from the en route coverage tables in that coverages were averaged over altitude and range instead of slices taken at individual heights.

Once again, overall coverage and performance figures are better for the MPAR compared to legacy radars. The vast improvement in aircraft vertical position accuracy occurs because the legacy ASRs do not provide this capability at all. (The very small fractions that show up under the legacy column for this parameter is due to a bit of ARSR-4 coverage that extends into some terminal air space.)

For the given thresholds, the MPAR provides a faithful replication of the legacy terminal air space coverage, especially for aircraft surveillance. The somewhat larger "miss" percentages (up to 5%) for weather observation is due to our methodology of locating terminal MPARs on the airport rather than at the stand-off TDWR sites. Much of this difference can be made up in the 60-nmi-radius case if the assumed instrumented range for the TMPAR is increased beyond 90 km. Technically, there is no reason not to do so. In fact, the Doppler weather parameter coverage range for today's TDWR could be increased at least twofold with known signal transmission and processing techniques (Cho, 2010).

One may wonder why the weather Doppler coverage redundancy is better in Scenario 1 than in Scenario 2. This is because in Scenario 1 the terminal radar coverage was replaced by MPAR and TMPAR without eliminating any existing NEXRADs; in Scenario 2, the terminal and en route weather coverages were considered together to eliminate unneeded NEXRAD sites. Therefore, Scenario 1 contains more weather coverage redundancy than Scenario 2. This extra redundancy cannot be eliminated in Scenario 1, because NEXRAD is a legacy radar that is not used multifunctionally (at least not to the extent of an MPAR).

Assuming that MPAR will have dual-polarization capability, there will be a big improvement in coverage for this parameter over the legacy case near the airport. If hydrometeor classification and icing condition detection are to be requirements for future terminal air space weather observation under NextGen (FAA, 2009), then dual polarization coverage will be a key component.

Of the 215 civil airports included in this section, 46 are served by TDWRs, 34 have WSPs, and 40 have only LLWASs (see Figure 4-4 for CONUS locations). This leaves 95 airports with no dedicated wind-shear detection systems at this time. (Some of these have or will have NEXRAD gust front and microburst products available to them.) But with the deployment of MPAR, all of them will be provided with excellent wind-shear detection capability. If the 81 military airbase sites are included in the replacement plan, they will also gain wind-shear protection coverage.

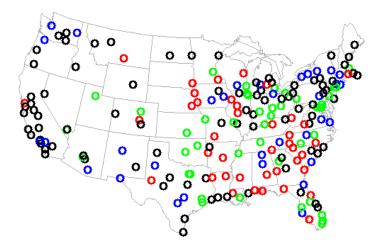



Figure 4-4. CONUS map of the civil airports included in this study. Airports served by TDWR are green, airports with WSP are blue, airports with LLWAS only are red, and those without a dedicated wind-shear detection system are black.

#### 4.3 COVERAGE OVER URBAN AREAS

Beyond aviation purposes for which the FAA is primarily concerned, weather and aircraft surveillance data impact the lives of people on the ground through improved hazardous weather forecasts and protection from rogue air vehicle attacks. Urban areas with their high concentration of people have disproportionate value in coverage by these radars. Thus, we wish to characterize the changes in radar coverage specifically over these regions.

We obtained projected 2010 digital U.S. population density data with 2.5 arc-minute spatial resolution from CIESIN (2005) (Figure 4-5). The U.S. Census Bureau defines an urban area as "Core census block groups or blocks that have a population density of at least 1,000 people per square mile (386 per square kilometer) and surrounding census blocks that have an overall density of at least 500 people per square mile (193 per square kilometer)." Thus, we selected 193/km<sup>2</sup> as the minimum threshold for population density and computed the CONUS urban region legacy and MPAR coverage statistics in Tables 4-12 to 4-18. (Urban region defined in this way is 3.5% of the CONUS area and encompasses 210 million people.) The "legacy" coverage here includes the GPN sites. Low altitudes were emphasized to cover rapid-onset threats to people on the ground such as tornadoes. The threshold for minimum detectable aircraft cross section was also reduced to 0.1 m<sup>2</sup> (-10 dBsm) to make allowance for small targets.

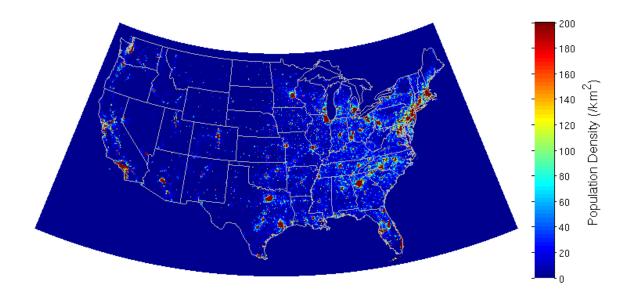



Figure 4-5. CONUS population density map.

| Doromotor                                            | Threaded  | Height AGL (ft) |     |       |       |  |  |
|------------------------------------------------------|-----------|-----------------|-----|-------|-------|--|--|
| Parameter                                            | Threshold | 100             | 500 | 1,000 | 5,000 |  |  |
| Doppler Coverage                                     | ≥2 radars | 1               | 17  | 33    | 70    |  |  |
| Dual Polarization Coverage                           | ≥1 radar  | 5               | 28  | 49    | 97    |  |  |
| Minimum Detectable Weather Reflectivity              | ≤18 dBZ   | 10              | 45  | 63    | 97    |  |  |
| Minimum Detectable Aircraft Cross Section            | ≤–10 dBsm | 30              | 72  | 84    | 96    |  |  |
| Horizontal Resolution for Weather (Dimensional Mean) | ≤0.5 km   | 10              | 45  | 59    | 63    |  |  |
| Vertical Resolution for Weather                      | ≤1,000 ft | 9               | 24  | 18    | 5     |  |  |
| Horizontal Resolution for Aircraft (Worst Dimension) | ≤0.5 km   | 21              | 35  | 37    | 32    |  |  |
| Vertical Accuracy for Aircraft                       | ≤200 ft   | 2               | 2   | 2     | 2     |  |  |

# Legacy Urban Area Coverage Percentage vs. Height

| Parameter                                            | Threshold | Height AGL (ft) |     |       |       |  |  |
|------------------------------------------------------|-----------|-----------------|-----|-------|-------|--|--|
| Parameter                                            | Threshold | 100             | 500 | 1,000 | 5,000 |  |  |
| Doppler Coverage                                     | ≥2 radars | 4               | 33  | 59    | 95    |  |  |
| Dual Polarization Coverage                           | ≥1 radar  | 26              | 72  | 88    | 99    |  |  |
| Minimum Detectable Weather Reflectivity              | ≤18 dBZ   | 26              | 72  | 88    | 99    |  |  |
| Minimum Detectable Aircraft Cross Section            | ≤–10 dBsm | 28              | 72  | 87    | 97    |  |  |
| Horizontal Resolution for Weather (Dimensional Mean) | ≤0.5 km   | 26              | 71  | 83    | 83    |  |  |
| Vertical Resolution for Weather                      | ≤1,000 ft | 13              | 22  | 22    | 19    |  |  |
| Horizontal Resolution for Aircraft (Worst Dimension) | ≤0.5 km   | 21              | 41  | 42    | 41    |  |  |
| Vertical Accuracy for Aircraft                       | ≤200 ft   | 21              | 45  | 47    | 47    |  |  |

# Scenario 1 Urban Area Coverage Percentage vs. Height

# TABLE 4-14

## Scenario 2 Urban Area Coverage Percentage vs. Height

| Parameter                                            | Threshold | Height AGL (ft) |     |       |       |  |  |
|------------------------------------------------------|-----------|-----------------|-----|-------|-------|--|--|
| Farameter                                            | Threshold | 100             | 500 | 1,000 | 5,000 |  |  |
| Doppler Coverage                                     | ≥2 radars | 1               | 15  | 35    | 86    |  |  |
| Dual Polarization Coverage                           | ≥1 radar  | 24              | 69  | 87    | 99    |  |  |
| Minimum Detectable Weather Reflectivity              | ≤18 dBZ   | 24              | 69  | 87    | 99    |  |  |
| Minimum Detectable Aircraft Cross Section            | ≤–10 dBsm | 29              | 74  | 89    | 99    |  |  |
| Horizontal Resolution for Weather (Dimensional Mean) | ≤0.5 km   | 24              | 68  | 84    | 89    |  |  |
| Vertical Resolution for Weather                      | ≤1,000 ft | 13              | 21  | 22    | 20    |  |  |
| Horizontal Resolution for Aircraft (Worst Dimension) | ≤0.5 km   | 22              | 44  | 45    | 43    |  |  |
| Vertical Accuracy for Aircraft                       | ≤200 ft   | 22              | 49  | 53    | 54    |  |  |

| Parameter                                            | Threshold | Height AGL (ft) |     |       |       |  |  |
|------------------------------------------------------|-----------|-----------------|-----|-------|-------|--|--|
| Parameter                                            | Threshold | 100             | 500 | 1,000 | 5,000 |  |  |
| Doppler Coverage                                     | ≥2 radars | 2               | 19  | 40    | 89    |  |  |
| Dual Polarization Coverage                           | ≥1 radar  | 27              | 72  | 89    | 99    |  |  |
| Minimum Detectable Weather Reflectivity              | ≤18 dBZ   | 27              | 72  | 89    | 99    |  |  |
| Minimum Detectable Aircraft Cross Section            | ≤–10 dBsm | 27              | 72  | 88    | 99    |  |  |
| Horizontal Resolution for Weather (Dimensional Mean) | ≤0.5 km   | 27              | 71  | 86    | 89    |  |  |
| Vertical Resolution for Weather                      | ≤1,000 ft | 13              | 21  | 21    | 20    |  |  |
| Horizontal Resolution for Aircraft (Worst Dimension) | ≤0.5 km   | 22              | 43  | 45    | 44    |  |  |
| Vertical Accuracy for Aircraft                       | ≤200 ft   | 23              | 49  | 52    | 53    |  |  |

# Scenario 3 Urban Area Coverage Percentage vs. Height

## **TABLE 4-16**

## Scenario 1G Urban Area Coverage Percentage vs. Height

| Parameter                                            | Threshold | Height AGL (ft) |     |       |       |  |  |
|------------------------------------------------------|-----------|-----------------|-----|-------|-------|--|--|
| Farameter                                            | Threshold | 100             | 500 | 1,000 | 5,000 |  |  |
| Doppler Coverage                                     | ≥2 radars | 4               | 37  | 64    | 96    |  |  |
| Dual Polarization Coverage                           | ≥1 radar  | 29              | 75  | 89    | 99    |  |  |
| Minimum Detectable Weather Reflectivity              | ≤18 dBZ   | 29              | 75  | 89    | 99    |  |  |
| Minimum Detectable Aircraft Cross Section            | ≤–10 dBsm | 31              | 76  | 89    | 98    |  |  |
| Horizontal Resolution for Weather (Dimensional Mean) | ≤0.5 km   | 28              | 74  | 85    | 85    |  |  |
| Vertical Resolution for Weather                      | ≤1,000 ft | 14              | 23  | 24    | 20    |  |  |
| Horizontal Resolution for Aircraft (Worst Dimension) | ≤0.5 km   | 23              | 43  | 45    | 43    |  |  |
| Vertical Accuracy for Aircraft                       | ≤200 ft   | 24              | 47  | 50    | 50    |  |  |

| Parameter                                            | Threshold | Height AGL (ft) |     |       |       |  |  |
|------------------------------------------------------|-----------|-----------------|-----|-------|-------|--|--|
| Farameter                                            | Threshold | 100             | 500 | 1,000 | 5,000 |  |  |
| Doppler Coverage                                     | ≥2 radars | 1               | 20  | 43    | 89    |  |  |
| Dual Polarization Coverage                           | ≥1 radar  | 27              | 73  | 89    | 99    |  |  |
| Minimum Detectable Weather Reflectivity              | ≤18 dBZ   | 27              | 73  | 89    | 99    |  |  |
| Minimum Detectable Aircraft Cross Section            | ≤–10 dBsm | 31              | 76  | 90    | 99    |  |  |
| Horizontal Resolution for Weather (Dimensional Mean) | ≤0.5 km   | 27              | 72  | 85    | 89    |  |  |
| Vertical Resolution for Weather                      | ≤1,000 ft | 14              | 22  | 23    | 21    |  |  |
| Horizontal Resolution for Aircraft (Worst Dimension) | ≤0.5 km   | 24              | 46  | 48    | 45    |  |  |
| Vertical Accuracy for Aircraft                       | ≤200 ft   | 24              | 52  | 55    | 56    |  |  |

# Scenario 2G Urban Area Coverage Percentage vs. Height

### **TABLE 4-18**

## Scenario 3G Urban Area Coverage Percentage vs. Height

| Parameter                                            | Threshold | Height AGL (ft) |     |       |       |  |  |
|------------------------------------------------------|-----------|-----------------|-----|-------|-------|--|--|
| Parameter                                            | Threshold | 100             | 500 | 1,000 | 5,000 |  |  |
| Doppler Coverage                                     | ≥2 radars | 2               | 23  | 46    | 91    |  |  |
| Dual Polarization Coverage                           | ≥1 radar  | 29              | 75  | 90    | 99    |  |  |
| Minimum Detectable Weather Reflectivity              | ≤18 dBZ   | 29              | 75  | 90    | 99    |  |  |
| Minimum Detectable Aircraft Cross Section            | ≤–10 dBsm | 29              | 75  | 89    | 99    |  |  |
| Horizontal Resolution for Weather (Dimensional Mean) | ≤0.5 km   | 29              | 74  | 87    | 90    |  |  |
| Vertical Resolution for Weather                      | ≤1,000 ft | 14              | 22  | 23    | 21    |  |  |
| Horizontal Resolution for Aircraft (Worst Dimension) | ≤0.5 km   | 24              | 46  | 48    | 46    |  |  |
| Vertical Accuracy for Aircraft                       | ≤200 ft   | 24              | 52  | 55    | 56    |  |  |

MPAR networks generally improve urban coverage over the legacy network for all parameters and scenarios. The most dramatic enhancements are seen in dual polarization coverage and vertical accuracy of aircraft detection. The former occurs because the only legacy radar with dual polarization is the NEXRAD, whereas all MPARs and TMPARs are assumed to have dual polarization. The better boundary layer coverage with dual polarization will allow more accurate characterization of hydrometeor type and provide valuable data for assimilation into numerical weather forecast models. Finer vertical accuracy for aircraft detection results because the only legacy radar with this capability is the ARSR-4, whereas all MPARs and TMPARs will be able to measure the altitude of aircraft. This parameter will be crucial in tracking uncooperative air targets or when the Automatic Dependent Surveillance-Broadcast (ADS-B) relayed positional data are not available due to Global Position System (GPS) jamming, severe geomagnetic storms, etc.

#### **5. CONCLUSIONS**

The main purpose of this study was to determine, to first order, the number of MPARs and TMPARs needed to replicate the weather and aircraft surveillance coverage provided by existing radars for six replacement scenarios: (1) terminal radars only (ASRs and TDWRs), (2) terminal radars and national-scale weather radars (ASRs, TDWRs, and NEXRADs), and (3) terminal radars, national-scale weather radars, and long-range aircraft surveillance radars (ASRs, TDWRs, NEXRADs, CARSRs, and ARSR-4s); scenarios 1G, 2G, and 3G added military airbase radars to the first three replacement scenarios. The locations and tower heights for the new radars were restricted to those of the existing radars. In reality, a transition period would require the legacy and replacement radars to be simultaneously operating, which would necessitate different locations and towers for the new radars. Therefore, the MPAR locations given in this report should only be used as a guide for future, more locally detailed, analyses that would provide the final siting data. With that caveat in mind, we conclude the following.

Replacing the legacy radars by MPARs and TMPARs would reduce the total number of radars by 18%/14% (Scenarios 1/1G), 29%/28% (Scenarios 2/2G), and 35%/35% (Scenarios 3/3G). Despite the reduction in radar count, coverage volume for weather and aircraft surveillance would increase modestly. Dual-polarization and overlapping Doppler weather coverage will improve.

Terminal aircraft surveillance coverage would be strictly preserved under this MPAR siting scheme. Airports currently equipped with an ASR but no wind-shear observation system would gain wind-shear detection coverage through a TMPAR or MPAR. Airports currently equipped with an ASR but without a nearby NEXRAD would get high-quality dual-polarization Doppler weather data. On average, terminal air spaces will have more overlapping Doppler weather coverage, increased dual-polarization weather radar data, and gain the capability for aircraft altitude estimation.

Finally, low-altitude urban airspace coverage will be improved with MPAR for all replacement scenarios. More overlapping Doppler weather radar coverage, better spatial resolution for weather and aircraft surveillance, and, most of all, enhancements in dual-polarization coverage and vertical accuracy of aircraft detection will be obtained compared to the legacy radar network.

This page intentionally left blank.

# APPENDIX A: SITE-BY-SITE LISTING OF PROPOSED RADAR DEPLOYMENT

For each relevant scenario, the tables below list the site-by-site radar replacement proposal—MPAR, TMPAR, or none. If fewer than four antenna faces are specified, this is indicated by the number of faces and azimuth coverage range in parentheses. In the ASR table, site IDs currently with WSPs are marked with asterisks. For the GPN sites, the radar ownership is indicated as AF = Air Force, AR = Army, MC = Marine Corps, N = Navy, and NG = National Guard.

| Site ID | Site Name                     | State | Туре   | Scenario<br>1 | Scenario<br>2 | Scenario<br>3 | Scenario<br>1G | Scenario<br>2G | Scenario<br>3G |
|---------|-------------------------------|-------|--------|---------------|---------------|---------------|----------------|----------------|----------------|
| ABE     | ALLENTOWN                     | PA    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| ABI     | ABILENE                       | ΤХ    | ASR-11 | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| ABQ*    | ALBUQUERQUE                   | NM    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| ACK     | NANTUCKET                     | MA    | ASR-9  | TMPAR         | MPAR          | TMPAR         | TMPAR          | MPAR           | TMPAR          |
| ACT     | WACO                          | ΤХ    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| ACY     | ATLANTIC CITY                 | NJ    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| ADW     | ANDREWS AFB<br>(CAMP SPRINGS) | MD    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| AGS     | AUGUSTA                       | GA    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| ALB*    | ALBANY                        | NY    | ASR-9  | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| ALO     | WATERLOO                      | IA    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| AMA     | AMARILLO                      | ΤХ    | ASR-11 | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| ANC     | ANCHORAGE #1                  | AK    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| ANC2    | ANCHORAGE #2                  | AK    | ASR-11 | None          | None          | None          | None           | None           | None           |
| ATL     | ATLANTA                       | GA    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| AUS*    | AUSTIN                        | тх    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| AVL     | ASHEVILLE                     | NC    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |

#### TABLE A-1

#### ASR Sites

| Site ID | Site Name                     | State | Туре   | Scenario<br>1 | Scenario<br>2 | Scenario<br>3              | Scenario<br>1G | Scenario<br>2G | Scenario<br>3G             |
|---------|-------------------------------|-------|--------|---------------|---------------|----------------------------|----------------|----------------|----------------------------|
| AVP     | WILKES BARRE                  | PA    | ASR-11 | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| AZO     | KALAMAZOO                     | MI    | ASR-8  | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| BAB     | MARYSVILLE (BEALE AFB)        | CA    | ASR-9  | TMPAR         | TMPAR         | MPAR<br>(3: 220°–<br>130°) | TMPAR          | TMPAR          | MPAR<br>(3: 220°–<br>130°) |
| BAD     | SHREVEPORT<br>(BARKSDALE AFB) | LA    | ASR-9  | TMPAR         | MPAR          | MPAR                       | TMPAR          | MPAR           | MPAR                       |
| BDL*    | WINDSOR LOCKS                 | СТ    | ASR-9  | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| BFL     | BAKERSFIELD                   | CA    | ASR-8  | TMPAR         | MPAR          | MPAR                       | TMPAR          | MPAR           | MPAR                       |
| BGM     | BINGHAMTON                    | NY    | ASR-11 | TMPAR         | MPAR          | MPAR                       | TMPAR          | MPAR           | MPAR                       |
| BGR     | BANGOR                        | ME    | ASR-11 | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| BHM*    | BIRMINGHAM                    | AL    | ASR-9  | TMPAR         | MPAR          | MPAR                       | TMPAR          | MPAR           | MPAR                       |
| BIL     | BILLINGS                      | MT    | ASR-11 | TMPAR         | MPAR          | MPAR                       | TMPAR          | MPAR           | MPAR                       |
| BIS     | BISMARK                       | ND    | ASR-8  | TMPAR         | MPAR          | MPAR                       | TMPAR          | MPAR           | MPAR                       |
| BLV     | SCOTT AFB (BELLEVILLE)        | IL    | ASR-9  | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| BNA     | NASHVILLE                     | ΤN    | ASR-9  | MPAR          | MPAR          | MPAR                       | MPAR           | MPAR           | MPAR                       |
| BNH     | BRENHAM                       | ΤХ    | ASR-11 | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| BOI     | BOISE                         | ID    | ASR-11 | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| BOS     | BOSTON                        | MA    | ASR-9  | MPAR          | MPAR          | MPAR                       | MPAR           | MPAR           | MPAR                       |
| BPT     | BEAUMONT                      | ΤХ    | ASR-11 | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| BTR     | BATON ROUGE                   | LA    | ASR-11 | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| BTV     | BURLINGTON                    | VT    | ASR-11 | TMPAR         | MPAR          | TMPAR                      | TMPAR          | MPAR           | TMPAR                      |
| BUF*    | BUFFALO                       | NY    | ASR-9  | TMPAR         | MPAR          | MPAR                       | TMPAR          | MPAR           | MPAR                       |
| BUR     | BURBANK                       | CA    | ASR-9  | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| BWI     | BALTIMORE                     | MD    | ASR-9  | MPAR          | MPAR          | MPAR                       | MPAR           | MPAR           | MPAR                       |
| CAE     | COLUMBIA                      | SC    | ASR-11 | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| CAK     | AKRON/CANTON                  | ОН    | ASR-11 | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| CHA     | CHATTANOOGA                   | ΤN    | ASR-8  | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |

| Site ID | Site Name                    | State | Туре   | Scenario<br>1 | Scenario<br>2 | Scenario<br>3              | Scenario<br>1G | Scenario<br>2G | Scenario<br>3G             |
|---------|------------------------------|-------|--------|---------------|---------------|----------------------------|----------------|----------------|----------------------------|
| СНО     | CHARLOTTESVILLE              | VA    | ASR-9  | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| CHS*    | CHARLESTON                   | SC    | ASR-9  | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| CID*    | CEDAR RAPIDS                 | IA    | ASR-9  | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| СКВ     | CLARKSBURG                   | WV    | ASR-8  | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| CLEA    | CLEVELAND                    | ОН    | ASR-9  | MPAR          | MPAR          | MPAR                       | MPAR           | MPAR           | MPAR                       |
| CLT     | CHARLOTTE                    | NC    | ASR-9  | MPAR          | MPAR          | MPAR                       | MPAR           | MPAR           | MPAR                       |
| СМН     | COLUMBUS                     | ОН    | ASR-9  | MPAR          | MPAR          | MPAR                       | MPAR           | MPAR           | MPAR                       |
| CMI     | CHAMPAIGN                    | IL    | ASR-11 | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| COS     | COLORADO SPRINGS             | со    | ASR-11 | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| COU     | COLUMBIA                     | MO    | ASR-11 | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| CPR     | CASPER                       | WY    | ASR-8  | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| CRP     | CORPUS CHRISTI               | тх    | ASR-11 | TMPAR         | MPAR          | MPAR                       | TMPAR          | MPAR           | MPAR                       |
| CRW     | CHARLESTON                   | WV    | ASR-8  | TMPAR         | MPAR          | MPAR<br>(3: 315°–<br>225°) | TMPAR          | MPAR           | MPAR<br>(3: 315°–<br>225°) |
| CSG     | COLUMBUS                     | GA    | ASR-11 | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| CUM     | CUMBERLAND<br>(PORTLAND)     | ME    | ASR-9  | TMPAR         | MPAR          | MPAR                       | TMPAR          | MPAR           | MPAR                       |
| CVG     | COVINGTON<br>(CINCINNATI)    | KY    | ASR-9  | MPAR          | MPAR          | MPAR                       | MPAR           | MPAR           | MPAR                       |
| DAB     | DAYTONA BEACH                | FL    | ASR-9  | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| DAY     | DAYTON                       | ОН    | ASR-9  | MPAR          | MPAR          | MPAR                       | MPAR           | MPAR           | MPAR                       |
| DCA     | WASHINGTON NATIONAL          | VA    | ASR-9  | TMPAR         | TMPAR         | TMPAR                      | TMPAR          | TMPAR          | TMPAR                      |
| DENA    | DENVER #1 (IRONDALE)         | со    | ASR-9  | MPAR          | MPAR          | MPAR                       | MPAR           | MPAR           | MPAR                       |
| DFW     | DALLAS FT WORTH #4<br>(WEST) | ΤХ    | ASR-9  | None          | None          | None                       | None           | None           | None                       |
| DFWA    | DALLAS FT WORTH #1<br>(EAST) | ΤХ    | ASR-9  | MPAR          | MPAR          | MPAR                       | MPAR           | MPAR           | MPAR                       |
| DLH     | DULUTH                       | MN    | ASR-8  | TMPAR         | MPAR          | MPAR                       | TMPAR          | MPAR           | MPAR                       |

| Site ID | Site Name                       | State | Туре   | Scenario<br>1              | Scenario<br>2              | Scenario<br>3              | Scenario<br>1G             | Scenario<br>2G             | Scenario<br>3G             |
|---------|---------------------------------|-------|--------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
|         |                                 |       |        | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| DPA     | DUPAGE (ORD #4, WEST)           | IL    | ASR-9  | (2: 180°–                  | (2: 180°–                  | (2: 180°–                  | (2: 180°–                  | (2: 180°–                  | (2: 180°–                  |
|         |                                 |       |        | 360°)                      | 360°)                      | 360°)                      | 360°)                      | 360°)                      | 360°)                      |
| DSM*    | DES MOINES                      | IA    | ASR-9  | TMPAR                      | MPAR                       | MPAR                       | TMPAR                      | MPAR                       | MPAR                       |
| DTWA    | DETROIT #1 (ROMULUS)            | MI    | ASR-9  | MPAR                       | MPAR                       | MPAR                       | MPAR                       | MPAR                       | MPAR                       |
| DTWC    | PONTIAC (DTW #2,<br>NORTHVILLE) | MI    | ASR-9  | TMPAR<br>(2: 225°–<br>45°) | TMPAR<br>(2: 225°-<br>45°) | TMPAR<br>(2: 225°–<br>45°) | TMPAR<br>(2: 225°–<br>45°) | TMPAR<br>(2: 225°–<br>45°) | TMPAR<br>(2: 225°–<br>45°) |
| ELM     | ELMIRA                          | NY    | ASR-8  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| ELP*    | EL PASO (BIGGS AFB)             | ΤХ    | ASR-9  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| ERI     | ERIE                            | PA    | ASR-11 | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| EUG     | EUGENE                          | OR    | ASR-8  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| EVV     | EVANSVILLE                      | IN    | ASR-8  | TMPAR                      | MPAR                       | MPAR                       | TMPAR                      | MPAR                       | MPAR                       |
| EWR     | NEWARK                          | NJ    | ASR-9  | MPAR                       | MPAR                       | MPAR                       | MPAR                       | MPAR                       | MPAR                       |
| FAI     | FAIRBANKS                       | AK    | ASR-11 | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| FAR     | FARGO                           | ND    | ASR-11 | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| FAT     | FRESNO                          | CA    | ASR-11 | TMPAR                      | MPAR                       | MPAR                       | TMPAR                      | MPAR                       | MPAR                       |
| FAY     | FAYETTEVILLE                    | NC    | ASR-9  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| FLL     | FT LAUDERDALE                   | FL    | ASR-9  | MPAR                       | MPAR                       | MPAR                       | MPAR                       | MPAR                       | MPAR                       |
| FLO     | FLORENCE                        | SC    | ASR-8  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| FMH     | FALMOUTH (OTIS AFB)             | MA    | ASR-8  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| FNT     | FLINT                           | MI    | ASR-11 | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| FSD     | SIOUX FALLS                     | SD    | ASR-11 | TMPAR                      | MPAR                       | MPAR                       | TMPAR                      | MPAR                       | MPAR                       |
| FSM     | FT SMITH                        | AR    | ASR-11 | TMPAR                      | MPAR                       | MPAR                       | TMPAR                      | MPAR                       | MPAR                       |
| FWA     | FT WAYNE                        | IN    | ASR-9  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| FYV     | FAYETTEVILLE                    | AR    | ASR-9  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |
| GEG*    | SPOKANE                         | WA    | ASR-9  | TMPAR                      | MPAR                       | TMPAR                      | TMPAR                      | MPAR                       | TMPAR                      |
| GGG     | LONGVIEW (TYLER)                | тх    | ASR-8  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR                      |

| Site ID | Site Name                         | State | Туре   | Scenario<br>1 | Scenario<br>2 | Scenario<br>3 | Scenario<br>1G | Scenario<br>2G | Scenario<br>3G |
|---------|-----------------------------------|-------|--------|---------------|---------------|---------------|----------------|----------------|----------------|
| GNV     | GAINESVILLE                       | FL    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| GPT     | GULFPORT                          | MS    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| GRB     | GREEN BAY                         | WI    | ASR-11 | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| GRR*    | GRAND RAPIDS                      | MI    | ASR-9  | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| GSO*    | GREENSBORO                        | NC    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| GSP     | GREER (GREENVILLE)                | SC    | ASR-8  | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| GTF     | GREAT FALLS                       | MT    | ASR-8  | TMPAR         | MPAR          | TMPAR         | TMPAR          | MPAR           | TMPAR          |
| GXY     | PLATTEVILLE (DEN #2)              | со    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| HNL*    | HONOLULU                          | ні    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| HOUA    | HOUSTON (HOBBY)                   | ТХ    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| HPN*    | WHITE PLAINS                      | NY    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| HRL     | HARLINGEN<br>(BROWNSVILLE)        | тх    | ASR-9  | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| HSV*    | HUNTSVILLE                        | AL    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| HTS     | HUNTINGTON                        | WV    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| HUF     | TERRA HAUTE                       | IN    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| IAD     | CHANTILLY (DULLES)                | VA    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| IAH     | HOUSTON<br>(INTERNATIONAL)        | тх    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| ICT     | WICHITA                           | KS    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| ILM     | WILMINGTON                        | NC    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| IND     | INDIANAPOLIS                      | IN    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| ISP*    | ISLIP                             | NY    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| ITO     | HILO                              | ні    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| IWA     | PHOENIX-GATEWAY<br>(WILLIAMS AFB) | AZ    | ASR-8  | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| JAN     | JACKSON                           | MS    | ASR-8  | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| JAX*    | JACKSONVILLE                      | FL    | ASR-9  | TMPAR         | MPAR          | TMPAR         | TMPAR          | MPAR           | TMPAR          |

| Site ID | Site Name                     | State | Туре   | Scenario<br>1 | Scenario<br>2 | Scenario<br>3 | Scenario<br>1G | Scenario<br>2G | Scenario<br>3G |
|---------|-------------------------------|-------|--------|---------------|---------------|---------------|----------------|----------------|----------------|
| JFK     | NEW YORK                      | NY    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| LAN     | LANSING                       | МІ    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| LAS     | LAS VEGAS                     | NV    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| LAXN    | LOS ANGELES (NORTH)           | CA    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| LAXS*   | LOS ANGELES (SOUTH)           | СА    | ASR-9  | None          | None          | None          | None           | None           | None           |
| LBB*    | LUBBOCK (REESE AFB)           | тх    | ASR-9  | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| LCH     | LAKE CHARLES                  | LA    | ASR-8  | TMPAR         | MPAR          | TMPAR         | TMPAR          | MPAR           | TMPAR          |
| LEX     | LEXINGTON                     | KY    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| LFT     | LAFAYETTE                     | LA    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| LGB     | LONG BEACH (GARDEN<br>GROVE)  | СА    | ASR-9  | TMPAR         | MPAR          | TMPAR         | TMPAR          | MPAR           | TMPAR          |
| LIH     | LIHUE                         | н     | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| LIT     | LITTLE ROCK                   | AR    | ASR-11 | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| LNK     | LINCOLN                       | NE    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| LSV     | NELLIS AFB                    | NV    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| LYH     | LYNCHBURG                     | VA    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| LZU     | LAWRENCEVILLE                 | GA    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MAF     | MIDLAND                       | ТХ    | ASR-11 | TMPAR         | MPAR          | TMPAR         | TMPAR          | MPAR           | TMPAR          |
| MBS     | SAGINAW                       | МІ    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| мсс     | MCCLELLAN AFB<br>(SACRAMENTO) | СА    | ASR-9  | TMPAR         | TMPAR         | MPAR          | TMPAR          | TMPAR          | MPAR           |
| MCE     | CASTLE AFB (MERCED)           | CA    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MCI     | KANSAS CITY                   | МО    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| MCN     | WARNER ROBINS AFB<br>(MACON)  | GA    | ASR-11 | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| МСО     | ORLANDO                       | FL    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| MDT*    | HARRISBURG                    | PA    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MEM     | MEMPHIS                       | TN    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |

| Site ID | Site Name                     | State | Туре   | Scenario<br>1 | Scenario<br>2 | Scenario<br>3 | Scenario<br>1G | Scenario<br>2G | Scenario<br>3G |
|---------|-------------------------------|-------|--------|---------------|---------------|---------------|----------------|----------------|----------------|
| MFD     | MANSFIELD                     | ОН    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MFR     | MEDFORD                       | OR    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MHT     | MANCHESTER (HEATON)           | NH    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MI2     | SACHSE (DFW #3)               | ΤХ    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MIA     | МІАМІ                         | FL    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| MKE     | MILWAUKEE                     | WI    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| MKG     | MUSKEGON                      | MI    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MLB     | PATRICK AFB                   | FL    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MLI     | MOLINE                        | IL    | ASR-11 | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| MLU     | MONROE                        | LA    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MOB     | MOBILE                        | AL    | ASR-11 | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| MRB     | MARTINSBURG                   | WV    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MRY     | MONTEREY (FT ORD)             | CA    | ASR-11 | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| MSN*    | MADISON                       | WI    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MSO     | MISSOULA                      | MT    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MSP     | MINNEAPOLIS                   | MN    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| MSY     | NEW ORLEANS                   | LA    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| MWH     | MOSES LAKE                    | WA    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| MXF     | MAXWELL AFB<br>(MONTGOMERY)   | AL    | ASR-9  | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| MYR     | MYRTLE BEACH                  | SC    | ASR-11 | TMPAR         | MPAR          | TMPAR         | TMPAR          | MPAR           | TMPAR          |
| NFG     | CAMP PENDLETON<br>(OCEANSIDE) | CA    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| NKX     | MIRAMAR MCAS (SAN<br>DIEGO)   | СА    | ASR-9  | TMPAR         | MPAR          | TMPAR         | TMPAR          | MPAR           | TMPAR          |
| NUQ     | MOFFETT NAS (SAN<br>JOSE)     | СА    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| NXX     | WILLOW GROVE NAS              | PA    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |

| Site ID | Site Name                        | State | Туре   | Scenario<br>1              | Scenario<br>2              | Scenario<br>3              | Scenario<br>1G | Scenario<br>2G | Scenario<br>3G |
|---------|----------------------------------|-------|--------|----------------------------|----------------------------|----------------------------|----------------|----------------|----------------|
| OAK     | OAKLAND                          | CA    | ASR-9  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR          | TMPAR          | TMPAR          |
| OFF     | OFFUTT AFB (OMAHA)               | NE    | ASR-9  | TMPAR                      | MPAR                       | MPAR                       | TMPAR          | MPAR           | MPAR           |
| OGG     | KAHULUI                          | н     | ASR-11 | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR          | TMPAR          | TMPAR          |
| OKC     | OKLAHOMA CITY                    | ОК    | ASR-9  | MPAR                       | MPAR                       | MPAR                       | MPAR           | MPAR           | MPAR           |
| ONT*    | ONTARIO (MARCH AFB)              | CA    | ASR-9  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR          | TMPAR          | TMPAR          |
| ORD     | CHICAGO (OHARE) #1               | IL    | ASR-9  | None                       | None                       | None                       | None           | None           | None           |
| ORD2    | CHICAGO (OHARE) #2               | IL    | ASR-9  | MPAR                       | MPAR                       | MPAR                       | MPAR           | MPAR           | MPAR           |
| ORF*    | NORFOLK                          | VA    | ASR-9  | TMPAR                      | MPAR                       | TMPAR                      | TMPAR          | MPAR           | TMPAR          |
| PA2     | AZLE (DFW #2)                    | тх    | ASR-9  | TMPAR<br>(3: 135°–<br>45°) | TMPAR<br>(3: 135°–<br>45°) | TMPAR<br>(3: 135°–<br>45°) | None           | None           | None           |
| PBI     | WEST PALM BEACH                  | FL    | ASR-11 | MPAR                       | MPAR                       | MPAR                       | MPAR           | MPAR           | MPAR           |
| PDX*    | PORTLAND                         | OR    | ASR-9  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR          | TMPAR          | TMPAR          |
| PHL     | PHILADELPHIA                     | PA    | ASR-9  | MPAR                       | MPAR                       | MPAR                       | MPAR           | MPAR           | MPAR           |
| PHX     | PHOENIX                          | AZ    | ASR-9  | MPAR                       | MPAR                       | MPAR                       | MPAR           | MPAR           | MPAR           |
| PIA     | PEORIA                           | IL    | ASR-11 | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR          | TMPAR          | TMPAR          |
| PIT     | PITTSBURGH                       | PA    | ASR-9  | MPAR                       | MPAR                       | MPAR                       | MPAR           | MPAR           | MPAR           |
| PNS     | PENSACOLA                        | FL    | ASR-11 | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR          | TMPAR          | TMPAR          |
| PSC     | PASCO                            | WA    | ASR-9  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR          | TMPAR          | TMPAR          |
| PSP     | PALM SPRINGS                     | CA    | ASR-9  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR          | TMPAR          | TMPAR          |
| PUB     | PUEBLO                           | со    | ASR-11 | TMPAR                      | MPAR                       | MPAR                       | TMPAR          | MPAR           | MPAR           |
| PVD     | COVENTRY<br>(PROVIDENCE)         | RI    | ASR-9  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR          | TMPAR          | TMPAR          |
| QLO     | ORCHARD MESA (GRAND<br>JUNCTION) | со    | ASR-9  | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR          | TMPAR          | TMPAR          |
| QXM     | TINLEY PARK (ORD #2)             | IL    | ASR-9  | MPAR                       | MPAR                       | MPAR                       | MPAR           | MPAR           | MPAR           |
| RDG     | READING                          | PA    | ASR-11 | TMPAR                      | TMPAR                      | TMPAR                      | TMPAR          | TMPAR          | TMPAR          |
| RDU     | RALEIGH-DURHAM                   | NC    | ASR-9  | MPAR                       | MPAR                       | MPAR                       | MPAR           | MPAR           | MPAR           |

| Site ID | Site Name        | State | Туре   | Scenario<br>1 | Scenario<br>2 | Scenario<br>3 | Scenario<br>1G | Scenario<br>2G | Scenario<br>3G |
|---------|------------------|-------|--------|---------------|---------------|---------------|----------------|----------------|----------------|
| RFD     | ROCKFORD         | IL    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| RIC*    | RICHMOND         | VA    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| RNO     | RENO             | NV    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| ROA     | ROANOKE          | VA    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| ROC*    | ROCHESTER        | NY    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| ROW     | ROSWELL          | NM    | ASR-9  | TMPAR         | TMPAR         | MPAR          | TMPAR          | TMPAR          | MPAR           |
| RST     | ROCHESTER        | MN    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| RSW     | FORT MEYERS      | FL    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| SATA*   | SAN ANTONIO      | тх    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| SAV     | SAVANNAH         | GA    | ASR-8  | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| SBA     | SANTA BARBARA    | СА    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| SBN     | SOUTH BEND       | IN    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| SCK     | STOCKTON         | СА    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| SDF     | LOUISVILLE       | KY    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| SDL     | NORTH VALLEY     | AZ    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| SEA*    | SEATTLE          | WA    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| SGF     | SPRINGFIELD      | МО    | ASR-11 | TMPAR         | MPAR          | MPAR          | TMPAR          | MPAR           | MPAR           |
| SJT     | SAN ANGELO       | тх    | ASR-9  | TMPAR         | MPAR          | TMPAR         | TMPAR          | MPAR           | TMPAR          |
| SJU     | SAN JUAN         | PR    | ASR-8  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| SLC     | SALT LAKE CITY   | UT    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| SMX     | SANTA MARIA      | СА    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| SPI     | SPRINGFIELD      | IL    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| SRQ*    | SARASOTA         | FL    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| STL     | ST LOUIS         | МО    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| STT     | ST THOMAS        | VI    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| SUX     | SIOUX CITY       | IA    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| SWF     | NEWBURGH STEWART | NY    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |

| Site ID | Site Name          | State | Туре   | Scenario<br>1 | Scenario<br>2 | Scenario<br>3 | Scenario<br>1G | Scenario<br>2G | Scenario<br>3G |
|---------|--------------------|-------|--------|---------------|---------------|---------------|----------------|----------------|----------------|
| SYR*    | SYRACUSE           | NY    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| TLH     | TALLAHASSEE        | FL    | ASR-8  | TMPAR         | MPAR          | TMPAR         | TMPAR          | MPAR           | TMPAR          |
| TOL*    | TOLEDO             | ОН    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| TPA     | ТАМРА              | FL    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| TRI     | TRI CITY (BRISTOL) | ΤN    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| TUL     | TULSA              | ОК    | ASR-9  | MPAR          | MPAR          | MPAR          | MPAR           | MPAR           | MPAR           |
| TUS*    | TUCSON (DAVIS AFB) | AZ    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| TYS*    | KNOXVILLE          | ΤN    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| UAM     | ANDERSEN AFB       | GU    | ASR-8  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| VRB     | VERO BEACH         | FL    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| YKM     | YAKIMA             | WA    | ASR-9  | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |
| YNG     | YOUNGSTOWN         | OH    | ASR-11 | TMPAR         | TMPAR         | TMPAR         | TMPAR          | TMPAR          | TMPAR          |

# TABLE A-2

# **TDWR Sites**

| Site ID | Site Name     | State | Scenario<br>1 | Scenario<br>2 | Scenario<br>3 | Scenario<br>1G | Scenario<br>2G | Scenario<br>3G |
|---------|---------------|-------|---------------|---------------|---------------|----------------|----------------|----------------|
| ADW     | ANDREWS AFB   | MD    | None          | None          | None          | None           | None           | None           |
| ATL     | ATLANTA       | GA    | None          | None          | None          | None           | None           | None           |
| BNA     | NASHEVILLE    | ΤN    | None          | None          | None          | None           | None           | None           |
| BOS     | BOSTON        | MA    | None          | None          | None          | None           | None           | None           |
| BWI     | BALTIMORE     | MD    | None          | None          | None          | None           | None           | None           |
| CLE     | CLEVELAND     | ОН    | None          | None          | None          | None           | None           | None           |
| CLT     | CHARLOTTE     | NC    | None          | None          | None          | None           | None           | None           |
| СМН     | COLUMBUS      | ОН    | None          | None          | None          | None           | None           | None           |
| CVG     | CINCINNATI    | ОН    | None          | None          | None          | None           | None           | None           |
| DAL     | DALLAS (LOVE) | тх    | None          | None          | None          | None           | None           | None           |

| Site ID | Site Name                  | State | Scenario<br>1 | Scenario<br>2 | Scenario<br>3 | Scenario<br>1G | Scenario<br>2G | Scenario<br>3G |
|---------|----------------------------|-------|---------------|---------------|---------------|----------------|----------------|----------------|
| DAY     | DAYTON                     | ОН    | None          | None          | None          | None           | None           | None           |
| DCA     | WASHINGTON<br>(NATIONAL)   | DC    | None          | None          | None          | None           | None           | None           |
| DEN     | DENVER                     | со    | None          | None          | None          | None           | None           | None           |
| DFW     | DALLAS-FT WORTH            | ТХ    | None          | None          | None          | None           | None           | None           |
| DTW     | DETROIT                    | МІ    | None          | None          | None          | None           | None           | None           |
| EWR     | NEWARK                     | NJ    | None          | None          | None          | None           | None           | None           |
| FLL     | FT LAUDERDALE              | FL    | None          | None          | None          | None           | None           | None           |
| HOU     | HOUSTON (HOBBY)            | ТХ    | None          | None          | None          | None           | None           | None           |
| IAD     | WASHINGTON (DULLES)        | VA    | None          | None          | None          | None           | None           | None           |
| IAH     | HOUSTON<br>(INTERNATIONAL) | тх    | None          | None          | None          | None           | None           | None           |
| ICT     | WICHITA                    | KS    | None          | None          | None          | None           | None           | None           |
| IND     | INDIANA                    | IN    | None          | None          | None          | None           | None           | None           |
| JFK     | NEW YORK (KENNEDY)         | NY    | None          | None          | None          | None           | None           | None           |
| LAS     | LAS VEGAS                  | NV    | None          | None          | None          | None           | None           | None           |
| MCI     | KANSAS CITY                | МО    | None          | None          | None          | None           | None           | None           |
| мсо     | ORLANDO                    | FL    | None          | None          | None          | None           | None           | None           |
| MDW     | CHICAGO (MIDWAY)           | IL    | None          | None          | None          | None           | None           | None           |
| MEM     | MEMPHIS                    | TN    | None          | None          | None          | None           | None           | None           |
| MIA     | ΜΙΑΜΙ                      | FL    | None          | None          | None          | None           | None           | None           |
| MKE     | MILWAUKEE                  | WI    | None          | None          | None          | None           | None           | None           |
| MSP     | MINNEAPOLIS-ST PAUL        | MN    | None          | None          | None          | None           | None           | None           |
| MSY     | NEW ORLEANS                | LA    | None          | None          | None          | None           | None           | None           |
| ОКС     | OKLAHOMA CITY              | ОК    | None          | None          | None          | None           | None           | None           |
| ORD     | CHICAGO (OHARE)            | IL    | None          | None          | None          | None           | None           | None           |
| PBI     | PALM BEACH                 | FL    | None          | None          | None          | None           | None           | None           |
| PHL     | PHILADELPHIA               | PA    | None          | None          | None          | None           | None           | None           |
| PHX     | PHOENIX                    | AZ    | None          | None          | None          | None           | None           | None           |

| Site ID | Site Name      | State | Scenario<br>1 | Scenario<br>2 | Scenario<br>3 | Scenario<br>1G | Scenario<br>2G | Scenario<br>3G |
|---------|----------------|-------|---------------|---------------|---------------|----------------|----------------|----------------|
| PIT     | PITTSBURGH     | PA    | None          | None          | None          | None           | None           | None           |
| RDU     | RALEIGH-DURHAM | NC    | None          | None          | None          | None           | None           | None           |
| SDF     | LOUISVILLE     | KY    | None          | None          | None          | None           | None           | None           |
| SJU     | SAN JUAN       | PR    | None          | None          | None          | None           | None           | None           |
| SLC     | SALT LAKE CITY | UT    | None          | None          | None          | None           | None           | None           |
| STL     | ST LOUIS       | МО    | None          | None          | None          | None           | None           | None           |
| TPA     | ТАМРА          | FL    | None          | None          | None          | None           | None           | None           |
| TUL     | TULSA          | ОК    | None          | None          | None          | None           | None           | None           |

# TABLE A-3

#### **NEXRAD Sites**

| Site ID | Site Name            | State | Scenario 2 | Scenario 3              | Scenario 2G | Scenario 3G |
|---------|----------------------|-------|------------|-------------------------|-------------|-------------|
| KABR    | ABERDEEN             | SD    | MPAR       | MPAR                    | MPAR        | MPAR        |
| KABX    | ALBUQUERQUE          | NM    | MPAR       | MPAR                    | MPAR        | MPAR        |
| KAKQ    | NORFOLK              | VA    | None       | MPAR (2: 150°–<br>330°) | None        | None        |
| KAMA    | AMARILLO             | тх    | None       | None                    | None        | None        |
| KAMX    | МІАМІ                | FL    | None       | None                    | None        | None        |
| KAPX    | NCL MICHIGAN         | MI    | MPAR       | MPAR                    | MPAR        | MPAR        |
| KARX    | LA CROSSE            | WI    | MPAR       | MPAR                    | MPAR        | MPAR        |
| ΚΑΤΧ    | SEATTLE              | WA    | MPAR       | MPAR                    | None        | None        |
| KBBX    | BEALE AFB            | CA    | MPAR       | None                    | MPAR        | None        |
| KBGM    | BINGHAMTON           | NY    | None       | None                    | None        | None        |
| КВНХ    | EUREKA (BUNKER HILL) | CA    | MPAR       | None                    | MPAR        | None        |
| KBIS    | BISMARCK             | ND    | None       | None                    | None        | None        |
| KBLX    | BILLINGS             | MT    | None       | None                    | None        | None        |
| КВМХ    | BIRMINGHAM           | AL    | None       | None                    | None        | None        |

| Site ID | Site Name       | State | Scenario 2             | Scenario 3             | Scenario 2G | Scenario 3G |
|---------|-----------------|-------|------------------------|------------------------|-------------|-------------|
| квох    | BOSTON          | MA    | None                   | None                   | None        | None        |
| KBRO    | BROWNSVILLE     | ΤХ    | None                   | None                   | None        | None        |
| KBUF    | BUFFALO         | NY    | None                   | None                   | None        | None        |
| КВҮХ    | KEY WEST        | FL    | MPAR                   | None                   | None        | None        |
| KCAE    | COLUMBIA        | SC    | None                   | None                   | None        | None        |
| KCBW    | CARIBOU         | ME    | MPAR                   | MPAR (3: 30°–<br>300°) | MPAR        | MPAR        |
| КСВХ    | BOISE           | ID    | MPAR                   | MPAR                   | MPAR        | MPAR        |
| кссх    | STATE COLLEGE   | PA    | MPAR                   | MPAR                   | MPAR        | MPAR        |
| KCLE    | CLEVELAND       | ОН    | None                   | None                   | None        | None        |
| KCLX    | CHARLESTON      | SC    | None                   | None                   | None        | None        |
| KCRP    | CORPUS CHRISTI  | ΤХ    | None                   | None                   | None        | None        |
| ксхх    | BURLINGTON      | VT    | None                   | None                   | None        | None        |
| KCYS    | CHEYENNE        | WY    | MPAR                   | MPAR                   | MPAR        | MPAR        |
| KDAX    | SACRAMENTO      | CA    | MPAR                   | None                   | None        | None        |
| KDDC    | DODGE CITY      | KS    | MPAR                   | MPAR                   | MPAR        | MPAR        |
| KDFX    | LAUGHLIN AFB    | тх    | MPAR                   | MPAR (3: 45°–<br>315°) | None        | None        |
| KDGX    | JACKSON/BRANDON | MS    | None                   | None                   | None        | None        |
| KDIX    | PHILADELPHIA    | NJ    | MPAR (2: 45°–<br>225°) | None                   | None        | None        |
| KDLH    | DULUTH          | MN    | None                   | None                   | None        | None        |
| KDMX    | DES MOINES      | IA    | None                   | None                   | None        | None        |
| KDOX    | DOVER AFB       | DE    | MPAR                   | MPAR                   | MPAR        | MPAR        |
| KDTX    | DETROIT         | MI    | None                   | None                   | None        | None        |
| KDVN    | QUAD CITIES     | IA    | None                   | None                   | None        | None        |
| KDYX    | DYESS AFB       | ΤХ    | None                   | None                   | None        | None        |
| KEAX    | PLEASANT HILL   | МО    | MPAR (3: 0°–270°)      | MPAR (3: 0°–270°)      | None        | None        |

| Site ID | Site Name          | State | Scenario 2              | Scenario 3              | Scenario 2G             | Scenario 3G             |
|---------|--------------------|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| KEMX    | TUCSON             | AZ    | MPAR                    | MPAR                    | MPAR                    | MPAR                    |
| KENX    | ALBANY             | NY    | None                    | None                    | None                    | None                    |
| KEOX    | FT RUCKER          | AL    | None                    | MPAR                    | None                    | MPAR                    |
| KEPZ    | EL PASO            | NM    | MPAR                    | None                    | MPAR                    | None                    |
| KESX    | LAS VEGAS          | NV    | MPAR                    | MPAR                    | MPAR                    | MPAR                    |
| KEVX    | EGLIN AFB          | FL    | MPAR                    | None                    | MPAR                    | None                    |
| KEWX    | AUSTIN/SAN ANTONIO | ΤХ    | MPAR                    | None                    | MPAR                    | None                    |
| KEYX    | EDWARDS AFB        | CA    | MPAR                    | None                    | MPAR                    | None                    |
| KFCX    | ROANOKE            | VA    | MPAR (3: 210°–<br>120°) | MPAR (3: 210°–<br>120°) | MPAR (3: 210°–<br>120°) | MPAR (3: 210°–<br>120°) |
| KFDR    | ALTUS AFB          | ОК    | MPAR                    | MPAR                    | None                    | None                    |
| KFDX    | CANNON AFB         | NM    | MPAR                    | None                    | MPAR                    | None                    |
| KFFC    | ATLANTA            | GA    | None                    | None                    | None                    | None                    |
| KFSD    | SIOUX FALLS        | SD    | None                    | None                    | None                    | None                    |
| KFSX    | FLAGSTAFF          | AZ    | MPAR                    | MPAR                    | MPAR                    | MPAR                    |
| KFTG    | DENVER             | СО    | None                    | None                    | None                    | None                    |
| KFWS    | DALLAS/FT WORTH    | ΤХ    | None                    | None                    | None                    | None                    |
| KGGW    | GLASGOW            | MT    | MPAR                    | MPAR                    | MPAR                    | MPAR                    |
| KGJX    | GRAND JUNCTION     | СО    | MPAR                    | MPAR                    | MPAR                    | MPAR                    |
| KGLD    | GOODLAND           | KS    | MPAR                    | MPAR                    | MPAR                    | MPAR                    |
| KGRB    | GREEN BAY          | WI    | None                    | None                    | None                    | None                    |
| KGRK    | FT HOOD            | ΤХ    | MPAR                    | None                    | MPAR                    | None                    |
| KGRR    | GRAND RAPIDS       | MI    | None                    | None                    | None                    | None                    |
| KGSP    | GREER              | SC    | None                    | None                    | None                    | None                    |
| KGWX    | COLUMBUS AFB       | MS    | MPAR (3: 120°–<br>30°)  | MPAR (3: 120°–<br>30°)  | None                    | None                    |
| KGYX    | PORTLAND           | ME    | None                    | None                    | None                    | None                    |
| KHDX    | HOLLOMAN AFB       | NM    | MPAR                    | None                    | None                    | None                    |

| Site ID | Site Name          | State | Scenario 2                     | Scenario 3                     | Scenario 2G                    | Scenario 3G                     |
|---------|--------------------|-------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|
| KHGX    | HOUSTON            | тх    | None                           | None                           | None                           | None                            |
| KHNX    | SAN JOAQUIN VALLEY | CA    | None                           | None                           | None                           | None                            |
| КНРХ    | FT CAMPBELL        | KΥ    | MPAR (3: 140°–<br>50°)         | MPAR (2: 120°–<br>300°)        | None                           | None                            |
| кнтх    | NORTHEAST ALABAMA  | AL    | MPAR                           | MPAR                           | MPAR                           | MPAR                            |
| кіст    | WICHITA            | KS    | None                           | None                           | None                           | None                            |
| KICX    | CEDAR CITY         | UT    | MPAR                           | None                           | MPAR                           | None                            |
| KILN    | CINCINNATI         | ОН    | None                           | None                           | None                           | None                            |
| KILX    | LINCOLN            | IL    | MPAR (3: 45°–<br>315°)         | MPAR (3: 45°–<br>315°)         | MPAR (3: 45°–<br>315°)         | MPAR (3: 45°–<br>315°)          |
| KIND    | INDIANAPOLIS       | IN    | None                           | None                           | None                           | None                            |
| KINX    | TULSA              | ОК    | None                           | None                           | None                           | None                            |
| KIWA    | PHOENIX            | AZ    | None                           | None                           | None                           | None                            |
| ĸıwx    | NORTHERN INDIANA   | IN    | MPAR (2: 0°–90°,<br>180°–270°) | MPAR (2: 0°–90°,<br>180°–270°) | MPAR (2: 0°–90°,<br>180°–270°) | MPAR (2: 0°–<br>90°, 180°–270°) |
| KJAX    | JACKSONVILLE       | FL    | None                           | None                           | None                           | None                            |
| KJGX    | ROBINS AFB         | GA    | None                           | None                           | None                           | None                            |
| KJKL    | JACKSON            | KY    | MPAR                           | MPAR                           | MPAR                           | MPAR                            |
| KLBB    | LUBBOCK            | тх    | None                           | None                           | None                           | None                            |
| KLCH    | LAKE CHARLES       | LA    | None                           | None                           | None                           | None                            |
| KLGX    | LANGLEY HILL       | WA    | MPAR                           | MPAR                           | MPAR                           | MPAR                            |
| KLIX    | SLIDELL            | LA    | None                           | None                           | None                           | None                            |
| KLNX    | NORTH PLATTE       | NE    | MPAR                           | MPAR                           | MPAR                           | MPAR                            |
| KLOT    | CHICAGO            | IL    | None                           | None                           | None                           | None                            |
| KLRX    | ELKO               | NV    | MPAR                           | MPAR                           | MPAR                           | MPAR                            |
| KLSX    | ST LOUIS           | MO    | None                           | None                           | None                           | None                            |
| KLTX    | WILMINGTON         | NC    | None                           | None                           | None                           | None                            |
| KLVX    | LOUISVILLE         | KY    | None                           | None                           | None                           | None                            |

| Site ID | Site Name         | State | Scenario 2              | Scenario 3             | Scenario 2G             | Scenario 3G            |
|---------|-------------------|-------|-------------------------|------------------------|-------------------------|------------------------|
| KLWX    | STERLING          | VA    | None                    | None                   | None                    | None                   |
| KLZK    | LITTLE ROCK       | AR    | None                    | None                   | None                    | None                   |
| KMAF    | MIDLAND/ODESSA    | ΤХ    | None                    | None                   | None                    | None                   |
| KMAX    | MEDFORD           | OR    | MPAR                    | MPAR (3: 135°–<br>45°) | MPAR                    | MPAR (3: 135°–<br>45°) |
| КМВХ    | MINOT AFB         | ND    | MPAR                    | MPAR                   | None                    | None                   |
| КМНХ    | MOREHEAD CITY     | NC    | MPAR                    | MPAR                   | None                    | None                   |
| КМКХ    | MILWAUKEE         | WI    | None                    | None                   | None                    | None                   |
| KMLB    | MELBOURNE         | FL    | None                    | None                   | None                    | None                   |
| кмов    | MOBILE            | AL    | None                    | None                   | None                    | None                   |
| KMPX    | MINNEAPOLIS       | MN    | None                    | None                   | None                    | None                   |
| KMQT    | MARQUETTE         | МІ    | MPAR                    | MPAR                   | MPAR                    | MPAR                   |
| KMRX    | KNOXVILLE         | TN    | MPAR                    | MPAR                   | MPAR                    | MPAR                   |
| KMSX    | MISSOULA          | МТ    | MPAR                    | MPAR                   | MPAR                    | MPAR                   |
| КМТХ    | SALT LAKE CITY    | UT    | MPAR                    | MPAR                   | MPAR                    | None                   |
| KMUX    | SAN FRANCISCO     | CA    | None                    | None                   | None                    | None                   |
| KMVX    | FARGO/GRAND FORKS | ND    | MPAR                    | None                   | None                    | None                   |
| КМХХ    | MAXWELL AFB       | AL    | None                    | None                   | None                    | None                   |
| KNKX    | SAN DIEGO         | CA    | None                    | None                   | None                    | None                   |
| KNQA    | MEMPHIS           | ΤN    | None                    | None                   | None                    | None                   |
| KOAX    | ОМАНА             | NE    | None                    | None                   | None                    | None                   |
| конх    | NASHVILLE         | ΤN    | None                    | None                   | None                    | None                   |
| кокх    | BROOKHAVEN        | NY    | MPAR (3: 315°–<br>225°) | None                   | MPAR (3: 315°–<br>225°) | None                   |
| котх    | SPOKANE           | WA    | None                    | None                   | None                    | None                   |
| KPAH    | PADUCAH           | КY    | MPAR (3: 120°–<br>30°)  | MPAR (3: 120°–<br>30°) | MPAR (3: 120°–<br>30°)  | MPAR (3: 120°–<br>30°) |
| KPBZ    | PITTSBURGH        | PA    | None                    | None                   | None                    | None                   |

| Site ID | Site Name        | State | Scenario 2              | Scenario 3              | Scenario 2G            | Scenario 3G |
|---------|------------------|-------|-------------------------|-------------------------|------------------------|-------------|
| KPDT    | PENDLETON        | OR    | MPAR                    | MPAR                    | MPAR                   | MPAR        |
| KPOE    | FT POLK          | LA    | MPAR (2: 300°–<br>120°) | MPAR (2: 300°–<br>120°) | None                   | None        |
| KPUX    | PUEBLO           | со    | None                    | None                    | None                   | None        |
| KRAX    | RALEIGH/DURHAM   | NC    | None                    | None                    | None                   | None        |
| KRGX    | RENO             | NV    | MPAR                    | MPAR                    | MPAR                   | MPAR        |
| KRIW    | RIVERTON/LANDER  | WY    | MPAR                    | MPAR                    | MPAR                   | MPAR        |
| KRLX    | CHARLESTON       | WV    | None                    | None                    | None                   | None        |
| KRTX    | PORTLAND         | OR    | MPAR                    | MPAR                    | MPAR                   | MPAR        |
| KSFX    | POCATELLO        | ID    | MPAR                    | MPAR                    | MPAR                   | MPAR        |
| KSGF    | SPRINGFIELD      | МО    | None                    | None                    | None                   | None        |
| KSHV    | SHREVEPORT       | LA    | None                    | None                    | None                   | None        |
| KSJT    | SAN ANGELO       | ΤХ    | None                    | None                    | None                   | None        |
| KSOX    | SANTA ANA MTS    | СА    | MPAR (1: 60°–<br>150°)  | None                    | MPAR (1: 60°–<br>150°) | None        |
| KSRX    | WESTERN ARKANSAS | AR    | None                    | None                    | None                   | None        |
| KTBW    | ТАМРА            | FL    | None                    | None                    | None                   | None        |
| KTFX    | GREAT FALLS      | MT    | None                    | None                    | None                   | None        |
| KTLH    | TALLAHASSEE      | MT    | None                    | None                    | None                   | None        |
| KTLX    | NORMAN           | FL    | None                    | None                    | None                   | None        |
| ктwx    | ТОРЕКА           | KS    | MPAR                    | MPAR                    | None                   | None        |
| ктүх    | FT DRUM          | NY    | MPAR (3: 240°–<br>150°) | MPAR (3: 240°–<br>150°) | None                   | None        |
| KUDX    | RAPID CITY       | SD    | MPAR                    | MPAR                    | None                   | None        |
| KUEX    | GRAND ISLAND     | NE    | MPAR                    | MPAR                    | MPAR                   | MPAR        |
| KVAX    | MOODY AFB        | GA    | MPAR                    | MPAR                    | None                   | None        |
| KVBX    | VANDENBERG AFB   | CA    | MPAR                    | None                    | MPAR                   | None        |
| KVNX    | VANCE AFB        | ОК    | MPAR                    | MPAR                    | None                   | None        |

| Site ID | Site Name          | State | Scenario 2             | Scenario 3             | Scenario 2G            | Scenario 3G            |
|---------|--------------------|-------|------------------------|------------------------|------------------------|------------------------|
| κντχ    | LOS ANGELES        | CA    | MPAR                   | MPAR                   | MPAR                   | MPAR                   |
| ĸvwx    | EVANSVILLE         | IN    | None                   | None                   | None                   | None                   |
| KYUX    | YUMA               | AZ    | MPAR                   | MPAR                   | None                   | None                   |
| PABC    | BETHEL             | AK    | MPAR                   | MPAR                   | MPAR                   | MPAR                   |
| PACG    | SITKA              | AK    | MPAR                   | MPAR                   | MPAR                   | MPAR                   |
| PAEC    | NOME               | AK    | MPAR                   | MPAR                   | MPAR                   | MPAR                   |
| PAHG    | ANCHORAGE          | AK    | MPAR                   | MPAR                   | MPAR                   | MPAR                   |
| PAIH    | MIDDLETON ISLAND   | AK    | MPAR                   | MPAR                   | MPAR                   | MPAR                   |
| PAKC    | KING SALMON        | AK    | MPAR                   | MPAR                   | MPAR                   | MPAR                   |
| PAPD    | FAIRBANKS          | AK    | MPAR                   | MPAR                   | MPAR                   | MPAR                   |
| PGUA    | ANDERSEN AFB       | GU    | MPAR                   | None                   | MPAR                   | None                   |
| PHKI    | SOUTH KAUAI        | ні    | MPAR                   | MPAR                   | MPAR                   | MPAR                   |
| РНКМ    | KAMUELA/KOHALA APT | ні    | MPAR                   | MPAR                   | MPAR                   | MPAR                   |
| РНМО    | MOLOKAI            | н     | MPAR                   | MPAR                   | MPAR                   | MPAR                   |
| PHWA    | SOUTH SHORE        | ні    | MPAR                   | MPAR                   | MPAR                   | MPAR                   |
| TJUA    | SAN JUAN           | PR    | MPAR (3: 45°–<br>315°) | MPAR (2: 90°–<br>270°) | MPAR (3: 45°–<br>315°) | MPAR (2: 90°–<br>270°) |

# TABLE A-4

## **CARSR Sites**

| Site<br>ID | Site Name                        | State | Original Type | Scenario 3          | Scenario 3G         |
|------------|----------------------------------|-------|---------------|---------------------|---------------------|
| AEX        | ALEXANDRIA                       | LA    | FPS-20A       | None                | None                |
| AMA        | AMARILLO                         | ТХ    | FPS-67B       | None                | None                |
| ATL        | MARIETTA                         | GA    | ARSR-1        | None                | None                |
| BAM        | BATTLE MOUNTAIN                  | NV    | ARSR-2        | MPAR                | None                |
| BQN        | PUNTA BORINQUEN                  | PR    | FPS-93A       | MPAR                | MPAR                |
| CDC        | CEDAR CITY                       | UT    | ARSR-2        | MPAR                | MPAR                |
| CLE        | BRECKSVILLE (CLEVELAND)          | ОН    | ARSR-1        | None                | None                |
| CPV        | COOPERSVILLE                     | MI    | FPS-66A       | None                | None                |
| DSV        | DANSVILLE                        | NY    | ARSR-1        | None                | None                |
| ENA        | KENAI                            | AK    | ARSR-3        | None                | None                |
| FLX        | FALLON                           | NV    | FPS-66A       | MPAR                | None                |
| FPK        | SALT LAKE CITY (FRANCIS<br>PEAK) | UT    | ARSR-1        | MPAR (2: 350°–170°) | MPAR (2: 350°–170°) |
| FTW        | KELLER                           | ΤХ    | ARSR-1        | None                | None                |
| GCK        | GARDEN CITY                      | KS    | ARSR-2        | None                | None                |
| GJT        | GRAND JUNCTION                   | СО    | ARSR-2        | MPAR                | MPAR                |
| GUP        | GALLUP (FARMINGTON)              | NM    | ARSR-2        | MPAR                | MPAR                |
| HOU        | HOUSTON (ELLINGTON AFB)          | ΤХ    | ARSR-1        | None                | None                |
| HTI        | HUTCHINSON                       | KS    | FPS-66A       | None                | None                |
| IND        | INDIANAPOLIS                     | IN    | ARSR-1        | None                | None                |
| IRK        | KIRKSVILLE                       | MO    | ARSR-3        | MPAR                | MPAR                |
| JOL        | ELWOOD (JOLIET)                  | IL    | ARSR-3        | None                | None                |
| LBF        | NORTH PLATTE                     | NE    | ARSR-2        | None                | None                |
| LMT        | KLAMATH FALLS                    | OR    | FPS-67B       | MPAR                | MPAR                |
| LSK        | LUSK                             | WY    | ARSR-2        | MPAR                | MPAR                |
| MGM        | MONTGOMERY                       | AL    | ARSR-1        | None                | None                |
| окс        | TINKER AFB                       | ОК    | FPS-67B       | None                | None                |

| Site<br>ID | Site Name           | State | Original Type | Scenario 3         | Scenario 3G        |
|------------|---------------------|-------|---------------|--------------------|--------------------|
| PHX        | PHOENIX (HUMBOLDT)  | AZ    | ARSR-1        | None               | None               |
| PIT        | OAKDALE             | PA    | FPS-67B       | None               | None               |
| QAS        | ANGEL PEAK          | NV    | FPS-20A       | MPAR               | MPAR               |
| QBE        | BEDFORD             | VA    | ARSR-3        | None               | None               |
| QBN        | BINNS HALL          | VA    | ARSR-3        | None               | None               |
| QBZ        | OSKALOOSA           | KS    | ARSR-2        | None               | None               |
| QCF        | CLEARFIELD          | PA    | ARSR-3        | None               | None               |
| QCK        | CASCADE (BOISE)     | ID    | ARSR-2        | MPAR               | MPAR               |
| QDT        | CANTON (DETROIT)    | MI    | ARSR-1        | None               | None               |
| QHA        | CUMMINGTON          | MA    | FPS-67        | None               | None               |
| QHB        | ST ALBANS           | VT    | FPS-67B       | MPAR               | MPAR               |
| QHN        | ASHBURN             | GA    | ARSR-1        | None               | None               |
| QHO        | ОМАНА               | NE    | FPS-66A       | None               | None               |
| QHZ        | HORICON             | WI    | ARSR-2        | None               | None               |
| QJB        | GETTYSBURG          | SD    | FPS-67B       | None               | None               |
| QJC        | TYLER               | MN    | ARSR-2        | None               | None               |
| QJE        | APPLE VALLEY        | MN    | ARSR-1        | None               | None               |
| QJO        | ARLINGTON           | IA    | ARSR-3        | None               | None               |
| QJQ        | PICO DEL ESTE       | PR    | FPS-67A       | MPAR (1: 90°–180°) | MPAR (1: 90°–180°) |
| QLA        | SAN PEDRO           | CA    | ARSR-1        | MPAR               | MPAR               |
| QNK        | LINCOLNTON          | GA    | ARSR-3        | None               | None               |
| QNM        | NEWPORT             | MS    | ARSR-3        | None               | None               |
| QOJ        | JOELTON (NASHVILLE) | ΤN    | ARSR-1        | None               | None               |
| QPC        | HALEYVILLE          | AL    | FPS-67B       | None               | None               |
| QPK        | PARKER              | СО    | ARSR-1        | MPAR               | MPAR               |
| QPL        | THE PLAINS          | VA    | ARSR-3        | None               | None               |
| QRB        | CITRONELLE          | AL    | ARSR-2        | None               | None               |
| QRC        | BENTON              | PA    | FPS-67B       | None               | None               |
| QRI        | LYNCH               | KY    | ARSR-2        | None               | None               |

| Site<br>ID | Site Name           | State | Original Type | Scenario 3         | Scenario 3G        |
|------------|---------------------|-------|---------------|--------------------|--------------------|
| QRL        | BENSON              | NC    | ARSR-1        | None               | None               |
| QRM        | MAIDEN              | NC    | ARSR-1        | None               | None               |
| QSA        | WEST MESA           | NM    | FPS-66A       | None               | None               |
| QSI        | LOVELL              | WY    | ARSR-2        | MPAR               | MPAR               |
| QSR        | BORON               | CA    | FPS-67B       | MPAR               | MPAR               |
| QTZ        | LAGRANGE            | IN    | ARSR-1        | None               | None               |
| QUZ        | HANNA CITY          | IL    | FPS-67B       | None               | None               |
| QVA        | ASHTON              | ID    | ARSR-2        | MPAR               | MPAR               |
| QVN        | FOSSIL              | OR    | ARSR-3        | MPAR               | MPAR               |
| QWC        | MESA RICA           | NM    | ARSR-1        | MPAR               | MPAR               |
| QWO        | LONDON              | ОН    | ARSR-1        | None               | None               |
| QXP        | SELIGMAN            | AZ    | ARSR-3        | MPAR               | MPAR               |
| QXR        | RUSSELLVILLE        | AR    | FPS-67A       | None               | None               |
| QXS        | ODESSA              | ТХ    | ARSR-1        | None               | None               |
| QYB        | BYHALIA (MEMPHIS)   | MS    | ARSR-1        | None               | None               |
| QYS        | ROGERS              | ТХ    | ARSR-1        | MPAR               | MPAR               |
| RBL        | RED BLUFF           | CA    | FPS-67B       | MPAR               | MPAR               |
| RKS        | ROCK SPRINGS        | WY    | ARSR-2        | MPAR               | MPAR               |
| SEA        | SEATTLE (FT LAWTON) | WA    | ARSR-1        | None               | None               |
| SNI        | SAN NICOLAS         | CA    | ARSR-3        | MPAR (3: 100°–10°) | MPAR (3: 100°–10°) |
| STL        | ST LOUIS (OVERLAND) | МО    | ARSR-1        | None               | None               |
| SVC        | SILVER CITY         | NM    | ARSR-2        | MPAR               | MPAR               |
| TAD        | TRINIDAD            | СО    | ARSR-2        | MPAR               | MPAR               |
| ТХК        | TEXARKANA           | AR    | FPS-67        | None               | None               |

#### TABLE A-5

# **ARSR-4 Sites**

| Site ID | Site Name                    | State | Scenario 3          | Scenario 3G         |
|---------|------------------------------|-------|---------------------|---------------------|
| AJO     | AJO                          | AZ    | MPAR                | MPAR                |
| CTY     | CROSS CITY                   | FL    | MPAR (2: 120°–300°) | MPAR (2: 120°–300°) |
| DMN     | DEMING (MAGDALEN)            | NM    | MPAR                | MPAR                |
| FN7     | FT GREEN                     | FL    | MPAR (2: 30°–210°)  | MPAR (2: 30°–210°)  |
| GFA     | BOOTLEGGER RIDGE (MALMSTROM) | MT    | MPAR                | MPAR                |
| LCH     | LAKE CHARLES                 | LA    | MPAR                | MPAR                |
| MLB     | MELBOURNE                    | FL    | MPAR (2: 45°–225°)  | MPAR (2: 45°–225°)  |
| NBW     | GUANTANAMO                   | CU    | MPAR                | MPAR                |
| NEN     | WHITEHOUSE (JACKSONVILLE)    | FL    | MPAR (2: 0°–180°)   | None                |
| NEW     | SLIDELL (NEW ORLEANS)        | LA    | MPAR (3: 270°–180°) | MPAR (3: 270°–180°) |
| NQX     | KEY WEST                     | FL    | MPAR                | None                |
| NSD     | SAN CLEMENTE                 | CA    | MPAR                | MPAR                |
| PAM     | TYNDALL AFB                  | FL    | MPAR                | MPAR                |
| PRB     | PASO ROBLES                  | CA    | MPAR                | MPAR                |
| QEA     | NORTH TRURO                  | MA    | MPAR                | MPAR                |
| QFI     | FINLEY                       | ND    | MPAR                | MPAR                |
| QGV     | FT FISHER                    | NC    | MPAR                | MPAR                |
| QIE     | GIBBSBORO                    | NJ    | MPAR (2: 15°–195°)  | None                |
| QJA     | EMPIRE                       | MI    | None                | None                |
| QJD     | NASHWAUK                     | MN    | MPAR (3: 180°–90°)  | MPAR (3: 180°–90°)  |
| QKA     | MT KAALA                     | HI    | MPAR                | MPAR                |
| QKW     | МАКАН                        | WA    | MPAR                | MPAR                |
| QLR     | MT SANTA ROSA                | GU    | MPAR                | MPAR                |
| QLS     | LAKESIDE                     | MT    | MPAR                | MPAR                |
| QM8     | ТАМІАМІ                      | FL    | MPAR (3: 45°–315°)  | None                |
| QMI     | MICA PEAK                    | WA    | MPAR                | MPAR                |
| QMV     | MILL VALLEY                  | CA    | MPAR                | MPAR                |

| Site ID | Site Name           | State | Scenario 3          | Scenario 3G         |
|---------|---------------------|-------|---------------------|---------------------|
| QNA     | MORALES             | тх    | MPAR                | MPAR                |
| QNW     | EAGLE PEAK          | тх    | MPAR                | MPAR                |
| QOM     | KING MOUNTAIN       | тх    | MPAR                | MPAR                |
| QRJ     | JEDBURG             | SC    | MPAR                | MPAR                |
| QRW     | MT LAGUNA           | CA    | MPAR                | MPAR                |
| QVH     | RIVERHEAD (SUFFOLK) | NY    | MPAR (3: 315°–225°) | MPAR (3: 315°–225°) |
| QVR     | OCEANA              | VA    | MPAR                | None                |
| QWA     | WATFORD CITY        | ND    | MPAR                | MPAR                |
| QXU     | UTICA (REMSEN)      | NY    | None                | None                |
| QYA     | BUCKS HARBOR        | ME    | MPAR                | MPAR                |
| QYD     | CARIBOU             | ME    | MPAR                | MPAR                |
| QZA     | OILTON              | тх    | MPAR                | MPAR                |
| QZZ     | RAINBOW RIDGE       | CA    | MPAR                | MPAR                |
| RSG     | ROCKSPRINGS         | тх    | MPAR                | MPAR                |
| SLE     | SALEM               | OR    | MPAR                | MPAR                |
| VBG     | VANDENBERG AFB      | CA    | MPAR                | MPAR                |

# TABLE A-6

### **GPN Sites**

| Site ID | Site Name           | State | Туре   | Owner | Scenario 1G | Scenario 2G | Scenario 3G |
|---------|---------------------|-------|--------|-------|-------------|-------------|-------------|
| APN     | ALPENA              | МІ    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR       |
| BYS     | VELVET PEAK         | CA    | ASR-11 | AR    | TMPAR       | TMPAR       | TMPAR       |
| CBM     | COLUMBUS            | MS    | GPN-30 | AF    | TMPAR       | MPAR        | MPAR        |
| CVS     | CANNON              | NM    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR       |
| DGDQ    | HILL AFB- CEDAR MTN | UT    | ASR-9  | AF    | TMPAR       | TMPAR       | TMPAR       |
| DLF     | LAUGHLIN            | ΤХ    | GPN-30 | AF    | TMPAR       | MPAR        | MPAR        |
| DOV     | DOVER               | DE    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR       |
| EDW     | EDWARDS AFB         | CA    | ASR-11 | AF    | TMPAR       | TMPAR       | TMPAR       |
| END     | VANCE               | ОК    | GPN-30 | AF    | TMPAR       | MPAR        | MPAR        |

| Site ID | Site Name              | State | Туре   | Owner | Scenario 1G | Scenario 2G | Scenario 3G            |
|---------|------------------------|-------|--------|-------|-------------|-------------|------------------------|
| FBG     | FT BRAGG               | NC    | GPN-30 | AR    | TMPAR       | TMPAR       | TMPAR                  |
| FHU     | FT HUACHUCA            | AZ    | GPN-30 | AR    | TMPAR       | TMPAR       | TMPAR                  |
| FRI     | FT RILEY               | KS    | GPN-30 | AR    | TMPAR       | MPAR        | MPAR                   |
| FSI     | HENRY POST AAF         | ОК    | ASR-8  | AR    | TMPAR       | TMPAR       | TMPAR                  |
| GAB     | GABBS                  | NV    | GPN-27 | Ν     | TMPAR       | TMPAR       | TMPAR                  |
| GSB     | SEYMOUR JOHNSON        | NC    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR                  |
| GTB     | FT DRUM                | NY    | GPN-30 | AR    | TMPAR       | MPAR        | MPAR                   |
| GUS     | GRISSOM                | IN    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR                  |
| HLR     | FT HOOD                | ТХ    | GPN-30 | AR    | TMPAR       | TMPAR       | TMPAR                  |
| HMN     | HOLLOMAN               | NM    | GPN-30 | AF    | TMPAR       | MPAR        | TMPAR                  |
| HNG     | KANEOHE                | н     | GPN-30 | MC    | TMPAR       | TMPAR       | TMPAR                  |
| HOP     | FT CAMPBELL            | KY    | GPN-30 | AR    | TMPAR       | MPAR        | MPAR                   |
| HST     | HOMESTEAD              | FL    | GPN-30 | AF    | TMPAR       | TMPAR       | MPAR (3: 45°–<br>315°) |
| ILN     | WILMINGTON             | ОН    | ASR-9  | NG    | TMPAR       | TMPAR       | TMPAR                  |
| IYK     | INDIAN WELLS<br>VALLEY | СА    | ASR-8  | Ν     | TMPAR       | TMPAR       | TMPAR                  |
| JST     | JOHNSTOWN<br>CAMBRIA   | PA    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR                  |
| KWA     | KWAJALEIN              | MHL   | GPN-30 | AR    | TMPAR       | TMPAR       | TMPAR                  |
| LHW     | FT STEWART             | GA    | GPN-30 | AR    | TMPAR       | TMPAR       | TMPAR                  |
| LTS     | ALTUS                  | ОК    | GPN-30 | AF    | TMPAR       | MPAR        | MPAR                   |
| LUF     | LUKE                   | AZ    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR                  |
| MGE     | DOBBINS                | GA    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR                  |
| MIB     | MINOT                  | ND    | GPN-30 | AF    | TMPAR       | MPAR        | MPAR                   |
| MSGD    | HILL AFB- BOVINE       | UT    | ASR-9  | AF    | TMPAR       | TMPAR       | MPAR                   |
| MTC     | SELFRIDGE              | MI    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR                  |
| MUO     | MTN HOME               | ID    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR                  |
| NBC     | BEAUFORT               | SC    | GPN-30 | MC    | TMPAR       | TMPAR       | TMPAR                  |
| NBG     | NEW ORLEANS            | LA    | GPN-27 | Ν     | TMPAR       | TMPAR       | TMPAR                  |

| Site ID | Site Name         | State | Туре   | Owner | Scenario 1G | Scenario 2G | Scenario 3G |
|---------|-------------------|-------|--------|-------|-------------|-------------|-------------|
| NCA     | NEW RIVER         | NC    | GPN-30 | MC    | TMPAR       | TMPAR       | TMPAR       |
| NFL     | FALLON            | NV    | GPN-30 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NFW     | FT WORTH          | ΤХ    | GPN-30 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NHK     | PATUXENT RIVER    | MD    | GPN-30 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NID     | SEARLES VALLEY    | CA    | ASR-8  | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NID2    | PANAMINT VALLEY   | CA    | ASR-11 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NIP     | JACKSONVILLE      | FL    | GPN-30 | Ν     | TMPAR       | TMPAR       | MPAR        |
| NKT     | CHERRY PT         | NC    | GPN-30 | MC    | TMPAR       | MPAR        | MPAR        |
| NLC     | LEMOORE           | CA    | GPN-30 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NMM     | MERIDIAN          | MS    | ASR-8  | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NNP     | NEW PASS          | NV    | GPN-27 | Ν     | TMPAR       | TMPAR       | MPAR        |
| NQI     | KINGSVILLE        | ΤХ    | GPN-30 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NQX     | BOCA CHICA        | FL    | GPN-30 | Ν     | TMPAR       | MPAR        | MPAR        |
| NRB     | MAYPORT           | FL    | GPN-30 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NSC     | WHITING FIELD NAS | FL    | ASR-11 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NTD     | PT MUGU           | CA    | GPN-30 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NTU     | OCEANA            | VA    | GPN-30 | Ν     | TMPAR       | TMPAR       | MPAR        |
| NUC     | SAN CLEMENTE      | CA    | GPN-30 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NUW     | WHIDBEY IS        | WA    | GPN-30 | Ν     | TMPAR       | MPAR        | MPAR        |
| NV30    | DIXIE VALLEY      | NV    | GPN-27 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| NXP     | TWENTYNINE PALMS  | CA    | GPN-30 | MC    | TMPAR       | TMPAR       | TMPAR       |
| NYG     | QUANTICO          | VA    | GPN-27 | MC    | TMPAR       | TMPAR       | TMPAR       |
| NYL     | YUMA              | AZ    | GPN-30 | MC    | TMPAR       | MPAR        | MPAR        |
| NZY     | NORTH ISLAND      | CA    | GPN-30 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| O26     | OWENS VALLEY      | CA    | ASR-8  | Ν     | TMPAR       | TMPAR       | TMPAR       |
| PAM     | TYNDALL           | FL    | GPN-30 | AF    | TMPAR       | TMPAR       | None        |
| POE     | FT POLK           | LA    | GPN-30 | AR    | TMPAR       | MPAR        | MPAR        |
| R-358   | WHITE SANDS MR C  | NM    | ASR-9  | AR    | TMPAR       | TMPAR       | TMPAR       |
| R-361   | WHITE SANDS MR D  | NM    | ASR-9  | AR    | TMPAR       | TMPAR       | TMPAR       |
| R-363   | WHITE SANDS MR E  | NM    | ASR-9  | AR    | TMPAR       | TMPAR       | TMPAR       |

| Site ID | Site Name                | State | Туре   | Owner | Scenario 1G | Scenario 2G | Scenario 3G |
|---------|--------------------------|-------|--------|-------|-------------|-------------|-------------|
| RCA     | ELLSWORTH                | SD    | GPN-30 | AF    | TMPAR       | MPAR        | MPAR        |
| RDR     | GRAND FORKS              | ND    | GPN-30 | AF    | TMPAR       | MPAR        | TMPAR       |
| RIV     | MARCH                    | CA    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR       |
| SPS     | SHEPPARD                 | тх    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR       |
| SSC     | SHAW                     | SC    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR       |
| SUU     | TRAVIS                   | CA    | GPN-30 | AF    | TMPAR       | MPAR        | TMPAR       |
| SZL     | WHITEMAN                 | МО    | GPN-30 | AF    | TMPAR       | MPAR        | MPAR        |
| TPN     | TOLICHA PEAK             | NV    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR       |
| VAD     | MOODY                    | GA    | GPN-30 | AF    | TMPAR       | MPAR        | MPAR        |
| VOK     | VOLK FIELD               | WI    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR       |
| VPS     | EGLIN                    | FL    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR       |
| WAL     | WALLOPS ISLAND           | VA    | GPN-27 | Ν     | TMPAR       | TMPAR       | TMPAR       |
| WRI     | MCGUIRE                  | NJ    | GPN-30 | AF    | TMPAR       | MPAR        | MPAR        |
| XFP4    | HILL AFB- TROUT<br>CREEK | UT    | ASR-9  | AF    | TMPAR       | TMPAR       | TMPAR       |
| XMR     | KENNEDY SC               | FL    | GPN-30 | AF    | TMPAR       | TMPAR       | TMPAR       |

# GLOSSARY

| 3D      | three dimensional                          |
|---------|--------------------------------------------|
| A/C     | aircraft                                   |
| ADS-B   | Automatic Dependent Surveillance-Broadcast |
| AGL     | above ground level                         |
| ARSR    | Air Route Surveillance Radar               |
| ASR     | Airport Surveillance Radar                 |
| CARSR   | Common Air Route Surveillance Radar        |
| CONUS   | contiguous United States                   |
| DTED    | Digital Terrain Elevation Data             |
| FAA     | Federal Aviation Administration            |
| FPS     | Fixed Position System                      |
| GPN     | Ground Position Navigation                 |
| GPS     | Global Positioning System                  |
| ITWS    | Integrated Terminal Weather System         |
| MPAR    | Multifunction Phased Array Radar           |
| MSL     | mean sea level                             |
| NAS     | National Airspace System                   |
| NEXRAD  | Next Generation Radar                      |
| NextGen | Next Generation Air Transportation System  |
| nmi     | nautical mile                              |

| NOAA    | National Oceanic and Atmospheric Administration |
|---------|-------------------------------------------------|
| NSWRC   | NextGen Surveillance Weather Radar Capability   |
| NWS     | National Weather Service                        |
| SDO     | super density operations                        |
| SRTM    | Shuttle Radar Tomography Mission                |
| STC     | sensitivity time control                        |
| TDWR    | Terminal Doppler Weather Radar                  |
| TMPAR   | Terminal Multifunction Phased Array Radar       |
| VCP     | volume coverage pattern                         |
| Wx      | weather                                         |
| WSP     | Weather Systems Processor                       |
| WSR-88D | Weather Surveillance Radar 1988-Doppler         |

#### REFERENCES

- Benner, W.E., G. Torok, M. Weber, M. Emanuel, J. Stailey, J. Cho, and R. Blasewitz, 2009: "Progress of multifunction phased array radar (MPAR) program." Preprints, 25th Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 8B.3.
- Cho, J.Y.N., and B.D. Martin, 2007: "Technical assessment of the impact of decommissioning the TDWR on terminal weather services." Project Rep. ATC-331, MIT Lincoln Laboratory, Lexington, MA, 68 pp.
- Cho, J.Y.N., 2010: "Signal processing algorithms for the Terminal Doppler Weather Radar: Build 2." Project Rep. ATC-363, MIT Lincoln Laboratory, Lexington, MA, 92 pp.
- Cho, J.Y.N., and M.E. Weber, 2010: "Terminal Doppler Weather Radar enhancements." *Proc. 2010 IEEE Radar Conf.*, 1245–1249.
- Cho, J.Y.N., R.S. Frankel, M.F. Donovan, M.S. Veillette, and P.L. Heinselman, 2013: "Wind-shear detection performance study for Multifunction Phased Array Radar (MPAR) risk reduction." Project Rep. ATC-409, MIT Lincoln Laboratory, Lexington, MA, 65 pp.
- CIESIN, 2005: "Gridded population of the world: Future estimates." Center for International Earth Science Information Network, Columbia University, United Nations Food and Agriculture Program, and Centro Internacional de Agricultura Tropical, Palisades, Palisades, NY, http://sedac.ciesin.columbia.edu/gpw.
- FAA, 1995: Specification, "Terminal Doppler Weather Radar with Enhancements." FAA-E-2806c, Federal Aviation Administration, Dept. of Transportation, Washington, DC, 163 pp.
- FAA, 2009: "Four-Dimensional Weather Data Cube Single Authoritative Source (SAS) Final Performance Requirements (fPR), Version 1.0." Federal Aviation Administration, Dept. of Transportation, Washington, Washington, DC.
- Huang, S., J.Y.N. Cho, M.F. Donovan, R.G. Hallowell, R.S. Frankel, M.L. Pawlak, and M.E. Weber, 2009: "Redeployment of the New York TDWR: Technical analysis of candidate sites and alternative wind shear sensors." Project Rep. ATC-351, MIT Lincoln Laboratory, Lexington, MA, 96 pp.
- Istok, M.J., M.A. Fresch, S.D. Smith, Z. Jing, R. Murnan, A.V. Ryzhkov, J. Krause, M.H. Jain, J.T. Ferree, P.T. Schlatter, B. Klein, D.J. Stein, G.S. Cate, and R.E. Saffle, 2009: "WSR-88D dual polarization initial operational capabilities." Preprints, 25th Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 15.5.
- Lay, R.J., J.W. Taylor, Jr., and G. Brunins, 1990: "ARSR-4: Unique solutions to long-recognized radar problems." Proc. 1990 Int. Radar Conf., Arlington, VA, IEEE, 6–11.

- Michelson, M., W.W. Shrader, and J.G. Wieler, 1990: "Terminal Doppler Weather Radar." *Microwave Journal*, **33**, 139–148.
- NRC, 2008: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Research Council, National Academies Press, Washington, DC, 250 pp.
- Raytheon, 1999: Digital airport surveillance radar (DASR), Contract attachment 6—system specification and SRD cross reference Rev-D: SSG708688; cage code 49956. Raytheon Electronics Systems, Sudbury, MA, 110 pp.
- ROC, 2010: NEXRAD technical information, Radar Operations Center, National Weather Service, National Oceanic and Atmospheric Administration, Norman, OK, http://www.roc.noaa.gov/WSR88D/Engineering/NEXRADTechInfo.aspx.
- Skolnik, M., 2008: Radar Handbook, 3rd Ed. McGraw Hill, New York.
- Souders, C., T. Kays, S. Spincic, F. Bayne, C. Miner, S. Abelman, R. Showalter, J. Tauss, L. Leonard, E. Dash, and J. May, 2010: "Next Generation Air Transportation System (NextGen) weather requirements: An update." Preprints, 14<sup>th</sup> Conf. on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, American Meteorological Society, J4.1.
- Taylor, J.W., Jr., and G. Brunins, 1985: "Design of a new airport surveillance radar (ASR-9)." *Proc. IEEE*, **72**, 284–289.
- Wang, J., M. Gerecke, E. Brookner, P. Cornwell, and J. Farr, 2009: "Design and implementation of long range radar service life extension." *Proc. 2009 IEEE Radar Conf.*, Institute of Electrical and Electronics Engineers, Pasadena, CA, 1–6.
- Weber, M.E., 2002: "ASR-9 Weather Systems Processor (WSP) signal processing algorithms." Project Rep. ATC-255, MIT Lincoln Laboratory, Lexington, MA, 63 pp.