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EXECUTIVE SUMMARY 

The success of many NextGen applications with time-based control elements, such as Required 
Time of Arrival (RTA) at a meter fix under 4D-Trajectory Based Operations (4D-TBO)/Time of Arrival 
Control (TOAC) procedures or compliance to an Assigned Spacing Goal (ASG) between aircraft under 
Interval Management (IM) procedures, are subject to the quality of the atmospheric forecast utilized by 
participating aircraft. 

Erroneous information derived from provided forecast data, such as the magnitude of future 
headwinds relative to the headwinds actually experienced during flight, or forecast data that is insufficient 
to fully describe the forthcoming atmospheric conditions, can significantly degrade the performance of an 
attempted procedure. 

The work described in this report summarizes the major activities conducted in Fiscal Year 2015 
(FY15), which builds upon prior work. The major objectives were: 

1. Enhance the existing Wind Information Analysis Framework (WIAF) to 

a. Support increased numbers of simultaneous aircraft simulations 

i. Major system-level architectural changes were made to double the number of 
simulations that could be run in parallel from 20 to 40. 

b. Augment agent models  

i. Many updates were made to the agents; for example, in the pilot agent, we added speed 
error handling, reacting to Flight Management System (FMS) messages, spoiler control 
modeling to simulate actual inflight usage, etc. 

c. Create the ability to simulate actual flights and apply actual atmospheric conditions 

i. Fly simulations of actual flights, utilizing weather data from the aircraft itself to 
reproduce realistic experienced weather conditions.  

2. Analyze the performance of publically available forecast as compared to in situ reported 
atmospheric conditions 

a. Comparisons of High Resolution Rapid Refresh Model (HRRR) forecast data to recorded 
in-flight weather data from the Meteorological Data Collection and Reporting System 
(MDCRS). 
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3. Support Radio Technical Commission for Aeronautics (RTCA) Special Committee needs, 
especially for SC-206, “Aeronautical Information and Meteorological Data Link Services,” 
including co-leading Sub-Group 7 created to develop “Guidance for Data Linking Forecast and 
Real-Time Wind Information to Aircraft.” 

4. Determine if augmented FMS wind-handling capabilities provide a meaningful improvement in 
RTA performance tested under real-world Air Traffic Control (ATC) and atmospheric 
conditions 

a. Simulations were run in three conditions: (1) no forecast data, (2) forecast data at four 
levels of descent, and (3) forecast data at nine levels of descent. 

5. Provide recommendations for high value future work. 

 

 



 

ix 

TABLE OF CONTENTS 

  Page 

 
Revision History iii 
Acknowledgments v 
Executive Summary vii 
List of Illustrations xi 
List of Tables xv 

1. INTRODUCTION 1 

1.1 Motivation 1 
1.2 Summary of Prior Work 2 
1.3 Current Research Activities and Document Outline 2 

2. ENHANCED ANALYSIS INFRASTRUCTURES 5 

2.1 Introduction 5 
2.2 Improvements to Infrastructure 6 

3. ANALYSIS OF WIND INFORMATION 21 

3.1 Introduction 21 
3.2 Data Sources 21 
3.3 Analysis Methodology 25 
3.4 Metrics 28 
3.5 Results 29 
3.6 Key Take-Aways 41 
3.7 Recommended Next Steps 42 

4. RTCA SPECIAL COMMITTEE ACTIVITIES 43 

4.1 RTCA SC-206 Support 43 
4.2 Hypotheses 43 
4.3 RTA Test Matrix 47 
4.4 Dissimilar Forecast Test Matrix 50 

5. RTA PERFORMANCE AS A FUNCTION OF FMS CAPABILITY 53 



 
 
 

TABLE OF CONTENTS 
(Continued) 

  Page 
 

x 

5.1 Overview 53 
5.2 Hypotheses 53 
5.3 Test Matrix 54 
5.4 Test Design 54 
5.5 Test Description 61 
5.6 Test Results and Analysis 63 
5.7 Conclusions 73 

6. SUMMARY AND RECOMMENDED NEXT STEPS 75 

APPENDIX 77 

Glossary 83 
References 87 
 



 

xi 

LIST OF ILLUSTRATIONS 

 Figure  Page 

 No. 

 
1 Focal elements relevant to 4D-TBO operations. 1 

2 Wind Information Analysis Framework. 5 

3 Step responses to command speed changes at FL390 (plots A and B) and 15,000 ft 
MSL (plots C and D). 11 

4 Data processing pipeline to produce correlated (to flight data) aircraft reported 
atmospheric models (ARAM). 14 

5 Process flow for analyzing segments of trajectory data that meet routes adherence 
constraints. 16 

6 Route containment polygons whose dimensions change as a function of distance 
from the airport and the incidence angles between waypoints. 19 

7 Sigmoid function used to define error tolerance as a function of the track distance 
from the destination. 20 

8 Sample route branching metrics results. 20 

9 Example MDCRS report coverage over CONUS. 22 

10 Three-dimensional (left) and two-dimensional (right) views of unassociated 
MDCRS points (top) and resulting tracks (bottom) after track association. Data are 
from descents into the ORD region on Feb. 1, 2016. 24 

11 Regions analyzed for Wind Forecast Model performance. 25 

12 Example of MDCRS descent track segments. Left plot shows lateral track segment 
locations. Right plot shows vertical profiles of track segments. 27 

13 MDCRS observed wind speeds and directions for (a) SFO, (b) PHX, (c) ORD, and 
(d) EWR. Red points and lines indicate mean wind speed. 30 

14 Mean headwind difference (solid curves) and mean plus one standard deviation 
(dashed curves) between HRRR forecasts and MDCRS wind observations by 



 
 
 

LIST OF ILLUSTRATIONS 
(Continued) 

 Figure 

 No. Page 
 

xii 

altitude and forecast look-ahead time for SFO, PHX, ORD, and EWR airport 
regions. 31 

15 Mean headwind forecast difference (solid curves) and mean plus one standard 
deviation (dashed curves) by forecast look-ahead time and wind speed. 32 

16 Mean absolute headwind difference (solid curves) and mean plus one standard 
deviation (dashed curves) for cruise flight segments. 33 

17 Mean absolute headwind difference (solid curves) and mean plus one standard 
deviation (dashed curves) for descent flight segments. 34 

18 Monthly mean (solid curves) and mean plus one standard deviation (dashed curves) 
headwind forecast differences between 3-hour HRRR forecasts and MDCRS 
observations. 35 

19 Monthly mean (solid curves) and mean plus one standard deviation (dashed curves) 
headwind forecast differences between 6-hour HRRR forecasts and MDCRS 
observations. 35 

20 Mean (solid curves) and mean plus one standard deviation (dashed curves) of 
headwind forecast differences versus time of day (Local Standard Time) between 
3-hour HRRR forecasts and MDCRS observations. 36 

21 Mean (solid curves) and mean plus one standard deviation (dashed curves) of 
headwind forecast differences versus time of day (Local Standard Time) between 
6-hour HRRR forecasts and MDCRS observations. 37 

22 Mean absolute headwind difference (solid curves) and mean plus one standard 
deviation (dashed curves) between HRRR forecasts and MDCRS observations 
averaged across all altitudes. 38 

23 Mean RMS vector difference (solid curves) and mean plus one standard deviation 
(dashed curves) between HRRR forecasts and MDCRS observations averaged 
across all altitudes. 38 



 
 
 

LIST OF ILLUSTRATIONS 
(Continued) 

 Figure 

 No. Page 
 

xiii 

24 Means and standard deviations of normalized ETTF difference per minute of flight 
between HRRR forecasts and MDCRS for the four analyzed regions. 40 

25 Scenario creation flow diagram. 55 

26 Progressive example of forecast selection decimation process for a flight into 
KPHX optimizing for the best fit to the headwinds expected along the descent 
trajectory. Plot (A) shows the desired profile (blue) and the 37 starting altitudes, 
plot (B) the fitted profile made up of 20 points, plot (C) the same profile reduced to 
nine points, and plot (D) the fitted profile made up of four descent forecasts. 59 

27 Interpolated fit to forecasted “truth” after solving for nine (A) and four (B) DFLs 
for the same flight presented in Figure 26 but with wind magnitude used in the cost 
function instead of headwind magnitude. 60 

28 Simulation of flights into KDEN without forecast information provided. 64 

29 Simulation of flights into KDEN with cruise and four levels of descent winds. 65 

30 Simulation of flights into KDEN with cruise and nine levels of descent winds. 66 

31 Histogram of RTA errors for 137 flights across all analysis airports when no 
forecast information is provided. The whisker bars show 2std around the mean. 67 

32 Histogram of RTA errors with the DFL selection technique set to Optimize to 
Headwind Magnitude profile. Whisker bars show 2std around the mean. (Blue) 
Selected from 3-hour forecast using four DFLs. (Yellow) Selected from 3-hour 
forecast using nine DFLs. (Purple) Selected from truth data using nine DFLs. 
(Green) No forecast information provided. 68 

33 Histogram of RTA errors with the DFL selection technique set to Optimize to 
Wind Magnitude profile. Whisker bars show 2std around the mean. (Blue) Selected 
from 3-hour forecast using four DFLs. (Yellow) Selected from 3-hour forecast 
using nine DFLs. (Purple) Selected from truth data using nine DFLs. (Green) No 
forecast information provided. 69 



 
 
 

LIST OF ILLUSTRATIONS 
(Continued) 

 Figure 

 No. Page 
 

xiv 

34 Histogram of RTA time error improvements using nine DFL instead of four DFL. 
It’s desirable that all the counts are left of zero indicating that there is an 
improvement with each execution. 71 

35 Histogram of RTA time error improvements using nine DFL over four DFL when 
accounting for control objective deadband. It is desirable that all the counts are left 
of zero, indicating that there is an improvement with each execution. 73 

A-1 Lambert conformal view of V-component of wind with heat map from HRRR 
sample. 77 

A-2 Generated data tiles after latitude/longitude reprojection and subdividing. 78 

A-3 WX data server architecture. 81 

 



 

xv 

LIST OF TABLES 

 Table  Page 

 No. 

 
1  Original and Optimized Engine Model Performance Errors 10 

2  Nominal MDCRS Report Update Rates 23 

3  Hypotheses Formulated to Address SG-7 Questions Pertinent to RTA Operations 44 

4  Hypothesis Formulated to Address SG-7 Question Pertinent to Use of Common 
Forecast Data 46 

5  Hypotheses Formulated to Address SG-7 Questions Pertinent to Interval Management 
Operations 46 

6  SG-7 Test Conditions 48 

7  In-Trail Test Matrix 51 

8  Hypotheses Composed to Evaluate Number Effect of Available Descent Winds 53 

9  FMS Capability Evaluation Test Matrix 54 

10  Scenario Definition Parameters 62 

11  Filtering Counts Leading to Final Set of Simulated Flights 63 

12  Overall RTA Error Statistics as Function of Forecast Information Source, Selection 
Technique, and Number of DFLs 70 

13  Aggregated Performance Comparison, on an Individual Flight Basis, Comparing the 
Number of Occasions That Nine DFLs Outperformed Four DFLs 70 

14  Aggregated Performance Comparison Performed on an Individual Flight Basis, 
Comparing the Number of Occasions That Nine DFL Outperformed Four DFL 
Accounting for the Control Objective Deadband 72 

 

 



 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 



 

 

1 

1. INTRODUCTION 

1.1 MOTIVATION 

Many NextGen applications depend on access to accurate forecasted wind data. Applications such 
as Required Time of Arrival (RTA) at a meter fix under 4D-Trajectory Based Operations (4D-TBO)/Time 
of Arrival Control (TOAC) procedures or compliance to an Assigned Spacing Goal (ASG) between 
aircraft under Interval Management (IM) procedures each rely on accurate representation of flown winds. 
Figure 1 illustrates how wind information is used by Air Traffic Control (ATC) on the ground to develop 
time targets for use in a 4D-TBO procedure. Wind information in the aircraft is used by the Flight 
Management System (FMS) or other avionics to manage the aircraft trajectory to these targets. The 
performance of the procedure is typically measured as a mean and 95% spread of RTA compliance error 
at the meter fix. Note that the mean error may be zero or slightly offset. Target performance is likely to be 
specified as a maximum allowable RTA compliance error expected for a given fraction of operations, for 
example ±x seconds 95% of the time [1]. Any errors in the aircraft wind information relative to the truth 
winds actually flown through can potentially degrade the performance of the procedure. Unacceptable 
performance could be mitigated by improving wind information in the aircraft, for example, by using 
higher accuracy wind forecast models to generate wind inputs for the ground or airborne systems, 
updating wind information more frequently, or increasing the resolution of the forecast model in the 
relevant avionics system. 

 

Figure 1. Focal elements relevant to 4D-TBO operations. 
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1.2 SUMMARY OF PRIOR WORK 

In Phase 1 of this work (corresponding to FY12), a generic Wind Information Analysis Framework 
was developed to explore wind information needs across a range of NextGen applications. The 
framework was applied to a 4D-TBO scenario to act as a “proof of concept” of its use. It illustrated that 
even simplified executions of its elements could yield interesting and complex results, which could be of 
high value in determining how 4D-TBO performance varies with wind information quality. Phase 2 of the 
work (largely corresponding to FY13) built upon this foundation by using refined and expanded 
applications of the Wind Information Analysis Framework. It included tasks to (1) increase modeling 
fidelity and explore more complex 4D-TBO procedures; (2) expand the set of wind forecast scenarios and 
metrics; (3) assess performance of 4D-TBO with realistic future FMS wind-handling enhancements; and 
(4) expand the focus applications to include Interval Management (IM), both Ground-based Interval 
Management (GIM) and Flight-deck Interval Management (FIM). Prior work has also undertaken 
extensive assessment of wind information quality metrics, as well as the performance of a range of wind 
forecast models used by aviation stakeholders in the U.S. and overseas. Principal outcomes from Phase 3 
of this work included (1) analysis of the impact of wind information on 4D-TBO and IM performance of 
synthetic routes in synthetic environments, (2) analysis of various publically available wind information 
products available for use in the wind implications process flow diagram, and (3) example case studies of 
implications of different wind forecast error limits on 4D-TBO and IM trade-spaces. Full details of all this 
work can be found in [2–6]. 

1.3 CURRENT RESEARCH ACTIVITIES AND DOCUMENT OUTLINE 

The Phase 4 work summarized in this report has the objective of building upon the Wind 
Information Analysis Framework with application to focus areas from earlier phases to help establish 
wind information needs for a range of NextGen applications to directly support priorities of the sponsor 
and stakeholder community. The sections of the report are organized as follows: 

• Section 2 summarizes augmentations to the analysis infrastructure, including refinements and 
extensions to the Wind Information Analysis Framework (WIAF) as well as the creation of the 
Meteorological and Flight Information Database (MAFID), which integrates with the WIAF, 
resulting in a highly flexible and scalable simulation and analysis infrastructure to support the 
current and future efforts.  

• Section 3 presents further analysis of select publically available forecast models and aircraft-
derived atmospheric measurements, which build upon prior work and tailor the analysis for the 
current objectives. 

• Section 4 describes the role and activities undertaken in this phase of the program in support of 
RTCA Special Committees’ needs. 
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• Section 5 presents analysis of the effect of augmentations to the Boeing 757/767 Pegasus FMS 
(in terms of additional descent forecast wind levels) designed to improve RTA performance, 
which addresses sponsor and RTCA needs by leveraging the analysis infrastructure developed. 

• Section 6 presents a summary of the report and recommends next steps to refine and extend this 
work.  

Note this work is not intended to specifically recommend concepts of operation and/or datalink 
technologies to support 4D-TBO or IM applications, but rather to identify the wind sensitivities of these 
applications and provide a process by which this information can be used by stakeholders to assess 
implications for operation and/or datalink technologies.  
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2. ENHANCED ANALYSIS INFRASTRUCTURES 

2.1 INTRODUCTION 

In order to help explore the relationship of wind information to NextGen application performance, a 
Wind Information Analysis Framework has been developed and refined throughout the various phases of 
this work. The latest version of the framework is shown in Figure 2. 

 

 

Figure 2. Wind Information Analysis Framework. 

In the framework, the ATC Scenario represents the characteristics of the ATC environments for 
the application of interest, e.g., specifics of the procedures, infrastructure, demand levels, equipage, etc. 
The Wind Scenario element represents the “truth” wind environments of relevance to the ATC scenario 
being studied (hence, the arrow from the ATC Scenario to the Wind Scenario block), as well as the 
characteristics of different “forecast” winds relative to the actual wind field experienced. Truth wind 
fields are selected to expose the aircraft to various representative conditions to test response across a 
range of operationally realistic situations. In addition to wind speed and direction, the wind scenario data 
include associated atmospheric variables needed to accurately simulate aircraft performance, including 
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temperature and pressure. The Aircraft/Automation Simulation element represents the behavior of the 
aircraft, engine, autopilot, and Flight Management System (FMS) in the context of the wind scenario and 
ATC application being studied. By running simulations of how aircraft perform in the context of a given 
ATC application when given varying qualities of wind forecasts when flying through various truth wind 
fields, it is possible to build up a trade-space of performance as a function of key independent variables 
such as wind information quality and aircraft capability. This is illustrated in the Performance 
Assessment element of the framework. This trade-space can then be used to establish what level of 
performance may be expected from a given wind information quality and aircraft capability combination. 
If a certain level of performance is required, this would define a horizontal slice through the trade-space 
from which combinations of wind information quality and aircraft capability that exceed that standard can 
be identified. The Wind Requirements element identifies which combinations of wind data content, 
from which specific operational wind forecast models at what forecast look-ahead times (i.e., the 
difference between the forecast issue time and its valid time) meet the wind information quality level 
identified from the previous element that achieve the target procedure performance. Finally, the 
Stakeholder Needs element represents the key role of stakeholders in determining appropriate choices in 
the other framework elements, e.g., in terms of which scenarios and performance metrics are of value to 
them to support the creation of guidance or requirements documents or to inform appropriate concept of 
operations (CONOPS). The key stakeholders consulted on this work to date were a range of RTCA 
Special Committees (SC-206, 214, 227, and 186) with representation across the FAA, airlines, and 
industry. Future work will continue to broaden stakeholder engagement as appropriate for the work. 

2.2 IMPROVEMENTS TO INFRASTRUCTURE 

2.2.1 Meteorological and Flight Information Database (MAFID) 

A number of new capabilities were required to support the Phase 4 research. These new capabilities 
would require the development of means to collect, store, investigate, and disseminate meteorological and 
flight data relevant to the analyses. This set of systems and services developed for this program are 
colloquially known as Meteorological and Flight Information Database (MAFID). 

Identification of Data Sources 
The principal data sources leveraged in this research can be categorized into the following types: 

• Meteorological measurements 

– Meteorological Data Collection and Reporting System (MDCRS) – Collects and stores 
real-time automated position and weather reports from participating aircraft.  

– Radiosondes – A battery-powered telemetry instrument package carried into the 
atmosphere usually by a weather balloon that measures various atmospheric parameters and 
transmits them by radio to a ground receiver. 

• Meteorological forecasts 
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– Publically available numerical weather prediction models including the Global Forecast 
System (GFS) and High Resolution Rapid Refresh (HRRR). 

• Flight planning information 

– Traffic Flow Management System (TFMS) – Data stream service for supporting the 
management and monitoring of national air traffic flow and includes reports on flight plan 
filing, amendments, cancelations, etc. 

• Flight surveillance information 

– Airport Surface Detection Equipment, Model X (ASDE-X) – Used for airport terminal and 
surface area detections and contains aircraft information from aircraft transponders used by 
air traffic controllers to identify aircraft.  

– Traffic Flow Management System (TFMS) track – a part of the data stream service with 
aircraft positional reports.  

• Navigational data 

– Coded instrument flight procedures (CIFP) – An FAA-provided navigational database used 
as a basis to support area navigation. 

These data types, whether static or streaming, were brought into MAFID by developing and 
deploying the appropriate software and hardware infrastructure to permit their incorporation into the 
underlying database. The architecture of the database and the web-based MAFID services that leverage it 
were developed to support multiple sources for similar data types (e.g., multiple meteorological forecast 
models). 

As part of the MAFID system, there exists a collection of software applications deployed for 
continuous streaming and archiving for a number of the data feeds. Additional applications are deployed 
on independent systems to monitor data streams and system components to ensure a high level of quality 
of service. Consumed data are processed by a collection of data adapters that interpret, filter, and value 
add with calculated metadata before ingesting into the underlying database. 

MAFID Services 
Deployed on top of the underlying database are a set of services. The services are used for analysis 

and scenario creation. 

Route Navigational Service 
To support this investigation, a web-based routing navigational service was developed that 

performs functions normally found in ground-based ATC systems and internally to FMS systems. This 
service, amongst other things, provides the means to decode En Route Automation Modernization 
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(ERAM) generated flight plans and provide detailed characteristics of waypoints, fixes, routes, and airport 
information required by other subsystems and processes in this study. 

Weather Forecast Data Service 
One of the principal elements of MAFID is providing a web-based weather forecast data service. 

An interesting aspect of this forecast data service is that it also operates as a historical forecast data 
service. That is, the system may be queried for forecast information that would have been available to a 
request that was made in the past. Another feature of this service is that it is designed as a navigational 
forecast data service optimized for providing weather data at points along a track projected across time 
and space. 

A more detailed description of the Weather Forecast Data Service and the underlying data 
infrastructure that supports it is given later. 

2.2.2 Improvements to the WIAF 

As an outcome of recommended work from earlier work and as determined during this current 
effort and with particular respect to RTCA support, a number of infrastructure enhancements were 
necessary. The incorporation of these enhancements led to significant improvements in terms of 
capabilities, quality, and expediency of analysis. 

Additional Number of Aircraft Systems 
The agent-based simulation system developed at Lincoln Laboratory under previous phases of work 

provides the capability to establish different levels of fidelity for each element incorporated in the 
simulation. The simulation system incorporates both operational and research versions of the Honeywell 
B757/767 Pegasus FMS. Agents are created to model individual avionics units, pilots, airline operating 
centers, or other systems as required to ensure the appropriate characteristics of a particular system are 
embedded in the simulation to reflect real-world behaviors. The simulation system was also designed with 
the concept of scalability from the outset. 

There is a constraint with the provided Honeywell FMS in that, since it operates as a Windows 
service, only one instance can execute on a given Windows PC at one time. As such, each FMS instance 
is run on a virtual computer inside a Lincoln Laboratory cloud infrastructure allowing multiple 
simulations to be executed in parallel along with its required agents and components to enable quasi-fast-
time results generation. 

In this phase of work, a contracted license change with Honeywell permitted the doubling of the 
number of simultaneous FMS instances to run in the framework from 20 to 40. 

As part of the framework augmentation, all the agents associated with a single aircraft instance 
(GPS, Multifunction Control Display Unit [MCDU], Attitude Heading Reference System [AHRS], etc.) 
were moved from operating on an associated physical or virtual Linux instance to the same virtual 
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Windows instance that hosts an aircraft’s Honeywell FMS. This organizational change has made scaling 
the infrastructure straightforward and also simplified system management. 

Improved System Models 

Engines 

It has been identified that the default Rolls-Royce engine model used in the WIAF was accurate in 
terms of fuel consumption and thrust generation modeling during cruise operations, but the accuracy 
degrades at lower altitudes and in particular at low throttle conditions. The FMS maintains its own engine 
model for the particular aircraft in which it operates. If the characteristics of the engine model in the FMS 
differ significantly from the actual/simulated engine, there would likely be degradation in overall RTA 
performance. 

In order to improve the engine model, the original model, which was provided in compiled form 
from the vendor, had to be reengineered. The software model was disassembled into assembly code and 
the parameters used to define the model identified. 

To remodel the engine, flight data for the same model airframe and engine model used in the 
simulation was obtained. These data included recorded engine and flight conditions at high cruise, mid-
altitude, and descent to surface conditions. 

A representation of the assembled binary was modelled in MATLAB, which provided the ability to 
reproduce the engine behaviors as a function of the 290 distinctive coefficients that are used to define the 
engine model. Having actual flight data as truth data enabled a comparison between the engine model’s 
performance to the flight conditions, which in turn permitted refinements to the model coefficients to 
match the flight data. A nonlinear optimization with both linear and nonlinear inequality constraints was 
formulated and applied against the model coefficients to minimize the performance difference observed 
through the various domains of flight. Fortunately, through analysis, the set of coefficients necessary to 
consider in the optimization was reduced to 147 design variables of which only a subset were adjusted to 
improve the model’s performance. After the optimization was complete, the new design coefficients were 
converted to assembly code and reassembled into an executable engine model. 

The thrust performance is tightly coupled with the fuel flow in a modern turbofan engine, so a fair 
way to compare the performance of an engine model with an actual system is to look at the fuel flow 
under various conditions of flight. Table 1 shows the comparison of some idle-throttle fuel flow data 
taken from flight data and recalculated using the original and optimized engine models. The idle-throttle 
conditions are demonstrated because this is where we have observed the largest error in the original 
model. The optimized model is seen to have significantly lower errors at this condition than the original 
model. 
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TABLE 1 

Original and Optimized Engine Model Performance Errors 

Pressure Altitude 

(ft) 
Mach No. 

Fuel Flow  

(PPH) 

Original Model 

Error (PPH) 

Optimized Model 

Error (PPH) 

35000 .780 900 371 0.04 

25000 .650 1000 527 –0.18 

9632 .484 1023 380 –0.05 

6560 .422 1120 387 0.14 

3584 .337 1239 478 –3.30 

1536 .268 1288 609 8.40 

0 .131 1239 392 –59.3 

0 .122 1355 487 53.5 

0 0 1355 317 0.84 

 
Pilot Agent 

A need was identified during the previous phase of work for a reactive pilot agent. This modified 
agent would need to apply a heuristic to emulate several actions an actual pilot might conduct during a 
typical flight. The most important changes relative to this work include the agent’s ability to react to 
speed errors during descent, react to FMS DRAG REQUIRED messages, and dynamically set the altitude 
correction (“baro” setting) to the field station pressure when transitioning out of Class A airspace. 
Additional behaviors implemented included the setting of appropriate flap positions and lowering gear 
during the appropriate stage and condition of flight. 

The circumstances of when and how the pilot agent responds to the various conditions were 
developed with the aid of an active B757 captain with over 20,000 hours of flight-time experience. In 
brief, the pilot agent would deploy spoilers up to 75% to slow the aircraft during idle or near idle descents 
if observing that the target airspeed was greater than a certain amount for a certain period of time. 
Spoilers might be raised, lowered, or stowed depending on the response of the system. The reactiveness in 
terms of delay, thresholds, release hysteresis, and other related parameters varied as a function of flight 
state. Typically, the reactivity of the pilot agent increased as altitude decreased. 

Responding to DRAG REQUIRED messages from the FMS was also implemented. A heuristic was 
also created to account for this FMS recommendation and is similar though does not equate to the 
behaviors for the use of spoilers as a function of speed errors. The DRAG REQUIRED message may be 
presented under various circumstances by the FMS and not just to reduce speed. It may be presented in 
order to maintain a certain descent profile even if the current indicated airspeed is lower than the target 
airspeed and the throttles are not at idle. 
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The application of the pilot agent to set the destination station pressure in the Kollsman window at 
the appropriate stage of flight captures a condition that is often overlooked in many simulations. It is 
particularly important in Vertical Navigation (VNAV) descents because, if the station pressure is anything 
other than 29.92 in-Hg, a discontinuity of the vertical descent profile is created. This discontinuity may be 
hundreds of feet and the aircraft will have to react accordingly, and as such, there is an effect on the 
overall performance of the system.  

Autothrottle 

One area of known limitations is the closed-loop performance of the existing autothrottle model. In 
the WIAF, the Thrust Management Computer (TMC) is separated into two parts. One part is the digital 
state machine and the second is the closed-loop speed controller. The TMC state machine was developed 
as part of this program, but the closed-loop speed controller was left as the original that was delivered 
with the Lockheed Martin aerodynamically modelling system. Evaluation of the speed controller’s 
dynamics indicate that the existing control laws sufficiently model the actual TMC performance at high 
altitudes but respond considerably slower than the actual system at lower altitudes. 

Figure 3 shows the response to step changes in commanded speed at Flight Level (FL) 390 and at 
15,000 feet for both an actual B757-200 and the simulated aircraft under the same weather conditions. In 
subplots A and B at FL390, the frequency response of the 15 knot speed changes of the simulated system 
reasonably follows the responses observed in the flight data. However, in subplots C and D, the frequency 
response to the 20 knots speed changes is significantly lower.  

 

Figure 3. Step responses to command speed changes at FL390 (plots A and B) and 15,000 ft MSL (plots C and D). 
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To remedy this performance difference, the closed-loop control laws for the TMC need to be 
remodeled. Sufficient data to do so has been collected from flight data and from a United Airlines FAA 
Level-D training system that underwent a set of controlled tests to scenarios to excite the principal 
dynamics of the Thales TMC system utilized in that make aircraft. Due to other priorities, the new control 
system has not been developed during this phase of effort and is left for future work. 

The subpar performance of the simulated control system will have a negative impact on the RTA 
performance of the system under test. The degree of this impact has not yet been evaluated.  

Enhancements to FMS Capabilities 
The FMS supplier Honeywell had already provided to Lincoln Laboratory (LL) for incorporation 

into the WIAF the current operational (“Black Label”) software version PS4083821-910 of the Pegasus 
FMS for the Boeing B757-200. A second version of this software (a “Red Label” candidate in 
certification parlance), which included closed-loop speed control for RTA operation through all phases of 
flight, was also provided. This second version was modified for LL during the previous phase of this 
project as a research variant to employ two proprietary wind-blending algorithms, which were selectable 
and analyzed as part of previous work [6]. 

A particular question of interest raised from previous work was “Do more levels of forecast descent 
winds improve RTA performance?” To answer that question, Honeywell was contracted under this phase 
of work to augment the flight code in the latest LL research variant of the Pegasus FMS to increase the 
maximum number of entered descent wind levels from four to nine. An analysis of the effect the number 
of levels on performance will be is presented later in this document.  

An additional enhancement implemented in the modified FMS was the ability to explicitly specify 
the forecasted temperatures at each descent forecast altitude. This capability, though utilized as part of 
this work, has not been evaluated at this time. 

2.2.3 High-Fidelity Atmospheric Modelling 

In previous work, the atmosphere through which simulated aircraft flew was derived from HRRR 
zero-hour analysis data (see Section 3.2.2). This forecast model was clearly the best choice at the time to 
use in our earlier simulations as a representation of the atmosphere. It provided a 3 km gridded data 
surface at 50 pressure levels over the contiguous United States (CONUS). The zero-hour analysis is based 
on assimilation of the most recently acquired sensor measurements (including balloon soundings and 
aircraft reports) together with an initial estimate based on the prior forecast, and represents the model’s 
best estimate of the current state of the atmosphere at that specific time. 

It is understood that the HRRR model, like its predecessors, is limited to express vertical and 
horizontal wind shears (e.g., rapidly changing wind shear across altitudes) due to the generalized 
mesoscale modeling employed and to some degree by limitations of the dimensional step sizes that define 
the spatial frequencies that can be expressed in the data. 
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Correct expressions of conditions that change over time are also limited when using hourly forecast 
models. One of the problems is that even if two adjacent zero-hour, or future-hour, forecasts accurately 
model the conditions at the forecast times, the weather conditions occurring between the two forecast 
times are indeterminate.  

Consider the case where the forecast winds at a point in space are expected to be 30 knots from the 
northwest at some forecast time and 30 knots from the east one hour later. Such a condition could occur 
when a strong, rapidly moving cold front passes across the region. Unfortunately, there is insufficient 
information in an hourly model that tells when the front passes the point of interest. Is it 10 minutes past 
the first forecast time, or 50 minutes past the first forecast time?  

Without higher-order derivative information of the states in the forecast, there is little recourse on 
what one can assume on how the system is changing between the forecast times. Thus, in most cases, one 
assumes a linear relationship and applies a linear interpolation between the two forecasts to estimate a 
condition.  

This technique has been applied in our previous work and is still utilized in our weather forecasting 
service (see below) for estimating conditions between forecast times.  

Because of these limitations, a new approach was adopted to estimating atmospheric conditions 
applied to the aircraft during simulations in order to best emulate the dynamic wind conditions that are 
experienced during flight. Additionally, the approach is correlated to actual date and times so forecasting 
data available at those times from different systems can be evaluated. 

Aircraft Reported Atmospheric Model (ARAM) 
To maximize the fidelity of the simulations and the test conditions, aircraft-derived meteorological 

data reports from MDCRS were used. These data are used in concert with the actual flight data, (e.g., 
flight plan, cruise altitudes and speed, etc.) that correlates to the particular flight of interest. 

In these experiments, the simulated aircraft are placed at correlated positions of space and time that 
match to an instance of the reported flight data and are thereafter applied the same atmospheric conditions 
during simulation as observed during the original flight as it spatially transgress the same route as defined 
by their flight plan. 

There is significant effort required in order to collect and identify aircraft reported atmospheric 
measurements with flight information that describes the route of flight that was assigned to the reporting 
aircraft. The process to do so is outlined in the individual steps shown in Figure 4. 
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Figure 4. Data processing pipeline to produce correlated (to flight data) aircraft reported atmospheric models 
(ARAM). 

Data Ingest 
The first stage of processing is consumption and interpretation of required data sources. The 

minimum set required is defined below. 
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• Traffic Flow Management System (TFMS), which provides speed and flight plan information 
and position updates every minute from origin to destination on domestic flights.  

• Airport Surface Detection Equipment-X (ASDE-X), which provides 1 second updates on flights 
in the terminal area down to the surface, which allows unique aircraft transponder 
identification.  

• Meteorological Data Collection and Reporting System (MDCRS) data, described in Section 
3.2.1, was used to provide a basis of truth data for flights. The data source contains information 
on aircraft position, wind speed and direction, pressure, and temperature. Information is 
updated every 7 minutes en route and every minute during the descent phase of flight. 

• A route data service was constructed based on ARINC 424 descriptions. These descriptions 
provide a detailed description the route of interest. A number of key fields were used extracted 
from these descriptions, including the position of each waypoint along the route, speed and 
altitude constraints on the approach portion of the route, and the location and elevation of the 
destination airport. 

• FAA Aircraft Registry provides the current mapping of aircraft tail number for U.S. registered 
aircraft to their Mode-S transponder address. 

These data are consumed, mostly as streamed data, and processed to fuse individual reports into a 
comprehensive representation of an aircraft’s flight life cycle. These fused data sets are then inserted into 
separate database tables as elemental components of MAFID.  

Data Association 
The goal of the second step is to identify the flight information (assigned flight plan, etc.), if any, 

that is associated with the meteorological data contained in the fused MDCRS data. To do this, we must 
first identify the tail number of the MDCRS aircraft and then from the tail number determine the 
particular flight plan it used on that particular flight. 

The MDCRS data in the form provided by Meteorological Assimilation Data Ingest System 
(MADIS) cannot be associated with a particular aircraft because its tail number is encrypted in the 
MADIS records. With the authorization of Airlines for America (A4A) and the tail number key file 
provided by the National Oceanic and Atmospheric Administration (NOAA), the fused MDCRS data can 
be associated with the registered tail number of the physical aircraft. 

Next, on the given day of any flight, MAFID-provided ASDE-X records are used that, when 
processed during ingest, converted the reported Mode-S transponder address to its assigned tail number 
obtained from the FAA registry database, to look for the tail number of interest. If a match was found, the 
corresponding flight number used by that commercial aircraft on that part of the day is extracted from the 
same ASDE-X records. 
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There is then a link between MDCRS meteorological data during a specific part of a day, the tail 
number of the airframe, and the flight number it used for that particular flight. The date and time 
information is then used with the flight number to identify in the TFMS database the assigned flight plan, 
Standard Terminal Arrival Route (STAR), etc. as specified by ATC.  

Flown Route Analyzer 
The goal of the second step is to identify those sections of a given flight, if any, where the fused 

track data indicates that the route flown corresponds to the assigned route as indicated by TFMS flight 
data. This is necessitated because our intended application of an ARAM is to have simulated aircraft fly 
identical sections of a route as programmed into the FMS by the TFMS provided route. Though the 
reported MDCRS data is accurate for the actual trajectory flown, a deviation from the programmed route 
cannot be modelled without knowing the intent of the pilot or direction given by ATC. In absence of such 
information, we must sectionalize and preserve only track data that adhere to the assigned route to a high 
degree. The Route Analyzer tool evaluates this adherence. 

The process flow of the tool is depicted in Figure 5. Its architecture is explained in the following 
summary and description points. 

  

Figure 5. Process flow for analyzing segments of trajectory data that meet routes adherence constraints. 

The following steps are used to ensure adherence to flight plan and characterize a particular flight 
as a candidate for simulation: 

1. The assigned route is extracted from the corresponding TFMS data  
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a. The extracted route is the basis for the analysis, although in itself it does not contain all the 
data needed to compare a flight against all trajectory permutations during arrival  

b. Assigned routes are stored in the TFMS database table, which contains TFMS trajectory 
and flight plan data spanning multiple months. Assigned routes are actually route 
summaries that include origin, Standard Instrument Departure (SID), route, STAR, and 
destination. It does not include the instrument approach procedure (IAP) entered into the 
FMS, if any, nor the transition into that procedure. Knowledge of these later elements is of 
particular importance because, for many STARs, this selection defines a significant portion 
of the waypoints on a given STAR. Here is an example of an assigned route: 

KPHX.FTHLS3.MAXXO..TXO..MLC..MEM.KOLTT1.KATL 

c. The above route will be used as part of the analysis to determine if the route was flown 
without deviation 

2. All possible STAR transitions and IAP combinations for the assigned route are computed and 
stored as route branches that outline descent and approach behavior possibilities 

a. This step expands the analysis field to include valid approach dependent route segments  

b. Since assigned routes do not include the IAP nor IAP transition programmed/flown, these 
are derived in a combinatorial fashion, constructing a tree in which all feasible 
combinations are stored as route branches, including combinations that do not use IAP 
transitions. Some examples of such route branches for approaches into ATL: 

KPHX FTHLS3 MAXXO TXO MLC MEM KOLTT1 KATL + JAAJJ ILS08L 
KPHX FTHLS3 MAXXO TXO MLC MEM KOLTT1 KATL + LARII ILS08L 
KPHX FTHLS3 MAXXO TXO MLC MEM KOLTT1 KATL + ILS08L 
KPHX FTHLS3 MAXXO TXO MLC MEM KOLTT1 KATL + GPEAT ILS08R 
KPHX FTHLS3 MAXXO TXO MLC MEM KOLTT1 KATL + ILS08R 
KPHX FTHLS3 MAXXO TXO MLC MEM KOLTT1 KATL + AAKAY ILS09L 

 
3. An expanded route is computed for each route branch to generate lists of all flown waypoints 

a. The route and its approach options are expanded to a more detailed level as each route item 
can be a combination of waypoints. The waypoint lists for each permutation of possible 
approaches will be used to correlate to the trajectory data collected  

b. A queryable web service has been constructed to perform navigational database lookups. 
With this service, the expanded route is computed for each route branch to generate all 
required waypoints.  
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4. For each route branch, a set of polygons is constructed for evaluation of each trajectory sample, 
with the width of the polygons accounting for proximity to the destination airport, and 
additional polygons are constructed around virtual waypoints when turns tighter than 10° are 
encountered to allow for fly-by behavior 

a. The polygons will ultimately be used to determine if the flown trajectory data points are 
contained in a valid combination of polygons representing the route options. 

b. From the expanded route branch’s lateral coordinates, an altered set of waypoints is 
computed to account for realistic flight behavior (e.g., fly-by) at each waypoint. If the 
course angle change between each pair of segments is greater than 10°, a typical turn arc is 
computed and the waypoint at which the turn occurs is shifted inwards to lie on the arc 
rather than at the intersection of the two segments. Two additional waypoints, located at the 
arc insertion coordinates, are added. From this list of altered waypoints, a set of polygons is 
constructed. The width of the polygons accounts for the radial proximity to the landing 
runway and is modulated continuously from 4 NM port and starboard (total 8 NM width) 
down to 1 NM port and starboard (total 2 NM width) See Figure 6. The sigmoid function 
that defines the polygon width as a function of distance to airport is shown in Figure 7.  

5. The flown trajectory points are evaluated against all possible sets of polygons 

a. Each TFMS trajectory (lat, lon) sequence point is evaluated against the polygons that 
represent all possible route branches.  

b. Continuity of containment in polygons is checked to verify that trajectory points do not step 
outside the polygon bounds. 

c. Monotonicity of transition between polygons is checked, signifying adherence to a route. A 
constantly increasing polygon index is a good indicator of correct progression, thus 
confirming the choice of route branch. 

d. Multiple segments of contiguous polygons may be identified for one flight.  

6. Route branch scores are evaluated to select the route branch that best represents the flown 
trajectory 

a. The TFMS trajectory (lat, lon) sequence is evaluated against the polygons that represent all 
possible route branches. A scoring N×M matrix is constructed, where N is the number of 
TFMS trajectory points for a particular flight, and M is the number of possible route 
branches. For each row N, the (lat, lon) pair representing it is checked for being contained 
inside one of the polygons for each route branch, and the polygon index is recorded in that 
matrix element. The scoring matrix is visualized by the heatmap in Figure 8. The “cool” to 
“hot” progression of color from the top of each column indicates the flight occupying and 
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sequencing through route segments. Interruptions and missing data appear in solid dark 
blue and are clearly contrasted against the usable trajectories noted in progressing color. 

b. Relative scores are computed for all possible route branches within a scenario using the 
greatest number of contiguous segments that a route branch steps through, combined with 
the total number of segments for that route branch, and inversely weighted by the distance 
of the final usable branch segment to the destination airport. The score produced by this 
combination of variables has been found to correspond well to the usability of a route 
branch. In Figure 8, the two red boxes annotate the heatmap, highlighting likely flown 
branches based on their high scores. 

c. Given a selected route branch, its characteristics, including along-track and radial route 
distances, as well as (lat, lon) point sets, starting and stopping times, and MDCRS data 
outlined by the segment bounds contained in the route branch, are recorded in an output 
database table. 

7. Contiguous sets of trajectories and their characteristics are stored in database for later 
consideration 

 

 

Figure 6. Route containment polygons whose dimensions change as a function of distance from the airport and the 
incidence angles between waypoints. 

  The down-selecting from the total of surveyed flights to the qualified candidate flights is presented 
on a per airport basis in Table 11.  
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Figure 7. Sigmoid function used to define error tolerance as a function of the track distance from the destination. 

 

Figure 8. Sample route branching metrics results. 
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3. ANALYSIS OF WIND INFORMATION 

3.1 INTRODUCTION 

Previous phases of this work examined the forecast accuracy of operational U.S. numerical weather 
prediction models used by ATC and airlines’ flight planning departments. The models evaluated were the 
Global Forecast System (GFS), Rapid Refresh (RAP), and High Resolution Rapid Refresh (HRRR). The 
source of “truth” winds for comparison against the model forecast winds was the HRRR zero-hour 
analysis winds. The HRRR transitioned from experimental at NOAA Earth System Research Laboratory 
(NOAA/ESRL) to operational at NOAA/NCEP on September 30, 2014 and represents the state-of-the-art 
high resolution (3 km) operational numerical model over the CONUS domain. The RMS vector error 
between the forecasts and the HRRR truth winds was the chosen metric. The RMS vector errors were 
computed through three-dimensional sampling and aggregational averaging over a 10-month period 
within four volumes centered over San Francisco International Airport (SFO), Phoenix Sky Harbor 
International Airport (PHX), Chicago O’Hare International Airport (ORD), and New York Newark 
Liberty International Airport (EWR).  

In Phase 4 of this work, we have performed an extended and complementary assessment of wind 
forecast model performance wherein the performance has been evaluated along actual flight trajectories 
using aircraft meteorological data reports from the Meteorological Data Collection and Reporting System 
(MDCRS) as the source of truth winds for comparisons against the forecasts. We chose to perform these 
analyses on executed flight trajectories because the results are significantly more operationally relevant 
from an air traffic perspective than the previous volume-based approach. MDCRS are an appropriate 
source of truth winds since they are routinely assimilated as observations into the numerical model and 
have been used frequently by researchers to validate model performance. Since the HRRR represents the 
latest state-of-the-art U.S. operational model, we focused this assessment on that model, but the GFS is 
still a commonly used model by ATC and stakeholders, and we plan to extend this trajectory-based 
analysis to that model in following work. 

3.2 DATA SOURCES 

3.2.1 MDCRS 

MDCRS aircraft observations are collected, processed, and archived by NOAA Global Systems 
Division (GSD) and are made publically available through the Meteorological Assimilation Data Ingest 
System (MADIS). More than 100,000 meteorological reports per day from more than 4,000 aircraft are 
available over the CONUS from the MDCRS system [7]. Figure 9 shows an example of MDCRS data 
coverage for a single day (February 1, 2016). On this day, there were nearly 125,000 aircraft observations 
over the CONUS. 
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Figure 9. Example MDCRS report coverage over CONUS. 

The aircraft reports include position information (latitude, longitude, pressure altitude), time, 
meteorological variables (temperature, wind speed and direction, etc.), and quality flags for each of the 
variables. MADIS performs a number of post-processing temporal and positional consistency quality 
checks prior to storage in their database. Each report contains a “roll flag” field that may or may not be 
populated, and indicates when the aircraft is maneuvering (turning, banking) such that the associated data 
report may be unreliable. In our analysis dataset, we found that only 12% of the reports had roll flag 
information present, with 95% of the reports with available roll flags identified as “good” quality (roll ≤5 
degrees), and 5% of the available roll flags as “bad” quality (roll >5 degrees). Given the paucity of 
available roll flag information, we only rejected aircraft reports on the basis of the roll flag if the 
information was present and indicated bad roll quality. 

Aircraft reports are generally provided at varying nominal update frequencies depending on the 
phase of flight. Table 2 lists the nominal update frequencies by phase of flight. 
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TABLE 2 

Nominal MDCRS Report Update Rates 

Flight Phase Report Update Rate 

Take-Off 6–90 seconds 

Departure 20–510 seconds 

En-Route 

3 minutes if below 465 hPa (~20,000 ft) 

7 minutes if above 465 hPa  

1 minutes if icing conditions are present 

Approach 60 seconds 

 

MADIS aircraft data are provided in two formats: points and profiles. The points data contain all of 
the available reports without any associations or organization to specific flights. The profile data are a 
subset of the points data that groups the points by flights for arrivals and departures only, but do not 
include reports from cruise segments. We found that not all available arrival and departure segments were 
represented in the MADIS profile data, and reports from cruise altitudes were needed for our study, so we 
performed our own track associations from the point data using the encrypted tail numbers available with 
each aircraft report together with spatial and temporal proximity logic. Figure 10 shows 3D and 2D plots 
of individual points and resulting associated tracks for a single day over the ORD region.  
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Figure 10. Three-dimensional (left) and two-dimensional (right) views of unassociated MDCRS points (top) and 
resulting tracks (bottom) after track association. Data are from descents into the ORD region on Feb. 1, 2016. 

In addition to storing the position and time information of each MDCRS track sample, track-
aggregated wind statistics including wind speed and headwind minima, maxima, means, and standard 
deviations were computed and stored with the track data in order to support subsequent qualification of 
tracks based on wind environment characteristics. Headwind values were computed based on along-track 
changes in direction between successive report locations, not actual aircraft heading information, since 
that information was typically absent in the MDCRS data. A tail number key file provided by NOAA to 
Lincoln Laboratory with the authorization of A4A allowed assignment of the actual tail number to each 
generated track. When combined with other flight information, the actual tail numbers allow look-up and 
comparisons of the MDCRS-based tracks with filed flight plans. 

The processed MDCRS tracks are stored in a database table for additional processing and analysis. 
As of this writing, the MDCRS tracks database presently contains over 1.6 million tracks from January 1, 
2015 through March 31, 2016.  
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3.2.2 High-Resolution Rapid Refresh (HRRR) 

The HRRR model is an hourly updating, 3 km horizontal resolution, CONUS domain numerical 
weather prediction model produced by NOAA/NCEP. The HRRR updates hourly and provides hourly 
forecast grid sequences of meteorological variables from 0 to 15 hours. For our analyses, we obtained and 
processed the pressure vertical coordinate files having 25 hPa vertical resolution extending from 1000 hPa 
to 50 hPa. Two-dimensional surface variables such as surface pressure, wind, and temperature are also 
included in the pressure coordinate data files. 

3.3 ANALYSIS METHODOLOGY 

3.3.1 Geographical Coverage 

In order to assess forecast capabilities across different geographic wind environments, HRRR wind 
forecast comparisons were made over four separate 400 NM × 400 NM regions centered on San 
Francisco (SFO), Phoenix (PHX), Chicago (ORD), and Newark (EWR) airports. The SFO region 
provides a relatively “benign” west coast environment dominated by high pressure, low wind speeds, and 
infrequent wind shear. The PHX region represents an arid climate, and is also a relatively benign wind 
environment, but has more occurrences of sub-tropical jet stream winds due to its southerly latitude. The 
ORD region typifies an upper mid-western climate with a good mix of convective summer and winter 
storms with occasional strong winds and vertical wind shear. The EWR region represents the northeast 
coastal environment which has a high frequency of strongly sheared wind environments (e.g., 
Nor’easters), and high winds aloft due to frequent confluence of the polar and subtropical jet streams. The 
HRRR data were partitioned to these coverage regions as shown in Figure 11. 

 

Figure 11. Regions analyzed for Wind Forecast Model performance. 
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3.3.2 Analysis Period 

MDCRS wind observations and matching HRRR wind forecasts from a one-year period extending 
from March 1, 2015 through February 29, 2016 were compared and analyzed over the four regions for 
HRRR forecast look-ahead verification times ranging from 0 to 6 hours. 

3.3.3 Selection and Matching of MDCRS and HRRR Data 

MDCRS Descent Segment Selection 

For analysis of wind forecast model performance along descents, MDCRS tracks were first pre-
filtered to select candidate tracks having length of at least 200 NM and having a lowest altitude ending 
point within a 30 NM radius from the airport center and less than 2,000 feet above the airport altitude. 
Next, the candidate tracks were further reduced to those whose time at the arrival endpoint fell within plus 
or minus 15 minutes of the HRRR forecast hour. The 15-minute time match criteria was chosen for this 
and following analyses because it provides an appropriate degree of temporal match given the 
atmospheric scales of interest without resorting to interpolation between forecast times which would blur 
the classification of results by the discrete forecast look-head times. Previous researchers [8] have used 
this approach with time windows larger than this (e.g., 30 minutes), so we feel ours is a conservative 
match criteria. Finally, an analysis segment for each track was extracted by proceeding backward from 
the arrival endpoint to the point of intersection of the HRRR data partition region boundary. This resulted 
in arrival descent track segments of ~200 NM in length. Figure 12 shows an example of selected descent 
track segments into ORD during the period 11/12/2015 00:08:00 GMT through 11/13/2015 02:32:00 
GMT. 

MDCRS Cruise Segment Selection 
For wind performance analysis along cruise flight segments, MDCRS tracks were first prefiltered to 

select candidate tracks having length of at least 500 NM, maximum pressure altitude greater than 24,000 
feet, and having one or more lateral position coordinates falling within the HRRR analysis region of 
interest. The initial candidate tracks were then time-filtered to select those tracks whose start and end 
times spanned the selected comparison HRRR forecast hour. The final sequence of cruise analysis 
segment points were extracted by selecting only those points whose report times fell within 15 minutes of 
the HRRR forecast valid time hour, pressure altitudes were greater than 24,000 feet. 

Matching of HRRR and MDCRS Data 
HRRR forecasts were matched horizontally to the latitude and longitude of the MDCRS 

observations using bilinear interpolation. Vertical interpolation of HRRR data to the MDCRS pressure 
altitudes was performed by first converting the MDCRS pressure altitudes to their equivalent U.S. 
Standard Atmosphere pressures and using linear interpolation in log(p) across the 25 hPa increment 
HRRR pressure surfaces. Temporally, MDCRS observations were matched to HRRR forecasts having 
valid times within plus or minus 15 minutes of the MDCRS observation – there was no interpolation 
between HRRR forecasts. This facilitates categorization of performance results by the discrete hourly 
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forecast look-ahead times, while providing a reasonable temporal match given the atmospheric temporal 
scale of concern. 

 

Figure 12. Example of MDCRS descent track segments. Left plot shows lateral track segment locations. Right plot 
shows vertical profiles of track segments. 

3.3.4 Categorization of Results 

Wind forecast model performance discussed in the following sections is categorized by: 

• Forecast look-ahead time (0,1,2,3,4,5, and 6 hours) 

• Flight phase (descent, cruise) 

• Wind magnitude 

• Altitude 

• Location 
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• Time of year 

• Time of day 

3.4 METRICS 

The following metrics were computed along actual aircraft trajectories and used to assess the effects 
of wind information quality on 4D-TBO performance in Phase 4 of this work. 

3.4.1 RMS Vector Difference (RMSVD)  

The Root Mean Square Vector Difference is the root mean square difference applied to the 
magnitudes of the forecast and observed wind vector components as given by Equation (1): 

ܦܸܵܯܴ = 	ඩ1ܰ ෍൫ݑ௙ − ௢൯ଶݑ + ൫ݒ௙ − ௢൯ଶேݒ
௡ୀଵ  (1)

where N is the number of forecast-observation pairs, u is the east-west component of the wind vector, v is 
the north-south component, and subscripts f and o refer to forecast and observed, respectively. It is one of 
the most commonly used metrics to quantify performance of wind forecast models. 

3.4.2 Mean Absolute Error (MAE) 

The Mean Absolute Error is the average of the absolute value of the difference between the forecast 
(f) and the observation (o) as given by Equation (2). This metric weights positive and negative errors 
equally, making it a measure of total forecast error and is used in this study for quantifying headwind 
component differences between HRRR forecasts and MDCRS observations. 

ܧܣܯ = ඩ1ܰ ෍| ௡݂ − ௡ே݋
௡ୀଵ | (2)

3.4.3 Estimated Time-to-Fly (ETTF) Difference 

This metric compares the integrated effects of actual (MDCRS) vs. forecast (HRRR) headwind 
differences in the resulting time-to-fly along analyzed MDCRS trajectory segments and is directly 
relatable to 4D-TBO time-based targets. The headwinds for each wind source were first integrated using 
5-second step interpolation along MDCRS trajectory segments that intersected the available regions of 
HRRR forecast wind data. The estimated time-to-fly (ETTF) for a trajectory was then computed using 
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ETTF =෍∆ݐ௜௡
௜ୀ଴  (3)

where ∆ti = ∆di / (airspeedi – headwindi ), and ∆di = length of a step along the flight trajectory. 

Airspeeds were estimated by adding the actual or forecast headwinds at the MDCRS trajectory 
points to the aircraft ground speeds (determined from time and distance traveled between successive 
MDCRS trajectory points).  

3.4.4 Outlier Rejection 

Although NOAA MADIS imposes a number of quality control factors in their postprocessing of the 
MDCRS reports, anomalous reports can still occur due to malfunctioning aircraft sensors, problems in 
data recording or transmission, etc. When repeated anomalous wind observations are noticed for a given 
MDCRS tail number, we flagged the aircraft as “bad,” and excluded any reports from that aircraft for the 
analyses. We found that the RMS vector difference between the aircraft reports and the HRRR forecasts 
to be a useful metric for rejecting outliers. We chose a conservative value of 200 knots as the threshold 
for outlier rejection, since there could be actual very large forecast differences in high gradient wind 
environments such as jet stream boundaries. 

3.5 RESULTS 

3.5.1 Wind Distributions 

Figure 13 presents scatter plots of the wind speeds and directions obtained from the MDCRS 
reports for the four regions that were analyzed for this study over the one-year period of March 1, 2015 
through February 29, 2016. The plots show that a good distribution of wind speeds and directions are 
present in the analyzed data set, and that the higher wind speeds are typically associated with westerly to 
northwesterly winds. 
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Figure 13. MDCRS observed wind speeds and directions for (a) SFO, (b) PHX, (c) ORD, and (d) EWR. Red points 
and lines indicate mean wind speed. 

3.5.2 Wind Forecast Accuracy by Altitude and Look-Ahead Time 

Figure 14 plots the means and means plus one standard deviation of the headwind differences 
between HRRR forecast and MDCRS observations as a function of altitude and forecast look-ahead time 
across the four regions over the one-year analysis period. The statistics were binned at 100 hPa altitude 
intervals with each point plotted at the lower point of the averaging bin. For example, a point plotted at 
the 1000 hPa level reflects the statistic computed from the differences aggregated over the 900 hPa to 
1000 hPa vertical layer. 
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Figure 14. Mean headwind difference (solid curves) and mean plus one standard deviation (dashed curves) between 
HRRR forecasts and MDCRS wind observations by altitude and forecast look-ahead time for SFO, PHX, ORD, and 
EWR airport regions. 

The forecast differences are seen to generally increase with forecast look-ahead time and with 
altitude. Mean headwind differences between HRRR forecasts and MDCRS observations ranged from 2.2 
knots for the HRRR zero-hour analysis to 5.6 knots for the 6-hour HRRR forecast. Standard deviations 
ranged from 1.3 knots to 4.7 knots.  

The curves are quite similar for SFO, PHX, and ORD regions, but EWR has notably different 
altitude variation of the forecast differences than the other three regions. EWR exhibits a nearly constant 
amount of mean forecast differences along each look-ahead time from the surface to approximately 
18,000 feet, and then has marked increases in forecast differences from 18,000 to 30,000 feet, followed 
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by decreases above 30,000 feet. One possible explanation for this is climatological. The Northeast has one 
of the highest frequencies of jet stream crossings in the U.S. due to frequent confluence of the polar and 
subtropical jet streams in this region of the country. The jet stream typically occurs at altitudes near 
30,000 feet and typically has strong wind gradients that could result in larger wind forecast errors if the 
model fails to forecast the jet stream location and timing precisely. As has been shown in prior studies 
[8],[9] and in the following section of this study, numerical model wind forecast errors tend to increase 
with increasing wind speeds. 

3.5.3  Wind Forecast Accuracy by Wind Magnitude 

This section examines the relationship of headwind forecast accuracy to wind magnitude. Means 
(solid curves) and standard deviations (dashed curves) of the differences between the HRRR forecast 
headwinds and the MDCRs observed headwinds as functions of the MDCRS observed wind speeds are 
presented in Figure 15. The results are shown for forecast look-aheads of 0–6 hours and for wind speed 
intervals of <20 knots, 20–40 knots, 40–60 knots, and ≥80 knots. Generally, as wind speeds increased, the 
forecast differences and standard deviations also increased. The difference trends appear to level off or 
slightly decrease for wind speeds greater than or equal to 80 knots, but this may be due to fewer samples 
in this wind speed category (a few hundred samples versus several thousand for the other wind speed 
categories). 

 
Figure 15. Mean headwind forecast difference (solid curves) and mean plus one standard deviation (dashed curves) 
by forecast look-ahead time and wind speed. 
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3.5.4 Wind Forecast Accuracy by Phase of Flight 

This section examines the relationship of forecast accuracy to two phases of flight: cruise and 
descent. For this evaluation, cruise segments from MDCRS reports during the month of February 2016 
crossing over SFO, PHX, ORD, and EWR regions were examined. To qualify as part of a cruise segment, 
the MDCRS pressure altitude had to be greater than 24,000 feet. Figure 16 and Figure 17 plot the mean 
absolute headwind differences between HRRR forecasts and MDCRS observations for cruise and descent 
phases, respectively (mean headwind differences were averaged across all altitudes for the descent data). 
Mean headwind differences and standard deviations were found to be generally 1 to 1.5 knots larger with 
the cruise segments compared to the descent segments. This is likely due to the higher wind speeds and 
higher wind gradients at cruise altitudes where the jet stream winds are more likely to be encountered. As 
seen in the previous examination of wind speed effects, wind forecast accuracy tends to decrease in 
higher wind speed environments.  

 

 

Figure 16. Mean absolute headwind difference (solid curves) and mean plus one standard deviation (dashed curves) 
for cruise flight segments. 
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Figure 17. Mean absolute headwind difference (solid curves) and mean plus one standard deviation (dashed curves) 
for descent flight segments. 

3.5.5 Wind Forecast Accuracy by Time of Year 

In this section, we examine the effects of time of year on wind forecast accuracy. Headwind 
forecasts based on the three-hour and six-hour HRRR forecasts were compared against the MDCRS 
headwinds. The results, aggregated across all four of the analyses regions and over all altitudes, are 
shown in Figure 18 and Figure 19. As expected, mean headwind forecast differences and standard 
deviations were found to be larger in the winter months for both forecast lead times, consistent with 
higher wind speeds and gradients in the winter. The seasonal effect is most pronounced for the EWR 
region, presumably owing to the climatologically larger occurrence of high winds from coastal storms and 
jet streams overhead than the other sites in the winter months. 
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Figure 18. Monthly mean (solid curves) and mean plus one standard deviation (dashed curves) headwind forecast 
differences between 3-hour HRRR forecasts and MDCRS observations. 

 

Figure 19. Monthly mean (solid curves) and mean plus one standard deviation (dashed curves) headwind forecast 
differences between 6-hour HRRR forecasts and MDCRS observations. 
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3.5.6 Wind Forecast Accuracy by Time of Day 

This section examines the effects of time of day on wind forecast accuracy. Headwind forecasts 
based on the 3-hour and 6-hour HRRR forecasts were compared against the MDCRS headwinds at each 
of 24 hours. The results, aggregated across all four of the analyses regions and over all altitudes, are 
shown in Figure 20 and Figure 21. Mean headwind differences for the two forecast look-aheads ranged 
between 3.3 knots and 5.4 knots. The EWR region exhibited slightly higher mean differences between 
9:00 a.m. and 12:00 p.m. Standard deviations of the forecast differences were markedly higher for EWR 
during the same hours of the day, and remain higher than the other sites for the later hours of the day. 

 

 

Figure 20. Mean (solid curves) and mean plus one standard deviation (dashed curves) of headwind forecast 
differences versus time of day (Local Standard Time) between 3-hour HRRR forecasts and MDCRS observations. 
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Figure 21. Mean (solid curves) and mean plus one standard deviation (dashed curves) of headwind forecast 
differences versus time of day (Local Standard Time) between 6-hour HRRR forecasts and MDCRS observations. 

3.5.7 Comparison of Headwind Differences and RMS Vector Differences 

While this phase of the research has focused on trajectory-based analyses and the use of headwind 
differences between HRRR forecasts and MDCRS observations as the principal metric, it is informative 
to relate this metric to the RMS Vector Difference (RMSVD) metric commonly reported in wind forecast 
model research literature and in prior phases of this research. From purely geometrical considerations, if 
the analyzed samples have wind directions equally distributed throughout the compass, RMS vector 
differences would be expected to be approximately 1.4 (i.e., sqrt(2)) times larger than headwind 
component differences computed for the same samples. Prior research [8] has noted that the RMS vector 
difference metric is biased in high wind speeds, where a small wind direction difference between a 
forecast and observation can result in a large vector difference. 

Figure 22 plots the mean and standard deviation headwind component differences between HRRR 
forecasts and MDCRS observations averaged across all altitudes for each of the four regions as a function 
of forecast look-ahead. Figure 23 compares the same forecasts and observations using the RMS vector 
differences. The headwind differences range from approximately 2.5 to 4.5 knots, while the RMS vector 
differences range from approximately 4.5 to 8.0 knots, which is more than the amount that would be 
ascribed to purely geometrical considerations between the two metrics alone. Winds over the U.S. tend to 
be westerly (strongest winds tend to be from the northwest as shown in the wind distributions previously), 
so this wind direction bias, coupled with the directions of the specific MDCRS flight tracks and the 
sensitivity of the RMSVD metric to high wind speeds may account for the additional differences. 
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Figure 22. Mean absolute headwind difference (solid curves) and mean plus one standard deviation (dashed curves) 
between HRRR forecasts and MDCRS observations averaged across all altitudes. 

 

Figure 23. Mean RMS vector difference (solid curves) and mean plus one standard deviation (dashed curves) 
between HRRR forecasts and MDCRS observations averaged across all altitudes. 
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3.5.8 Estimated Time-to-Fly (ETTF) Difference 

In this section, we examine the effects of differing forecast winds on ETTF. This is an important 
metric for understanding the effects of wind forecast errors on 4D-TBO procedures such as RTA and IM, 
as well as other time-based decision support tools that must estimate the time it takes an aircraft to fly 
along a given path. A similar analysis is described in [10], which used assumed nominal flight plans into 
Dallas/Fort Worth International Airport (KDFW), and modeled step-wise descent airspeeds. Our analysis 
uses actual flight trajectories from the MDCRS reports and actual measured time-to-fly times for 
comparisons against the ETTF, which is what the authors recommended. 

We compared the ETTF computed from HRRR forecast headwinds as described in Section 3.4.3 
against the actual time-to-fly (ATTF) obtained from the MDCRS tracks. To ensure an adequate number of 
samples, we imposed a minimum MDCRS trajectory segment duration of 15 minutes for computing the 
ETTF differences. Because the qualifying segments are of varying lengths, the ETTF differences are 
normalized by one minute of flight time to allow inter-comparison between results of different flight 
segments and across different forecast look-ahead times, regions, etc. 

Figure 24 plots the means and one standard deviation error bars of the 1-minute normalized ETTF 
differences between the different HRRR forecasts’ look-ahead times and the ATTF obtained from the 
MDCRS tracks. The mean ETTF differences across all sites were found to be very similar. The ORD 
region had the largest mean ETTF differences approaching 0.2 seconds per minute of flight. This would 
translate to an average 6 seconds of time-to-fly difference for a 30-minute flight. Variability of the ETTF 
difference appears quite high with standard deviations running generally from 0.4 to 0.6 seconds per 
minute of flight, which translates to 12–18 seconds for 30 minutes of flight. 

EWR ETTF difference standard deviations were notably higher, with a standard deviation of nearly 
7 seconds at the 6-hour forecast look-ahead (note the different y-axis scale for the EWR results). This 
would translate to a 3.5-minute ETTF difference for a 30-minute flight. One possible explanation for the 
large variance is that there are MDCRS report outliers that were not excluded by the conservative 200 
knot RMS vector difference outlier threshold test (one of the MDCRS tracks examined had RMS vector 
differences from HRRR forecasts of 170 knots). In addition, we found some large ETTF difference 
outliers associated with MDCRS tracks having a relatively sparse number of MDCRS reports in 
combination with relatively large HRRR headwind forecast errors at those report locations. These forecast 
headwind samples were then propagated over the large sample distances during the ETTF computational 
integration, leading to large ETTF differences compared to the MDCRS-based ETTFs. For the following 
phase, we plan to rework the ETTF difference analysis with additional quality constraints imposed on the 
associated numerical model forecasts and on the trajectories selected for the analysis to ensure there is 
sufficient MDCRS sample point density to support the computations. 
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Figure 24. Means and standard deviations of normalized ETTF difference per minute of flight between HRRR 
forecasts and MDCRS for the four analyzed regions.  
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3.6 KEY TAKE-AWAYS 

The following summarizes the key accomplishments and findings of the wind information analysis 
conducted in Phase 4 of this research: 

1. Trajectory-based analyses of wind forecast model performance was conducted using aircraft 
wind observations from MDCRS as the truth wind source for comparison against HRRR model 
forecasts over a one-year period and four airport regions. MDCRS was chosen as the source of 
wind truth for this study because it provides directly sensed observations of the winds, is less 
smoothed than model-based analysis winds, and more precisely captures “flight weather” along 
actual flown tracks. 

2. In addition to the RMS Vector Error (RMSVE) metric used in our previous studies (recast in 
this study phase as RMS Vector Difference), the trajectory-based analyses in this study 
permitted evaluation using additional performance metrics such as Mean Absolute Error 
(MAE) applied to scalar forecast headwind component differences, and ETTF differences that 
arise from the accumulated ground speed effects of time-integrated headwind differences 
between different forecasts. The ETTF metric is particularly relatable to time-based targets 
such as RTA and IM. 

3. Results were stratified by a number of different potentially influencing criteria including 
altitude, forecast look-ahead time, wind magnitude, phase of flight, time of year, and time of 
day. 

4. Mean HRRR headwind forecast differences compared to MDCRS were found to generally 
increase with increasing forecast look-ahead time and with altitude for all four regions ranging 
from 2.2 knots to 5.6 knots. Standard deviations ranged from 1.3 to 4.7 knots. Forecast 
differences were also shown to increase with increasing wind speed, and in the winter months. 
Only the EWR region showed appreciable changes in mean forecast accuracy with time of day. 
Mean forecast differences were found to be 1.0–1.5 knots greater for cruise versus descent 
phases of flight. 

5. Mean forecast ETTF differences compared to actual MDCRS flight times across the four 
airport regions were found to be similar. ORD had the largest mean ETTF differences, with an 
equivalent 6-minute ETTF difference for a nominal 30-minute flight at forecast look-aheads of 
2–6 hours. Variability of the forecast-based ETTFs was quite high, with standard deviations 
generally ranging from 12–18 minutes for a nominal 30-minute flight. However, EWR had 
notably much higher standard deviations, especially at the 6-hour look-ahead time. 

6. Regionally, EWR exhibited the largest variability in wind forecast accuracy across the various 
result categories, sometimes dramatically so. It is hypothesized that this is at least in part due to 
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the climatologically dynamic wind environment of this region, but more investigation is needed 
to determine if there are other contributing causes, including occasional bad aircraft reports. 

3.7 RECOMMENDED NEXT STEPS 

The following are some recommended next steps for further analysis and understanding of wind 
forecast model performance: 

1. Extend the MDCRS truth and trajectory-based wind performance analysis to the GFS model, 
which is a commonly used operational model by ATC and stakeholders. 

2. Quantify frequencies of occurrence, durations, and wind environment characteristics (e.g., 
vertical wind shear) associated with large wind forecast errors. Special attention should be 
given to the EWR region, since relatively large error standard deviations were noted for this 
region in the Phase 4 results. The New York region is also a high-traffic airport region where 
operational impacts of poor wind forecasts on 4D-TBO procedures would be potentially 
significant. 

3. Explore the ability to predict ahead of time expected wind forecast model performance, e.g., 
over the next 24 hours, how good are the various forecast models expected to perform? 
Research is needed to determine if problematic forecast wind environments can be 
automatically identified (e.g., from combination of real-time wind environment analysis and 
monitoring of recent model forecast performance) and used to provide decision support for the 
feasibility of successfully executing a given wind information-dependent procedure. 

4. Perform comparisons of wind model forecasts against high-update Mode-S EHS aircraft 
reports. Comparisons against these high-resolution wind observations may yield insight into 
wind changes not captured by the forecast models. 

5. Explore uses and benefits of a real-time MDCRS (or comparable system) aircraft 
meteorological data feed. Lincoln Laboratory could conduct flight trials to support this research 
if appropriate. 



 

 

43 

4. RTCA SPECIAL COMMITTEE ACTIVITIES 

4.1 RTCA SC-206 SUPPORT 

As part of Phase 3 work, Lincoln Laboratory (LL) was initially tasked to provide a limited amount 
of support to RTCA Special Committee 206 (SC-206), “Aeronautical Information Services (AIS) and 
Meteorological Data Link Services,” and other stakeholders interested in the issue of wind information 
quality in air transportation operations. This tasking was greatly expanded under the direction of the 
sponsor and included the appointment of LL as a co-chair of a newly formed subgroup of SC-206 denoted 
as SG-7. The role of SG-7 based on the RTCA Terms of Reference is to “Develop Guidance for the Use 
of Data Linked Current and Forecast Wind Information in Air Traffic Management (ATM).” This 
subgroup must consider the effects of wind information in terms of quality and availability necessary to 
support a number of NextGen programs including Interval Management, 4D-TBO (e.g., required time of 
arrival (RTA)) and wake vortex mitigation operations. 

In addition to the organizational and administrative roles as chair of the sub group, LL was directed 
by sponsorship to concentrate on IM and RTA related research and analyses, as these programs are 
directly related to Weather Technology in the Cockpit (WTIC) research areas.  

One of the principal deliverables from LL to SG-7 was a set of hypotheses to be considered during 
the September 2015 SC-206 plenary session regarding performance questions related to IM and RTA 
operations. These initial hypotheses were considered and honed by SG-7 plenary attendees and members 
whose expertise covered the domains of ATC, airline piloting, aviation meteorology, airline operations, 
avionics, and general IM and RTA research. 

The original high-level hypotheses have been slightly refined since then and have been used to 
develop a test matrix and test plan that, once executed, would provide material data that could be used in 
support of the development of the wind guidance document, which is the ultimate product of SG-7. 

4.2 HYPOTHESES 

The hypotheses were written at a very high level to provide guidance for more detailed questioning. 
As presented, the general confirming or refuting of the hypotheses would provide relevant information for 
inclusion into the wind guidance document. 

Three sets of hypotheses were developed. The first set was developed to specifically address 
questions related to RTA operations during descents. The second set of hypotheses, which by design is 
very similar to the first set, relates to questions regarding Interval Management but only in relation to a 
certain stage of its operation from the time of the IM assignment up to the achieve-by-point. 
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Other hypotheses were also developed to address questions relating to the use of potentially 
dissimilar forecast information, i.e., the use of forecast information by an aircraft that is either from a 
different forecast publication, from a different forecast source, or both. 

The hypotheses are presented in their original form as developed in the noted plenary session. 
Modifications to these hypotheses are expected with additional input from stakeholders and from insights 
drawn from experiments conducted in this phase of the project. 

4.2.1 RTA Related Hypotheses  

Table 3 lists the four hypotheses specific to RTA performance for modern forecast models and 
FMS systems. Recalling that the hypotheses are written at a high level, an explanation of the intent of the 
wording follows. 

TABLE 3 

Hypotheses Formulated to Address SG-7 Questions Pertinent to RTA Operations 

ID Hypothesis 

RTA-1 During NAS-wide operations, using standard publically available wind forecasts, RTA 

performance will be sufficient to meet ±10 seconds for 95% of RTA flights during 

descents to 10,000 ft MSL at Terminal Radar Approach Control (TRACON) boundary. 

RTA-2 During NAS-wide operations, using standard publically available wind forecasts, RTA 

performance will be sufficient to meet ±10 seconds for 95% of RTA flights during 

descents to 2000 ft MSL at final approach fix (FAF). 

RTA-3 During NAS-wide operations, the use of enhanced winds (current aircraft-sensed winds) 

in lieu of publically available wind forecast products prior to top of descent (TOD) will 

improve RTA performance by 1 sec in terms of standard deviation reduction. 

RTA-4 During NAS-wide operations, the use of nine descent winds at set altitudes in 

comparison with four descents winds “optimally” chosen provides no significant 

improvement in meeting RTA requirements during descents. 

 

The notion of National Airspace System (NAS)-wide is intended to suggest that the testing should 
encompass an evaluation across a diverse set of airports. The goal here is to capture the effects of 
different geographical conditions, route constraints, and meteorological conditions and other factors that 
can affect the performance of aircraft performing 4D-TBO procedures. 
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The notion of publically available infers the use of forecast data produced by NOAA/NCEP that are 
readily available to public, private, and governmental organizations without cost. 

Two separate hypotheses were developed to evaluate performance at multiple altitudes because of 
particular interests to SG-7 and other stakeholders. The lower altitude hypothesis was of particular 
interest to participating National Air Traffic Controllers Association (NATCA) representatives and 
encouraged its acceptance. In RTA-1 and RTA-2, the reference of the ±10 seconds performance error for 
95% of all flights is based on the current set of performance criteria for aircraft conducting an RTA 
operation in a descent [1],[6]. RTA-1 refers to operations down to altitudes of 10,000 ft and akin to track 
altitudes found near common TRACON merge points. The intent is to analyze flights that descend to 
regions of space near the TRACON boundary.  

In RTA-2, the specifying of a very low altitude or down to the final approach fix is a new potential 
application for RTA operations. The conditions of this hypothesis have already been modified by SG-7 
(changed to ~4000 ft at the initial approach fix) and are likely to change again.  

Hypothesis RTA-3 presents the idea of “enhanced winds.” This is an often discussed concept of 
utilizing locally sensed winds based on samples reported from other aircraft in the terminal area as a 
substitute or augmentation of forecast information. The exact definition and use case has yet to be 
defined, but there is an expectation of improved RTA performance if using such data. 

The hypothesis RTA-4 was developed to address the questions regarding the necessity to enhance 
typical FMS system capabilities to meet RTA performance goals. It is expected that increasing the 
number of descent forecast level in the FMS would provide improved performance, but the application of 
additional capabilities will likely be subject to the appropriate use of those capabilities. Evaluation of 
different forecast sample techniques is expected as part of this consideration. 

4.2.2 Dissimilar Forecast Data Hypothesis 

It is not likely that all aircraft will have the same forecast information programmed in their avionics 
at a given time. The age, the source, and the sampling for forecast data for aircraft on identical routes may 
be different. A question of do all systems need to have the same forecast information has been raised by 
multiple parties on multiple occasions and for logical reasons.  

The general named case of interest is when two aircraft are in-trail (on the same route, traveling in 
the same direction, and with no aircraft between them) and are assigned to arrive at a common fix at 
adjacent times (fixed adjacent times for RTA flights and variable adjacent times for IM flights). Could 
discrepancies in forecast data under these conditions lead to an unacceptable encroachment on separation 
minimums? See Table 4. 
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TABLE 4 

Hypothesis Formulated to Address SG-7 Question Pertinent to Use of Common  
Forecast Data 

ID Hypothesis 

E-1 Two in-trail aircraft conducting RTA operations with adjacent assigned times of arrival but 

with dissimilar wind forecasts will maintain acceptable separation without requiring 

external intervention. 

 

4.2.3 IM-Related Hypotheses 

Table 5 presents the hypotheses developed with SG-7 for IM operations. The terms “NAS-wide” 
and “publically available” should be interpreted as having the same meaning for IM hypotheses as it does 
for RTA hypotheses. The operational point of interest for IM hypotheses, however, is the assigned 
achieve-by-point (ABP). The altitude regions of interest are also the same, but there will likely be no 
change to the low-altitude ABP as IM operations are expected to be conducted in this domain. 

TABLE 5 

Hypotheses Formulated to Address SG-7 Questions Pertinent to Interval  
Management Operations 

ID Hypothesis 

IM-1 During NAS-wide operations, using standard publically available wind forecasts, time 

separation performance requirements of IM operations can be met in descents to an 

achieve-by-point (ABP) to ~10,000 MSL at TRACON boundary in absence of forecast 

data specifically for the track of the traffic to follow (TTF) prior to the ABP. 

IM-2 During NAS-wide operations, using standard publically available wind forecasts, time 

separation performance requirements of IM operations cannot be met in descents to a 

final approach fix (FAF) 2000 above ground level (AGL) in absence of forecast data 

specifically for the track of traffic to follow prior to the ABP. 

IM-3 During NAS-wide operations, using standard publically available wind forecasts, the 

standard deviation of time separations at IM achieve-by-points is reduced by 1 sec by 

incorporating local/near-real-time wind data in the IM clearance in descents to 2000 AGL. 

IM-4 Aircraft on routes that merge at ABP will have a greater standard deviation of time 

separation performance than aircraft on coincident routes in absence of forecast data 

specifically for track of TTF prior to the ABP. 
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The particular questions of interest in IM-1 and IM-2 relate to the availability of forecast 
information for the second participant in the operation, the traffic (aircraft) to follow. 

Akin to RTA-3, IM-3 refers to the use of local or “enhanced” wind information; the definition of 
which is yet to be defined. 

The last hypothesis, IM-4, was created to test the effects of IM aircraft flying significantly different 
routes and its evaluation will likely exemplify the importance of having forecast information for the 
traffic to follow. 

There is no eluding to the level of sophistication of the IM systems to be studied to test these 
hypotheses. The different levels of IM system integration and IM algorithms used will have to be clearly 
and rationally specified as to support the formulating of the most meaningful content required in the SC-
206/SG-7 guidance document. 

Unlike the RTA and E hypotheses, no test matrix was developed to evaluate the IM hypotheses 
stated in this section. The development was not deemed necessary as SG-7 was unable to identify an 
assignee that was in a position to evaluate the hypotheses with new research. The test matrices for RTA 
and dissimilar forecast, however, are presented below. 

4.3 RTA TEST MATRIX 

A test matrix was developed in support of the RTCA Committee to encapsulate the range of test 
conditions necessary to evaluate the above RTA hypotheses. See TABLE 6. These tests examine distinct 
ATC, wind forecast, and equipage scenarios that differ from other tests along at least a single dimension. 
Each scenario can be characterized based on six independent variables: Number of Descent Forecast 
Points, Data Source, Forecast Sampling Method, Forecast Update Condition, Metering Fix Altitude, and 
RTA Assignment Distance. 
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TABLE 6 

SG-7 Test Conditions 

Independent Variable Values Tested
Number of 

Permutations

Equipage
# of Descent Forecast 

Points
4, 9 2

GFS (age appropriate)

HRRR 3 hour
"Enhanced" winds

At planned TOD
Geo-specific

"Optimal"

Metering Fix Altitude 10,000 ft, 2000 ft 2

RTA Assignment 
Distance

300 NM radially from 
airport

1

Total Permutations 36
Number of airports 10
Samples per airport 50

Total Runs 18000

NAS-wide

ATC Scenario

Wind Scenario
Forecast Sampling 

Method
3

Data Source 3

Forecast Update 
Condition

1
At time of RTA 

assignemnt

 

 

A description of the independent variables used is provided below. 

4.3.1 Number of Descent Forecast Points 

Hypothesis RTA-4 examines the effectiveness of using additional forecast points relative to 
improved forecast altitude sample selection. It postulates that selection with four points using better wind 
selection techniques provides comparable or better RTA performance to using nine points selected at 
fixed altitudes. In order to evaluate this hypothesis, it is necessary to run tests with four levels using 
optimal wind selection and nine points at fixed altitudes. There are, however, a number of open questions 
that such a prescribed set of test cases may not answer. Does using nine points provide a statistically 
significant improvement versus four points when optimal wind selection is used in both cases? What level 
of RTA performance can be achieved using four-point fixed altitude selection? Is the type of wind 
forecast product a key driver in meeting RTA performance when using four or nine points? Thus, for the 
sake of completeness, the matrix was constructed to perform all test sets with both four and nine point 
wind forecast interpolation.  
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4.3.2 Data Sources 

While Section 3 discussed the improvement in forecast accuracy that could be attained by using 
more recent forecasts, such improvement does not speak to the benefit of using better forecast products on 
RTA adherence. In order to evaluate this question, the test matrix was constructed to incorporate test 
scenarios for GFS forecasts as well as HRRR forecasts with look-ahead horizons of varying length. In 
addition, to emulate the effect of “enhanced” winds, wind samples obtained from MDCRS winds could be 
used as a proxy. By measuring performance when such data is used, we could then evaluate RTA 
performance of enhanced winds relative to a HRRR or GFS product. 

4.3.3 Forecast Sampling Methods 

Three methods of descent forecast sampling for RTA operations were introduced above: at planned 
TOD, geo-specific, and “optimal” selection. The test matrix incorporates each of these methods with 
varying data sources. Although none of the four hypotheses listed in Table 3 speak directly to the impact 
of one sampling method over another, hypothesis RTA-4 examines the impact of more wind samples vs. 
improved forecast sampling. To address this hypothesis, the test matrix was configured to evaluate both 
“optimal” and geo-specific wind sampling at fixed altitudes. To replicate the procedure of some airlines, 
an additional test configuration was added to allow for sampling points at fixed altitudes under the top of 
descent (TOD) location.  

4.3.4 Forecast Update Conditions 

There are a number of potential configurations that could be used to model impact of forecast 
updates including prior to take-off, periodically, at TOD or at a predefined radial distance. In order to 
limit the dimensionality of the test matrix, the forecast update location was specified to occur at a distance 
of 60 NM from the location of RTA assignment.  

4.3.5 Metering Fix Altitudes 

Hypotheses RTA-1 and RTA-2 both directly address the ability of FMS equipped aircraft to adhere 
to their controlled time of arrival (CTA) assignments down to specified altitudes. To investigate each 
statement, the metering fix altitudes in the test matrix were set to altitudes near 10,000 ft MSL and 2000 ft 
AGL. Each STAR under test was examined in order to identify appropriate waypoints to mid-altitude and 
low-altitude metering fixes nearest to 10,000 and 2000 ft, respectively.  

4.3.6 RTA Assignment Distance 

Based on the recommendations of NATCA representatives, a radial RTA assignment distance of 
300 NM away from the destination airport was used for all test cases.  
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4.3.7 Number of Trials 

To complete the test matrix, 10 major U.S. airports of interest will be identified for study. These 
airports will be selected for geographical diversity and potential for providing an ample number of test 
cases and interesting route configurations. Since the weather conditions will also vary on a daily, if not 
hourly, basis, it is important to select a sufficient number of samples to draw statistically meaningful 
conclusions. The real-time nature of the planned simulations imposes an upper bound on the number of 
simulations that would be feasible. Considering both these factors, a decision to use a sample size of 50 
flights per airport was chosen. 

4.4 DISSIMILAR FORECAST TEST MATRIX 

While the above test matrix examines RTA performance under a number of scenarios to address the 
RTA-related hypotheses, it cannot be used to evaluate hypothesis E-1 regarding aircraft separation 
between two in-trail aircraft. As such, an additional test matrix was created to address this issue. Given 
the number potential confounding variable associated with using two different forecast products or a 
common product with different look-ahead horizons, we chose to use a controlled difference in wind 
forecast error instead. The matrix outlines a concise set of test conditions where the number of forecast 
levels, the forecast data source, the sampling method, and the update condition are all held constant while 
the wind forecast error and distance traveled under an RTA operation at cruise are manipulated. The in-
trail aircraft separation test matrix is shown in Table 7.  
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TABLE 7 

In-Trail Test Matrix 

Independent 
Variable

Values Tested
Number of 

Permutations

Equipage
# of Wind Forecast 

Points
4 1

Forecast Data Source  HRRR 2 1

Forecast Sampling 
Method

Geo-specific 1

Difference in 
Forecast Values

0 kt, 10 kt, 20 kt,       
30 kt, 40 kt

5

Metering Fix 
Location

TRACON Boundary 1

RTA Assignment 
Distance

150 NM, 250 NM,    
350 NM

3

Total Permutations 15
Number of airports 10
Samples per airport 5

Total Runs 750

Forecast Update 
Condition

At time of RTA 
assignment

1

ATC Scenario

Wind Scenario

 

 

4.4.1 Difference in Forecast Values 

Runs will be repeated using the same forecasts, but the direction and magnitude at selected descent 
forecast levels is modified to control different along-track head wind forecast errors. The added errors 
will exceed at least three standard deviations in forecast errors as identified earlier in this work. 

4.4.2 RTA Assignment Distance 

To measure the effect of the integrated errors, the starting location of the procedure is placed at 
distances 100 NM apart. This variable is modified with the expectation of seeing increased encroachment 
with greater assignment lengths. 

The elements of Section 4 were developed as the outcome of the support provided to RTCA SC-
206/SG-7. The hypotheses and test matrices were created to define areas of research to be conducted by 
parties that participate in SC-206/SG-7 activities. It was understood by SG-7 that not all test conditions or 
proof of all hypotheses would be evaluated by one organization. Lincoln Laboratory was requested to 
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evaluate questions related to RTA performance as motivated by the SG-7 test matrices, results of which 
are discussed in the next section. Investigations of the hypotheses related to the IM and in-trail operations 
were left unassigned by SG-7 as there was no party available that was both willing and having the 
capacity of resources at that time to perform the required research. There is still strong interest by SG-7 to 
have the complete suite of research conducted in the future. 
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5. RTA PERFORMANCE AS A FUNCTION OF FMS CAPABILITY 

5.1 OVERVIEW 

In consideration of the research goals established in supporting RTCA as directed by the sponsor 
and to address the particular question covered under Task 3 of the program, an analysis was conducted to 
evaluate the performance impact of an FMS that can utilize nine levels of descent forecasts as opposed to 
one that can only utilize four levels of descent forecasts. The analysis was motivated by the contents of 
the test matrix developed with SC-206/SG-7 described in the previous section. 

As described in Section 2.2.2 Enhancements to FMS Capabilities, the modified FMS provided the 
capability of programming up to nine descent forecast levels (DFLs), which was required in order to 
conduct this analysis. 

5.2 HYPOTHESES 

The tests described herein are designed to specifically analyze the impacts to RTA performance of 
nine versus four DFLs using the hypotheses in Table 8 below. 

TABLE 8 

Hypotheses Composed to Evaluate Number Effect of Available Descent Winds 

ID Hypothesis 

DL-1 The RTA time error bias is at least 1 second closer to 0 for flights that use nine optimally 

selected descent winds as compared to flights that use four optimally selected descent 

winds 

DL-2 The standard deviation of RTA time error is at least 1 second smaller for flights that use 

nine optimally selected descent winds as compared to flights that use four optimally 

selected descent winds 

DL-3 The RTA time error bias is closer to 0 for flights using forecast winds selected to 

minimize the estimated headwind error versus winds selected to minimize estimated 

magnitude error 

DL-4 More than 90% of individual flights that use nine optimally selected descent winds as 

compared to the same flight that uses four optimally selected descent winds have a 

smaller absolute RTA time error 
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5.3 TEST MATRIX 

The test matrix developed for this analysis is very similar to the one developed for SC-206/SG-7 
activities described in the previous section. It is principally a subset of that matrix but is specific to 
address the hypotheses presented in this section and with a slightly modified set of operating conditions. 
See Table 9. It also considers the baseline performance cases where either no forecast information data or 
perfect forecast information (truth data) is provided. The design, creation, and analyses from these tests 
will lead to greater refinement of those tests required for SC-206/SG-7 work. 

TABLE 9 

FMS Capability Evaluation Test Matrix 

Independent Variable Values Tested
Number of 

Permutations

Equipage
# of Descent Forecast 

Points
0, 4, 9 3

Optimized for HW
Optimized for Magn

Use truth data 

Metering Fix Altitude 10–15 kft 1

RTA Assignment 
Distance

280 NM from dest 1

Total Permutations 9
Number of Airports 10
Samples per Airport 50

Total Flights 4500

3

Forecast
Data Source

1

Forecast Update 
Condition

1340 NM from dest

HRRR 3 hour

NAS-wide

ATC Scenario

Wind Scenario Forecast Sampling 
Method

 

 

5.4 TEST DESIGN 

Enhancements to the existing simulation framework were performed as described in Section 2.2 in 
order to support the experiments outlined in the test matrix. As stated earlier, all scenarios experience 
atmospheric conditions as measured during flight. 
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After fusing, correlating, and evaluating recorded flight information as described in Section 2.2.3, 
the next step is scenario creation. This process exercises a number of steps with the ultimate goal of 
producing all the required scenario configuration files used to conduct each individual experiment. A flow 
diagram of the process is shown in Figure 25 and a description of each component follows. 

 

 

Figure 25. Scenario creation flow diagram. 
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5.4.1 Scenario Definition 

The scenario definition is a collection of parameters required for each experiment. Elements of 
these common parameters and those that are specific to an experiment are used to identify candidate 
ARAM flights as well as establish characteristics of agents used in the experiment. Some common 
experiment parameters include the specific aircraft type being modeled, its current weight, FMS type, 
specifics of the programmed route, what forecast information has been uploaded to the FMS and the 
source of the forecast, etc. An example of the scenario definition profile is provided in Table 10. 

5.4.2 Flight Qualification 

Not all the ARAM flights stored in MAFID can be used in these experiments. Recall that an ARAM 
flight is a contiguous segment of a particular flight that both remained on its assigned route and had a 
complete set of MDCRS data sampled over the same period. There may be more than one ARAM flight 
(or flight segment) created from a given flight if the aircraft temporarily deviated from its route or there 
were periods of missing MDRCS data. 

The parameters in the test matrix such as RTA assignment distance and others are used to filter the 
available ARAM flights such that their characteristics satisfy the minimum set of conditions needed for 
an experiment. For example, if the starting location of the simulated aircraft is on the assigned route 340 
NM radially from the destination, an ARAM candidate flight must have the start of its data set begin 
earlier in the route than this point. That same candidate flight must also have is ending point occur after 
the RTA fix location on that route (plus some additional buffer distance). The particular RTA fix used the 
filtering process and applied in the experiment is route dependent. The fix is selected by examining each 
STAR and identifying the fix where the expected crossing altitude was between 10,000 and 15,000 ft. 
Additional qualifiers such as continuous cruise altitudes (±1000 ft) prior to the estimated TOD point from 
the track data must also be met. 

5.4.3 Trajectory Estimation 

The modelled RTA operation used in these simulations presumed that at some distance prior to 
arriving at an expected sequence and scheduling freeze horizon, the flight crew would have requested a 
forecast update from their respective airline operations center (AOC). As part of this request, the onboard 
automation would have downlinked to the AOC the current cruise altitude along with an estimate on the 
remaining trajectory. It was presumed that the AOC would likely use this estimated trajectory to perform 
its forecast selection. 

Not knowing what the theoretical estimated trajectory downlinked to the AOC is or if a particular 
AOC would use some other means to estimate the remaining trajectory, we used a subdivided set of track 
reports from the TFMS data as the estimate for the remaining trajectory. 
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5.4.4 Forecast Selection 

One of the basic assumptions employed in these experiments was that the modelled AOC did not 
have a forecast selection process that considered if the aircraft requesting a forecast update was 
participating in an RTA operation. That is, the simulated AOC, when selecting the forecast to provide to 
its aircraft, did not limit the range of descent forecast altitude levels to consider, which could be done if 
one considered the estimated RTA fix crossing altitude. Thus, the simulated forecast selection process 
considered the full range of altitudes from cruise to destination altitude when analyzing which forecast 
data to deliver to the aircraft. We believe this is a reasonable assumption and consistent with current AOC 
operations.  

Consistent with the test matrix, we provided either no forecast data or forecast data for both cruise 
and descent. Under all cases, if forecast data was programmed into the FMS, it included the expected 
wind magnitude, wind direction, and ambient air temperature for each entry. 

Forecast Age 

The notion of forecast age is a concern when using model data when sampling a forecast. We define 
the age of the forecast as the difference in wall clock time from when a forecast is requested minus the 
named model cycle run time for the forecast being used. In this work, which uses the HRRR model, 
forecasts are not available from the NOAA distribution site until approximately 1 hour from the named 
cycle run time due to generation and delivery delays. We add transport and processing delay of 2 hours to 
model AOC operations, which means the youngest age of a forecast that can be referenced is 3 hours old. 
The oldest a forecast could be is 4 hours since HRRR forecast sets are generated every hour.  

For requests made to the weather forecast data service, the simulated wall clock time of the request 
minus three hours is passed as a parameter that limits the latest model cycle runtime forecast set that 
should be used as the source when providing the forecast data. 

Cruise Forecasts 

The process for selecting forecast data for cruise waypoints is straightforward. When HRRR 
forecast data is the source, the estimated trajectory is used to determine where the aircraft is expected to 
cross its cruise waypoints in time and space, and a request for conditions at these locations are made to 
the weather forecast data service. When MDCRS as truth is used as the forecast source, the conditions at 
each of the cruise waypoints are interpolated from the MDCRS data. Forecast for cruise waypoints are 
only provided at the cruise altitude and for waypoints along the route from the starting location up to two 
waypoints beyond the estimated TOD location.  

Descent Forecasts 

There are a number of techniques used in the airline industry today to decide what descent forecast 
information should be provided to an aircraft’s FMS. Three commonly used approaches are to select 
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forecast values geographically situated over the estimated TOD, geographically situated over the 
destination, or geographically along the descent profile. These approaches typically make their selections 
at fixed, company-specific altitudes, regardless of the location selection technique. 

We decided that in order to conduct a fair comparison on the efficacy of the use of four versus nine 
DFLs, it would be prudent to perform the forecast selections along the predicted nominal descent 
trajectories and not over fixed geographical points. Additionally, because the atmospheric conditions most 
relevant to correctly predicting a descent trajectory do not occur at the same altitudes with each flight, we 
decided to permit the DFL altitudes, and thus locations, to vary on each flight chosen in an optimal 
manner described below. 

If providing descent forecasts, the selection process used the same general technique regardless of 
the number of descent forecasts to use. That is, we employed an optimization approach using a 
decimation (or “greedy”) algorithm, which minimized some cost function, which resulted in a set of 
forecasts chosen to provide to the FMS. In addition to testing RTA performance with four and nine DFLs, 
we also analyzed RTA performance on each of these cases using two different cost function profiles in 
the optimization process. One cost function tried to optimize for the most accurate wind magnitude profile 
expected along the descent. The second optimized for the most accurate representation of the along-track 
headwinds expected along the descent. 

When using HRRR as the source for descent forecasts, the sampled forecasts are collected in the 
same manner as used for cruise waypoints. However, when using MDCRS data as the source, the closest 
meteorological samples in terms of altitude are used as the forecast samples. 

Optimization Process 

The decimation (“greedy”) optimization algorithm is a simple and fast approach to find solutions to 
large set problems and is used in many disciplines. For example, it is similar to that used by Ahmed et al. 
in their descent forecast selection [11]. This algorithm, as with many optimization techniques, does not 
guarantee it will identify a globally optimal solution for all problem types, and this is consistently true for 
the cases studied here. However, analysis of its application in this work has shown that it does appear to 
find a near global optimal solution and is quite suitable for this effort. 

As applied to this work, a set of points define a desired profile to replicate is created from sampling 
time-associated wind forecast data at 1000 foot intervals along a predicted descent trajectory. The highest 
altitude in the set was the cruise altitude for a given flight and does not vary during the optimization. The 
lowest altitude was the first altitude rounded to 1000 feet that exists above the destination airport.  

The cost function was the sum of the absolute error between the desired profile and the 
interpolation at the desired profile altitudes using the reduced-point set. The reduced-point set began as 
the desired profile set but was reduced by one point in each major iteration. The point selected for 
removal was that point whose removal amongst all the remaining points produced the smallest numerical 
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cost if removed. These iterations continued until the number of points remaining equaled the desired 
number of DFLs (four or nine in our case). 

The optimization progression is demonstrated in Figure 26. In this example, the optimization was 
attempting to fit to the calculated headwinds that were estimated on that descent. These winds range from 
an estimated tailwind of 60 kts to a peak headwind of around 20 kts. Starting with the full complement of 
available DFLs selectable for that particular flight, we can see the effect on the fit as the points are 
removed until reduced to the desired number of DFLs. The point at the cruise altitude is never removed as 
it is always available as part of the cruise forecast. Note that, in this particular example, the lowest 
altitude retained in the reductions to both nine and four DFLs happens to be the lowest altitude from the 
full set. This is not always the case. 

A B

C D

 
Figure 26. Progressive example of forecast selection decimation process for a flight into KPHX optimizing for the 
best fit to the headwinds expected along the descent trajectory. Plot (A) shows the desired profile (blue) and the 37 
starting altitudes, plot (B) the fitted profile made up of 20 points, plot (C) the same profile reduced to nine points, 
and plot (D) the fitted profile made up of four descent forecasts. 
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Using the same flight as presented in Figure 26, we can view the resulting profile when attempting 
to fit the DFLs to the magnitude of the wind forecasted at each altitude. The plots in Figure 27 
demonstrate the fits using nine DFLs (A) and four DFLs (B). The forecasted peak magnitude for that 
flight occurred just below cruise altitude with a coincidentally relatively linear change in wind magnitude 
throughout the descent. 

It is interesting to note that the three highest DFLs chosen in the two 4 DFL cases presented are 
significantly different, depending on which cost function was utilized. From the solution presented in 
Figure 26(D), we see that the forecasted atmosphere conditions were selected at FL220, 12,000 ft, 10,000 
ft, and 2000 ft at their respected geographic locations, but for the solution shown in Figure 27(B), values 
at FL320, FL290, FL220, and 2000 ft were selected. 

A B

 
Figure 27. Interpolated fit to forecasted “truth” after solving for nine (A) and four (B) DFLs for the same flight 
presented in Figure 26 but with wind magnitude used in the cost function instead of headwind magnitude. 

Each remaining trajectory was partitioned into a cruise phase and a descent phase of flight. The 
MDCRS wind and temperature data associated with each phase was collected to be used later as a basis of 
truth for our simulation. 

5.4.5 Scenario Creation 

The MDCRS track data was truncated to a point just beyond the initial starting location of the 
simulation. To ensure a complete set of reference data over the airspace of interest, MDCRS cruise 
weather samples from the descent portion of the track extending two waypoints beyond the estimated 
TOD were added on the cruise reference weather data. This ensured that reference weather data was 
present even if the aircraft descended later than what was observed in the actual track. Once the simulated 
aircraft began to descend, the weather data sampled during the MDCRS aircraft descent was applied. The 
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metering fixes were identified by examining each STAR and selecting a fix where the expected crossing 
altitude was between 10,000 and 15,000 ft. These points were hand-selected and mapped to a database 
table that stored the selection of every potential approach. The metering fix of interest was retrieved from 
the database based on the approach procedure under test. The RTA assignment point was set to 
correspond with a radial distance of 280 NM from the destination airport. The initial position of the flight 
was defined by identifying the point along the route that was 60 NM prior to the location of RTA 
assignment at a radial distance of 340 NM from the destination airport. 

Once these points were defined, a complete scenario profile was written into an XML file that 
defines a portion of the scenario for our agent-based real-time simulation. This file contains the identified 
wind samples from the cruise and descent phases of flight, reference data for the cruise and descent 
phases of flight generated from the MDCRS records, the route to be flown by the aircraft, and the to be 
assigned RTA fix location. There are a number of additional parameters that define the specifics of the 
simulation scenario, including the type of aircraft, its weight, the amount of fuel initially on board, the 
initial speed of the aircraft, and the cost index assumed by the FMS. An additional file is created to 
provide supplementary aircraft, wind, and trajectory information for each scenario. The details of this 
scenario are provided in Section 5.6.  

5.5 TEST DESCRIPTION 

A set of test scenarios was developed to provide an assessment of the research objectives. Each 
scenario can be characterized based on six parameters, including the number of descent forecast levels, 
data source, forecast sampling method, forecast update condition, metering fix altitude, and RTA 
assignment distance. The number of wind forecast levels used to calculate the wind interpolation for the 
descent phase of flight was limited to either four or nine points. In order to assess the potential 
improvement associated with using standard FMS wind profile adjustments, we also developed a set of 
test cases to evaluate RTA performance under zero wind conditions.  

The HRRR wind forecast models were interpolated both spatially and temporally to supply a wind 
forecast at the appropriate four-dimensional locations. With the interpolation in place, it was necessary to 
identify the locations where the winds will be sampled. This location was defined by the trajectory of the 
TFMS track. The wind selection algorithm described in the previous section was then used to collect the 
required number of samples. Cruise winds were updated at every waypoint along the en route portion of 
the trajectory at the expected crossing times of each fix. An RTA assignment distance of 280 NM away 
from the destination airport was chosen based on the recommendations of NATCA representatives. The 
descent wind forecast was also issued at the time of RTA assignment. A final approach point was chosen 
for all possible approach procedures to select a metering fix at or near 10,000 ft MSL. To complete our 
tests, we identified 13 major U.S. airports of interest. In all cases, the number of tests that could be 
performed at each airport was limited by the number of qualified MDCRS tracks available from our data 
sources for each airport.  
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TABLE 10 

Scenario Definition Parameters 

Simulation 
Component

Parameter Values Tested

Aircraft Type B757-200

Gross Weight 17,0000 lbs

Zero Fuel Weight 15,0000 lbs
Cost Index 50

RTA Tolerance 6 seconds
>3 hours since publication

truth data

Update Condition
60 NM prior to RTA
assignment location

RTA Assignment Distance
280 NM radially from

destination
Acceptable RTA Fix Altitudes 10–15 Kft MSL

Initial Aircraft Starting Point
60 NM prior to RTA
assignment location

Aircraft

Forecast

Trajectory

Age

 

 

Two scenario files were used to define the additional aircraft, wind, and trajectory information 
needed to perform the simulation. An XML file was used to define the trajectory, forecast, and wind truth 
data needed for simulation. An additional file was used to provide a set of reference parameters necessary 
to define the characteristics of the aircraft and systems under test. A summary of the parameters used is 
shown in Table 10. An RTA assignment time selection criterion relative to the RTA window estimated by 
the FMS was defined in order to perform the simulation. This criterion was defined to be 25% of the 
difference between the latest and earliest possible arrival times plus the earliest possible arrival time from 
the FMS RTA window estimate. 

While the TFMS data source provides a rich pool of potential flights, many of them were unsuitable 
for testing. Thus, the data pool was associated and filtered to ensure that all simulated routes met our test 
design standards described in Section 2. An initial association process matching TFMS, ASDE-X, and 
MDCRS records was performed. Flights with a common set of records were processed through the route 
analyzer process described earlier. A set of scenario parameters was used to select the qualified routes 
that were applicable to the test case of interest. These parameters included flights between February 1, 
2016 and March 31, 2016 whose tracks originated beyond the 280 NM radial boundary of the airport of 
interest. The parametric conditions also specified that the tracks extended 10 NM beyond the final RTA 
meter fix. This distance of 280 NM was chosen instead of 300 NM to reduce the runtime of the 
simulation while still providing conditions that were similar enough to NATCA representatives’ 
recommendations to provide conclusions of interest. 
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 Additional filtering was performed on each flight to disqualify those whose cruise segment varied 
in altitude by more than ±1000 ft. In some cases, an RTA metering fix could not be identified due to 
insufficient information from the route. When this occurred, the flights were also disqualified from the 
test pool. As a result of the process, the number of flights available for testing shrunk considerably. The 
number of routes available at each stage of the process for each document is documented in Table 11. 

TABLE 11 

Filtering Counts Leading to Final Set of Simulated Flights 

Airport 
TFMS 
Flights 

Associated 
Flights w/ 
MDCRS 

Route 
Analyzed 
Records 

Criteria 
Qualifying 

Flights 

Flights 
Simulated 

KMEM 17372 4489 3771 147 0 

KMDW 17773 2478 2243 77 1 

KDEN 48213 2248 1907 99 68 

KPHX 38528 1744 1450 73 27 

KATL 77033 3541 1248 56 17 

KBOS 29571 679 490 35 24 

KEWR 35610 529 485 36 0 

KORD 73012 346 178 1 0 

KIAH 41138 229 128 0 0 

KCLT 47040 467 116 1 0 

KDFW 60691 221 105 0 0 

KJFK 38965 912 65 0 0 

KSDF 12058 72 46 0 0 

Total 537004 17955 12232 525 137 

 

5.6 TEST RESULTS AND ANALYSIS 

Samples of results for simulated flights into KDEN are shown in Figure 28. In these particular 
samples, no forecast information was provided to the FMS. From the figure (top left pane), we see a large 
variety of headwind conditions experienced amongst the flights. This is expected as there is an ample 
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distribution of eastbound and westbound arriving flights. The assigned cruise levels for these flights 
ranged from FL280 to FL410.  

 

 

Figure 28. Simulation of flights into KDEN without forecast information provided. 

Given that sensed winds and temperature are the only conditions known about the atmosphere 
except for the barometric correction for the destination airport, it is not surprising to see a commonality 
amongst the vertical descent profiles in the top middle panel given the cost index among all flights was 
assumed to be the same. As seen in the histogram at the bottom right of the figure, we see a wide 
distribution in the arrival time errors, which is expected considering the lack of forecast information. 

The results of flights flying under the same atmospheric conditions but with cruise forecasts and 
four descent forecast levels (DFL) data provided are presented in Figure 29. The DFLs were selected 
based on an optimized fit to wind magnitude. In contrast to the previous figure, a range of top-of-descent 
locations is seen as expected given the varied descent wind conditions. Also clearly evident are visibly 
reduced variances in the target Mach and indicated air speed (IAS) targets provided by the FMS. This is 
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an indicator of correct prediction and managing of future conditions. As indicated in the histogram in the 
bottom right panel, all but three of the 68 simulated flights arrived at their RTA fix within 10 seconds of 
their assigned RTA time, i.e., far superior performance to the previous case. 

 

 

Figure 29. Simulation of flights into KDEN with cruise and four levels of descent winds. 

Similar behaviors and performance can be seen in the plots of Figure 30, which demonstrates 
results for the same flights but with nine levels of descent forecast data provided to the FMS. 
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Figure 30. Simulation of flights into KDEN with cruise and nine levels of descent winds. 

5.6.1 Adherence to Assigned Times of Arrival 

As described in the test description, the principal design parameters that were modified were the 
number of descent forecast levels, 9, 4, or 0 (0 indicates neither cruise nor descent forecasts), and the 
wind selection optimization technique fit to headwind or magnitude. 

Analysis for the aggregated sets across all destinations is provided below. Beginning with the 
baseline no forecast case, we present its histogram of RTA arrival time errors in Figure 31. The shaded 
areas around 0 seconds in this histogram (as in all of the histograms below) indicate the ±10 second 
arrival error region as a reference. We use this reference as it is part of the desired performance criteria 
proposed for RTA descent operations. 

Without forecast information, we observe that approximately 25% percent of the flights reproduced 
arrived within the ±10 second window; 95% of these flight arrived between –101 seconds early and 112 
seconds late of their assigned RTA times. 



 

 

67 

 
Figure 31. Histogram of RTA errors for 137 flights across all analysis airports when no forecast information is 
provided. The whisker bars show 2std around the mean. 

Results for time arrival errors for four and nine DFL conditions when the forecast selection 
optimization for minimizing headwind error is chosen are presented in Figure 32. It also shows the RTA 
errors of the best possible performance using this selection technique by using nine DFLs and utilizing 
truth data in place of forecast. 

As seen in previous simulations reported in earlier phases of this work, and as reported in the 2011 
Seattle 4D-TBO flight trials [12], there is clearly a bias in the aggregate for the flights to arrive late 
relative to the assigned RTA time. In the flight trial data, the bias was approximately 9 seconds. The 
system under test in those trials was the B737 aircraft using General Electric (GE) FMSs with a coarser 
and less accurate forecasting model based on the Rapid Update Cycle (RUC) model, which is a 
predecessor to RAP and HRRR. In our experimental results, the bias for this four DFL case is 3.7 seconds 

C
ou

nt
s 

(b
in

 s
iz

e=
2)



 

 

68 

and for the nine DFL case, it is 3.2 seconds. Table 12 lists the basic statistics of the aggregated set of 
simulated flights for each of the experimental cases. 

 

Figure 32. Histogram of RTA errors with the DFL selection technique set to Optimize to Headwind Magnitude 
profile. Whisker bars show 2std around the mean. (Blue) Selected from 3-hour forecast using four DFLs. (Yellow) 
Selected from 3-hour forecast using nine DFLs. (Purple) Selected from truth data using nine DFLs. (Green) No 
forecast information provided. 

Figure 33 shows the histograms for the four and nine DFL cases where the forecast selection 
optimization to minimize wind magnitude error was chosen. Surprisingly, this choice of optimization 
produces biases that were smaller than those produced from the headwind optimized cases. The biases 
under these conditions were 3.1 seconds for both the four and nine DFL cases using forecast data. Only 
slight improvement in performance was observed in the nine DFL truth data case compared to the nine 
DFL forecast case. 
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As seen in Table 12, when comparing optimization to profile headwind versus profile wind 
magnitude, there is a minor reduction in the standard deviation for the four DFL cases (from 4.2 seconds 
to 4.0 seconds), but there is a slight negative effect on the standard deviation for the nine DFL case, 
increasing it from 3.6 to 3.7 seconds. 

 

Figure 33. Histogram of RTA errors with the DFL selection technique set to Optimize to Wind Magnitude profile. 
Whisker bars show 2std around the mean. (Blue) Selected from 3-hour forecast using four DFLs. (Yellow) Selected 
from 3-hour forecast using nine DFLs. (Purple) Selected from truth data using nine DFLs. (Green) No forecast 
information provided. 
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TABLE 12 

Overall RTA Error Statistics as Function of Forecast Information Source, Selection 
Technique, and Number of DFLs 

Selection Technique
Optimized Headwind 5.7 (53.4) 3.7 (4.2) 3.2 (3.6) 2.3 (2.9)
Optimized Magnitude 5.7 (53.4) 3.1 (4.0) 3.1 (3.7) 2.8 (3.4)

4 9 9

RTA Error Mean (std) [seconds]
No 3-Hour HRRR Forecast MDCRS as Forecast

Forecast # Descent Forecast Levels # Descent Forecast Levels

 

Under the given set of conditions tested, both the biases and standard deviations were reduced 
under all test conditions when using nine DFLs instead of four DFLs. However, these reductions were not 
significant, and we can establish that none of the first three first hypotheses (DL-1, DL-2, and DL-3) were 
substantiated. 

5.6.2 Flight-by-Flight Performance Comparison 

To perform a fair evaluation of the results to validate hypothesis DL-4, we inspect the results in two 
ways. Recall that in DL-4, the expectation is that on any given flight the use of nine DFLs should produce 
a smaller RTA time error (RTA TE) compared to four DFLs most of the time (i.e., >90% of the time).  

The first way we shall look at this is with a generalized comparison of a count of the number of 
cases where |RTA TE|9 DFL < |RTA TE|4 DFL versus |RTA TE|9 DFL ≥ |RTA TE|4 DFL. Table 13 presents those 
results for the two forecast selection techniques used. We see from that table that just over half the time 
the use of nine DFLs provides an RTA TE closer to zero. 

TABLE 13 

Aggregated Performance Comparison, on an Individual Flight Basis, Comparing the 
Number of Occasions That Nine DFLs Outperformed Four DFLs 

Selection 

Technique 

Nine Better Than 

Four (Counts) 

Four Better Than 

Nine (Counts) 

Mean of |TE| 

Improvements 

Mean of |TE| 

Degradations 

Optimized 
Headwind 

74 (54%) 63 (46%) 1.8 s 1.1 s 

Optimized 
Magnitude 

73 (53%) 64 (47%) 1.4 s 1.1 s 

 
One should then question how much did the use of nine DFLs degrade the performance for the 

other half of the flights? Were there occasions where the performance degraded significantly? It is found 
that, for the first question, the mean degradation is only 1.1 seconds regardless of which selection criteria 
was employed.  



 

 

71 

When the use of nine DFLs did improve the performance, it did so with an average of 1.4 seconds 
for the optimized wind magnitude approach and by 1.8 seconds for the headwind approach. The larger 1.8 
second value could be explained by the fact that the standard deviation in RTA TE for this approach was 
larger than the other, and thus there is a greater change to create improvements. 

Figure 34 shows the distribution of the improvements on a per flight basis. An improvement is a 
reduction of the |RTA TE|. This is formulated as ܶܧௗ௜௙௙ = ܣܴܶ| ଽ|ܧܶ ஽ி௅ − ܣܴܶ| ସ|ܧܶ ஽ி௅ (4)

The more towards negative infinity the value, the greater the improvement. A positive value is a 
degradation. What would be desirable is to see that all the histogram bars are to the left of zero, meaning 
there is an improvement on each run. One of the things that can be seen from this figure is that even if 
there is degradation in performance, there does not appear to be any cases of significant degradation, 
though we do see some cases with as much as an additional 6 seconds of RTA TE. 

 

Figure 34. Histogram of RTA time error improvements using nine DFL instead of four DFL. It’s desirable that all 
the counts are left of zero indicating that there is an improvement with each execution. 
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The second way to look at these data is driven by insight of what is the control strategy of this 
particular FMS. The FMS is programmed with an RTA TE tolerance with the allowable minimum being 6 
seconds. This is also the value employed in these experiments. The FMS will implement speed changes if 
its estimated RTA TE is outside its active tolerance range. Internally, the actual controlled tolerance 
inside the FMS varies throughout the course of a flight, starting out much larger than the programmed 
tolerance, but by the time the aircraft approaches the RTA fix, it is trying to control to the specified 
tolerance. In fact, we know from the manufacturer that it is actually controlling to one half the set 
tolerance. 

The utilization of a tolerance means that there is a deadband where additional control is not applied, 
and as far as the control system is concerned, any RTA TE within the deadband equates to no error. As 
such, to evaluate the question as to whether a particular forecast selection strategy or the choice of the 
number of descent forecast improve the system’s performance, you must treat all RTA TEs within the 
actual controlled tolerance as zero error. 

We reevaluate the individual flight performance as done earlier, but this time treating a change in 
RTA TE equal to or within the actual tolerance (±3 seconds) as zero error. We see in Table 14 that 
roughly 40% of the time there was no change in performance regardless of which forecast selection 
technique was used nor whether four or nine DFLs were used. Surprisingly, only 1/3 of the experiments 
showed improved time errors when nine DFLs were used, which is far less than the expected 90% from 
DL-1. Thus the remaining 1/3 performed better, if only marginally, if only four DFLs were used. A visual 
representation of this is given in Figure 35. 

TABLE 14 

Aggregated Performance Comparison Performed on an Individual Flight Basis, 
Comparing the Number of Occasions That Nine DFL Outperformed Four DFL Accounting 

for the Control Objective Deadband 

Selection 

Technique 

Nine Better 

Than Four 

(Counts) 

No Change 

(Counts) 

Four Better 

Than Nine 

(Counts) 

Mean of |TE| 

Improvements 

Mean of |TE|

Degradations 

Optimized 

Headwind 
49 (36%) 54 (36%) 34 (28%) 2.3 s 1.1 s 

Optimized 

Magnitude 
39 (30%) 57 (42%) 41 (28%) 1.7 s 1.0 s 
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Figure 35. Histogram of RTA time error improvements using nine DFL over four DFL when accounting for control 
objective deadband. It is desirable that all the counts are left of zero, indicating that there is an improvement with 
each execution. 

5.7 CONCLUSIONS 

The systems development and research conducted in this phase of work was performed to evaluate 
questions germane to time-based NextGen applications including 4D-Trajectory Based Operations 
applications and required time of arrival operations.  

The increased fidelity of the simulation components has begun to indicate the potential RTA 
performance future FMS systems could obtain given current weather prediction models. For the system 
tested, we find that there is a reduction in the standard deviation of the RTA time errors when an 
increased number (9 versus 4) of DFLs are used, though the improvement is quite small. For an individual 
flight, we find that using nine DFLs only provides reductions of RTA time errors in just over 50% of the 
simulated flights, and when it does, the improvements are on the order of 1.4 to 1.8 seconds. However, for 
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the remaining simulations, when there is no improvement by using more DFLs, the degradation is only 
1.1 second on average. 

The DFL selection algorithm is a factor on both the RTA time error bias and the magnitude of the 
standard deviation. The effect of different selection algorithms is more pronounced when using only four 
DFLs. The performance was nearly identical amongst the techniques when using nine DFLs, which would 
suggest that the wind profile could be sufficiently modeled with less DFLs. 

With the provisioning of truth data as forecast information, we see a meaningful improvement in 
aggregated RTA performance for both the DFL selection algorithms studied. This is an indicator that 
improvements in forecast quality would be beneficial for future FMS systems, even if using an increased 
number of DFLs. However, there is no guarantee that the provision of more accurate forecast data will 
always provide better RTA performance on an individual flight due to model and control errors present in 
other components of the system. 

It is difficult to make a sweeping conclusion on overall performance due to the limited number of 
samples available at the time of this writing. The current results indicate none of the RTA hypotheses 
could be supported, but this conclusion could change with the incorporation of additional simulations and 
at different airports. 
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6. SUMMARY AND RECOMMENDED NEXT STEPS 

In this effort, a number of important improvements were made to the analysis infrastructure. These 
included doubling the number of FMS instances permitted to run in the WIAF from 20 to 40, 
reorganization of the simulation agent modules for improved infrastructure scalability and system 
management. The creation of MAFID, the Meteorological and Flight Information Database system, 
permitted the development and execution of high-fidelity reproductions of actuals flights. MAFID also 
allowed for the application and evaluation of the various forecasts that would have been available to the 
airline operating centers at the times of the flights. 

A more rigorous assessment of wind forecast model accuracy was conducted by comparing HRRR 
model wind forecasts against MDCRS aircraft reports over a one-year period and four different U.S. 
airport regions. Results from trajectory-based wind forecast accuracy metrics such as headwind mean 
absolute error (MAE) and ETTF were stratified by a number of criteria, including forecast look-ahead 
time, location, altitude, flight phase, time of year, and time of day. A key finding from this study was 
relatively larger mean wind forecast errors and variability seen in the Northeast (EWR airport) region. It 
is hypothesized that this is in part due to the dynamic wind environment (e.g., frequent occurrence of 
vertical wind shear) of this region. Characterizing and determining the frequency of occurrence of wind 
environment scenarios (such as vertical wind shear) associated with large forecast errors, particularly in 
the Northeast region, and comparisons of GFS model forecasts against MDCRS, are important 
recommended follow-on activities. Additional suggestions for wind forecast model assessment are given 
in Section 3.7. 

It has been shown that increasing the number of descent forecast levels in RTA operations can have 
a positive effect on overall performance, but the effect was smaller than expected. This is partially 
explained in that the overall performance of the systems modelled, which can be considered a relatively 
high-performance system already, is such that there is a limited area for improvement. An important 
question that remains is what is the effect of increasing the number of DFLs for other airframes and FMS 
systems? We recommend evaluating additional airframes and avionics suites to determine if additional 
and/or more accurate forecast information can improve the RTA performance of those systems. In 
particular, we recommend evaluating the effect on systems that incorporate two other popular FMS 
systems on two very popular airframes, the GE/Smiths FMS on the B737 and the Thales FMS on the 
A320. 

Our results show that there is an effect on RTA performance based on the DFL selection technique, 
but this area has not been fully explored. Noting that there is an effect on the system evaluated raises the 
question if there would be a more pronounced effect on other systems. Consider the case of the GE/Smith 
FMS in a B737, which currently can only use three DFLs. The limited number of DFLs would likely 
make the system’s RTA performance more susceptible to error as a function of reduced fidelity of the 
descent wind profile. To some degree, this system can be emulated within the existing infrastructure by 
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limiting the DFL selection to three levels. One could then explore the trade spaces on the DFL selection 
techniques (which specify the locations, altitudes, and times) and the available sources (age, forecast, or 
locally enhanced forecast). The existing infrastructure could also be modified to emulate the autothrottle 
behavior of the B737/FMS to add further realism to the emulation. 

Whereas this work evaluated simulated descents to around 10,000 ft MSL, we recommend 
conducting an analysis on RTA performance to significantly lower altitudes. Though the initial 
incarnation of RTA operations were not developed to conduct operations to altitudes much below 10,000 
ft, the results of this study suggest that the system evaluated could perform to lower altitudes. We believe 
simulated flights descending to at least the altitudes associated with most initial approach fixes and 
perhaps even to final approach fixes should be conducted. If it is shown that RTA systems can remain 
performant to these altitudes, these findings could have a significant effect on the concept and application 
of RTA in future 4D-TBO operations.  

The vast majority of the STARs flown in these simulations had speed constraints on waypoints 
along the routes before the RTA fix location. In some cases, the first of several speed constraints started 
as high as FL330 (e.g., EAGUL6 at KPHX). Current RTA requirements require that all speed constraints 
along a route are to be respected. As such, there is limited speed control authority available to the RTA 
system to correct for errors. It is recommended that the effect of speed constraints on RTA performance 
be evaluated to inform future CONOPS and procedure design. 

It has been shown that perfect forecast data, i.e., truth data, can improve RTA performance. To 
improve the accuracy of forecasts, it is suggested that data derived from aircraft operating locally 
(spatially and temporally) could be obtained as a potential source of information that could be used to 
augment existing forecasts. One potential means to obtain such information could be from the 
interrogation and interpretation of data available from aircraft operating in the vicinity who are outfitted 
with Mode-S EHS transponders. Such transponders could provide aircraft state data that can be used to 
estimate current wind conditions. It is recommended that this avenue be investigated to first determine the 
method (e.g., interrogation schedule) and effect (e.g., increased bandwidth usage) of collecting such data. 
Secondly, the use of such data must be evaluated in terms of how it could be leveraged to improve or 
augment forecasts, as well as how it could be employed for operations other than RTA, such as Interval 
Management or real-time wake vortex mitigation validation. 

It is recommended that the evaluation of RTA performance be expanded to a larger set of airports 
and time frames to include the effects of arrival route design and local meteorological phenomena. An 
example airport of interest is KEWR, which is in a region where the HRRR model appears to have overall 
reduced forecast accuracy. Similarly, it is recommended that the GFS (Global Forecast System) model 
also be evaluated, as this is currently the mostly widely used forecast by commercial carriers for flight 
planning. 



 

 

77 

APPENDIX 

HRRR DATA PROCESSING AND STORAGE FOR MAFID 

Aircraft operations of 4D-TBO rely on weather forecast data to assist in achieving RTA objectives. 
The current phase of analysis for RTA simulation utilizes High-Resolution Rapid Refresh (HRRR) data 
as its forecast source. Continuous ingesting of this data in its original format raises a challenge as each 
HRRR data file in its provided GRIB2 format is on average 350 MB in size. A single day of HRRR data 
includes around 376 individual files and utilizes approximately 130 GB of file system space. The nature 
of the analysis in this work required fast access to forecast data. The limitations of storage and the time 
taken to load any significant amount of HRRR forecast data in its original format was not conducive to 
this requirement.  

HRRR forecast files superimpose grids of weather forecast data covering CONUS, as seen in the 
example of the HRRR product “V-component of wind” in Figure A-1.  

 

 

Figure A-1. Lambert conformal view of V-component of wind with heat map from HRRR sample. 
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The original HRRR data files contain many products (distinct data types) that are not needed for the 
current program objectives. For example, “Snow depth @ Ground or water surface” or “Composite 
reflectivity @ Entire atmosphere” are samples of the many produced data products that we do not need to 
retain in our data store. Data products related to wind, temperature, and pressure are the primary elements 
we must retain along with a set of additional product we are collecting for potential future analysis. This 
“pruning” of the HRRR forecast products significantly reduce the size of the resulting files. After 
removing the unneeded products, the average HRRR data file is reduced from 350 MB to approximately 
77 MB. 

As seen in Figure A-1, the HRRR data files represent forecast data for the entire CONUS in lambert 
conformal projection. As part of the data processing stream, these data are reprojected and stored in a 
Plate Carre (lat/Lon) projection, which is a more expeditious base form to use for the web-service 
forecasting service that is geared to aviation. Also, the full CONUS data set is broken into smaller tiles. 
The reduced tiles size makes for quicker loading and reduced caching for the forecasting service. Figure 
A-2 shows the tiling of the subdivide HRRR data as stored in the database to ensure there is no data loss; 
the original data is slightly oversampled in the reprojected data. The additional sampling and the effect of 
tiling do, however, have a negative effect on the data compression, and the net total storage for an 
individual product is greater than required when in its original form. 

 

 

Figure A-2. Generated data tiles after latitude/longitude reprojection and subdividing. 
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Each hourly HRRR forecast collection has valid forecast out to 18 hours from the publication time. 
The range of forecast information is not required for our analysis, so we only retain forecast information 
out to eight hours. This, along with the product pruning, reduces the total daily storage from 130 GB to 24 
GB. As noted above, the original HRRR data set for a single day was in excess of 130 GB in size. After 
processing and compression of the tiled HRRR files, the entire day of data requires approximately 24 GB 
of file system space. 

WEATHER FORECAST DATA SERVICE 

To enable a number of wind forecast related activities, a forecast weather service has been designed 
based on a database and file-system back-end. Currently implemented for HRRR, the architecture is 
extensible to include other types of data and other data containers (currently only GRIB containers are 
supported). Using HRRR data, the queryable forecast weather service is capable of returning the 
interpolated forecast wind speed, direction, and air temperature at a particular (lat, lon, pressure altitude, 
time), as well as surface pressure and surface winds. For higher access performance, the CONUS-wide 
HRRR tiles were retiled to smaller size. These are found during the query process, either contained in 
memory of the local cache, or on disk, pointed to via a database query. To forecast the value of a single 
point in (lat, lon, alt, time), it is necessary to use two tiles that bound the spatial point within time by 
belonging to forecasts describing nearest times before and after the requested time. The information from 
these tiles is then interpolated to produce the final data product. 

The 4D-TBO Winds program presents a number of challenges to supporting infrastructure that 
dictate its architecture and necessitate particular approaches to be taken in its design. In particular, the 
requirements were 

1. Simplify access to sophisticated weather data products for multiple consumers 

2. Minimize development efforts required to create weather product client applications 

3. Provide performant client access to forecast weather data products 

4. Allow flexibility in use of different types of weather data products, locations, and storage 
formats in the near future (as HRRR is transitioning to a different storage mechanism) 

The design of the weather (WX) server was defined by these requirements. The WX server, a 
dedicated web service, provides a simplified front end to a significant amount of activity that must be 
carried out in order to obtain a final data product. A request for weather information given particular 
space/time coordinates entails locating the data and performing interpolation across space and time. Raw 
data access is onerous, error handling is de rigueur, and mathematics must be performed on 16 nearby 
data products to obtain a single interpolated value. Thus, it makes sense to perform this error-prone 
activity as few times as possible, in a centralized fashion.  
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A reduction in development time was experienced due to the use of standardized access methods 
(HTTP REST) and data marshalling formats (JSON) that helped decouple application-specific data 
processing from generic data request and handling activity. The access methods and formats were also 
chosen to be usable across multiple platforms and programming languages, so interoperability was more 
easily achieved, and development could take place easier in languages that were more suited to the task – 
a follow-on effect of proper architecture. 

Leveraging centralized in-memory storage of weather data and thus reducing the overhead costs of 
queries and loads across multiple distributed simulation runs provides a significant performance gain. 
Trajectory-based weather data are particularly well-suited for this type of data infrastructure, as they 
follow predictable data access patterns.  

In addition to the currently supported file formats and containers, other types of containers (e.g., 
CDF+/HDF) and forecasts (GFS) are under consideration and could be added with minimal development 
effort. 

Figure A-3 provides a top-level view of the WX data server architecture. A user request enters the 
system at the user interface and is validated against the tiles that exist in the local memory of the system 
by the cache processor. If the tiles representing the spatial neighborhood and bounding the nearest 
temporal extents of the requested spatiotemporal point are currently stored in the cache, they are simply 
passed to the space/time interpolation module, and the interpolated product is then returned to the user. 
This is the most efficient use case of the system. It can occur frequently, since, even though trajectories 
typically span multiple geographic locales and temporal slices, continuous slices of a trajectory are 
frequently composed of several data points contained in a single tile, with multiple tiles connected to form 
a complete trajectory slice. Once a single pair of tiles is loaded, points contained inside that tile do not 
cause a reload penalty with the current caching scheme. Future work in the caching scheme will introduce 
garbage collection methods that rely on a least-recently-used or a least-frequently-used scheme to discard 
cached data. 

If the tile is not found in the cache, a database query is constructed to attempt to locate a tile with 
the necessary information. The query returns a file location and name, which are then loaded from a 
network file system by the data object loader. Once loaded, the tile is then stored in the cache, and also 
forwarded to the space/time interpolation module for computation. 

Space/Time Interpolation performs bilinear interpolation in lateral space, then vertically, and then 
in time. This is done on a per-data-product basis, with a notable exception of the wind fields, in which the 
northing and easting wind components are interpolated separately and then combined to form wind 
magnitude and direction.  
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Figure A-3. WX data server architecture. 
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GLOSSARY 

4D-TBO 4D-Trajectory Based Operations  

A4A Airlines for America  

ABP Achieve by Point for interval management procedures, equivalent to meter fix in 
TOAC procedures  

ACARS Aircraft Communications Addressing and Reporting System  

AGL Above Ground Level  

AHRS Attitude Heading Reference System  

AIS Aeronautical Information Services  

AOC Airline Operations Center 

ARAM Aircraft Reported Atmospheric Model  

ASDE-X Airport Surface Detection Equipment, Model X  

ASG Assigned Spacing Goal  

ATC Air Traffic Control  

ATM Air Traffic Management  

ATTF Actual Time to Fly  

CIFP Coded Instrument Flight Procedures  

CONOPS Concept of Operations  

CONUS Contiguous United States  

CTA Controlled Time of Arrival 

DFL Descent Forecast Level  

EHS Enhanced Surveillance  

ERAM En Route Automation Modernization  

ESRL NOAA Earth System Research Laboratory  

ETTF Estimated Time to Fly  

EWR New York Newark Liberty International Airport 

FAF Final Approach Fix  

FIM Flight-deck Interval Management  

FL Flight Level, an altitude level of constant atmospheric pressure relative to 
international standard sea level pressure of 29.92 inches of mercury. Every flight 
level is stated in hundreds of feet, with the last two zeros removed. 

FMS Flight Management System  
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FY Fiscal Year  

GE General Electric  

GFS Global Forecast System Model, U.S. NOAA National Centers for Environmental 
Prediction (NOAA/NCEP XE "NCEP" \t " NOAA National Centers for 
Environmental Prediction ") wind forecast model with 25 km spatial resolution 
used as basis for many airline flight planning products  

GIM Ground-based Interval Management  

GSD NOAA Global Systems Division  

HRRR High-Resolution Rapid Refresh Model, U.S. NOAA/NCEP/ESRL wind forecast 
model with 3 km spatial resolution used as basis for FAA high-resolution 
weather forecasting products  

HW Headwind 

IAP Instrument Approach Procedure 

IAS Indicated Air Speed  

IM Interval Management  

KATL Hartsfield-Jackson Atlanta International Airport  

KBOS Boston Logan International Airport  

KCLT Charlotte/Douglas International Airport  

KDEN Denver International Airport  

KDFW Dallas/Fort Worth International Airport  

KIAH George Bush Intercontinental Airport  

KJFK John F. Kennedy International Airport  

KMDW Chicago Midway Airport  

KMEM Memphis International Airport  

KSDF Louisville International Airport  

LL Lincoln Laboratory 

MADIS Meteorological Assimilation Data Ingest System 

MAE Mean Absolute Error 

MAFID Meteorological And Flight Information Database  

Magn Magnitude 

MCDU Multifunction Control Display Unit  

MDCRS Meteorological Data Collection and Reporting System, Meteorological Data 
Collection and Reporting System  

Meter fix Location where aircraft is targeting to get to by the CTA/RTA is controlled to by 
FMS in TOAC procedures  
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MSL Mean Sea Level  

NAS National Airspace System 

NATCA National Air Traffic Controllers Association  

NavDB Navigational Database  

NCEP NOAA National Centers for Environmental Prediction  

NM Nautical Mile (1853 meters or 6080 ft)  

NOAA National Oceanic and Atmospheric Administration  

ORD Chicago O’Hare International Airport  

PHX Phoenix Sky Harbor International Airport  

PPH Pounds per Hour  

RMS Root Mean Square  

RMSVD Root Mean Square Vector Difference 

RMSVE Root Mean Square Vector Error  

RTA Required Time of Arrival function of an FMS which manages aircraft speed in an 
attempt to comply with CTA at the meter fix  

RTA TE Required Time of Arrival Time Error (actual time of arrival at meter fix relative 
to the target time) 

RTCA Radio Technical Commission for Aeronautics  

RUC Rapid Update Cycle, U.S. NOAA/NCEP wind forecast model, predecessor of 
RAP  

SC-186 RTCA Special Committee for Automatic Dependent Surveillance – Broadcast  

SC-206 RTCA Special Committee for Aeronautical Information Services Data Link  

SC-227 RTCA Special Committee for Standards of Navigation Performance (including 
TOAC) 

SC-214 RTCA Standards for Air Traffic Data Communications Services  

SFO San Francisco International Airport  

SG-7 Sub group of RTCA Special Committee for Aeronautical Information Services 
Data Link, Wind Information  

SID Standard Instrument Departure  

STAR Standard Terminal Arrival Route  

TFMS Traffic Flow Management System  

TMC Thrust Management Computer  

TOAC Time of Arrival Control  

TOD Top of Descent (end of cruise, start of descent) 
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TRACON Terminal Radar Approach Control  

TTF Traffic to Follow  

VNAV Vertical Navigation  

WIAF Wind Information Analysis Framework  

WTIC Weather Technology in the Cockpit  

WX Weather  
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