Project Report ATC-341

Wind-Shear System Cost Benefit Analysis Update

R.G. Hallowell J.Y.N. Cho S. Huang M.E. Weber G. Paull T. Murphy

13 May 2009

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Lexington, Massachusetts

Prepared for the Federal Aviation Administration, Washington, D.C. 20591

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161 This document is disseminated under the sponsorship of the Department of Transportation, Federal Aviation Administration, in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

			TECHNICAL REPORT S	TANDARD TITLE PAGE
1. Report No.	2. Government Accession	No. 3. Re	ecipient's Catalog No.	
ATC-341				
4. Title and Subtitle		5. Re	eport Date 13 May 2009	
Wind-Shear System Cost Benefit Analysis	Update	6. Pe	erforming Organization Co	
		0.10	in organization oo	
7. Author(s)		8. Pe	erforming Organization Rep	port No.
R.G. Hallowell, J.Y.N. Cho, S. Huang, M	.E. Weber, G. Paull, a	nd T. Murphy	ATC-341	
9. Performing Organization Name and Address		10. W	ork Unit No. (TRAIS)	
MIT Lincoln Laboratory				
244 Wood Street Lexington, MA 02420-9108		11. Co	ontract or Grant No. FA8721-05-C-00	002
12. Sponsoring Agency Name and Address		13. Tv	vpe of Report and Period C	Covered
Department of Transportation			Project Repor	
Federal Aviation Administration			v i	
800 Independence Ave., S.W.		14. Sp	consoring Agency Code	
Washington, DC 20591 15. Supplementary Notes				
This report is based on studies performed Institute of Technology, under Air Force 16. Abstract			perated by Massachu	setts
A series of fatal commercial aviation acci- wind shear. The Terminal Doppler Weath Processor (WSP) for Airport Surveillance key protection components. While these sy and operating ground-based systems. In a by one of these ground-based wind-shear This report assesses the technical and mitigations for the low-altitude wind-shea WSP (35), and LLWAS (40) protected ain detail several alternatives and/or combin current WSR-88D (or NEXRAD) and two and (2) an X-band commercial Doppler we protection component were developed for For the period 2010–32, the current com- overall wind-shear safety exposure to jus resulted in higher benefits than the TDWR the cheaper operating costs of NEXRAD sites.	ner Radar (TDWR), L e Radars (ASR-9), pilo 7stems have been highly ddition, while over 85% systems, the vast majo operational benefits o ar hazard. System perf rports are examined, a ations for existing grou o potential future sens- eather radar. Wind-shee each site in order to a abination of wind-shea at \$160 million over the t, TDWR-LLWAS, and	ow Level Wind Shear Ale of training and on-board w offective, there are subst. % of all major air carrier prity of smaller operations of current and potential formance and benefits for along with 40 currently un und-based systems. These or deployments: (1) a com ar exposure estimates and accurately compare all alt r protection systems reduce e entire study period. Ov WSP configurations that of	ert System (LLWAS), vind-shear detection e antial costs associated operations occur at a s remain largely unpr alternative ground-f all of the current TD nprotected airports. Y e included the option nmercially built pulse simulation models for ernatives. acces the \$3.0 billion u erall, there were few currently exist at 81 ai	Weather Systems equipment are all with maintaining irports protected otected. based systems as DWR (46), ASR-9 We considered in to use data from ed-Doppler Lidar r each wind-shear improtected NAS alternatives that irports. However,
17. Key Words		18. Distribution Statement		
		This document is availa Technical Information S		
19. Security Classif. (of this report)	20. Security Classif. (of	this page)	21. No. of Pages	22. Price

Unclassified

Unclassified

186

This page intentionally left blank.

ABSTRACT

A series of fatal commercial aviation accidents in the 1970s and 1980s led to the identification of windshear as a critical hazard to aviation. In response, the aviation community has developed a number of systems that detect and warn pilots and controllers of low-altitude wind-shear hazards. Pilot training on visual clues to the presence of wind shear, and on avoidance and recovery procedures was the earliest mitigation strategy. The Terminal Doppler Weather Radar (TDWR) was developed as the primary ground-based protection system for 45 of the busiest and most wind-shear exposed airports. In parallel, improved versions of the Low Level Wind Shear Alert System (LLWAS) and a Weather Systems Processor (WSP) modification for existing Airport Surveillance Radars (ASR-9) were developed to detect wind shear at smaller airports. On-board wind shear detection equipment was mandated for Part 121 aircraft. As a result of these steps, there has not been a fatal commercial aircraft accident in the United States attributed to wind shear since 1994.

However, there are substantial costs associated with maintaining and operating TDWR, WSP, and LLWAS systems. In addition, while over 85% of all Part 121 operations are to airports protected by one of these ground based wind shear systems, only half of the Part 135 operations and just over 5% of all Part 91 operations involve these airports. Therefore, the FAA has requested that Lincoln Laboratory reassess the technical and operational benefits of current ground based systems and evaluate the viability of alternative mitigations for the low-altitude wind shear hazard. System performance and benefits for all of the current TDWR (46), ASR-9 WSP (35) and LLWAS (40) protected airports are examined, along with 40 currently-unprotected airports where operations rates are forecast to grow.

We considered in detail several alternatives and/or augmentations for existing ground based systems. These included the option to use data from the WSR-88D (or NEXRAD) to provide wind shear services at airports where its siting is appropriate. Two potential future sensor deployments were also considered: (1) a commercially built pulsed-Doppler Lidar currently being tested at Las Vegas International airport; and (2) an X-band commercial Doppler weather radar that is being promoted as adjunct to the pulsed Lidar. An objective metric for wind shear detection capability was calculated for each system or combination of systems evaluated.

For the period 2010–32 in an unprotected NAS, wind shear would cost over \$3.0 billion in wind shear related accidents. Pilot training and airborne systems reduce this exposure to \$972 million. The current ground-based wind shear protection systems and in-progress TDWR/WSP upgrades reduce this safety exposure further to just \$160 million for the entire study period. Overall, there were few alternatives that resulted in higher benefits than the TDWR, TDWR-LLWAS and WSP configurations that currently exist at 81 airports. Even when system costs are factored in, switching to the optimal alternative at all 161 sites would result in less than 10% in overall net benefits. However, the cheaper operating costs of NEXRAD make it a potential alternative especially at LLWAS and non-wind shear protected sites. Individual sites varied, however, often due to unique siting, wind shear and/or traffic load conditions.

This page intentionally left blank.

TABLE OF CONTENTS

Page

	Abstract	iii
	List of Illustrations	vii
	List of Tables	xiii
1.	INTRODUCTION	1
2.	WIND-SHEAR ACCIDENT RATE ANALYSIS	5
	2.1 Estimating Accident Rate	5
	2.2 Accident Rate Modeling	13
3.	MEASURING WIND-SHEAR EXPOSURE	15
	3.1 Microburst Exposure	16
	3.2 Gust Front Exposure	21
	3.3 Reflectivity Distributions and Outflow Height	24
4.	WIND-SHEAR MITIGATION TECHNIQUES AND DETECTION SYSTEM	
	EFFECTIVENESS	31
	4.1 Modeling Pilot Training Impacts	31
	4.2 Estimating Airborne Wind-Shear System Impacts	33
	4.3 Modeling Ground-based Wind-Shear System Effectiveness	37
5.	METHODOLOGY FOR BENEFITS AND COSTS ASSESSMENT	47
	5.1 Assessing Safety Benefits	47
	5.2 Assessing Delay Benefits	51
	5.3 Estimating System Costs	53
6.	CURRENT AIRPORT-SPECIFIC SAFETY AND DELAY MITIGATION	57
	6.1 No Wind-Shear Mitigation	58
	6.2 Pilot Training Assessment	61
	6.3 Airborne Mitigation Systems	62
	6.4 Baseline Ground-based Coverage	63
7.	AIRPORT SPECIFIC COST-BENEFIT RESULTS	67
	7.1 Alternative System Assessment by Current Site Configuration	74

TABLE OF CONTENTS (CONTINUED)

Page

	7.2 Alternative System Assessment by Sensor Type	83
8.	SUMMARY AND CONCLUSIONS	89
	Glossary References	93 95
APPI	PENDIX A. WIND-SHEAR AND WIND-SHIFT EXPOSURE ASSESSMENT	99
	PENDIX B. PILOT OBSERVABILITY AND PWS AIRBORNE SYSTEM ECTIVENESS	107
	PENDIX C. WIND-SHEAR SYSTEM EFFECTIVITY BY SITE AND SYSTEM D MB & GF)	115
	PENDIX D. SAFETY AND DELAY EXPOSURE AND BENEFITS BY SITE AND STEM (LIFE CYCLE 2010–32 FY08\$M)	127
	PENDIX E. NET PRESENT VALUE BASED ON SAFETY AND DELAY BY SITE A STEM (LIFE CYCLE 2010–32 FY08\$M)	AND 151
	PENDIX F. NET PRESENT VALUE BASED ON SAFETY ANALYSIS ONLY BY SI D SYSTEM (LIFE CYCLE 2010–32 FY08\$M)	TE 163

LIST OF ILLUSTRATIONS

Figure No.		Page
1	Airports considered in this study. The symbols indicate the wind shear protection system currently operating at each airport. Note that nine of the TDWR airports are also equipped with an integrated network-expansion LLWAS system.	2
2	Timeline of wind-shear mitigation techniques and alerting systems as compared to baseline, transitional, and protected wind shear accident rate measures.	6
3	Timeline of wind-shear-related accident occurrences, 1975–2007, by aircraft category.	10
4	Comparison of major wind-shear-related accidents between accidents occurring inside and outside the US, 1975–2007.	11
5	Comparison of measured and mitigation-adjusted accident rates for unprotected (1975–85), transitional (1982–94), and protected (1995–2007) time periods.	13
6	Location of study airports with TDWR (red) and ITWS (green) archive sites identified (San Juan, Puerto Rico, and Honolulu, Hawaii, not shown).	15
7	Measured number of minutes per year where at least one microburst was within a 30 km radius of the respective TDWR/ITWS archive site.	16
8	Ten-year lightning flash rate climatology (flashes/km ² /year) (NASA, High Resolution Full Climatology Lightning Archive, http://thunder.msfc.nasa.gov/data).	17
9	The annual lightning flash rate vs. measured MB minutes.	18
10	Average summer ceiling height (meters above sea level). Raw data gathered from 20- year dataset of hourly station observations, interpolated to a grid by fitting to lightning and terrain data.	19
11	Microburst exposure model based on TDWR/ITWS archive data.	19

Figure No.		Page
12	Comparison of MB exposure model estimates to archive measurements (R^2 correlation = 0.93).	20
13	US map of annual microburst exposure based on station archive model (1000s of minutes).	21
14	The measured number of minutes per year where at least one gust front was within an 18 km radius of the respective ITWS archive site.	22
15	Gust front exposure model based on ITWS archive data.	23
16	Comparison of GF exposure model estimates to archive measurements (R^2 correlation = 0.69).	23
17	US map of annual gust front exposure based on station archive model (minutes).	24
18	Distribution of peak reflectivity associated with microburst outflows as measured at Denver, CO (red) and Orlando, FL (blue) TDWR field studies.	25
19	Distribution of NEXRAD reflectivity for Denver, CO (dashed red) and Orlando, FL (dashed blue).	26
20	Compilation of wind-shear relative reflectivity distributions for all sites.	26
21	Dry/wet profile tendency by site.	27
22	Cumulative frequency of outflow depths for all sites color-coded by reflectivity profile tendency (red-dry, blue-mixed, green-wet).	28
23	Reflectivity distribution associated with gust front (profile is the same for all sites).	29
24	Equation for estimating the likelihood that a pilot will observe visual characteristics of an outflow.	31
25	Estimated frequency of daylight microburst activity (%).	32
26	National PWS radar wind-shear encounter scenario.	35

Figure No.		Page
27	Wind-shear coverage domains used in study. White space illustrates terrain blockage.	39
28	Illustration of various factors that impact radar wind-shear detection probability.	41
29	Flow chart of the radar wind-shear P _d performance estimator.	42
30	LMCT Doppler Lidar maximum detection range vs. weather radar reflectivity.	44
31	Breakdown of aircraft operations by study airport wind-shear protection coverage (2008).	51
32	Total life-cycle system costs per airport for wind-shear protection systems (present value FY08 \$M).	56
33	Total annual safety-related financial exposure from wind-shear accidents based on the levels and types of protection applied (present value FY08 \$M).	57
34	Total (2010–2032 in billions of dollars) safety-related financial exposure from wind- shear accidents based on an unprotected NAS broken down by the current protection system at each site.	58
35	Annual safety-related financial safety exposure from wind shear for each TDWR (or TDWR-LLWAS) protected airport (present value FY08 \$M) based on an unprotected NAS.	59
36	Annual safety-related financial safety exposure from wind shear for each WSP protected airport (present value FY08 \$M) based on an unprotected NAS.	60
37	Annual safety-related financial safety exposure from wind shear for each LLWAS protected airport (present value FY08 \$M) based on an unprotected NAS.	60
38	Annual safety-related financial safety exposure from wind shear for each unprotected study airport (present value FY08 \$M) based on an unprotected NAS.	61
39	Total safety-related financial safety exposure from wind shear for each by class of airport (present value FY08 \$B) based on a NAS protected by pilot training only.	62

Figure No.		Page
40	Total safety-related financial safety exposure from wind shear for each by class of airport (present value FY08 \$B) based on a NAS protected by pilot training and airborne PWS only.	63
41	Total safety-related financial safety exposure from wind shear for each by class of airport (present value FY08 \$B) based on a NAS protected by pilot training and airborne PWS and current configuration of ground-based wind-shear systems.	64
42	Total safety-related financial safety exposure from wind shear for each by class of airport (present value FY08 \$B) based on a NAS protected by pilot training and airborne PWS and current configuration of ground-based wind-shear systems with TDWR and WSP upgrades.	64
43	Safety-related savings relative to coverage by pilot training and PWS only and wind- shift delay benefits from gust front detection and forecasting for current and TDWR/WSP upgraded system configuration 2010–32 (present value FY08 \$B).	65
44	Top 50 sites in terms of total benefits (safety and delay) relative to the NAS as protected by pilot training and PWS for the baseline upgraded wind-shear system configuration.	66
45	Annual benefit gain or loss relative to baseline (UPGRADED) for alternatives being deployed at all TDWR and TDWR-LLWAS study airports.	76
46	Annual safety benefit gain or loss relative to baseline (UPGRADED) for alternatives being deployed at all WSP study airports.	77
47	Annual safety benefit gain or loss relative to baseline (UPGRADED) for alternatives being deployed at all LLWAS study airports.	77
48	Annual safety benefit gain or loss relative to baseline (UPGRADED) for alternatives being deployed at all study airports with no current ground-based wind-shear system.	78

Figure No.		Page
49	Resulting life cycle benefit loss (safety + delay) from replacing TDWR and TDWR- LLWAS sites with WSP and WSP-LLWAS.	85
50	Summary of optimal alternatives for all 161 study sites.	91

This page intentionally left blank.

LIST OF TABLES

Table No.		Page
1	Wind-shear accident statistics and rates for baseline, transitional, and protected time periods	7
2	Part 121/9 air carrier wind-shear-related accidents, 1975 to 2006, in the US	9
3	Known international wind-shear-related aviation accidents, 1975 to present	12
4	Average and range of wind-shear-related accident rates by category	14
5	Sampling of site-specific pilot observation factors that impact a pilot's ability to visually recognize wind shears	33
6	Estimates for the effectiveness of reactive wind-shear warnings and the overall effectiveness when combined with aircraft performance criteria	34
7	U.S. Part 121 fleet equipage percentages for PWS radars, based on a telephone poll of industry representatives in September 2007	36
8	Sensors vs. airports included in study	38
9	Sensor combination vs. site	38
10	Radar system parameters	40
11	Actuarial data for personal injury or fatality	48
12	Estimated market values of aircraft repair/replacement	48
13	Pooled accident structures, 1975–2007	49
14	Estimated average wind-shear-related accident costs	49
15	Average and range of wind-shear-related accident rates by category	50
16	Breakdown of aircraft operations by airport type	50

LIST OF TABLES (CONTINUED)

17	Breakdown of delay costs for passenger and aircraft time (including crew) as adapted from GRA, 2007	53
18	Breakdown of system costs for all wind-shear systems	55
19	Study results summary showing optimal alternatives and maximum coverage alternatives for safety and safety+delay	67
20	Frequency table of optimal systems by current airport protection based on NPV calculations that consider only safety	74
21	Frequency table of optimal systems by current airport protection based on NPV calculations that consider both safety and delay benefits	75
22	Comparison of optimal alternative vs. current wind-shear protection system for TDWR-LLWAS sites (safety + delay)	79
23	Comparison of optimal alternative vs. current wind-shear protection system for TDWR sites (safety + delay)	80
24	Life cycle NPV comparisons for WSP sites with non-WSP optimal alternatives (safety + delay)	81
25	Comparison of optimal alternative vs. current wind-shear protection system for LLWAS sites (safety + delay)	82
26	Comparison of optimal alternative vs. current wind-shear protection system for unprotected sites (safety + delay)	83
27	Sites where LLWAS is used as a complementary or primary sensor	84
28	Unprotected sites that would benefit from coverage of an existing TDWR	86
29	WSP safety benefits at currently unprotected sites	87
30	Breakdown of NEXRAD coverage sites by current site type and NEXRAD performance	88

1. INTRODUCTION

The Terminal Doppler Weather Radar (TDWR) was developed in response to a series of fatal commercial aircraft wind shear accidents in the 1970s and 1980s. In aggregate, these resulted in over 400 fatalities and pressure on the FAA to develop effective warning technologies. An aggressive development and implementation program led to operational deployment of the TDWR at 46 airports during the 1990s. In parallel, improved versions of the Low Level Wind Shear Alert System (LLWAS) and a Weather Systems Processor (WSP) modification for existing Airport Surveillance Radars (ASR-9) were developed to provide similar warning services at smaller airports.

To date, there has not been a wind shear related accident at an airport where one of these modern wind shear detection systems is in operation. Most experts believe that this reflects a combination of circumstances including, but not confined to, deployment of the ground-based warning systems. Improved pilot awareness of the meteorological conditions in which wind shear occurs and the associated visual cues, as well as extensive pilot training on recovery procedures are clearly factors as well. All Part 121/129 aircraft are now equipped with either "reactive" or "predictive" on-board wind shear detection equipment. These airborne systems assist the pilot in recovery when a wind shear is encountered, and provide short lead-time warnings that the aircraft is approaching wind shear. Finally, deployment of the ground based systems and associated training have enhanced air traffic controller awareness of wind shear and greatly improved their ability to provide proactive advisories to pilots of hazardous conditions.

It has now been more than two decades since the first prototype radar tested the ability of Doppler-radars to detect wind shear, and more than a decade since the first TDWR became operational. While there has been a demonstrable decrease in the number and severity of wind shear and other weather related accidents there are substantial costs associated with operating and maintaining TDWR, WSP, and LLWAS. In addition to recurring costs associated with site- and second-level engineering support, substantial non-recurring costs accrue from hardware, processor, and software upgrades which are necessary to assure long-term operational availability. For example, the FAA is currently executing a multi-year Service Life Extension Program (SLEP) for TDWR that addresses many of its major subsystems, including the antenna drive mechanism, signal- and data-processing computers, and user displays. And, recently, new wind shear detection technology has been developed such as the Lidar and X-band radar that might be useful in complementing or replacing the deployed systems.

In this report, we quantify the effectiveness and associated operational benefits of deployed ground based wind shear detection systems (TDWR, ASR-9 augmented with the Weather Systems Processor (WSP) and LLWAS). In addition, we consider possible complementary or alternative sensors including the WSR-88D (or NEXRAD), a commercially built pulsed-Doppler Lidar and a commercially built 3 cm wavelength (X-Band) Doppler weather radar. Combinations of systems are examined to evaluate the benefits of integration. All of these single-sensor and integrated configurations are evaluated for the 121 US airports that currently have some type of operational, ground-based wind-shear system. Additionally, 40 feeder airports that are not currently protected by ground-based wind-shear systems are examined. Figure 1 shows the location of the airports studied coded by the site's current wind-shear protection systems.

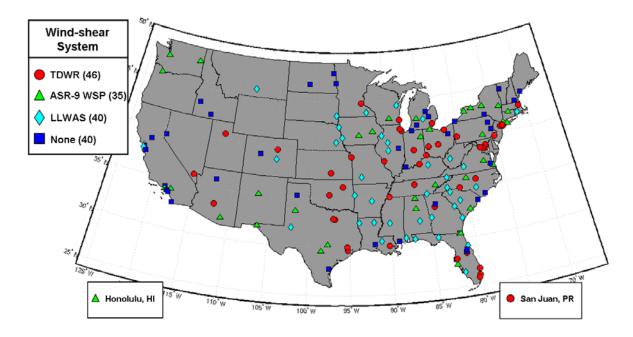


Figure 1. Airports considered in this study. The symbols indicate the wind shear protection system currently operating at each airport. Note that nine of the TDWR airports are also equipped with an integrated network-expansion LLWAS system.

Section 2 provides an estimate of the wind shear accident rate that would occur in the absence of the ground based detection and warning systems. This estimate must of course consider the effect of complementary mitigations (pilot training and airborne wind shear systems) that have been introduced in the last two decades. In Section 3, we evaluate wind shear exposure at each of the studied airports. These are extrapolated from TDWR microburst and gust front measurements at major U.S. airports, using meteorological parameters that are available on a nation-wide basis. Section 4 discusses the modeling of pilot training and airborne wind shear systems. In Section 5, we discuss the methodology for safety and delay benefits estimates and the estimated costs of maintaining and/or implementing current and alternative systems. Section 6 details the total safety-related financial exposure of the NAS to wind shear accidents and the current effectiveness of the current configuration of wind shear mitigation systems. The relative value of safety and delay benefits for current and alternative system configurations is evaluated in Section 7, while Section 8 presents details of the cost-benefit assessment for all alternatives and sites.

This report is an update to the "Integrated Wind Shear Systems Cost-Benefit Analysis" published in 1994 (Martin Marietta, 1994) and a follow-on to recent studies by Weber et al. (2007) and Cho & Martin (2007). While we have largely retained the overall approach to evaluating wind-shear systems benefits that was defined in the 1994 report, we have substantially improved the data going into the analysis. In particular, the accident rate estimates have been updated to consider accidents since 1985 and the likely impact of pilot training and airborne equipage. Ground based system effectiveness estimates are based on

an objective, airport-specific model as opposed to the "expert judgment" applied in the earlier report. Wind shear exposure is calculated on an airport-specific basis using relevant measured parameters, as opposed to the subjective, regional exposure estimates provided previously. Finally, delay estimates utilize queuing models as opposed to empirical data to calculate benefits for proactive runway changes as wind-shifts approach an airport.

This page intentionally left blank.

2. WIND SHEAR ACCIDENT RATE ANALYSIS

The **National Transportation Safety Board (NTSB)** is an independent agency responsible for the investigation of accidents involving aviation, highway, marine, pipelines and railroads in the United States (except aircraft of the armed forces and the intelligence agencies). The agency is charged by the U.S. Congress to investigate every civil aviation accident in the United States. The NTSB maintains a database of aviation accidents detailing each accident from raw statistics of injuries, fatalities, aircraft damage and weather conditions, to pilot and eyewitness statements, aircraft type and equipage. Most importantly, the NTSB attempts to assign the probable cause of and contributing factors to each accident. The attribution of cause is important because it enables aviation experts to focus on the safety-critical needs of the aviation system.

In the NTSB database, an event is classified as either an accident or an incident. As defined by the NTSB, "aircraft accident" means an occurrence associated with the operation of an aircraft which takes place between the time any person boards the aircraft with the intention of flight and all such persons have disembarked, and in which any person suffers death or serious injury, or in which the aircraft receives substantial damage. An "incident" is defined as an occurrence other than an accident, associated with the operation of an aircraft, which affects or could affect the safety of operations. Accidents are required to be reported and investigated but incidents have some discretion involved with them. This is an important distinction for cost-benefits analyses as only accidents, with their clear reporting criteria, can be relied upon for consistent reporting over time.

2.1 ESTIMATING ACCIDENT RATE

One of the challenges in measuring the benefits of wind shear mitigation systems is that the frequency of accidents is very small compared to the total operations. This means that one accident can have a large impact on the apparent accident rate, especially over short time periods. In addition, reliable records of wind shear related accidents were available only a short time before mitigation techniques started to be employed (see Figure 2). Complicating matters further, the implementation of various mitigation techniques has been ongoing since the early 1980s. However, because we now have over 30 years of measurements we are able to use the underlying variability to measure risk and wind-shear system benefits in a variety of ways. Therefore, we use several accident rate measures in this benefits analysis (see bottom of Figure 2). The protected accident rate estimates the rate of accidents that have been occurring since the deployment of all current wind-shear protection systems (LLWAS, PWS, TDWR, and WSP). The transitional accident rate is designed to estimate the rate of wind-shear related accidents as pilot awareness was rapidly increasing and initial LLWAS systems were being deployed, but prior to the deployment of widespread automated radar-based wind-shear protection systems. And finally, for a historical perspective, we use the baseline accident rate as measured in the original cost-benefits analysis for TDWR (Martin Marietta, 1994). The **baseline** is an estimate of the rate of wind-shear related accidents prior to both the widespread awareness of pilots and the deployment of automated wind-shear protection systems. All of these measures are important in both estimating the benefits of wind-shear protection systems and helping to cross-check the estimated effectiveness of wind shear mitigation measures

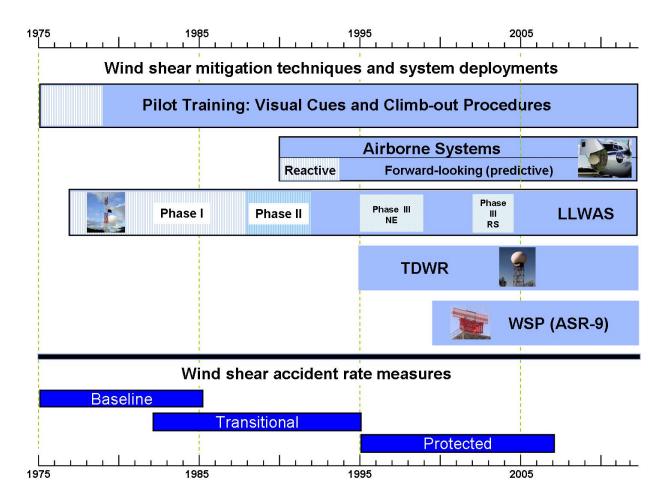


Figure 2. Timeline of wind-shear mitigation techniques and alerting systems as compared to baseline, transitional, and protected wind shear accident rate measures.

The NTSB database of aviation accidents and incidents has been updated and standardized for all accidents since 1982. For accidents after 1981, wind-shear accidents were identified based on entries that specified wind shear as either a cause or factor in the accident. The NTSB has six identified cause/factor codes that are relevant to wind-shear: 2231: WINDSHEAR, 2238: MB/WET, 2239: MB/DRY, 2249: SUDDEN WINDSHIFT and 2244: THUNDERSTORM OUTFLOW. Some accidents were removed after being initially selected because the narrative indicated non-microburst related wind-shear (tropospheric gravity waves for instance). For completeness, we included data from 1975-81 prior to the NTSB standardization because these accidents formed the basis of the original TDWR report and provide the best measure of the unprotected rate of wind shear accidents. Selection criteria were more subjective but roughly equivalent to the later selection criteria for the pre-1982 accident reports.

The breakdown of accident statistics for each measure of the three accident eras defined above is shown in Table 1. The protected accident rate removes the most uncertainty in the follow-on calculations of benefits as estimates of pilot training; PWS and the current ground-based system are all captured by this measure. However, as will be shown later we have calculated estimates of not only the ground-based system effectiveness but also for pilot training and PWS. Therefore, we can obtain estimates of the variability of the accident rate measure by cross-comparing the unprocessed "protected" accident rate with the other accident rate measures.

TABLE 1

Wind-shear accident statistics and rates for baseline, transitional, and protected time periods

		Aircraft Category & Safety Era		
		PART 121/129 1975-85	PART 135/137 1975-85	PART 91 1975-85
Baseline (1975-85)				
# of Accidents		13	19	173
	Fatal	400	35	37
	Serious	131	16	33
Personal Injury	Minor	28	3	14
r oroonar mjary	None	1037	26	285
	Total			
	Injuries	559	54	84
	Destroyed	4	15	28
Aircraft Damage	Substantial	8	4	82
All clait Damage	Minor	0	0	0
	None	1	0	1

	Operations	111.3	79.1	983.4
Safety Exposure	(millions) Accident Rate (# acc per million ops)	0.1168	0.2402	0.1759
Transition (1982-94)				
# of Accidents		12	16	152
	Fatal	398	16	45
	Serious	125	8	39
Personal Injury	Minor	42	9	54
r ersonar nijury	None	801	35	219
	Total			
	Injuries	565	33	138
	Destroyed	4	11	35
Aircraft Damage	Substantial	7	5	117
All Clair Danlage	Minor	1	0	0
	None	0	0	0
	Operations (millions)	156.9	141.7	1098.2
Safety Exposure	Accident Rate (# acc per million ops)	0.0765	0.1129	0.1384
Protected (1995-2007)				
# of Accidents		2	5	83
	Fatal	0	4	26
	Serious	1	3	13
Personal Injury	Minor	0	6	32
r ersonar nijury	None	279	19	125
	Total			
	Injuries	1	13	71
	Destroyed	0	1	20
Aircraft Damage	Substantial	1	4	63
Alloran Damaye	Minor	0	0	0
	None	1	0	0
	Operations (millions)	181.7	187.0	1086.5
Safety Exposure	Accident Rate (# acc per million ops)	0.0110	0.0267	0.0764

Table 2 lists the major air carrier accidents that have occurred since 1975 in the United States. Note that none of these accidents has occurred at an airport actively protected by a TDWR or WSP wind shear detection system. Figure 3 shows the timeline of accident occurrences from 1975 to present for all three aircraft categories. There has clearly been a marked decrease in the occurrence of wind shear related accidents even while total operations continue to increase.

TABLE 2

Part 121/9 air carrier wind-shear-related accidents, 1975 to 2006, in the US

Date	Location	Aircraft	Fatalities	Injuries	Uninjured	Aircraft Damage
24 Jun 1975	Jamaica, NY	Boeing 727	112	12	0	Destroyed
7 Aug 1975	Denver, CO	Boeing 727	0	15	119	Substantial
12 Nov 1975	Raleigh, NC	Boeing 727	0	1	138	Substantial
23 Jun 1976	Philadelphia, PA	Douglas DC-9	0	86	20	Destroyed
3 Jun 1977	Tucson, AZ	Boeing 727	0	0	91	Substantial
25 Aug 1981	Miami, FL	Boeing 727	0	20	117	Substantial
9 Jul 1982	New Orleans, LA	Boeing 727	153	9	7	Destroyed
28 Dec 1983	New York, NY	Boeing 727	0	0	127	Substantial
31 May 1984	Denver, CO	Boeing 727	0	0	105	Substantial
13 Jun 1984	Detroit, MI	Douglas DC-9	0	0	56	Substantial
19 Feb 1985	San Francisco, CA	Boeing 747	0	2	271	Substantial
2 Aug. 1985	Dallas/Ft. Worth, TX	Lockheed L-1011	135	28	2	Destroyed
25 Sep 1985	Unalaska, AK	Boeing 737	0	1	20	Substantial
7 Apr 1986	Jamestown, NY	Douglas DC-10	0	12	71	Minor
15 Sep 1987	Tulsa, OK	Boeing 727	0	0	62	Substantial
25 Jan 1990	Cove Neck, NY	Boeing 707	73	85	0	Destroyed
26 Apr 1993	Denver, CO	Douglas DC-9	0	0	90	Substantial
2 Jul 1994	Charlotte, NC	Douglas DC-9	37	20	0	Destroyed
25 Nov 1995	Portland, OR	Boeing 737	0	1	111	None
22 May 1997	Newark , NJ	Boeing 767	0	0	168	Substantial

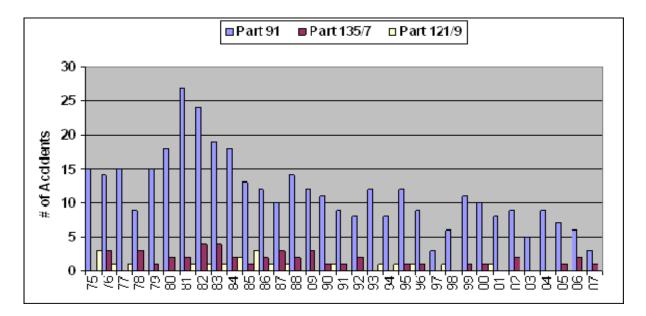


Figure 3. Timeline of wind-shear-related accident occurrences, 1975–2007, by aircraft category.

2.1.1 International Events

Wind shear activity is not restricted to the United States and there have been many reports of aviation accidents where wind shear is cited as a factor. The Aviation Safety Network (http://aviation-safety.net) and the NTSB have recorded over forty wind shear related accidents outside the US starting in the 1950s (Table 3). Accident reporting standards vary widely from country to country and US standards are among the highest in the world. Therefore, the international accidents listed here should be a conservative estimate of the total accidents and fatalities related to wind-shear. In fact, officials from the NTSB estimate that the wind shear accident rate internationally is roughly equivalent to the rates experienced in the US prior to the deployment of ground-based systems. Figure 4 illustrates this point by showing the number of accidents both within the United States and internationally broken down by time periods pre-and post-TDWR deployment in the US. Current estimates are that the total number of commercial aviation operations in the US is about equivalent to that of all the traffic in the rest of the world (NTSB, 2007).

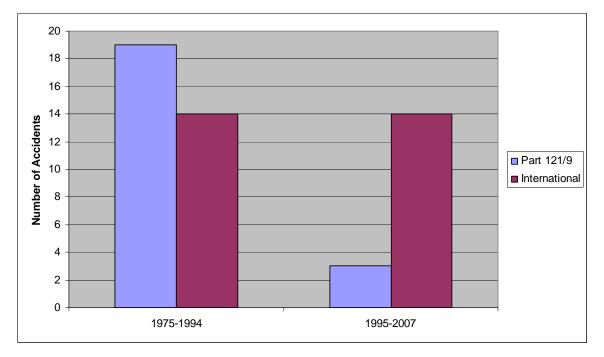
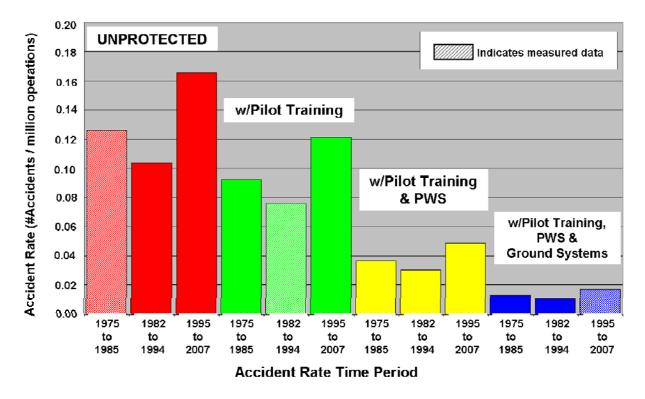


Figure 4. Comparison of major wind-shear-related accidents between accidents occurring inside and outside the US, 1975–2007.

TABLE 3

	(thation barety net	- , - ,		
Date	Location	Aircraft	Fatalities	Injuries	Uninjured
15 Nov 1978	Sri Lanka	Douglas DC-8	183	0	0
14 Mar 1979	Qatar	Boeing 727	45	19	0
12 Apr 1980	Brazil	B-727	55	3	0
27 Apr 1980	Thailand	HS-748	44	9	0
7 Jul 1980	Kazakhstan	Tupolev 154B	163	0	0
7 May 1981	Argentina	BAC 111	31	0	0
16 Jun 1981	India	HAL-748	0	0	28
27 Jul 1981	Mexico	DC-9	30	6	0
4 Apr 1987	Indonesia	Douglas DC-9	23	22	0
3 Sep 1989	Cuba	Ilyushin 62M	171*	0	0
24 Jul 1992	Indonesia	Vickers Vicount	70	0	0
21 Dec 1992	Portugal	Douglas DC-10	56	44	240
14 Sep 1993	Poland	Airbus A320	2	0	68
7 Jun 1997	Indonesia	Casa 212	0	0	12
10 Jun 1997	Mongolia	Y-12	7	5	0
10 Mar 1998	Zimbabwe	BAe-146	0	0	66
28 Jan 1999	Italy	MD-82	0	0	84
19 Mar 2000	Congo	Antonev 26B	0	0	10
22 Jun 2000	China	B-3479	42	0	0
7 Feb 2001	Spain	Airbus A320	0	0	143
30 Aug 2002	Brazil	EMB-120	23	8	0
27 Dec 2002	Belize	Cessna`	0	0	14
21 Jul 2004	Mexico	Douglas DC-9	0	0	56
9 Mar 2005	Belize	Cessna	0	0	14
10 Dec 2005	Nigeria	Douglas DC-9	108	1	0
23 Aug 2005	Peru	Boeing 727	31	57	0
15 Apr 2007&	Australia	Boeing 737	0	0	100


Known international wind-shear-related aviation accidents, 1975 to present (source Aviation Safety Network, NTSB)

* Includes 45 ground casualties& Preliminary analysis indicates wind shear may have been a factor

2.2 ACCIDENT RATE MODELING

As detailed above, there are three eras of accident rates that were calculated: baseline (1975–85), transitional (1982–94), and protected (1995–2007). Each time period captures a different state of wind shear mitigation, consequently we can use the models of pilot training, airborne systems and ground-based systems to transform accident rates between eras. Figure 5 illustrates this concept for Part 121/9 aircraft, the bars with hatching are the measured accident rates presented in Table 1. Each grouping of accident rates show the accident rate based on corrections for either adding or subtracting the impact of various safety measures. For example, the red hatched bar for 1975–85 represents the measured accident rate for that time period. When we correct this accident rate for the pilot training model discussed in Section 4 we obtain the solid green bar under the heading w/Pilot Training. Adding predictive wind shear systems results in the yellow bar and with the current ground-based constellation of TDWR, WSP, and LLWAS we obtain the blue bar. Conversely, the measured 'protected' accident rate from 1995–2007 can be corrected backwards to remove each mitigation technique.

This manipulation of the accident rates allows us to obtain a better average estimate of the 'unprotected' accident rate that can be used for all benefits calculations. Variability for Part 135/7 and Part 91 aircraft is much larger than for Part 121/9 aircraft in part because the models for pilot training and estimates of impact on aircraft outside ground-based protection are more limited. Table 4 lists the pooled average accident rate and the range of values over the three corrected unprotected rates for each aircraft category.

Figure 5. Comparison of measured and mitigation-adjusted accident rates for unprotected (1975–85), transitional (1982–94), and protected (1995–2007) time periods.

TABLE 4

Average and range of wind-shear-related accident rates by category (# of "unprotected" accidents per million operations)

Aircraft Category	Average Rate	Range
Part 121/9	0.1095	0.1045 – 0.1168
Part 135/7	0.2037	0.1299 – 0.2410
Part 91	0.1600	0.1201 – 0.1842

3. MEASURING WIND-SHEAR EXPOSURE

Obviously, knowing each airport's exposure to wind-shear activity is a key factor in determining the relative accident risk at each airport. Each dot on the map shown in Figure 6 represents an airport that requires analysis, there are a total of 161 airports (San Juan, Puerto Rico [SJU] and Honolulu, Hawaii [HNL] are not shown). Details of the sites chosen and their respective wind shear protection systems are given in Appendix A. For a variety of reasons we don't have a record of wind-shear activity at all of these sites (especially in the West and at small airports where we don't have radar coverage). In order to measure wind shear exposure, microburst (MB) and gust front (GF) archive data were gathered from selected TDWR and ITWS installations. In Figure 6, the TDWR archive locations are shown in red, while the ITWS archive airports are shown in green. In some cases a single ITWS serves multiple nearby airports, such as the clustered dots shown near Miami, Houston, and DC. The archives are generally only a year in length and, as such, statistical and climatological analyses were performed to interpolate the record not only spatially but also temporally.

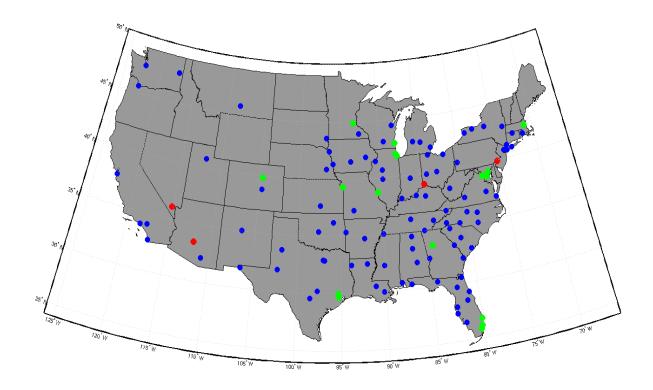


Figure 6. Location of study airports with TDWR (red) and ITWS (green) archive sites identified (San Juan, Puerto Rico, and Honolulu, Hawaii, not shown).

3.1 MICROBURST EXPOSURE

The TDWR and ITWS microburst archive data report the exact location and strength (expected wind shift loss across the alert) for each alert shape generated by either the TDWR or ITWS system, respectively. Each alert shape, however, does not necessarily represent a single microburst. The automated TDWR microburst algorithm (used to derive both TDWR and ITWS alerts) detects a wind shear and then a secondary algorithm (slightly different for TDWR than for ITWS) breaks up the detected region into alerts as a way of minimizing over-warning over the airport. In some cases the TDWR can generate more than a dozen shapes to represent a very large microburst. Because alert shapes may not represent a single wind shear and because TDWR and ITWS algorithms will output sometimes dramatically different numbers of shapes, we can't simply count up all the alerts for each archive site and use this as the number of wind shear events. Instead, we chose to count the number of minutes that each site reported at least one microburst alert. These are called "unique" MB minutes, and Figure 7 shows a map of the unique minutes for each archive site (normalized to a full year and full 360 degree, 30 km radius TDWR scan). Note the exponentially higher levels of microburst activity in the Gulf region, and the strong drop-off in the Northeast and upper Midwest. Next, we needed to interpolate this snapshot of microburst activity over the entire country and at the same time account for climatology for year to year variations.

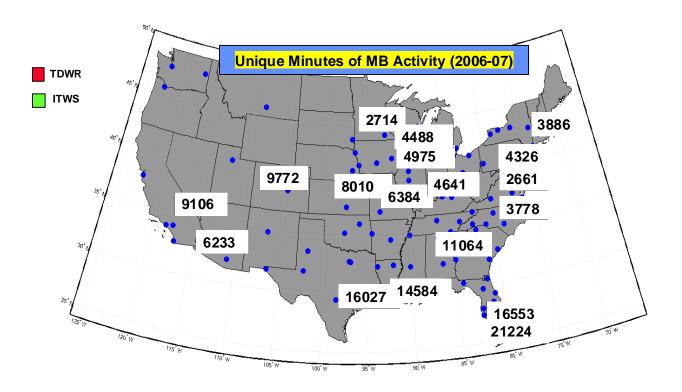


Figure 7. Measured number of minutes per year where at least one microburst was within a 30 km radius of the respective TDWR/ITWS archive site.

There are two types of microbursts: wet and dry. Wet microbursts are driven by thunderstorms and their associated precipitation-driven outflows. As a well-measured surrogate of thunderstorm activity, we obtained a ten year climatology of average annual lightning flash rates over the US. Figure 8 shows the distribution of annual lightning flash rate intensity over the contiguous United States while Figure 9 shows the comparison of lightning flash rates to microburst minutes for all of the archived sites. In addition ceiling height, or the height at which clouds typically begin to form, can be utilized in two ways. For regions with relatively low cloud base heights in the summer (the West coast for example), microburst activity is suppressed. Secondly, dry microbursts are driven by evaporative cooling and that requires the depth through which the cold air falls to be large enough to generate sufficient force to produce a microburst. Cloud base height is a good measure of this depth and we utilized a 20-year climatology of hourly observations to measure average ceiling height over the active summer months (Figure 10). Finally, the elevation of the station is often indicative of the relative exposure to dry microbursts (Wolfson et al., 1988, 1994).

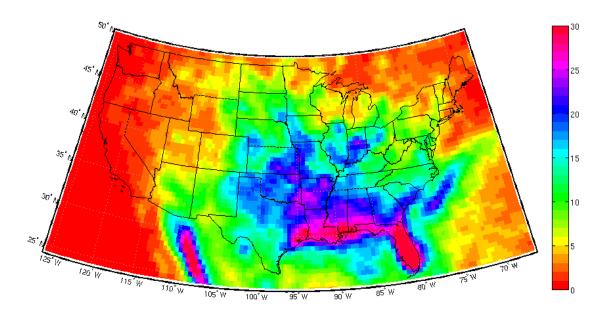


Figure 8. Ten-year lightning flash rate climatology (flashes/km²/year) (NASA, High Resolution Full Climatology Lightning Archive, <u>http://thunder.msfc.nasa.gov/data</u>).

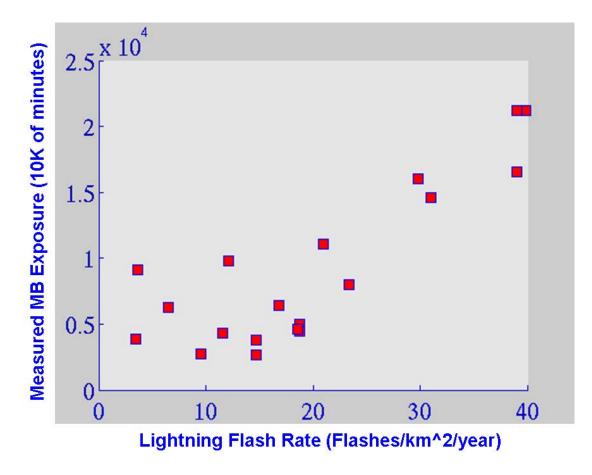


Figure 9. The annual lightning flash rate vs. measured MB minutes.

All of these data were fit via a least squares fit and the resultant wind shear exposure formula is shown in Figure 11. Not unexpectedly, the most important factor in wind shear exposure is the density of the lightning flash rate (**L**) (Weber, 1998). In areas of moderate to high flash rate density, the wind shear exposure is driven by the thunderstorms that the lightning accompanies. The secondary factor of ceiling height is especially important in the high plains region where dry microbursts tend to dominate. Regions with very low lightning flash rates (< 1.0) tend to have very limited wind shear activity (the Pacific Coast region for example). Therefore, the non-lightning related terms in the equation (ceiling height and the constant) are tempered by a factor, **F**, that is simply **L** capped at 1.0.

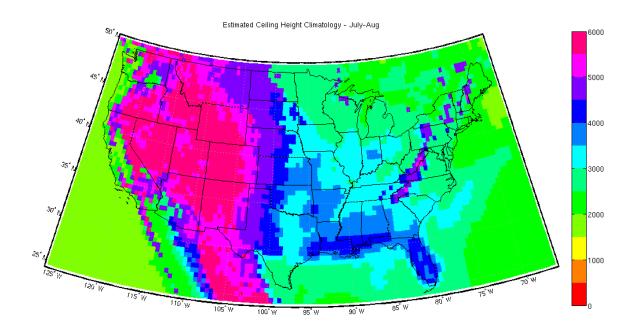


Figure 10. Average summer ceiling height (meters above sea level). Raw data gathered from 20-year dataset of hourly station observations, interpolated to a grid by fitting to lightning and terrain data.

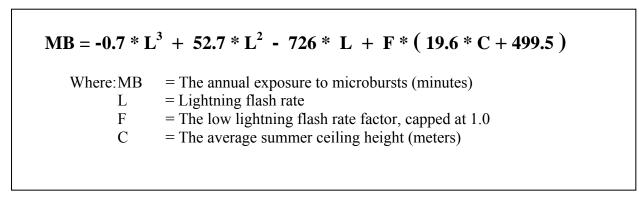


Figure 11. Microburst exposure model based on TDWR/ITWS archive data.

Overall, the model correlates well ($r^2 = 0.93$) with the measured archive data (Figure 12). Remember, only one year of archive data was available, so we would not expect a perfect match because the lighting and cloud height climatology are helping to capture longer term averages of exposure risk. A map of the interpolated MB exposure over the entire US is shown in Figure 13.

The model estimates are for the same TDWR 360 degree scan, 30 km footprint around each station. However, the airport specific exposure would be limited by the size of the ARENA (AREas Noted for Attention) at each airport. The ARENA generally depicts the region of highest concern for wind shear detection. The ARENA size is dependent on the number of runways and the arrival and departure route configuration for each runway. The median arena size is 50 sq-km with the smallest being 25 sq-km and the largest 125 sq-km. The exposure for an individual airport then is equal to the MB exposure times the size of the ARENA divided by the TDWR microburst coverage area (2827.4 km²). Therefore, if we assume a random distribution of events, a median sized airport arena with 10,000 minutes of annual exposure in the TDWR scan area would roughly equate to 175 minutes of ARENA alert activity. Individual station values of MB exposure are shown in Appendix A (along with the gust front exposure counterpart).

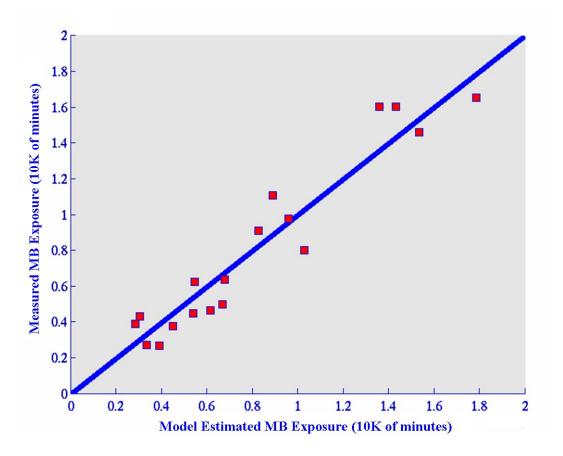


Figure 12. Comparison of MB exposure model estimates to archive measurements (R^2 correlation = 0.93).



Figure 13. US map of annual microburst exposure based on station archive model (1000s of minutes).

3.2 GUST FRONT EXPOSURE

The analysis of gust front exposure was similar to that of the microburst exposure. Archive data was gathered for a one year period, but only ITWS site data were available. As for microburst exposure, the gust front exposure is based on minute-by-minute activity of gust fronts. Therefore, the exposure is based on the number of minutes that each site reported at least one gust front alert. These are called "unique" GF minutes, and Figure 14 shows a map of the unique minutes for each archive site (normalized to a full year and full 360 degree, 18 km radius around the airport). Note that the gust front activity is far less variable than the microburst activity. Gulf region activity is roughly double that of some other parts of the country as opposed to the ten-fold increase seen in microburst activity. Gust front detections, while designed for thunderstorm outflows, often pick up passing cold-fronts and sea breezes and this may explain some of the reduced variability. Next, we needed to interpolate this snapshot of gust front activity over the entire country and at the same time account for climatology for year to year variations.

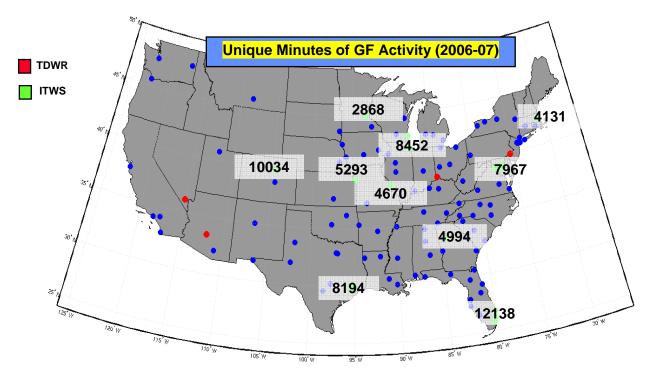


Figure 14. The measured number of minutes per year where at least one gust front was within an 18 km radius of the respective ITWS archive site.

Gust fronts are the leading edge of thunderstorm outflows, typically occurring many kilometers ahead of an approaching thunderstorm. The aviation safety hazard comes from the roll of winds at the leading edge of the outflow. Much like a microburst, crossing a gust front with its changing wind direction and shifting wind speeds can induce a drop in lift for the aircraft very near the ground. Most gust fronts have weak shear that will more likely cause a bumpy ride than an accident, but occasionally strong fronts can result in damage and injuries. As mentioned, the gust front detection algorithm will often find other types of fronts, such as cold fronts and sea breezes. But the predominant driver is the thunderstorm (Klingle-Wilson & Donovan, 1991).

The gust front exposure model developed from the ITWS archive data is shown in Figure 15. As in the microburst model, lightning flash rate is by far the largest contributor; higher ceiling heights also increase the frequency of gust fronts. Gust fronts, like microbursts, are also tempered by an extremely low-lightning factor (flash rates < 1.0), **F**, to reduce exposure in the Pacific Coastal region. Figure 16 shows the comparison of measured archive data to model estimates. The overall correlation for this model was an R^2 of only 0.69, and the ability to estimate regional differences was limited due to the reduced number of station archives that were available. Finally, Figure 17 shows a map of the estimated gust front exposure across the continental US (Appendix A gives a site by site breakdown).

$GF = 0.7 * L^{3} - 38.8 * L^{2} + 723 * L + F * (8.3 * C)$ Where: GF = The annual exposure to gustfronts (minutes) L = Lightning flash rate F = The low lightning flash rate factor, capped at 1.0 C = The average summer ceiling height (meters)

Figure 15. Gust front exposure model based on ITWS archive data.

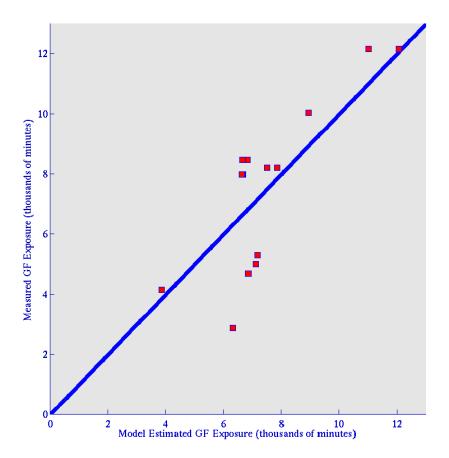


Figure 16. Comparison of GF exposure model estimates to archive measurements (R^2 correlation = 0.69).

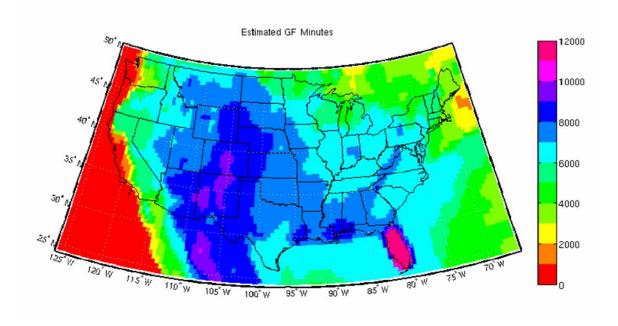
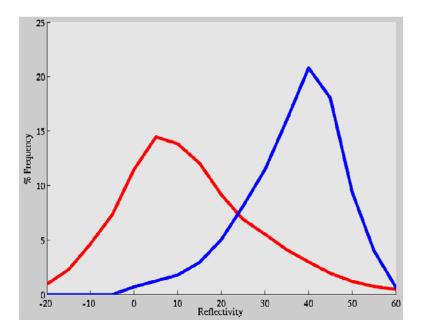



Figure 17. US map of annual gust front exposure based on station archive model (minutes).

3.3 REFLECTIVITY DISTRIBUTIONS AND OUTFLOW HEIGHT

The effectiveness of wind-shear detection systems is partially dependent on the reflectivity embedded within the outflow and the height of overall outflow depth. During the research effort to develop the TDWR system, outflow characteristics were captured at the various test-bed airport installations. From these data we have direct measurements of microburst and gust front relative reflectivity distributions at the time of peak strength for several sites (Weber and Troxel 1994). Figure 18 shows the frequency distribution of reflectivity within microburst events as measured in Denver (red) and Orlando (blue). Denver is dominated by dry microbursts with greater than 80% of the microbursts there associated with reflectivities of less than 30 dBZ (moderate rain). Conversely, Orlando is dominated by wet microbursts with more than 80% of the microburst related reflectivity exceeding 30 dBZ. The microburst-relative reflectivity PDF varies primarily because of the relative frequency of dry and wet microbursts. By using the Orlando and Denver field study data as a reference we were able to generate site-by-site estimates based on ancillary weather archives (Biron, 1991).

Figure 18. Distribution of peak reflectivity associated with microburst outflows as measured at Denver, CO (red) and Orlando, FL (blue) TDWR field studies.

Unfortunately, even with the TDWR archive records that we were able to obtain, interpolating less than a dozen actual measurements of reflectivity distributions across the country would be impractical. However, we do have an estimate of the overall reflectivity distribution at each site based on a one-year archive of 15-minute NEXRAD composite 2 km data (courtesy Weather Services Incorporated, WSI). A 40 km × 40 km grid of NEXRAD reflectivities was analyzed for each site and the distribution of non-zero maximum reflectivities was utilized as an indicator of overall reflectivity tendency. NEXRAD distributions for Denver and Orlando were then used to normalize the profiles to the dry and wet field study profiles, respectively.

Figure 19 shows the NEXRAD distribution of reflectivity for Denver (dashed red) and Orlando (dashed blue) for time periods when the sites had non-zero reflectivity. The field study curves (solid lines) are superimposed for comparison. Note that both sets of curves show a distinct separation in dry and wet site distributions. We then create a scaling by which we can transform the NEXRAD profiles into their respective peak outflow reflectivity curves (i.e., transform the dashed lines into the solid lines). A limiting factor for this scaling is that NEXRAD reflectivity below 5 dBZ is not reported, while TDWR reports reflectivity down to -20 dBZ. To compensate for this lack of sensitivity the NEXRAD frequency curve is continued linearly down from 10 dBZ to -20 dBZ.

For all other sites, we must determine whether the site is more like a wet (MCO) or dry (DEN) site before the proper transformation weighting can be applied. Each site's NEXRAD profile was compared to both the Denver and Orlando NEXRAD profiles and given a factor from 0.0 to 1.0 to represent whether it is a dry (0.0) or wet (1.0) site. The transformation curves are applied to the NEXRAD profile and then weighted according to the calculated dry/wet factor. Figure 20 shows the conglomeration of all 161 airport specific PDF distributions, while Figure 21 shows a map of the dry/wet tendency overlaid on a map of the US. Dry sites are mostly in the high plains, while wet sites are predominantly in the Gulf of Mexico and southeastern US.

Figure 19. Distribution of NEXRAD reflectivity for Denver, CO (dashed red) and Orlando, FL (dashed blue).

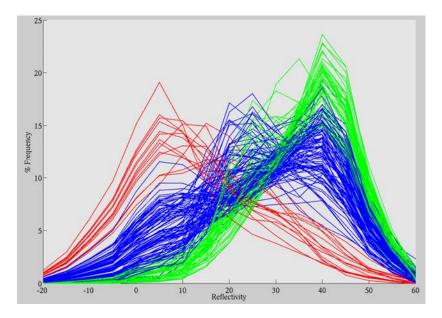


Figure 20. Compilation of wind-shear relative reflectivity distributions for all sites.

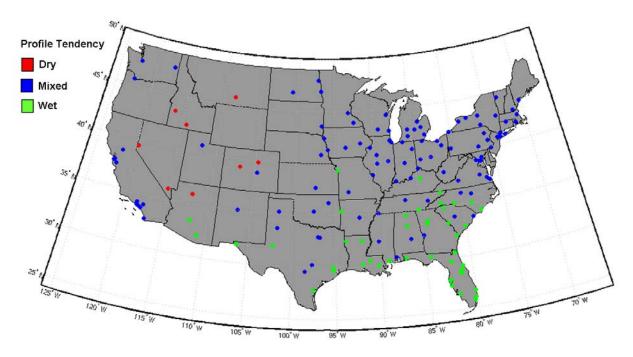
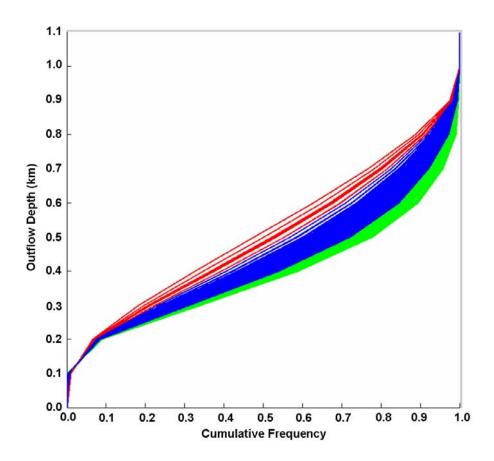



Figure 21. Dry/wet profile tendency by site.

The vertical extent of an outflow is an important factor in determining how well a radar or Lidar system will be at detecting wind shears. Shallow outflows are difficult for radars to see at a distance due primarily to line-of-sight issues. The peak outflow strength occurs in the lowest 100 meters and drops of with height. Wind shear detection systems can often detect outflows at higher elevations despite these weaker signatures. The simulation model for this study assumed that events were detectable up to the point that the outflow strength had dropped to 50% of its peak value. In addition, field study data indicate that the depth of microburst outflows varies depending on the distribution of dry and wet microbursts (Biron, 1991). Figure 22 illustrates the cumulative distribution of outflow depths (the height at which for each of the 161 study airports. The distributions are color-coded by reflectivity tendency (red for dry, blue for mixed and green for wet). Note that wet microbursts tend to be shallower while dry events more frequently begin higher up. However, the upper range for all outflow depths is fairly constant at just over 1 km.

Figure 22. Cumulative frequency of outflow depths for all sites color-coded by reflectivity profile tendency (red-dry, blue-mixed, green-wet).

Gust front characteristics do not vary as greatly with location, so we were able to use average profiles of reflectivity and outflow height based on observations from TDWR field sites (Klingle-Wilson and Donovan 1991). Figure 23(a) displays the observed average gust front reflectivity PDF and (b) the PDF for maximum depth of the gust front velocity signature.

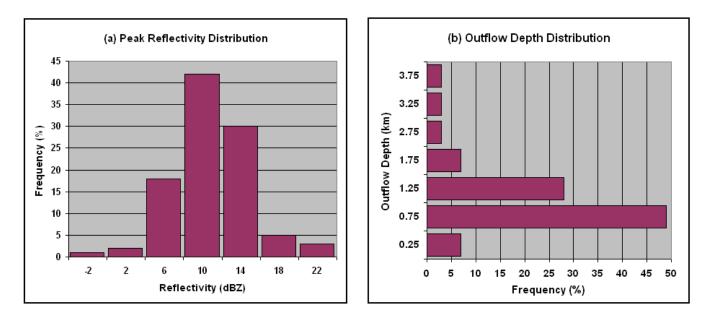


Figure 23. Gust front profiles for (a) peak reflectivity distribution associated with gust front and (b) distribution of maximum outflow depth (peak height of radar-detectable shear) (profile is the same for all sites).

This page intentionally left blank.

4. WIND-SHEAR MITIGATION TECHNIQUES AND DETECTION SYSTEM EFFECTIVENESS

4.1 MODELING PILOT TRAINING IMPACTS

After the 1975 Eastern Airlines crash in New York was attributed to a microburst, pilots were trained in ways to recognize, avoid, and recover from wind-shear encounters. The FAA's wind shear training aid program started in 1987 and it stresses recognition and avoidance of wind-shear hazards. Pilots are told to look for visual clues such as virga (elevated rain shafts), plumes of dust and debris at the surface, and intense rain shafts that could all be indicative of microburst activity. Awareness is always heightened any time thunderstorms are present in the airport region. Once these visual clues are seen, pilots are told to avoid the area under and around such features. However, in the event that the pilot enters the outflow the FAA has defined specific criteria for maneuvering up and out of the hazard. So, there are three parts to the impact of pilot training: How visible are the visual clues that the pilot must see? How effective will a pilot be at recognizing the necessary features and avoiding the hazardous regions? And, what is the likelihood that the pilot can extract the aircraft if it nevertheless enters an outflow region?

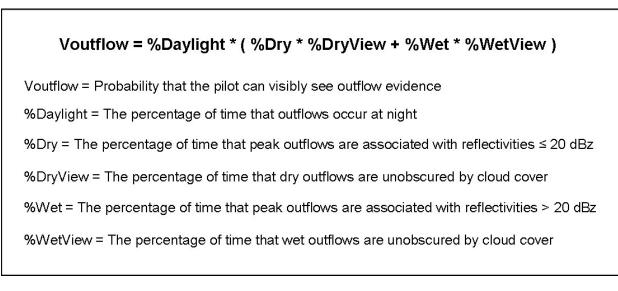


Figure 24. Equation for estimating the likelihood that a pilot will observe visual characteristics of an outflow.

4.1.1 Visibility of Outflow Features

Figure 24 illustrates an expression for the ability of pilots to see the visual microburst clues that they were trained to identify. The model concept is based on the method defined in the 1994 TDWR system engineering study, but with significantly more refined inputs (Martin Marietta, 1994). Identifying visual microburst features is dependent on the event being during daylight/twilight hours and the ground being

visible through clouds and precipitation. The time of day distribution of microbursts was based on an archive dataset of microburst activity (detailed in Section 3). From this dataset we were able to determine the percent of time that microbursts actually occurred during daylight for a sub-sample of airports. Data ranged from 71% daylight in Twin Falls, ID to a peak of 83% in Fort Lauderdale, FL. Obviously, this factor is highly dependent on the latitude of the site because more daylight hours are available. But, it is also impacted by the frequency and intensity of microburst activity. Figure 25 shows the estimated microburst daylight frequency breakdown across the continental US based on a model fit of the archive data.

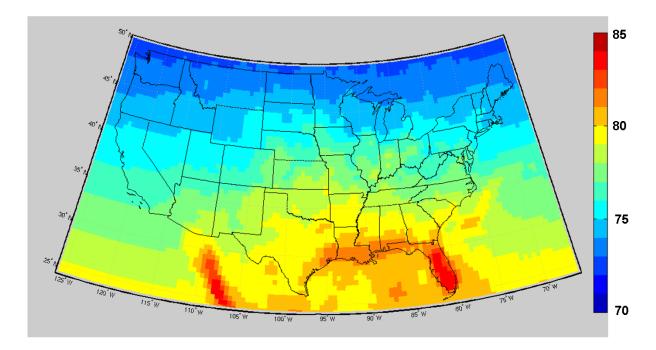


Figure 25. Estimated frequency of daylight microburst activity (%).

Secondly, pilot observations can be restricted by the presence of clouds and precipitation that is blanketing the region around an airport. By utilizing a one-year archive of NEXRAD reflectivity we examined the region within 20 km of all studied airports and calculated a % obscured field. If more than a third of the region had measurable reflectivity it was assumed that the precipitation and clouds in the region would cover the airport region and a pilot would be unable to see most visual cues. The coverage estimates are broken down by times of high and low reflectivity (using 30 dBZ as the divider). High reflectivity, or wet, microburst environments typically have widespread precipitation coverage that makes it more difficult to see outflow events, while low reflectivity (dry) environments have fewer meteorological obstructions. On average, wet environments are obscured about 50% of the time, while dry environments are obscured just 15% of the time.

Finally, we must estimate the human factor that even if a pilot *could* see a hazardous outflow, *would* he recognize it as a hazard? There are very little hard data to generate this number. Even if we were to know how many outflows with visual clues were visible to a pilot we have no way of tracking how many the pilot would actually recognize. Therefore, we are simply using a flat estimate of 50% as was used in the original TDWR study in 1994. Table 5 details the effectiveness factors for pilot observation at a subset of airport locations, the site by site breakdown can be found in Appendix B. In Table 5, the %Human column captures the human factor discussed above (50%) and %Effectiveness is simply %Voutflow (see Figure 24) X %Human.

TABLE 5

Sampling of site-specific pilot observation factors that impact a pilot's ability to visually recognize wind shears

Airport	%Daylight	%Wet	%WetView	%Dry	%DryView	%Human	%Effectiveness
BOS	75	63	28	37	69	50	16
ORD	77	58	36	42	83	50	21
DEN	76	43	35	57	84	50	24
LAS	77	38	70	62	83	50	30
MSY	81	70	72	30	98	50	32
MIA	84	84	71	16	96	50	31

4.2 ESTIMATING AIRBORNE WIND-SHEAR SYSTEM IMPACTS

The Federal Acquisition Rule (FAR) 121.358, issued on 9 May 1990, required that all Part 121 aircraft be equipped with either a "reactive" wind shear warning and flight guidance system or a "predictive" wind shear (PWS) radar. The reactive system technology was developed in the mid-1980s by Boeing and Sperry and certified by the FAA in November 1985 as an enhancement to onboard Performance Management Systems (PMS). Primary inputs are true airspeed, angle of attack, longitudinal acceleration, normal acceleration and pitch. Performance was certified using computer models representing documented wind shear conditions. Table 6 lists the effectiveness probabilities that an aircraft equipped with a reactive system would recover from a wind-shear encounter without coming in contact with the ground (Martin Marietta, 1994). But, the raw accident rate that is used for the basis of this safety analysis already has the recovery of aircraft built into the analysis. Recovery is enhanced, however, as new, higher performing, aircraft are placed in service. The current mix of 2-, 3-, and 4-engine aircraft increases the overall performance expectation of the overall fleet by 10 percentage points over that of the 1975–85

period (FAA, 2008). This 10% increase in performance is taken into consideration when factoring airborne capabilities.

TABLE 6

Estimates for the effectiveness of reactive wind-shear warnings and the overall effectiveness when combined with aircraft performance criteria

Probability that RWS warning would results in effective recovery	Lowest	Most Likely	Highest
		37.5%	48.2%
Cumulative probability based on aircraft performance	27.4%	43.8%	58.6%

Predictive wind shear warning systems were developed in the early 1990s by NASA Langley Research Center. Microwave radar, Lidar and passive infrared detection systems were evaluated through simulations and flight testing in conjunction with FAA prototype testing of TDWR in Denver, CO and Orlando, FL. The first microwave PWS radar was certified by FAA in September 1994 and today several systems are available for Part 121 aircraft (e.g., the Rockwell-Collins WXR-700 and the Honeywell, RDR-4B). PWS radars compatible with regional jet size constraints are not available at present. Figure 26 illustrates a wind shear encounter timeline for a PWS. Note that the warning horizon with these systems is extended up to 2 minutes.

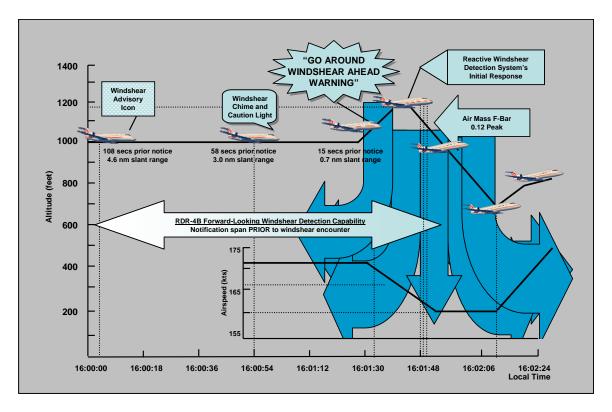


Figure 26. National PWS radar wind-shear encounter scenario.

MIT/LL polled the major airlines to estimate the percentage of the commercial fleet currently equipped with PWS radars, and to obtain feedback on the operational value of both reactive systems and PWS radars. Table 7 shows that approximately 67% of the U.S. commercial part 121 fleet was equipped with and utilized PWS radars at the time of this survey (September 2007). This rate, while above the 1994 report predictions, is increasing at a slower pace as older aircraft are replaced by PWS-equipped new Boeing or Airbus aircraft. Some airlines expressed that with the heavy coverage of ground-based systems, the investment in installing and maintaining airborne PWS systems was less compelling. In addition, foreign air carriers were not surveyed for this analysis but are likely to be less equipped for wind shear protection. For these carriers, representing approximately 25% of aircraft operations, we estimated 50% equipage. Hence, the estimate used for PWS equipage was dropped from 67% to 63%. Finally, although manufacturers are developing regional jet PWS systems, there is no guarantee that this will be technically or economically feasible for this aircraft class (and even less so for General Aviation).

Carrier	Total Fleet Size	Fleet with PWS	% Usage
American	685	122	18 %
Southwest	511	511	100 %
United	460	400	87 %
Delta	436	275	63 %
Northwest	375	58	15 %
Continental	348	348	100 %
USAirways	266	266	100 %
AirTran	114	114	100 %
Jet Blue	106	106	100%
Totals	3301	2078	67 %

U.S. Part 121 fleet equipage percentages for PWS radars, based on a telephone poll of industry representatives in September 2007*

*While these ten airlines represent the vast majority of major airline traffic in the US, this table does not include foreign carriers that are more likely to be less equipped for wind shear protection.

As noted in Weber & Cho (2005), the field validation of the reactive wind shear systems and PWS radars has not been nearly as extensive as was accomplished for the FAA ground based warning systems. Manufacturers continue to do some flight testing, but certification has been accomplished entirely through computer simulated microburst penetration data. The airline users we spoke with generally felt that the PWS radars were useful, but they uniformly emphasized that these were not a substitute for the ground based systems. Broad-area situational awareness of wind shear – not attainable with the limited range, on-board systems – was felt to be essential for minimizing encounter risk. The reactive wind-shear systems were stated to be ineffective by those users who commented on their performance.

As mentioned, the effectiveness of PWS radars has only been measured in simulated environments where it often exceeds 95% effectiveness (Martin Marietta, 1994). However, based on the known limitations of the PWS in dry environments, effectiveness values are reduced based on the distribution of outflows associated with weak reflectivity. Appendix B lists the estimated effectiveness of PWS at each airport based on the sites reflectivity profile.

4.3 MODELING GROUND-BASED WIND-SHEAR SYSTEM EFFECTIVENESS

One of the key factors in estimating the benefits of a terminal wind-shear detection system is its performance. Thus, it is necessary to quantify the wind-shear detection effectiveness for each sensor, preferably on an airport-by-airport basis. To consider sensors that are not yet deployed models must be developed that take into account the various effects that factor into the detection probability. This section gives a brief summary of the models that were developed. Complete description and technical details are provided in a separate report (Cho and Hallowell, 2008).

The sensors considered in this study are the existing FAA terminal wind-shear detection systems: the Low Altitude Wind Shear Alert System (LLWAS) (Wilson and Gramzow, 1991), the Terminal Doppler Weather Radar (TDWR) (Michelson et al., 1990), and the Airport Surveillance Radar Weather Systems Processor (ASR-9 WSP) (Weber and Stone, 1995). We also included the Weather Surveillance Radar 1988-Doppler (WSR-88D, commonly known as NEXRAD) (Heiss et al., 1990) in this study. Although not specifically deployed to be a terminal wind-shear detection radar, the NEXRAD is a highperformance weather radar that is capable of providing useful wind-shear data if it is located close enough to an airport. Furthermore, we included new sensors in addition to the currently deployed systems. For reasons to be explained later, a Doppler Lidar is expected to be a good complement to radar for windshear detection. The Lockheed Martin Coherent Technologies (LMCT) Wind Tracer Lidar is a commercially available product that has been operationally deployed at the Hong Kong International Airport along with a TDWR (Chan et al., 2006). It has likewise been suggested as a complementary sensor at major U.S. airports where radar alone has not been yielding satisfactory wind-shear detection performance. (The FAA has recently decided to purchase one for the Las Vegas airport.) To offer a standalone wind-shear detection package, LMCT has proposed an X-band radar to go along with the Lidar, so we included this sensor in our analysis also.

Airports that presently have coverage by TDWR (46), ASR-9 WSP (35), and LLWAS-RS (Relocation/Sustainment) (40) were selected for this study. An additional 40 airports without wind-shear sensors were included, based on a change in FAA policy to also protect non-Part-121 aircraft from wind shear hazards. Table 8 shows which sensors already exist at which airports, and which sensors are considered for new deployment at which airports. We did not consider the possibility of installing new TDWRs or ASR-9s due to prohibitive cost; new WSPs are only considered for already existing ASR-9s. Deploying new or moving existing NEXRADs was not considered.

Sensors vs. airports included in study

Sensor		Airport (161)					
Sensor	TDWR (46)	WSP (35)	LLWAS-RS (40)	Other (40)			
TDWR	Existing	N/A	N/A	Existing*			
WSP	New	Existing	N/A	Existing*			
LLWAS	Existing (9) New (37)	New	Existing	New			
NEXRAD	Existing*	Existing*	Existing*	Existing*			
LMCT Lidar	New	New	New	New			
LMCT X band	New	New	New	New			

* Closest to airport.

Wind-shear detection performances of sensor combinations were also analyzed (see Table 9).

TABLE 9

Sensor combination vs. site

Sensor Combination	Site
TDWR + Lidar	TDWR and other airports
TDWR + LLWAS	TDWR and other airports
TDWR + NEXRAD	TDWR and other airports
TDWR + NEXRAD + LIDAR	TDWR and other airports
TDWR + NEXRAD + LLWAS	TDWR and other airports
WSP + Lidar	TDWR, WSP, and other airports
WSP + LLWAS	TDWR, WSP, and other airports
WSP + NEXRAD	TDWR, WSP, and other airports
WSP + NEXRAD + Lidar	TDWR, WSP, and other airports
WSP + NEXRAD + LLWAS	TDWR, WSP, and other airports
NEXRAD + Lidar	All airports
NEXRAD + LLWAS	All airports
X-band + Lidar	All airports
X-band + LLWAS	All airports

Note that, at the present time, NEXRADs are not suitable for microburst detection and warning, because their update rates (~5 minutes) are too slow to meet the FAA requirement. (For gust-front detection and tracking, the update rates are adequate, and the FAA already takes advantage of NEXRAD data for this purpose (Smalley et al., 2005).) Thus, even though the NEXRAD microburst detection probabilities we estimate in this study may, in some cases, appear to be acceptable, actual operational use would require that a substantially faster volume scan strategy be implemented. As a tri-agency radar with the FAA as a minor stakeholder, it may be problematic to prioritize the NEXRAD for terminal microburst detection in this way.

The wind-shear phenomena for which we computed detection probabilities are the microburst and gust front. There are, in fact, other forms of hazardous wind-shear, such as gravity waves, but these are the only ones for which FAA detection requirements exist at this time. The detection coverage areas assumed was the union of the Areas Noted for Attention (ARENAs) for microbursts and an 18-km-radius circle around the airport for gust fronts (Figure 27). An ARENA polygon consists of the runway length plus three nautical miles final on approach and two nautical miles on departure times a width of one nautical mile. The 18-km extent of the gust-front coverage corresponds to the distance a gust front would travel at 15 m s⁻¹ for 20 minutes, which is an appropriate metric for gust-front anticipation lead time in the context of airport operations. Gust-front detection is important for delay reduction benefits. (For reference, the TDWR generates gust-front products out to 60 km from the airport.)

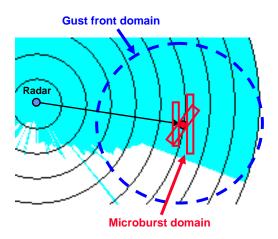


Figure 27. Wind-shear coverage domains used in study. White space illustrates terrain blockage.

4.3.1 Radar Performance Analysis

Of the radar systems considered in this study, the TDWR has the best performance characteristics for terminal wind-shear detection—it has the highest weather sensitivity, the narrowest antenna beam (for clutter avoidance), and its use is 100% dedicated to this mission. It also incurs the highest cost to the FAA, because it is not shared with other agencies or missions, and it is located on its own site away from the airport. The WSP is a signal processing system that is piggybacked onto the ASR-9 terminal aircraft surveillance radar, so the incremental cost is quite low. However, being dependent on the vertical fan

beam and rapid scanning rate of the ASR-9, it is far from an ideal system for low-level wind-shear detection. The NEXRAD is only slightly less sensitive to weather compared to the TDWR, has a 1° antenna beam, and its cost is shared by two other agencies besides the FAA. However, it is often not located close enough to the airport, and its volume scanning strategy, which is tailored to wide-area coverage, is too slow for microburst alerting. The proposed LMCT X-band radar should have performance and cost profiles that are somewhere in between the TDWR/NEXRAD and WSP extremes.

The radar system sensitivity was the starting point of our analysis. Shown in Table 10 are some of the relevant system parameters and the minimum detectable dBZ at 50-km range for the four radars studied. Although the latter quantity does not include precipitation attenuation effects, the impact of attenuation was included in the X-band analysis as the impact on performance can be significant.

Parameter	TDWR	ASR-9 WSP	NEXRAD	LMCT X-band
Peak Power (kW)	250	1,120	750	200
Pulse Length (μs)	1.1	1	1.6	0.4
Antenna Gain (dB)	50	34	45.5	43
Beamwidth (Az x El)	0.55° x 0.55°	1.4° x 4.8°	0.925° x 0.925°	1.4° x 1.4°
Beam Elevation Angle	0.3°	2°	0.5°	0.7°
Wavelength (cm)	5.4	11	10.5	3.3
Max. Clutter Suppression (dB)	57 (60*)	48 (60*)	50 (60*)	50
Rotation Rate (°/s)	~ 20	75	~ 20	~ 20
Pulse Repetition Frequency (Hz)	~ 1600	~ 1100	~ 1000	~ 2500
Min. Detectable dBZ @ 50 km**	-11	7	-10	-3

TABLE 10

Radar System Parameters

*After upgrade.

**Without precipitation attenuation.

Radar signal detection can be noise limited or clutter limited. In the latter case, the clutter suppression capability determines the detection performance. All three existing radars (TDWR, NEXRAD, ASR-9) which have klystron transmitters, are undergoing or expected to undergo an upgrade that will bring the maximum possible clutter suppression to about 60 dB. The LMCT X-band radar has a magnetron transmitter with an expected maximum clutter suppression capability of 50 dB. For the results used in the cost-benefit analysis we used the post-upgrade performance figures.

The ability of a radar system to detect low-altitude wind shear depends not only on the radar sensitivity and clutter suppression capability, but also on viewing geometry, clutter environment, signal processing and detection algorithm effectiveness, and the characteristics of the wind shear itself (Figure 28). Thus, although the system characteristics may be invariant with respect to location, there are many site-specific factors that affect the probability of detection (P_d) performance. In this study we tried to objectively account for as many of these factors as possible.

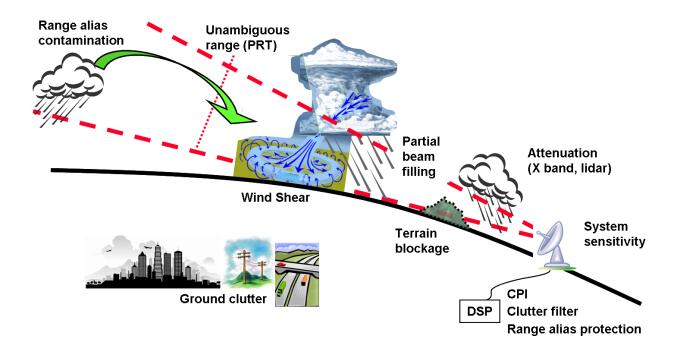
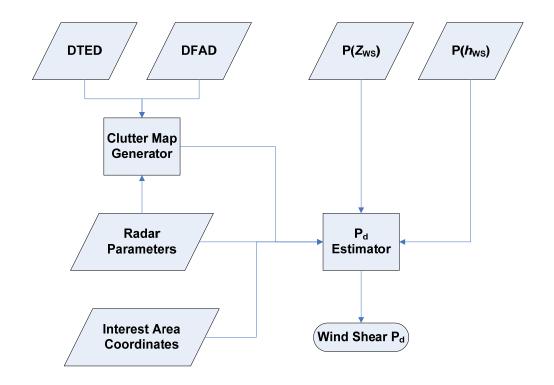



Figure 28. Illustration of various factors that impact radar wind-shear detection probability.

A high-level flow chart of the radar wind-shear P_d performance estimator is shown in Figure 29. For each radar at a given site, a clutter residue map (CREM) was generated using digital terrain elevation data (DTED), digital feature analysis data (DFAD), and radar characteristics. Probability distribution functions (PDFs) of the wind-shear reflectivity, $p(Z_w)$, and outflow depth PDF, $p(h_w)$, were also generated for each radar at a given site. These were produced using a combination of wind-shear data collected during field experiments and modeling based on nationwide proxy parameters. The interest area, as explained previously, was the union of the ARENAs for the microburst case and an 18-km radius circle around the airport for the gust front case.

Figure 29. Flow chart of the radar wind-shear P_d performance estimator.

With a range-azimuth grid centered on the radar, for each cell inside the interest area the minimum detectable reflectivity is computed. This calculation involves the factors shown back in Figure 28 as well as others—system sensitivity, terrain blockage, clutter signal and the ability of the system to suppress it, range-alias contamination likelihood and the capacity of the signal processing to mitigate it, signal loss and clutter gain due to partial beam filling, and attenuation due to intervening precipitation. The probability of the wind-shear signal being visible above the noise and clutter in that cell is computed by integrating upward from the minimum detectable reflectivity over the wind-shear reflectivity PDF. The mean over all the cells in the interest area are then calculated with the result from each cell weighted by its area. This overall wind-shear "visibility" is then multiplied by the maximum success rate of the wind-shear detection algorithm, i.e., the best detection rate (for a specified false alarm rate) that the algorithm can yield if given noise-free images of wind-shear, to arrive at the estimate of wind-shear detection probability.

For the X-band radar, it is possible to have a maximum detectable reflectivity in addition to the minimum limit, because highly reflective weather can also attenuate the signal severely at these shorter wavelengths. In this case, the integration over the wind-shear reflectivity PDF is taken from the minimum to the maximum detectable reflectivities. For siting, we arbitrarily placed the X-band radar in the center of the union of the ARENAs on an 8-m tower. Determining whether this would be feasible or optimal was well beyond the scope of this study.

4.3.2 Lidar Performance Analysis

The LMCT Doppler Lidar operates at a wavelength of 1.6 μ m with an average transmitted power of 2 W. It has a laser beam diameter of 10 cm, a range resolution of 30 to 50 m, and a maximum scan rate of 20° s⁻¹. For a more detailed description, see Hannon (2005).

Lidars operate at much shorter wavelengths than radars, and the balance between scattering and attenuation relative to particles in the atmosphere is quite different. For a Lidar, the maximum range occurs in the absence of large, attenuating precipitation particles, and in the presence of aerosols that provide effective backscattering. The detection range generally decreases with increasing dBZ along the propagation path. Therefore, the integration over the wind-shear reflectivity PDF in computing the visibility should be computed downward from a maximum detectable reflectivity.

This is a simplified model of the actual physical process, because dBZ is a radar-based quantity that corresponds well to the Lidar attenuation but not the backscattering strength. For our analysis, we were only concerned with two specific meteorological situations—a microburst at close range and a gust front approaching from a distance. Based on a sensitivity model that incorporated field testing data, LMCT provided us with maximum range vs. dBZ curves for the microburst case and for the gust-front case at wet and dry sites (Figure 30). The gust-front detection ranges are enhanced relative to the microburst detection range, because the leading edge of a gust front contains a wealth of scattering sources for the Lidar, while the air mass preceding it is often quite clear. The wet-site gust front tends to have more precipitation in the vicinity of the front, so the range is reduced. A receding gust front would tend to have much more precipitation between it and the Lidar, but this is a situation that is of much less importance to the safety and delay reduction missions of the terminal wind-shear sensor.

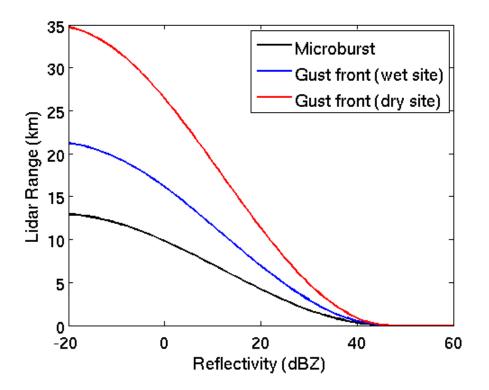


Figure 30. LMCT Doppler Lidar maximum detection range vs. weather radar reflectivity.

The current Lidar obtains samples up to only about 12 km in range due to signal processor limitations. However, according to LMCT, it would be quite feasible to upgrade the processor to allow sampling up to 18 km in range. Therefore, as with the radars, we assumed a post-upgrade capability for the Lidar.

Because the Lidar beam is collimated, we assumed that it successfully avoids ground clutter altogether. (We did include terrain blockage for the 18-km-radius-around-the-airport gust-front case, assuming a beam elevation angle of 0.7°.) Thus, the detection probability estimation scheme, which follows the radar model, becomes much simpler because the clutter effects are removed. These characteristics of the Lidar (maximum sensitivity at low dBZ and not being affected by clutter) make the Lidar an ideal complement to a radar. As with the X-band radar, we assumed that it would be sited in the center of the union of the ARENAs on an 8-m tower.

4.3.3 LLWAS Performance Analysis

The LLWAS obtains its wind measurements from anemometers mounted on towers at multiple locations in the airport vicinity. The wind-shear detection coverage provided is therefore directly dependent on the distribution of the anemometers and is limited to a small area compared to the radars and Lidar. The number of sensors per airport is 6–10 for the LLWAS-RS and 8–32 for the LLWAS-NE++ (network expansion).

The coverage provided at each LLWAS-equipped airport is given in the data base as (nautical) miles final on arrival and departure for each runway. Since the ARENA is a one-mile-wide corridor from three miles final arrival to two miles final departure (runway inclusive), it is simple arithmetic to compute the LLWAS coverage from these numbers. The microburst detection probability is then estimated as the product of the coverage and the LLWAS detection algorithm detection probability, which we took to be 0.97 (for a false alarm probability of 0.1) (Wilson and Cole, 1993). To verify the accuracy of the data base, we ran the NCAR code (courtesy of W. Wilson) originally used in the development of the LLWAS microburst detection algorithm to compute the coverage at Orlando (MCO) with the actual airport configuration file (ACF) ingested by LLWAS. The coverage based on the database numbers yielded 87% while the NCAR code with ACF gave 88% coverage, an excellent agreement.

4.3.4 Sensor Combination Analysis

Fusion of data from multiple sensors has the potential to increase wind-shear detection probability. At the minimum, holes in the coverage of one sensor due to blockage, clutter residue, lack of sensitivity, etc., may be filled in by another sensor with better sensing conditions in those areas. Line-of-sight velocity fields cannot be directly merged for non-collocated sensors, but sophisticated detection algorithms that perform fuzzy logic operations on interest fields would allow merging at that level instead of at the base data level. Therefore, for radar + radar and radar(s) + Lidar combinations, we computed the visibility pixel-by-pixel for each sensor and took the greater value before summing over interest area.

In the case of radar(s) + LLWAS, the detection phenomenologies are independent of each other. The data on which the detection algorithms work are quite different—volumetric base data for the radar and point measurements of surface winds for the LLWAS—so they cannot be fused together in the same way as the radar and Lidar data. In practice, the detection alert is issued after combining the wind-shear message outputs from the two systems (Cole 1992). Thus, we took the detection probability, P_d , for each sensor and combined them as P_d (combined) = 1 – $[1 – P_d$ (radar)][1 – P_d (LLWAS)]. In theory, the false alarm rates also combine to increase in similar fashion. However, clever use of all the available contextual data can reduce false alarms (Cole and Todd 1996) so we assumed that the false alarm rate stayed constant.

4.3.5 Discussion of Performance Results

The complete wind-shear detection probability estimates are tabulated in Appendix C. Note again that post-upgrade performance characteristics were assumed for the TDWR, ASR-9 WSP, and NEXRAD. (For comparison purposes, single-radar results for the "legacy" systems are also given in Cho and Hallowell (2008).) The summary results for each class of system are given below.

The post-upgrade TDWR is expected to meet the microburst detection requirement at all airports, except for Las Vegas (LAS) due to the severe road clutter there. For gust-front coverage within the 18-km-radius interest area, the TDWR also does very well except for Las Vegas, Phoenix (PHX), and Salt Lake City (SLC). Since the gust-front reflectivity PDF used was the same for every airport, the poor performance at

these three airports are due to terrain blockage and clutter, and not due to the dryness of the sites. This conclusion is reinforced by the high detection probabilities at Denver (DEN), which is the fourth "dry" site. Preexisting TDWRs are close enough to four non-TDWR airports to provide satisfactory wind-shear detection capability (MCO for ORL and SFB, ATL for PDK, and TPA for PIE).

The ASR-9 WSP, as expected, does not perform as well as the TDWR. The reduction in capability is more pronounced for gust fronts. As a potential replacement for the TDWR, a serious problem is that there is no ASR-9 at five of the TDWR airports (DAL, LGA, MDW, PBI, and SJU) and WSPs installed at the closest ones would not yield adequate capability at those sites. Unlike with the TDWR, the dry-site microburst reflectivity PDFs do have a significant negative impact on detection probability as can be seen from the Denver results. This is due to the much lower sensitivity of the ASR-9.

The NEXRAD would yield performance comparable to the TDWR if located close enough to the airport, which is the case for only 20% of the study airports. (Also, we note again that the current operational NEXRAD scan update rates are not fast enough for microburst detection.)

The performance of the proposed LMCT X-band radar falls between that of the TDWR and WSP in general. Site-specific results for the X-band system should be taken with a grain of salt, since the assumed siting at the center of the union of the ARENAs with a tower height of 8 m is neither optimized nor known to be feasible. Actual siting will have an effect on the P_{ds} for better or for worse. For example, the extremely poor performance in Pittsburgh (PIT) indicates that a more careful siting analysis is needed before a new radar is placed there.

Clearly, the Lidar by itself is not sufficient for acceptable terminal wind-shear detection performance. However, it is an excellent complement to a radar. In fact, any of the four radars considered, properly sited, is projected to deliver satisfactory wind-shear detection performance, provided that the data from the two sensors are optimally integrated.

Almost all LLWAS systems do not have enough anemometers to cover all of the ARENAs at an airport, hence the fairly low microburst detection rate (gust-front detection out to 18-km is obviously not feasible for an LLWAS). The exception is Denver with its 32 anemometers. Combined with a properly sited radar, the microburst detection performance is expected to be quite good, although not as good as the Lidar + radar combination at the more difficult (dry or heavy road clutter) sites. And, of course, there is no boost to the 18-km gust-front coverage with an LLWAS.

5. METHODOLOGY FOR BENEFITS AND COSTS ASSESSMENT

The time period used for all calculations is from 2010 to 2032; this is primarily driven by the evaluation of potential alternatives. Current configurations of systems are assumed to continue from 2010 to 2012 and then alternative costs and benefits are figured for a 20-year life-cycle (2013–2032). Some alternatives may take longer to implement than others, but the 3-year assumption allows for similar cost comparisons between the various system combinations. Cost and benefits projection require that forecasted values be depreciated back to a constant dollar figure, in this case we use FY08 constant dollars. Therefore, for both benefits and analysis figures an FAA recommended value of 7% is used for this depreciation (FAA, 2007). Note that this is particularly important when it comes to costs of initial implementation, as these costs will be depreciated the least.

5.1 ASSESSING SAFETY BENEFITS

The potential safety benefits for each airport and each category of aircraft for each ground wind shear system configuration is based on five factors as shown below. Accident costs capture the expected societal and actual costs that are expected to occur if an aircraft crashes due to wind shear. Accident Rates estimate the frequency with which accidents would occur, given that no ground-based wind shear systems were present. Forecasted operations and enplanement rates are used to predict future safety exposure based on the number of aircraft and people at risk over the evaluation period (2010–2025). The Safety Weather Exposure Factor (SWEF) is a measure of the relative exposure of an airport's operations to wind shear. Finally, the change in system efficiency measures the difference between the current ground-based wind shear detection system and each alternative.

Potential		Accident				Safety		Change in
Safety	Accident	Rates		Forecast		Weather		System
Benefits	$= \frac{1}{Costs(\$)}$	× (accidents	×	Operations &	×	Exposure	×	Efficiency
(\$)	$COSIS(\varphi)$	per		Enplanements		Factor		relative to
(φ)		operation)				(SWEF)		Baseline

5.1.1 Accident Costs

Accident costs are calculated based on values defined in FAA guidelines for economic analyses (GRA, 2007) and (FAA, 2008). Tables 11 and 12 show the recommended values for personal and infrastructure losses in an aviation accident.

Actuarial data for personal injury or fatality

Category	Cost (\$)
Fatality	\$ 5,800,000
Serious Injury	\$ 1,087,500
Minor Injury	\$ 11,600

TABLE 12

Aircraft Category Aircraft Damage Air Carrier Air Taxi General Aviation Replacement \$ 11,460,000 \$ 1,817,062 \$ 361,940 \$ 3,700,000 \$ 85.154 \$ 35,070 Restoration \$ \$ \$ Investigation 449,000 449,000 35,100

Estimated market values of aircraft repair/replacement

To evaluate the cost of a typical wind shear accident, we must estimate the accident 'structure' based on the breakdown of personal injury and infrastructure losses from previous wind shear accidents. Some of this data was presented in Section 2; the relative infrequency of wind shear related accidents in recent years and concerns that relying on a small sample to be representative demands that we pool all the available accident data when estimating accident structure. However, there is some evidence from the data that wind shear accident severity in the mid-late 1970s was significantly higher than it is today. There are several possible explanations for this: enhanced pilot training, improved aircraft performance, and/or widespread awareness of hazardous conditions (from wind shear radar systems). However, since the evidence for reduced severity is extracted from the relatively few events that occurred during the era where ground-based wind shear systems had already been installed it is difficult to quantify the reduction accurately. Therefore, utilizing an average of all the accident severity data would seem acceptable for evaluating the relative worth of ground-based systems. Table 13 lists the distribution of personal fatalities/injuries and infrastructure losses from all accidents over the period 1975–2007.

Pooled accident structures, 1975–2007

	Aircraft Category				
	Air Carrier Air Taxi		General Aviation		
People					
Number of passengers	105.9	2.6	2.5		
Load factor	80%	100%	100%		
Fatality	22 %	31 %	10 %		
Serious	10 %	15 %	9 %		
Minor	3 %	12 %	19 %		
Aircraft					
Destroyed	30 %	63 %	24 %		
Substantial	55 %	38 %	76 %		
Minor	5 %	0 %	0 %		

Utilizing the tables above, the average safety costs associated with a wind shear accident can be calculated as shown in Table 14.

TABLE 14

Estimated average wind-shear-related accident costs

	Aircraft Category					
Costs (2008 \$\$)	Air Carrier	Air Taxi	General Aviation			
People	\$ 117,345,503	\$ 5,086,966	\$ 1,714,929			
Aircraft	\$ 5,922,000	\$ 1,626,108	\$ 148,620			
Totals	\$ 123,267,503	\$ 6,713,073	\$ 1,863,548			

5.1.2 Accident Rate

As detailed in Section 2, the final accident rate breakdowns used for the safety analysis are shown in Table 15.

Average and range of wind-shear-related accident rates by category (# of "unprotected" accidents per million operations)

Aircraft Category	Average Rate	Range
Part 121/9	0.1095	0.1045 – 0.1168
Part 135/7	0.2037	0.1299 – 0.2410
Part 91	0.1600	0.1201 – 0.1842

5.1.3 Forecasted Operations and Enplanements

The number of operations for each aircraft type and each airport are obtained from the FAA Terminal Area Forecasts (FAA, 2007). Table 16 shows the number of operations (2008) for each class of wind shear study airport and the remaining NAS traffic. Over 94% of the major air carrier traffic is covered by the study airports chosen, with almost 90% of the overall traffic protected by some active wind shear system. The percentage of the total US operations covered by the 161 study airports is roughly 94%, 59%, and 10% for air carrier, air taxi and GA operations, respectively. While a large portion of GA traffic and therefore total traffic are non-study airports, these GA operations are spread out over hundreds of small airports and GA traffic is the most difficult class of aircraft to reach for wind shear warnings.

Airport Type	Air Carrier	Air Taxi	General Aviation	Total
TDWR	9.3	5.4	1.5	16.2
WSP	2.2	1.5	1.8	5.5
LLWAS	1.1	0.9	3.2	5.2
Unprotected	0.7	0.9	1.8	3.4
Non-study Airports (unprotected)	0.8	6.1	74.4	81.3
TOTALS	14.1	14.8	82.7	111.6

TABLE 16

Breakdown of aircraft operations by airport type (millions of operations, 2008)

Growth rates vary from airport to airport but the overall trends for operations are projected to have an average increase of 2% per year for both Air Carrier and Air Taxi traffic operations, with slightly slower growth rates for General Aviation. By 2032, Air Taxi operations at the study airports increase to 63%, while Air Carrier and General Aviation coverage rates stay essentially flat. Figure 31 illustrates the breakdown of operation types grouped by the type of wind shear protection. The disparity in the percentage of air carrier types is not unexpected because large airports with heavy aircraft are less desirable for small aircraft and recreational users.

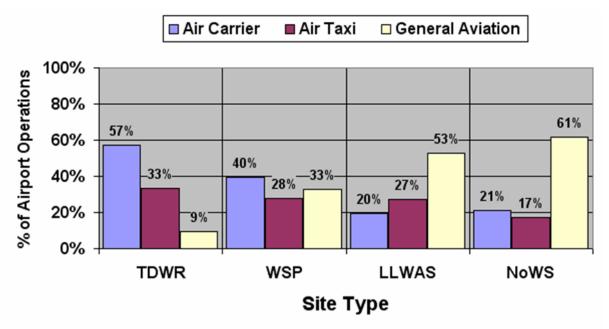


Figure 31. Breakdown of aircraft operations by study airport wind-shear protection coverage (2008).

5.1.4 Safety Weather Exposure Factor (SWEF)

Safety weather exposure factor (SWEF) is used to weight the risk of each operation at individual airports in terms of exposure to wind shear. As discussed in Section 3, wind shear exposure for safety comes primarily from microburst outflows but some gust fronts are strong enough to cause additional concern. The SWEF number combines the two risks by weighting microburst exposure at 90% and gust front exposure at 10%. Microburst exposure is determined by calculating the average microburst-related wind shear exposure factor over all of the 161 airports being analyzed. An implicit assumption is made that the 161 airports are sufficiently dispersed that they represent the average exposure over the entire country. The relative MB exposure for each airport is then the airport exposure divided by the average. An exposure factor of 1.0, therefore, represents an airport risk that is exactly the average. If the ratio is higher (lower) than 1.0 then the exposure is higher (lower) than average. The same calculations are made for gust front exposure and then the two values are combined together (90% MB + 10% GF) to obtain the SWEF. Appendix A lists the overall SWEF value for each site.

5.2 ASSESSING DELAY BENEFITS

Ground-based systems add an important aspect to the benefits equation: delay savings. The ability of many of the radar based systems to detect and predict the location of precipitation, wind shear and gust fronts allows the NAS to be aware of and in some cases plan for disruptive weather events. These benefits are often difficult to quantify, but several reports have detailed both qualitatively and quantitatively the benefits of wide area weather awareness and planning as it relates to TDWR and WSP and the ITWS and

CIWS systems that incorporate these radars (Allan and Evans, 2005 & Robinson, et al., 2004). For this report we focused only on wind shift prediction because it was a potential delay benefit that was directly related to the mission of wind shear protection.

Potential Delay Benefits (\$) = Delay Costs (\$)	Nur Si X Wir D Oper	nnual nber of rong dshifts uring rational Day	×	(Minutes of Runway Outage)^2	×	(Capacity X Demand) / (Demand - Capacity)
--	---------------------------------	---	---	------------------------------------	---	--

Estimated benefits of reducing airline delays by detection of wind shift using current ground wind shear systems are calculated according to a standard queuing model [Evans et al. (1999) and Allan & Evans (2005)]. The inputs of this model are airport-specific demand, capacity, and an estimate of the time period when the capacity is reduced due to an adverse weather event. The model outputs are the total delay time for all the aircraft affected by the event. Accepted airport capacity estimates were obtained for the 35 Operational Evolution Partnership (OEP) airports (FAA, 2004) which are also the primary drivers of delay in the NAS. Estimates for non-OEP airports assumed that only the flights directly impacted by the runway outage would incur delay and that no queue would be built-up.

To estimate airport demand, we used hourly rates calculated from TAFs scheduled operations in 2007 based on assumptions of 365 days per year and 18 operational hours per day. Adjustments were made for two airports, LAS and LAX where this methodology resulted in artificially high demand values. Based on a benefit study of runway wind forecast at Boston Logan International Airport (Rasmussen and Robasky, 1995, 1996), we estimated that runway reconfiguration following an unanticipated wind shift would cost ATC 10 min for arrivals and 15 min for departures on average. If the wind shift was anticipated, this reconfiguration time could be reduced to approximately 5 minutes. Therefore, we use an average value, 12.5 min, for the duration of the runway capacity loss for a wind shift event that is not detected by the airport's ground based wind shear detection system. The arrival and departure delays are assumed to be evenly distributed. For events that are detected by the wind shear system, we use 5 min as the duration of the capacity gain that would be achieved due to advance warning of wind shifts.

While even weak gust fronts could potentially force an airport to shift runways, our analysis focuses only on strong windshifts where the wind direction was shown to shift by more than 45 degrees and the wind speed maintained greater than 10 knots throughout the shift. Hourly observations from 1977–96 for the study airports were examined to estimate the annual frequency of strong windshifts for each airport. Appendix A lists the windshift frequency result for each airport.

Delay costs are calculated by multiplying total delay hours with hourly delay costs adapted from FAA economic analysis guidelines, GRA (2007). Table 17 shows the breakdown of delay costs as derived from the economic guidelines.

	Variable Cost			Passen			
FY08\$	Per Airborne Hour	Per Ground Hour	Per Delay Hour	# of passengers	Time costs (\$/hour)	Total Passenger Cost (\$)	Total Per Delay Hour Cost (\$/hour)
Air Carrier	\$3,948	\$1,932	\$2,940	95.4	\$ 28.60	\$2,728	\$5,668
Air Taxi	\$1,125	\$ 550	\$ 838	3.7	\$ 37.20	\$ 138	\$ 975
General Aviation	N/A	N/A	\$ 526	3.7	\$37.20	\$ 138	\$ 663

Breakdown of delay costs for passenger and aircraft time (including crew) as adapted from GRA, 2007

To estimate the delay benefits, we first calculate the total delay costs for each airport assuming there is no capability for advance detection of an impending airport wind shift. We then repeat the calculation taking into account the detection capability of each evaluated airport wind shear detection system. The differences between these two delay costs represent the delay reduction benefits associated with each system.

5.3 ESTIMATING SYSTEM COSTS

Both the currently implemented and alternative wind shear systems evaluated in this report have operating and/or building costs associated with them. In assessing the relative value of wind shear system value one must reduce the overall benefit of the system by its associated cost. Therefore, each alternative was examined to estimate the cost of operating existing systems and implementing and then operating alternative systems and/or configurations.

Cost data were gathered by MCR Federal, Inc. using both actual cost data (for existing systems like TDWR, WSP and LLWAS) and estimated costs obtained from vendors and FAA staff for alternatives (X-band, NEXRAD and Lidar-based systems). All costs for the wind shear study were estimated using Base Year 2008 (BY08) constant year dollars within the ACE-IT, version 7.1, cost model. Costs for all systems, both existing and new, were estimated for the years 2010 through the year 2032. This timeframe was based on the simplifying assumption that all new systems (where applicable) would be procured, implemented and commissioned by the year 2013 and remain in the NAS for a 20 year life cycle (through 2032). Present value costs for purposes of economic analysis were calculated by applying an annual 7% discount factor to the BY08 calculated costs. The following table summarizes the average cost per system. Any Tech Refresh or SLEP costs associated with the existing legacy systems (TDWR, WSP, and LLWAS) were included in the "In-Service Management" costs. Where applicable, these costs were included in the implementation costs for the newer systems.

Cost estimates for the existing weather systems (TDWR, WSP, and LLWAS) were based on current and recent cost baselines. TDWR costs, including SLEP activities, were based primarily on the TDWR SLEP baseline estimate conducted in FY07. This estimate was augmented by the 2006 O&M Study conducted by ATO-F for those WBS elements not addressed by the SLEP. WSP costs were estimated using the 2006 WSP Tech Refresh Baseline estimate and LLWAS costs were estimated using inputs from subject matter experts such as the Logistics Center, the Second Level Engineering organization (AJW-144), and ATO-F Workforce Planning.

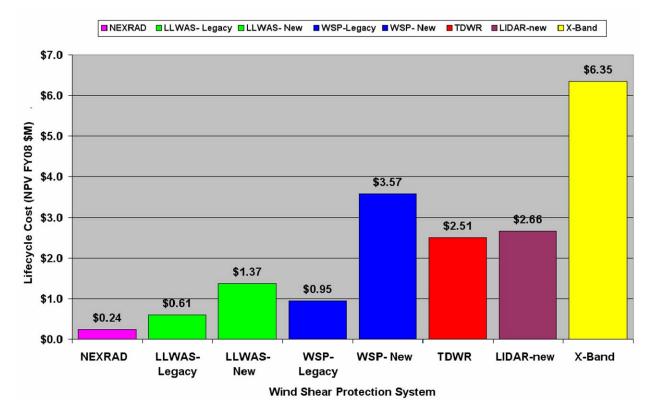

The cost estimates for the new weather systems (WSP, LLWAS, LIDAR, and X-Band Radar) and for modifying the existing NEXRAD system were based on analogies to existing costs and engineering assessments. However, only incremental costs associated with new systems or new functionality were included in the estimate. For example, Second Level Engineering costs only included additional staffing required to support the new systems. NEXRAD modifications were based on analogies to current algorithm upgrades and telecommunications requirements, as well as engineering assessments for studies and testing. Implementation cost for new WSP systems were based on engineering assessments and ROM hardware costs provided by AJW-144. In-Service Management costs of the WSP systems were based on analogies to the current WSP Tech Refresh Baseline. Similarly, LLWAS new system costs were based on analogies to the existing system costs. LIDAR implementation costs were based on current costs to implement and maintain the Las Vegas LIDAR system, adjusted to reflect some savings due to economies of scale. Finally, the estimated costs of developing, implementing, and maintaining a new X-Band Radar system were based on an analogy to the ASDE-X program, assuming a radar-only configuration.

Table 18 lists each of the wind shear system configurations and their startup and operating costs. Existing systems have no cost associated with startup as the system is already installed. In the case of WSP, startup costs refer to installation of a new system since that alternative was evaluated for TDWR airports. Figure 32 shows the comparison of life-cycle cost grouped by system type. Note from Table 18 that system costs are spread out over different numbers of sites depending on the system installation.

Breakdown of site costs for wind-shear systems, 2010–2032 (from MCR Systems)

Wind-Shear System	Estimated Number of Costed Systems	One-time Implementation Costs Per Site (in Base Year 2008 \$M)	Per Site Life- Cycle In-Service Management Costs (2010-32 in Base Year 2008 \$M)	Per Site Total Base Year Costs (2010-32 in Base Year 2008 \$M)	Per Site Total Costs (2010-32 in Present Value FY08 \$M)*
Existing TDWR	46	N/A	\$ 5.009	\$ 5.009	\$ 2.507
Existing WSP	35	N/A	\$ 1.953	\$ 1.953	\$ 0.947
Existing LLWAS	40	N/A	\$ 1.321	\$ 1.321	\$ 0.605
Existing NEXRAD (w/Updated Algorithms/Scanning)	74	\$ 0.178	\$ 0.266	\$ 0.444	\$ 0.242
New WSP	80	\$ 4.104	\$ 1.255	\$ 5.359	\$ 3.574
New LLWAS	121	\$ 0.843	\$ 1.698	\$ 2.541	\$ 1.366
New LIDAR & Algorithms	161	\$ 2.461	\$ 1.979	\$ 4.440	\$ 2.656
New X-Band Radar & Algorithms	161	\$ 7.356	\$ 1.972	\$ 9.328	\$ 6.350

* As noted in the text above, Present Value is used to take into account inflation, thereby discounting benefits that are achieved in later years relative to current year dollars.

Figure 32. Total life-cycle system costs (2010–2032) per airport for wind-shear protection systems (present value FY08 \$M).

6. CURRENT AIRPORT-SPECIFIC SAFETY AND DELAY MITIGATION

There are several layers of wind shear mitigation that are in present use, this section details the current situation by examining (1) the assessment of the NAS completely unprotected for wind shear, (2) pilot training benefits, (3) airborne systems benefits, and (4) the current and near-term baseline ground-based benefits. Figure 33 shows the relative safety exposure based on the level of wind shear protection that is applied. The red vertical bars show the variation in this exposure based on the estimated variability of accident rate estimates (as given in Table 15).

Results throughout this section are typically given as an overall total and an annual liability or benefit over the period 2010–2032 with charts showing the breakdown by current site configuration and individual airports where necessary. These values are given in present value FY08\$ which attempts to account for the depreciation of dollars as you move forward in time. Therefore annual figures correspond to the base year FY08 dollars that would represent the total present value if that cost occurred each year. Consequently, this figure is significantly higher than just dividing the total present value cost by the total number of years.

Only safety liability is discussed for items (1) through (3), while delay measures are considered for the current and near-term ground-based coverage. Alternative systems benefit changes were modeled to begin in 2013 (allowing 3 years for the modification to take place); the existing benefits were assumed to stay in effect from 2010–2012. The implementation cost assumptions and risks of the various alternatives are discussed on Section 5. Appendix D covers safety benefits for unprotected, pilot training only, pilot plus PWS, current ground-based systems, and TDWR/WSP upgraded current configuration. The data contains a complete tabulation of airport specific safety (and delay) benefits at each of the 161 airports.

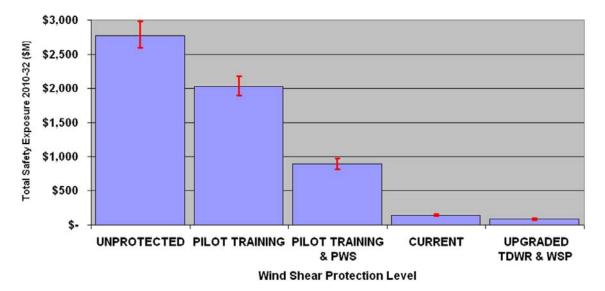
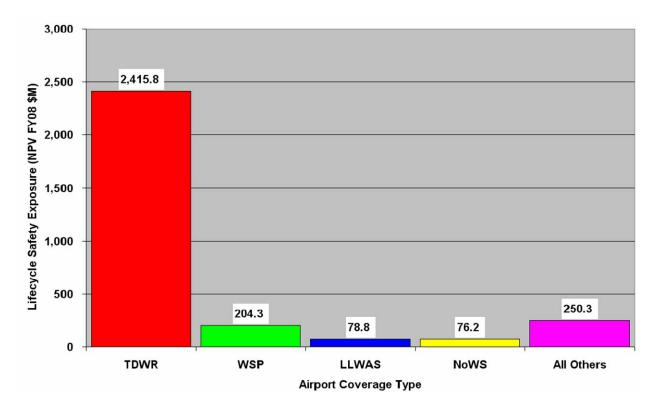
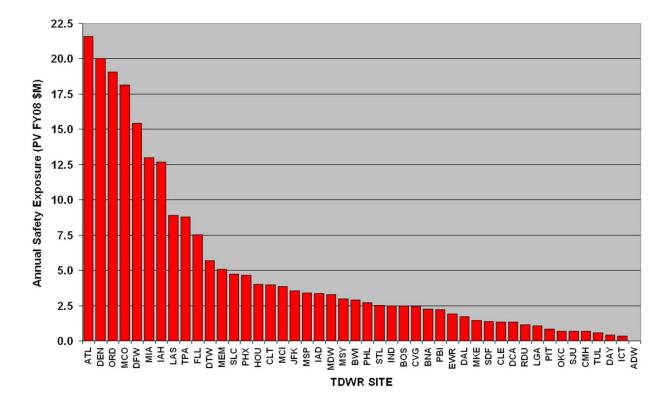



Figure 33. Total annual safety-related financial exposure from wind-shear accidents based on the levels and types of protection applied (present value FY08 \$M). Error bars show the range of values based on minimum/maximu estimates of accident rates given in Table 15.

6.1 NO WIND-SHEAR MITIGATION


The very rawest form of the safety exposure starts with all airports and aircraft being unprotected by any wind shear mitigation system. The only aircraft factor taken into account is the increased performance ability of aircraft since the 1970s that allows pilots an approximately 10% better chance to power the aircraft out of a wind shear once they have entered the hazard. Based on all the factors presented above, if all of the 161 airports in the NAS were unprotected from 2010 to 2032 the total expenses for wind shear related accidents would be \$2.8 billion in present value (2008) dollars or \$265 million annually. In addition, if we include all of the air traffic operations that are not covered by the 161 study airports, we would add \$250 million to the total, or an additional \$23.7 million annually.

The unprotected financial exposure based on an airport's ground-based wind shear protection system is shown in Figure 34. Not unexpectedly, the TDWR sites, chosen for their high volume of air carrier traffic and exposure to wind shear have by far the largest financial liability. Many of the remaining sites typically have lower volumes of traffic (even if they might have significant wind-shear activity) thereby reducing the potential financial exposure to wind shear.

Figure 34. Total (2010–2032 in billions of dollars) safety-related financial exposure from wind-shear accidents based on an unprotected NAS broken down by the current protection system at each site.

Figures 35 through 38 show the distribution of unprotected safety-related exposure for each type of airport studied: TDWR, WSP, LLWAS, and No shear system. The annual exposure given for each site uses present value FY08 dollars as described in Section 5.

Figure 35. Annual safety-related financial safety exposure from wind shear for each TDWR (or TDWR-LLWAS) protected airport (present value FY08 \$M) based on an unprotected NAS.

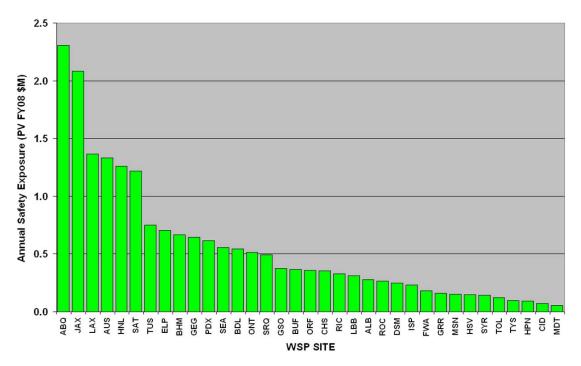


Figure 36. Annual safety-related financial safety exposure from wind shear for each WSP protected airport (present value FY08 \$M) based on an unprotected NAS.

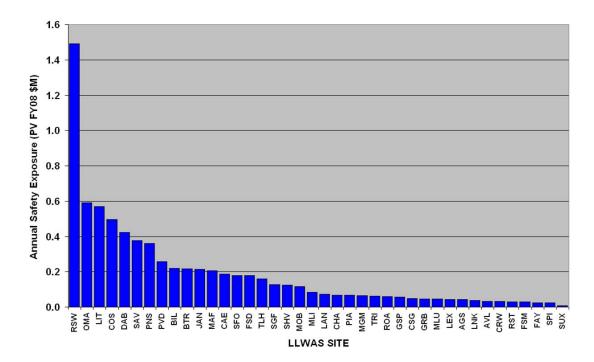
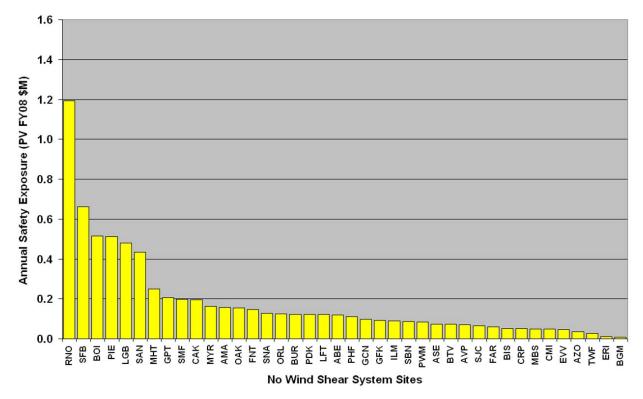



Figure 37. Annual safety-related financial safety exposure from wind shear for each LLWAS protected airport (present value FY08 \$M) based on an unprotected NAS.

Figure 38. Annual safety-related financial safety exposure from wind shear for each unprotected study airport (present value FY08 \$M) based on an unprotected NAS.

6.2 PILOT TRAINING ASSESSMENT

Pilot training is the first mitigation technique and the effectiveness of this training is applied to all forms of air traffic equally (air carrier, air taxi, and GA). Therefore, it is the strategy with the most widespread impact. As shown in Figure 33 above, the total safety exposure reduction for study airports due to pilot training is \$728.7 million or 26% (\$69.2 million annually). The rank order of sites changes only slightly as some airports have environments that are easier for pilots to identify visual cues. For example, MCO and ORD swap places in the top 10 exposure list as ORD's pilot observability effectiveness is 21% but MCO's is 29%.

As shown in the accident rate analysis discussed in Section 1, the measured Part 121 (Air Carrier) accident rate in the period where pilot training was the primary mitigation technique was within 10% of either of the transformed measurements from the other two accident rate eras. There was a similar comparison for General Aviation accident rates. Conversely, the measured 'pilot training' accident rate for Air Taxi (part 135/7) was much lower than the rate as transformed from the measured unprotected era (1975–85). This may indicate that the financial estimates for air taxi operations may be overstated. However, pilot training was implemented over many years and the class of airplanes utilized for Air Taxi services has changed dramatically over the years so the variability for this class of aircraft is not

surprising. In addition, the averaging of accident rate eras is designed to reduce such errors. Figure 39 shows the estimated life-cycle safety-related expenses in a NAS protected only by pilot training broken down by airport coverage type.

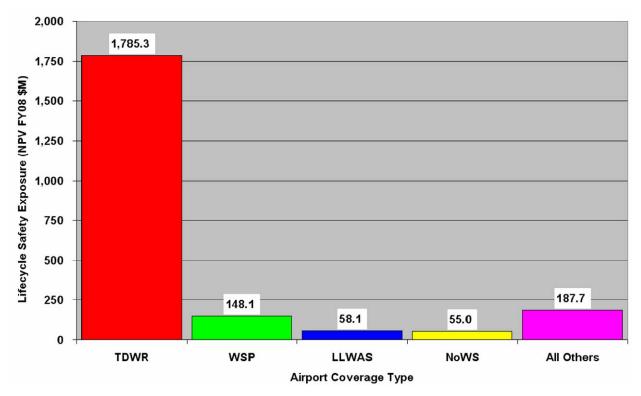


Figure 39. Total safety-related financial safety exposure from wind shear for each by class of airport (present value FY08 \$B) based on a NAS protected by pilot training only.

6.3 AIRBORNE MITIGATION SYSTEMS

On-board systems include both reactive and predictive wind shear systems. These systems are not routinely available on general aviation or Part 135/7 aircraft. Predictive systems are available on approximately 63% of the air carrier fleet and for this analysis we assume that those aircraft are randomly distributed throughout the country. While outside the scope of this study, variability in equipped aircraft between airports could impact the financial exposure of individual airports. The overall reduction in safety exposure from 2010–2032 relative to pilot training estimates is \$1.1 billion or 56% (\$109 million annually). The combined reduction from both pilot training and airborne systems relative to unprotected airspace is \$1.9 billion or 68% (\$178 million annually). This estimate assumes that the equipage rate stays constant throughout the period. If the equipage rate were 100% for air carriers the safety exposure would be reduced by nearly \$2.5 billion or a 91% reduction in safety liability (\$240 million annually). Figure 40 shows the resultant remaining safety-related financial exposure for each class of airport based on a NAS protected by both pilot training and PWS. This number represents the baseline for comparisons of current and alternative ground-based wind shear systems.

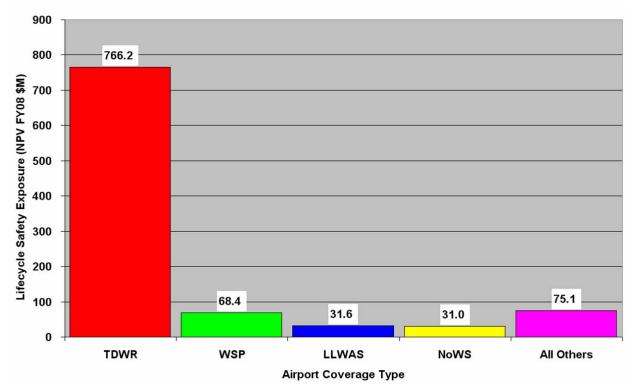


Figure 40. Total safety-related financial safety exposure from wind shear for each by class of airport (present value FY08 \$B) based on a NAS protected by pilot training and airborne PWS only.

6.4 BASELINE GROUND-BASED COVERAGE

The current constellation of ground-based wind shear protection systems comprises four configurations: TDWR, TDWR+LLWAS, WSP, and LLWAS. For the TDWR and WSP systems, upgrades to the algorithms and processors are already making their way through the system (reference). The current configuration, without upgrades, reduces safety-related wind shear exposure by 84% (\$752M) over that of pilot training and PWS, and results in an overall reduction from an unprotected NAS of 95% (\$2.63B) (Figure 41). Systems upgrades reduce the safety exposure at WSP sites by an additional \$4.3M and by \$56.1M at TDWR sites (Figure 42).

The remaining safety exposure in the system of about \$160M from 2010–2032 roughly equates to 1–2 major air carrier accident for the entire NAS over the 22 year period. About 47% of that safety exposure lies in the hundreds of smaller airports that were outside of the 161 airports included in this study. Individually, however, the hundreds of small airports that make up those outside operations have extremely low financial exposure making investments in protection systems uneconomical.

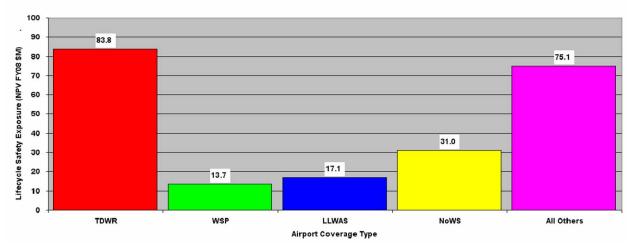


Figure 41. Total safety-related financial safety exposure from wind shear for each by class of airport (present value FY08 \$B) based on a NAS protected by pilot training and airborne PWS and current configuration of ground-based wind-shear systems.

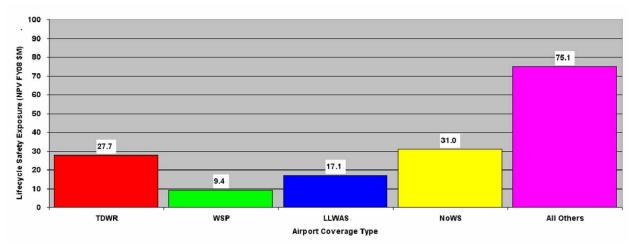


Figure 42. Total safety-related financial safety exposure from wind shear for each by class of airport (present value FY08 \$B) based on a NAS protected by pilot training and airborne PWS and current configuration of ground-based wind-shear systems with TDWR and WSP upgrades.

Delay savings due to wind shift prediction and planning from gust front detection, as discussed in section 4.2, are significant for ground-based systems. The total estimated delay savings due to the upgrade of TDWR and WSP relative to the current baseline is estimated at \$40 million over the 2010–32 life cycle. The safety and delay savings for the current and upgraded ground-based wind shear detection systems is shown in Figure 43. Figure 44, shows the breakdown of safety and delay savings for the top 50 highest benefit sites. The TDWR upgrade includes enhancements to reduce range-aliased obscuration of the interest region which allows more wind shears and gust fronts to be detected. The WSP upgrade improves

the maximum clutter suppression enhancing WSP's ability to detect weaker wind shears and gust fronts in general.

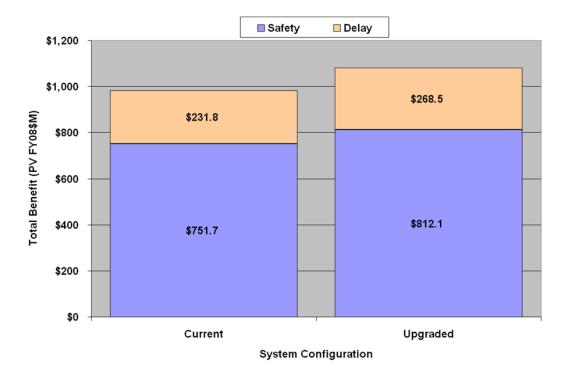
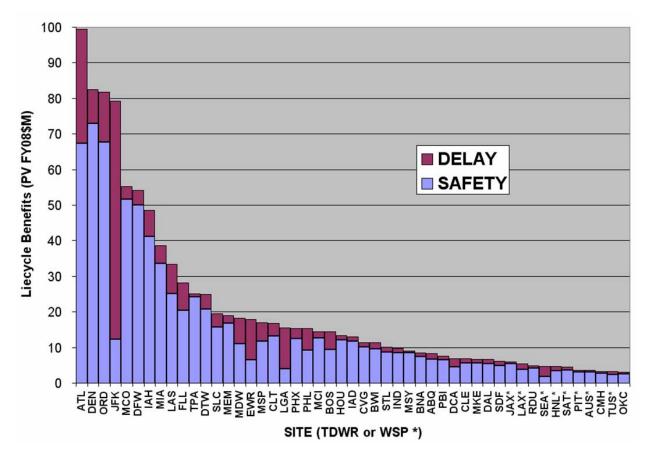



Figure 43. Safety-related savings relative to coverage by pilot training and PWS only and wind-shift delay benefits from gust front detection and forecasting for current and TDWR/WSP upgraded system configuration 2010–32 (present value FY08 \$B).

Figure 44. Top 50 sites in terms of total benefits (safety and delay) relative to the NAS as protected by pilot training and PWS for the baseline upgraded wind-shear system configuration (pilot training + PWS + current ground-based + planned upgrades).

7. AIRPORT SPECIFIC COST-BENEFIT RESULTS

The final goal of this report is to determine which of the twenty wind shear system alternatives is the optimal wind shear solution for each site. To make this assessment we utilize an FAA-recommended analysis of Net Present Value (NPV) (FAA, 2008) based on the system costs and overall safety and delay benefits for each site. NPV is calculated by subtracting the cost of the alternative's development and/or operational costs from the estimated benefits of the system. Positive NPV means that a system's benefits outweigh its costs and that therefore safety improvements and/or delay reductions are worth implementing. This analysis also produces the best system configuration to optimize the safety and safety+delay without regard to cost at each site. Table 19 summarizes the study results for each site by showing: (a) the current wind shear protection system (b) the optimal (largest positive NPV) alternative based on safety+delay benefit irrespective of cost. Detailed summarises by current site configuration and by sensor type are given in the subsections that follow. Complete results of safety and delay benefits for each airport are shown in Appendix D. In addition, the NPV calculations are given in Appendix E (based on safety only) and summarized in this section.

TABLE 19

Study results summary showing optimal alternatives and maximum coverage alternatives for safety and safety+delay (* indicates different system chosen between safety and safety+delay choice)

Site Name	Current System	Optimal System Optimal Based System on Based on Safety Safety+Delay Only		Best Alternative Based on Maximum Safety Coverage	Best Alternative Based on Maximum Safety&Delay Coverag	-	
ABE	NoWS	None	None		X-Band & LLWAS	X-Band & LLWAS	
ABQ	WSP	NEXRAD	NEXRAD		WSP, NEXRAD, LLWAS	WSP, NEXRAD, LIDAR	*
ADW	TDWR	None	None		TDWR,NEXRAD,LIDAR	TDWR,NEXRAD,LIDAR	
AGS	LLWAS	None	None		X-Band & LLWAS	X-Band & LLWAS	
ALB	WSP	WSP	WSP		WSP & LIDAR	X-Band & LLWAS	*
AMA	NoWS	NEXRAD	NEXRAD		NEXRAD & LLWAS	NEXRAD & LLWAS	
ASE	NoWS	None	None		X-Band & LIDAR	X-Band & LIDAR	
ATL	TDWR&LLWAS	NEXRAD & LLWAS	NEXRAD & LLWAS		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
AUS	WSP	WSP	WSP		X-Band & LLWAS	X-Band & LLWAS	
AVL	LLWAS	None	None		X-Band & LLWAS	X-Band & LLWAS	

Site Name	Current System	Optimal System Based on Safety Only	Optimal System Based on Safety+Delay		m Optimal d System Based on y Safety+Delay		Best Alternative Based on Maximum Safety Coverage	Best Alternative Based on Maximum Safety&Delay Coverage	
AVP	NoWS	None	None		X-Band & LLWAS	X-Band & LLWAS			
AZO	NoWS	None	None		X-Band & LLWAS	X-Band & LLWAS			
BDL	WSP	WSP	WSP		WSP & LIDAR	WSP & LIDAR			
BGM	NoWS	None	None		NEXRAD & LLWAS	NEXRAD & LLWAS			
внм	WSP	NEXRAD	NEXRAD		WSP, NEXRAD, LLWAS	WSP, NEXRAD, LLWAS			
BIL	LLWAS	NEXRAD	NEXRAD		NEXRAD & LIDAR	NEXRAD & LIDAR			
BIS	NoWS	None	None		X-Band & LIDAR	X-Band & LIDAR			
BNA	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS			
BOI	NoWS	NEXRAD	NEXRAD		NEXRAD & LLWAS	NEXRAD & LLWAS			
BOS	TDWR	NEXRAD	TDWR	*	TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS			
BTR	LLWAS	None	None	None X-Band & LLWAS		X-Band & LLWAS			
BTV	NoWS	NEXRAD	NEXRAD		NEXRAD & LLWAS	NEXRAD & LLWAS			
BUF	WSP	NEXRAD	NEXRAD		WSP, NEXRAD, LLWAS	X-Band & LLWAS	*		
BUR	NoWS	None	None		WSP & LIDAR	WSP & LIDAR			
BWI	TDWR	TDWR	TDWR		TDWR,NEXRAD,LIDAR	TDWR,NEXRAD,LIDAR			
CAE	LLWAS	NEXRAD	NEXRAD		NEXRAD & LLWAS	NEXRAD & LLWAS			
CAK	NoWS	TDWR	TDWR		TDWR,NEXRAD,LIDAR	TDWR,NEXRAD,LIDAR			
СНА	LLWAS	None	None		X-Band & LLWAS	X-Band & LLWAS			
CHS	WSP	WSP	WSP		X-Band & LLWAS	X-Band & LLWAS			
CID	WSP	None	None		X-Band & LLWAS	X-Band & LLWAS			
CLE	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS			
CLT	TDWR	TDWR	TDWR		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS			
СМН	TDWR	TDWR	TDWR		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS			
CMI	NoWS	None	None		X-Band & LLWAS	X-Band & LLWAS			
COS	LLWAS	NEXRAD	NEXRAD		X-Band & LLWAS	X-Band & LLWAS			
CRP	NoWS	None	NEXRAD	*	NEXRAD & LLWAS	X-Band & LLWAS	*		
CRW	LLWAS	None	None		NEXRAD & LLWAS	NEXRAD & LLWAS			
CSG	LLWAS	None	None		X-Band & LIDAR	X-Band & LIDAR			
CVG	TDWR	TDWR	TDWR		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS			
DAB	LLWAS	LLWAS	LLWAS		X-Band & LLWAS	X-Band & LLWAS			
DAL	TDWR	NEXRAD	TDWR	*	TDWR, NEXRAD, LLWAS	TDWR,NEXRAD,LIDAR	*		

Site Name	Current System	Optimal System Based on Safety Only	Optimal System Based on Safety+Delay		Best Alternative Based on Maximum Safety Coverage	Best Alternative Base on Maximum Safety&Delay Coverag	
DAY	TDWR	None	None		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
DCA	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
DEN	TDWR&LLWAS	NEXRAD & LLWAS	NEXRAD & LLWAS		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
DFW	TDWR&LLWAS	NEXRAD & LLWAS	NEXRAD & LLWAS		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
DSM	WSP	NEXRAD	NEXRAD		WSP, NEXRAD, LLWAS	WSP, NEXRAD, LIDAR	*
DTW	TDWR	TDWR	TDWR		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
ELP	WSP	WSP	WSP		X-Band & LLWAS	WSP, NEXRAD, LIDAR	*
ERI	NoWS	None	None		X-Band & LIDAR	X-Band & LIDAR	
EVV	NoWS	None	None		X-Band & LLWAS	X-Band & LLWAS	
EWR	TDWR	TDWR	TDWR		X-Band & LLWAS	X-Band & LLWAS	
FAR	NoWS	None	None		X-Band & LIDAR	X-Band & LIDAR	
FAY	LLWAS	None	None		X-Band & LIDAR	X-Band & LIDAR	
FLL	TDWR	NEXRAD	TDWR & NEXRAD	*	TDWR, NEXRAD, LLWAS	TDWR,NEXRAD,LIDAR	
FNT	NoWS	NEXRAD	NEXRAD		X-Band & LLWAS	X-Band & LLWAS	
FSD	LLWAS	NEXRAD	NEXRAD		X-Band & LIDAR	X-Band & LIDAR	
FSM	LLWAS	None	None		NEXRAD & LLWAS	NEXRAD & LLWAS	
FWA	WSP	None	None		X-Band & LIDAR	X-Band & LIDAR	
GCN	NoWS	None	None		X-Band & LIDAR	X-Band & LIDAR	
GEG	WSP	NEXRAD	NEXRAD		WSP, NEXRAD, LIDAR	WSP, NEXRAD, LIDAR	
GFK	NoWS	None	NEXRAD	*	X-Band & LLWAS	X-Band & LLWAS	
GPT	NoWS	None	None		X-Band & LLWAS	X-Band & LLWAS	
GRB	LLWAS	None	None		NEXRAD & LIDAR	X-Band & LIDAR	*
GRR	WSP	NEXRAD	NEXRAD		WSP, NEXRAD, LLWAS	NEXRAD & LLWAS	*
GSO	WSP	WSP	WSP		WSP & LIDAR	WSP & LIDAR	
GSP	LLWAS	None	None		NEXRAD & LLWAS	X-Band & LLWAS	*
HNL	WSP	WSP	WSP		WSP & LIDAR	WSP & LIDAR	
HOU	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
HPN	WSP	None	WSP	*	WSP, NEXRAD, LIDAR	X-Band & LLWAS	*
HSV	WSP	None	None		WSP & LIDAR	X-Band & LLWAS	*

Site Name	Current System	Optimal System Based on Safety Only	Optimal System Based on Safety+Delay		System Based on		stem Optimal sed System on Based on fety Safety+Delay		Best Alternative Based on Maximum Safety Coverage	Best Alternative Base on Maximum Safety&Delay Coverag	
IAD	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS					
IAH	TDWR	TDWR & NEXRAD	TDWR & NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS					
ICT	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS					
ILM	NoWS	NEXRAD	NEXRAD		X-Band & LLWAS	X-Band & LLWAS					
IND	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS					
ISP	WSP	NEXRAD	NEXRAD		WSP, NEXRAD, LIDAR	WSP, NEXRAD, LIDAR					
JAN	LLWAS	NEXRAD	NEXRAD		NEXRAD & LLWAS	NEXRAD & LLWAS					
JAX	WSP	NEXRAD	NEXRAD		WSP, NEXRAD, LLWAS	NEXRAD & LLWAS	*				
JFK	TDWR	TDWR	TDWR		TDWR, NEXRAD, LLWAS	X-Band & LLWAS	*				
LAN	LLWAS	None	None		X-Band & LIDAR	X-Band & LIDAR					
LAS	TDWR	TDWR & LIDAR	WSP & LIDAR	*	WSP & LIDAR	WSP & LIDAR					
LAX	WSP	WSP	WSP		X-Band & LIDAR	X-Band & LIDAR					
LBB	WSP	NEXRAD	NEXRAD		WSP, NEXRAD, LLWAS	X-Band & LLWAS	*				
LEX	LLWAS	None	None		X-Band & LLWAS	X-Band & LLWAS					
LFT	NoWS	None	None		X-Band & LLWAS	X-Band & LLWAS					
LGA	TDWR&LLWAS	LLWAS	TDWR	*	TDWR, NEXRAD, LLWAS	TDWR & LIDAR	*				
LGB	NoWS	None	None		X-Band & LLWAS	X-Band & LLWAS					
LIT	LLWAS	NEXRAD	NEXRAD		NEXRAD & LLWAS	NEXRAD & LLWAS					
LNK	LLWAS	None	None		X-Band & LLWAS	X-Band & LLWAS					
MAF	LLWAS	NEXRAD	NEXRAD		NEXRAD & LLWAS	X-Band & LLWAS	*				
MBS	NoWS	None	None		X-Band & LLWAS	X-Band & LLWAS					
MCI	TDWR	TDWR	TDWR		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS					
мсо	TDWR&LLWAS	TDWR & LLWAS	TDWR & LLWAS		X-Band & LLWAS	X-Band & LLWAS					
MDT	WSP	None	None		WSP & LIDAR	WSP & LIDAR					
MDW	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS					
MEM	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS					
MGM	LLWAS	None	None		X-Band & LLWAS	X-Band & LLWAS					

Site Name	Current System	Optimal System Based on Safety Only	Optimal System Based on Safety+Delay		Best Alternative Based on Maximum Safety Coverage	Best Alternative Based on Maximum Safety&Delay Coverag	
MHT	NoWS	None	None		WSP & LIDAR	WSP & LIDAR	
MIA	TDWR	NEXRAD	NEXRAD & LLWAS	*	TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
MKE	TDWR	TDWR	TDWR		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
MLI	LLWAS	None	NEXRAD	*	NEXRAD & LIDAR	NEXRAD & LIDAR	
MLU	LLWAS	None	None		X-Band & LLWAS	X-Band & LLWAS	
MOB	LLWAS	NEXRAD	NEXRAD		NEXRAD & LLWAS	X-Band & LLWAS	*
MSN	WSP	None	None		X-Band & LLWAS	X-Band & LLWAS	
MSP	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
MSY	TDWR&LLWAS	TDWR	TDWR		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
MYR	NoWS	NEXRAD	NEXRAD		X-Band & LIDAR	X-Band & LIDAR	
OAK	NoWS	None	None		WSP & LIDAR	WSP & LIDAR	
OKC	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
OMA	LLWAS	NEXRAD	NEXRAD NEXRAD & LIDAR		NEXRAD & LIDAR	NEXRAD & LIDAR	
ONT	WSP	WSP	WSP		WSP & LIDAR	X-Band & LLWAS	*
ORD	TDWR&LLWAS	TDWR & LLWAS	TDWR, NEXRAD, LLWAS	*	TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
ORF	WSP	WSP	WSP		X-Band & LIDAR	X-Band & LIDAR	
ORL	NoWS	TDWR	TDWR		TDWR, NEXRAD, LLWAS	TDWR,NEXRAD,LIDAR	*
PBI	TDWR	TDWR	TDWR		X-Band & LLWAS	X-Band & LLWAS	
PDK	NoWS	TDWR	TDWR		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
PDX	WSP	WSP	WSP		WSP & LIDAR	WSP & LIDAR	
PHF	NoWS	NEXRAD	NEXRAD		NEXRAD & LIDAR	X-Band & LIDAR	*
PHL	TDWR	TDWR	TDWR		TDWR,NEXRAD,LIDAR	TDWR,NEXRAD,LIDAR	
РНХ	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	WSP, NEXRAD, LIDAR	*
PIA	LLWAS	None	None		X-Band & LIDAR	X-Band & LIDAR	
PIE	NoWS	TDWR	TDWR		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
PIT	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
PNS	LLWAS	None	None		X-Band & LLWAS	X-Band & LLWAS	
PVD	LLWAS	NEXRAD	NEXRAD		NEXRAD & LIDAR	NEXRAD & LIDAR	

Site Name	Current System				Best Alternative Based on Maximum Safety Coverage	Best Alternative Based on Maximum Safety&Delay Coverag	
PWM	NoWS	None	NEXRAD	*	WSP, NEXRAD, LIDAR	WSP, NEXRAD, LIDAR	
RDU	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
RIC	WSP	NEXRAD	NEXRAD		WSP, NEXRAD, LIDAR	X-Band & LIDAR	*
RNO	NoWS	LLWAS	NEXRAD & LLWAS	*	X-Band & LIDAR	X-Band & LIDAR	
ROA	LLWAS	None	None		X-Band & LLWAS	X-Band & LLWAS	
ROC	WSP	WSP	WSP		X-Band & LLWAS	X-Band & LLWAS	
RST	LLWAS	None	None		X-Band & LLWAS	X-Band & LLWAS	
RSW	LLWAS	LLWAS	NEXRAD & LLWAS	*	X-Band & LLWAS	X-Band & LLWAS	
SAN	NoWS	None	None		X-Band & LLWAS	WSP & LIDAR	*
SAT	WSP	NEXRAD	NEXRAD		WSP, NEXRAD, LIDAR	WSP, NEXRAD, LIDAR	
SAV	LLWAS	LLWAS	NEXRAD & LLWAS	*	X-Band & LIDAR	X-Band & LIDAR	
SBN	NoWS	None	None		X-Band & LIDAR	X-Band & LIDAR	
SDF	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
SEA	WSP	WSP	WSP		X-Band & LLWAS	X-Band & LLWAS	
SFB	NoWS	TDWR	TDWR		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
SFO	LLWAS	None	NEXRAD & LLWAS	*	X-Band & LLWAS	X-Band & LLWAS	
SGF	LLWAS	NEXRAD	NEXRAD		NEXRAD & LLWAS	NEXRAD & LLWAS	
SHV	LLWAS	NEXRAD	NEXRAD		NEXRAD & LLWAS	X-Band & LLWAS	*
SJC	NoWS	None	None		WSP & LIDAR	WSP & LIDAR	
SJU	TDWR	None	TDWR	*	TDWR, NEXRAD, LLWAS	TDWR & LIDAR	*
SLC	TDWR	TDWR	TDWR		TDWR & LIDAR	TDWR & LIDAR	
SMF	NoWS	NEXRAD	NEXRAD		WSP, NEXRAD, LLWAS	WSP, NEXRAD, LIDAR	*
SNA	NoWS	None	None		X-Band & LIDAR	X-Band & LIDAR	
SPI	LLWAS	None	None		X-Band & LLWAS	X-Band & LLWAS	
SRQ	WSP	NEXRAD	NEXRAD		WSP, NEXRAD, LLWAS	WSP, NEXRAD, LLWAS	
STL	TDWR&LLWAS	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
SUX	LLWAS	None	None		X-Band & LIDAR	X-Band & LIDAR	\Box
SYR	WSP	None	None		X-Band & LIDAR	X-Band & LIDAR	
TLH	LLWAS	NEXRAD	NEXRAD		X-Band & LIDAR	X-Band & LIDAR	

Site Name	Current System	Optimal System Based on Safety Only	Optimal System Based on Safety+Delay		Best Alternative Based on Maximum Safety Coverage	Best Alternative Based on Maximum Safety&Delay Coverag	-
TOL	WSP	None	None		WSP & LIDAR	X-Band & LIDAR	*
ТРА	TDWR&LLWAS	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
TRI	LLWAS	None	None		X-Band & LLWAS	X-Band & LLWAS	
TUL	TDWR	NEXRAD	NEXRAD		TDWR, NEXRAD, LLWAS	TDWR, NEXRAD, LLWAS	
TUS	WSP	WSP	WSP		X-Band & LLWAS	X-Band & LLWAS	
TWF	NoWS	None	None		X-Band & LIDAR	X-Band & LIDAR	
TYS	WSP	None	None		WSP & LIDAR	WSP & LIDAR	

Note that only existing TDWR installations are utilized for TDWR alternatives, therefore, benefits for this class of alternative were not calculated for sites that did not have a TDWR available (these sites appear as N/A in Appendix C through F). New WSP installations, are only considered where an ASR-9 currently exists (most TDWR locations) and also show as N/A in the Appendices. Similarly, new LLWAS installations are considered at non-LLWAS sites. Conversely, X-band and LIDAR alternatives assume that a new system will be installed at all sites. NEXRAD systems were evaluated everywhere, even in cases where the nearest NEXRAD turned out to be too far away. So, NEXRAD based alternatives have entries in the Appendices which may default to the secondary sensor's effectiveness if NEXRAD is too far away to add value or zero if we are considering just NEXRAD.

Additionally, when the optimal solution is "None" this means that none of the alternatives were considered cost effective (NPV > 0). This doesn't mean that the alternative didn't provide safety and/or delay benefits only that the cost of operations was higher than those benefits.

In evaluating the various combinations of alternatives, most comparisons are made relative to the NAS as protected by pilot training and PWS (see Section 6.3) or as protected by the upgraded ground-based system configuration, called "baseline" henceforth (see Section 6.4), although other comparisons may be made where appropriate. As noted above, the upgraded ground-based coverage yields a total safety-related benefit for the 161 study airports of \$812 million and a wind shift delay savings benefit of \$269 million from 2010–32, or \$ 77.1 and \$ 25.5 million annually, respectively.

While each optimal alternative yields an increase in the benefits relative to the upgraded baseline, the total increase in the benefits stream if every alternative listed were to be employed is approximately \$76 million (\$7.3 million annually), or roughly a 7% increase from the baseline 2010–32 benefits.

7.1 ALTERNATIVE SYSTEM ASSESSMENT BY CURRENT SITE CONFIGURATION

As described above, the availability of some alternatives such as TDWR and WSP are limited by the current configuration. Therefore, it is instructive to examine the relative worth of system alternatives grouped by site type. The contingency tables shown in Tables 20 and 21 shows the number of times a particular wind shear system alternative was chosen as the optimal solution for each airport protection configuration. Table 20 is based on only the safety benefits value, while Table 21 uses both safety and delay savings. Alternatives that aren't shown didn't have any sites where they were the optimal system.

TABLE 20

			-	-					
Optimal System	Current Configuration								
Optillal System	TDWR&LLWAS	TDWR	WSP	LLWAS	NoWS	Total			
TDWR & LLWAS	2					2			
TDWR	1	12			5	18			
TDWR & NEXRAD		1				1			
TDWR, NEXRAD, LLWAS						0			
TDWR & LIDAR		1				1			
WSP			14			14			
WSP & LIDAR						0			
LLWAS	1			3	1	5			
NEXRAD & LLWAS	3					3			
NEXRAD	2	20	12	13	8	55			
None		3	9	24	26	62			
Total	9	37	35	40	40	161			

Frequency table of optimal systems by current airport protection based on NPV calculations that consider only safety

Optimal System	Current Configuration									
Optimal System	TDWR&LLWAS	TDWR	WSP	LLWAS	NoWS	Total				
TDWR & LLWAS	1					1				
TDWR	2	15			5	22				
TDWR & NEXRAD		2				2				
TDWR, NEXRAD, LLWAS	1					1				
TDWR & LIDAR						0				
WSP			15			15				
WSP & LIDAR		1				1				
LLWAS				1		1				
NEXRAD & LLWAS	3	1		3	1	8				
NEXRAD	2	16	12	14	11	55				
None		2	8	22	23	55				
Total	9	37	35	40	40	161				

Frequency table of optimal systems by current airport protection based on NPV calculations that consider both safety and delay benefits

7.1.1 Safety Only Analysis

Looking strictly at the safety benefits of the system without implementation and operating costs allows us to examine the systems that could potentially provide the highest safety improvements at each site. Table 19 shows the individual site results for the best safety improvement alternative at each site, but there are general trends that are summarized here. Figures 45 through 48 show the ranking of alternative systems by changes in safety benefit for each grouping of ground-based sites: TDWR, WSP, LLWAS and unprotected. All alternatives are measured against the baseline configuration, so the entry for UPGRADED will always show zero. Alternatives to the right of UPGRADED provide increased safety improvements from the baseline and those to the left indicate reductions. In addition, for these safety charts the top of the chart reflects the maximum safety benefit that could be achieved (zero accidents).

Looking at Figure 45, the TDWR sites have few options that can provide overall safety improvements. However, integrating sensors to the TDWR is beneficial over the current system and all the positive options include the TDWR as a base sensor. Figure 46 shows the ranking for WSP sites, and like TDWR, adding a sensor to complement the WSP is beneficial. But, in addition, X-band combinations also yield improved safety benefits. LLWAS sites, shown in Figure 47, have far fewer options because no TDWR or WSP radars are co-located with these sites. However, NEXRAD based systems provide significant safety benefits and an on-airport X-band weather radars are by far the best alternative.

Finally, unprotected sites are shown in Figure 48, and here every alternative shows some benefit. TDWR offers some benefits to this class of site as five unprotected sites are near enough to an existing TDWR to be partially covered if upgrades were made for processing and displays (CAK, ORL, PDK, PIE, and SFB). WSP also has coverage through the potential to upgrade existing ASR-9s at BUR, LGB, MHT, OAK, ORL, PDK, PIE, PWM, SAN, SJC, SMF, and SNA. NEXRAD based system with LLWAS or LIDAR gain almost half of the remaining potential safety benefit. X-band combinations are again the best performers for these unprotected sites, but that is primarily because the system is 'available' at all sites.

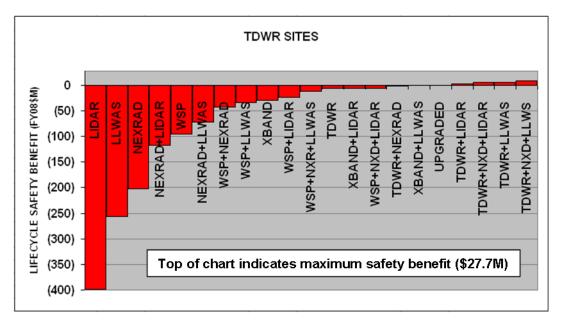


Figure 45. Annual benefit gain or loss relative to baseline (UPGRADED) for alternatives being deployed at all TDWR and TDWR-LLWAS study airports.

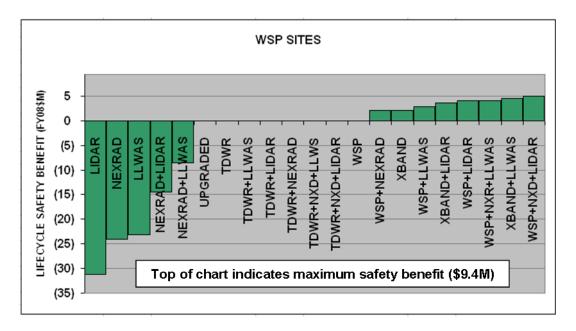


Figure 46. Annual safety benefit gain or loss relative to baseline (UPGRADED) for alternatives being deployed at all WSP study airports.

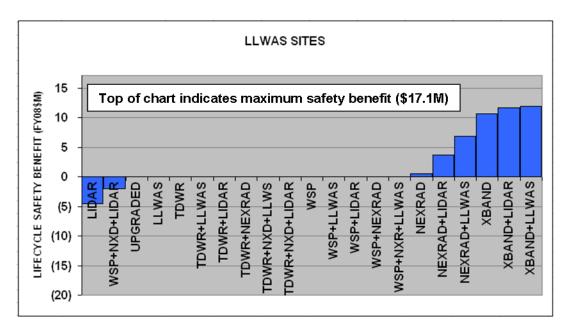


Figure 47. Annual safety benefit gain or loss relative to baseline (UPGRADED) for alternatives being deployed at all LLWAS study airports.

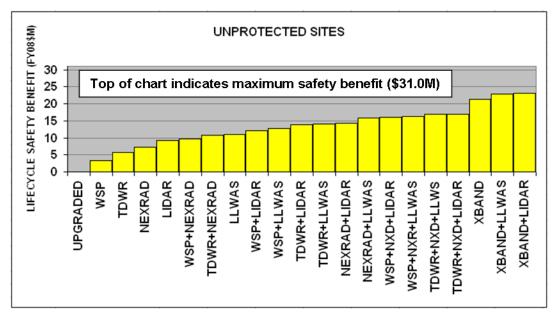


Figure 48. Annual safety benefit gain or loss relative to baseline (UPGRADED) for alternatives being deployed at all study airports with no current ground-based wind-shear system.

7.1.2 TDWR-LLWAS Sites

There are currently nine TDWR sites that have an integrated wind shear system that is enhanced by LLWAS sensors. Table 22 shows the optimal alternative chosen and the corresponding NPV for safety and delay. In addition, the table compares the optimal NPV to the current TDWR-LLWAS NPV. Note that the overall benefit gained by choosing the optimal installation at each site yields a 3% increase in overall benefits (\$10.9 million). The high value of these busy sites is underscored by the fact that all but two of the 20 alternatives assessed at all 9 sites had positive NPV values.

The predominance of NEXRAD in the mix of optimal alternatives is common throughout all sites. This is discussed further in Section 8.3 that summarizes results by sensor type.

Site	Optimal Configuration Optimal Configuration Configuration Configuration		Optimal Life Cycle NPV (FY08\$M)		
ATL	NEXRAD&LLWAS	\$ 96.4	\$ 99.2		
DEN	NEXRAD&LLWAS	\$ 79.4	\$ 81.1		
DFW	NEXRAD&LLWAS	\$ 51.1	\$ 52.0		
LGA	TDWR	\$ 12.4	\$ 12.8		
MCO	TDWR&LLWAS	\$ 52.1	\$ 52.1		
MSY	TDWR	\$ 5.9	\$ 6.3		
ORD	TDWR,NEXRAD,LLWAS	\$ 78.8	\$ 79.0		
STL	NEXRAD	\$ 6.9	\$ 9.0		
TPA	NEXRAD	\$ 22.0	\$ 24.4		
TOTA		\$ 405.0	\$ 415.9		

Comparison of optimal alternative vs. current wind-shear protection system for TDWR-LLWAS sites (safety + delay)

7.1.3 TDWR Sites

There are 37 sites with TDWR-only installations; of these there are 15 where the optimal configuration is a single sensor TDWR. In addition, 3 sites have the TDWR enhanced with an additional sensor (NEXRAD or LIDAR). Table 23 shows the optimal alternative chosen and the corresponding NPV for safety and delay for each site that did not have TDWR as the optimal choice. The increased net benefit from choosing the optimal system for each site increases the total overall benefit at these sites by approximately \$32.6 million.

Site	Optimal Configuration	TDWR Life Cycle NPV (FY08\$M)	Optimal Life Cycle NPV (FY08\$M)
IAH	TDWR&NEXRAD	\$ 46.06	\$ 46.34
MIA	NEXRAD&LLWAS	\$ 36.04	\$ 37.31
LAS	WSP&LIDAR	\$ 30.87	\$ 33.54
FLL	TDWR&NEXRAD	\$ 25.56	\$ 25.83
MEM	NEXRAD	\$ 16.36	\$ 17.88
MDW	NEXRAD	\$ 15.72	\$ 17.21
PHX	NEXRAD	\$ 12.85	\$ 16.27
MSP	NEXRAD	\$ 14.45	\$ 15.95
HOU	NEXRAD	\$ 10.78	\$ 12.36
IAD	NEXRAD	\$ 10.50	\$ 10.90
IND	NEXRAD	\$ 7.27	\$ 8.93
BNA	NEXRAD	\$ 5.88	\$ 7.37
CLE	NEXRAD	\$ 4.36	\$ 6.02
DCA	NEXRAD	\$ 4.41	\$ 5.49
SDF	NEXRAD	\$ 3.60	\$ 5.26
RDU	NEXRAD	\$ 2.44	\$ 3.95
PIT	NEXRAD	\$ 1.16	\$ 2.94
OKC	NEXRAD	\$ 0.59	\$ 2.32
TUL	NEXRAD	\$ 0.13	\$ 1.90
ICT	NEXRAD	\$ (0.32)	\$ 1.34
DAY	None	\$ (0.53)	\$ (0.13)
ADW	None	\$ (2.49)	\$ (0.71)
	TOTAL	\$ 460.3	\$ 492.9

Comparison of optimal alternative vs. current wind-shear protection system for TDWR sites (safety + delay)

Two sites (ADW and DAY) have no alternatives that produce a positive NPV; an additional site drops out (SJU) if we only consider safety benefits. Andrews AFB (ADW) is protected by a TDWR due almost entirely to its military importance. Dayton, Ohio (DAY) has relatively low air traffic operations for a TDWR site and its exposure to wind shear is also limited. SJU has a relatively low volume of traffic and low wind shear frequency (note however that the climatology of wind shear for SJU was sparse). Of the remaining 22 sites, 16 have NEXRAD as the optimal system.

7.1.4 WSP Sites

There are 35 WSP protected airports in the NAS and the optimal alternatives analysis yielded 15 sites where WSP was chosen as the best option while 12 sites had NEXRAD as the most cost-beneficial system. There were also eight sites where no cost beneficial system could be found (CID, FWA, HPN, HSV, MSN, SYR, TOL, and TYS). However, the least negative NPV for these sites were either WSP (4) or NEXRAD (4). The NPV for the 20 sites where WSP was *not* chosen as the optimal alternative are shown in Table 24.

TABLE 24

Site	Optimal Alternative	WSP Life Cycle NPV (FY08\$M)	Optimal Life Cycle NPV (FY08\$M)					
ABQ	NEXRAD	\$7.34	8.29					
JAX	NEXRAD	\$5.06	6.51					
SAT	NEXRAD	\$3.60	4.30					
BHM	NEXRAD	\$1.47	2.28					
GEG	NEXRAD	\$1.53	2.27					
SRQ	NEXRAD	\$1.42	2.08					
BUF	NEXRAD	\$0.94	1.63					
LBB	NEXRAD	\$0.59	1.23					
ISP	NEXRAD	\$0.27	1.01					
DSM	NEXRAD	\$0.30	0.95					
GRR	NEXRAD	(\$0.06)	0.56					
RIC	NEXRAD	\$0.41	0.49					
	Totals	\$22.87	\$31.60					

Life Cycle NPV comparisons for WSP sites with non-WSP optimal alternatives (safety + delay)

7.1.5 LLWAS Sites

Unlike TDWR and to some extent WSP sites, there are only up to 3 alternatives that yielded positive NPV at LLWAS sites: LLWAS, NEXRAD, or a combination of the two. Of the 40 LLWAS protected sites, 22 do not have a cost beneficial alternative and just one has an LLWAS only system. NEXRAD is the only effective alternative at the remaining 17 sites and LLWAS is used as a complementary system at three of those sites. The NPV for the 18 sites where an optimal alternative was found are shown in Table 25.

Comparison of optimal alternative vs. current wind-shear protection system for LLWAS
sites (safety + delay)

Site	Optimal Alternative	LLWAS Life Cycle NPV (FY08\$M)	Optimal Life Cycle NPV (FY08\$M)
OMA	NEXRAD	\$ 0.43	\$ 1.97
RSW	NEXRAD&LLWAS	\$ 1.32	\$ 1.93
LIT	NEXRAD	\$ 0.57	\$ 1.78
COS	NEXRAD	\$ 0.34	\$ 1.49
PVD	NEXRAD	\$-	\$ 1.16
BIL	NEXRAD	\$ -	\$ 0.90
SFO	NEXRAD&LLWAS	\$ -	\$ 0.73
MAF	NEXRAD	\$ -	\$ 0.57
DAB	LLWAS	\$ 0.56	\$ 0.56
CAE	NEXRAD	\$ -	\$ 0.46
FSD	NEXRAD	\$ -	\$ 0.45
JAN	NEXRAD	\$ -	\$ 0.42
TLH	NEXRAD	\$ -	\$ 0.32
SGF	NEXRAD	\$ -	\$ 0.27
SHV	NEXRAD	\$-	\$ 0.25
MOB	NEXRAD	\$ -	\$ 0.15
SAV	NEXRAD&LLWAS	\$ 0.06	\$ 0.09
MLI	NEXRAD	\$ -	\$ 0.05
	Totals	\$ 3.29	\$ 13.56

7.1.6 Unprotected Sites

There were 40 feeder airport sites examined that are currently unprotected from wind shear. The optimal alternative analysis showed that 22 of those sites indeed do not have a cost beneficial alternative. Interestingly, 5 sites are able to use a nearby existing TDWR installation to provide positive benefits. NEXRAD based alternatives, due primarily to the estimated inexpensive implementation costs, are the optimal alternative at the remaining 12 sites. The NPV and alternative for the 17 sites where an optimal alternative was found are shown in Table 26, along with the corresponding TDWR site location, where appropriate.

Comparison of optimal alternative vs. current wind-shear protection system for unprotected sites (safety + delay)

Site	Optimal Alternative	Optimal Life Cycle NPV (FY08\$M)
SFB	TDWR (MCO)	\$ 3.46
PIE	TDWR (TPA)	\$ 2.40
BOI	NEXRAD	\$ 1.78
PDK	TDWR (ATL)	\$ 1.22
SMF	NEXRAD	\$ 1.11
ORL	TDWR (MCO)	\$ 1.07
CAK	TDWR (CLE)	\$ 0.64
AMA	NEXRAD	\$ 0.51
PHF	NEXRAD	\$ 0.44
RNO	NEXRAD&LLWAS	\$ 0.28
GFK	NEXRAD	\$ 0.20
FNT	NEXRAD	\$ 0.18
BTV	NEXRAD	\$ 0.17
MYR	NEXRAD	\$ 0.15
PWM	NEXRAD	\$ 0.15
ILM	NEXRAD	\$ 0.08
CRP	NEXRAD	\$ 0.04
	Total	\$ 13.87

7.2 ALTERNATIVE SYSTEM ASSESSMENT BY SENSOR TYPE

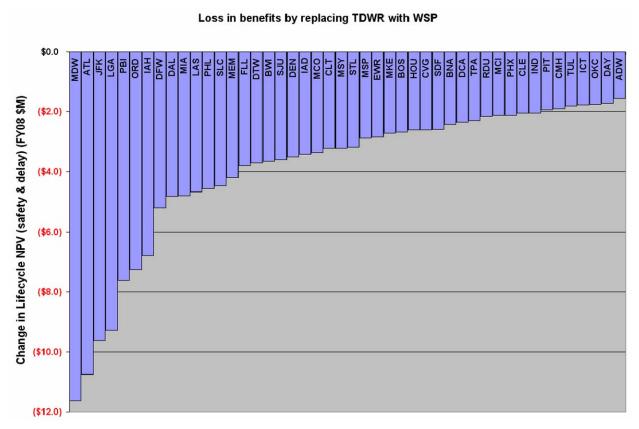
7.2.1 LLWAS Alternatives

LLWAS can be an effective enhancement at sites where microburst detection is difficult from groundbased radar (clutter for example) or where traffic volume is high and the exposure to wind shear is above average. In fact, nine TDWR locations are already enhanced with an expanded LLWAS for exactly these reasons. However, even the expanded LLWAS (NE) configuration typically covers only half of the ARENA coverage area at a typical airport. In addition, because gust front detection is critical in a region much larger than the LLWAS coverage area and requires dense data coverage for reliable detection, LLWAS installations do not add gust front detection capability beyond the airport vicinity. Therefore, LLWAS upgrades also have no impact on delay calculations as wind shift prediction is driven by gust front capability. For all these reasons, replacing all the current ground-based systems with LLWAS only coverage would result in a significant decrease in safety and delay benefits relative to the baseline upgraded ground-based systems. However, adding LLWAS as a complementary system at some installations can be beneficial. Of the 161 sites, just 10 have optimal alternatives that utilize LLWAS (Table 27).

TABLE 27

Site	Current	Complementary optimal LLWAS configuration
ATL	TDWR-LLWAS	NEXRAD & LLWAS
DEN	TDWR-LLWAS	NEXRAD & LLWAS
DFW	TDWR-LLWAS	NEXRAD & LLWAS
MCO	TDWR-LLWAS	TDWR & LLWAS
ORD	TDWR-LLWAS	TDWR, NEXRAD & LLWAS
MIA	TDWR	NEXRAD & LLWAS
DAB	LLWAS	LLWAS
RSW	LLWAS	NEXRAD & LLWAS
SFO	LLWAS	NEXRAD & LLWAS
SAV	LLWAS	NEXRAD & LLWAS

Sites where LLWAS is used as a complementary or primary sensor


7.2.2 LIDAR Alternatives

LIDAR, by itself, can provide some benefit at all sites, but it is among the lowest performing of the single-senor systems and the implementation expenses make it cost effective only at Las Vegas (LAS). This cost benefit analysis attempts to optimize the net benefits of each alternative. If the focus were increasing the effectiveness of the system, LIDAR based alternatives would be more appropriate alternatives. In fact, from Table 19 we see that alternatives with LIDAR as a complementary system are selected at 53 of the sites when only improved safety coverage is considered. The difference in the choice of LIDAR complemented systems is primarily driven by the relative cost of the LIDAR system rather than by the ability of the system to enhance protection against wind shear.

7.2.3 TDWR Alternatives

Because the TDWR radar was designed and sited specifically for wind shear detection it is generally the best or next best alternative at the sites where it is installed. No new TDWR installations were considered for this analysis. When comparing TDWR, or any other alternatives, to the baseline it should be noted that nine TDWR locations are integrated with LLWAS-NE installations and these are all high benefit sites. Therefore, alternatives such as TDWR + NEXRAD show a loss relative to the baseline because of the loss of the LLWAS integration at those high value sites.

WSP is one potential alternative to the existing TDWR installations; however, in all cases WSP performance would result in a performance degradation compared to the TDWR. Replacing all 45 TDWR or TDWR-LLWAS installations with WSP or WSP-LLWAS configurations, respectively, would result in a loss of \$179 million in total life cycle safety and delay benefits (\$17 million annually). Figure 49 shows the breakdown of benefit loss by TDWR site location.

Figure 49. Resulting life cycle benefit loss (safety + delay) from replacing TDWR and TDWR-LLWAS sites with WSP and WSP-LLWAS.

A potential benefit exists at five unprotected study airports that are close enough to be covered by existing TDWR installations (CAK, ORL, PDK, PIE, and SFB). All of these airports currently have no ground-based coverage and the total added benefit would be \$8.79 million, as shown in Table 28. No TDWRs are close enough to LLWAS-only sites to provide wind shear benefits.

Site	Corresponding TDWR Site	TDWR Life Cycle NPV (FY08 \$M)
CAK	CLE	\$ 3.46
ORL	МСО	\$ 2.40
PDK	ATL	\$ 1.22
PIE	ТРА	\$ 1.07
SFB	MCO	\$ 0.64
	Total Net Benefit	\$ 8.79

7.2.4 WSP Alternatives

WSP is available only at sites where an ASR-9 currently exists but not all ASR-9s have WSP upgrades. As shown in the previous section, WSP by itself does not provide superior benefits to TDWR based systems. In fact, there is only one WSP combination that exceeded its TDWR counterpart and that was combining the WSP and LIDAR at LAS. According to our performance model, the on airport location of WSP allows it to detect gust fronts better than the TDWR or TDWR+LIDAR) increasing delay savings at LAS. When only safety is considered, however, the TDWR+LIDAR combination provides the optimal benefits. No LLWAS locations have existing ASR-9s that could be upgraded.

There are 12 unprotected sites, however, that could be upgraded to WSP. None of the WSP combinations evaluated resulted in positive NPV values at any of these sites, but each provided some level of additional wind shear protection. Table 29 lists the sites and their associated safety benefits for WSP and WSP&LIDAR alternatives (not considering delay or the costs of implementation). Each alternative is also measured against the total possible safety benefit at that site (relative to the NAS protected by pilot training and PWS).

SITE	Residual Life Cycle Safety Exposure After Pilot and PWS (FY08 \$M)	Life Cycle WSP Safety Reduction (FY08 \$M)	% of Residual	Life Cycle WSP&LIDAR Safety Reduction (FY08 \$M)	% of Residual
BUR	0.432	0.316	73%	0.393	91%
LGB	1.803	0.899	50%	1.277	71%
MHT	0.985	0.405	41%	0.805	82%
OAK	0.581	0.469	81%	0.542	93%
ORL*	0.929	0.420	45%	0.568	61%
PDK*	0.946	0.044	5%	0.245	26%
PIE*	2.139	1.016	47%	1.333	62%
PWM	0.402	0.012	3%	0.201	50%
SAN	1.308	0.160	12%	0.537	41%
SJC	0.231	0.122	53%	0.186	80%
SMF	0.719	0.153	21%	0.416	58%
SNA	0.453	0.080	18%	0.287	63%

WSP safety benefits at currently unprotected sites

* indicates existing TDWR is also available at this site

7.2.5 NEXRAD Alternatives

NEXRAD is an attractive alternative to other radar-based systems as it is a multi-agency radar (DoD, NWS, FAA) and because of that the expected additional costs for adding operational microburst and gust front capability is much smaller than competing systems (see Figure 32). In fact, gust front detection algorithms (MIGFA) are already part of the NEXRAD ORPG. However, the radar siting is primarily based on coverage of population centers and not on airport locations. Effectivity estimates from the MIT/LL simulation study indicate that despite location issues a significant number of sites are covered adequately. As shown in Table 30, NEXRAD provides coverage for wind shear at 74 of the 161 airports studied. And, 53 of those sites achieve wind shear PODs greater than 90%. In addition, about one third of the high POD sites are non-WSP and/or non-TDWR sites.

NEXRAD MB POD	Site Type								
NEARAD MB FOD	TDWR	WSP	LLWAS	NoWS	Total				
Greater than 90%	21	10	14	8	53				
50 – 90 %	8	1	6	6	21				
Poor or No Coverage	17	24	20	26	87				

Breakdown of NEXRAD coverage sites by current site type and NEXRAD performance

A note of caution in interpreting these results, TDWR and WSP simulation results were compared against measured results from field studies but NEXRAD has never been used for microburst detection. The effectivity simulation attempts to measure the potential for a system to detect microbursts and gust fronts based on several metrics of wind shear characteristics (wet/dry frequency, outflow depth, strength, etc). The NEXRAD system with combined wider beam widths and longer distances may be more sensitive to some of these characteristics than either TDWR or WSP.

Having said that, sites with high PODs combined with the relatively inexpensive implementation costs overwhelmingly have NEXRAD based alternatives as their optimal choices. A total of 63 airports have NEXRAD or NEXRAD+LLWAS as the optimal choice (three additional sites recommend NEXRAD in addition to TDWR).

7.2.6 X-band Alternatives

The X-band radar and alternatives that combine with it are routinely the best performing alternative at almost all sites. Certainly that is true at the LLWAS and unprotected sites where TDWR and WSP alternatives were not even considered. But, even in high value airports this radar scored consistently high. Indeed, referring to Table 19, you see that X-band based alternatives are chosen for highest safety coverage at 61 sites. That number increases to 77 if you consider both safety and delay.

However, the X-band radar is not a finished system and implementation costs are estimated to be the highest of all alternatives. Because of this no X-band system is chosen as an optimal system at any site. In addition, actual performance (many of the radar parameters were based on theoretical design) may be highly variable and there may also be issues related to radar placement especially at congested airports.

8. SUMMARY AND CONCLUSIONS

In this report, we quantified the effectiveness and associated operational benefits of deployed ground based wind shear detection systems (TDWR, ASR-9 augmented with the Weather Systems Processor (WSP) and LLWAS). In addition, we considered complementary or alternative sensors including the WSR-88D (or NEXRAD), Lidar and X-Band based wind shear systems, and various integrated systems that combine multiple sensors. All 20 of these single-sensor and integrated configurations were evaluated for the 121 US airports that currently have some type of operational, ground-based wind shear systems. Additionally, 40 smaller airports that are not currently protected by ground based wind shear systems were also examined.

Wind shear phenomena are still a potent hazard to aircraft in the United States and around the world. This analysis presents a thorough review of the wind shear hazards to aircraft and the estimated exposure throughout the country based on recent archive data from TDWR and ITWS and climatological surrogates for wet and dry microburst exposure. A complete review and update of the expected wind shear related accident rate was performed, including the use of the now 25+ year safety record to cross-check measured accident rates against models of pilot training, airborne PWS, and ground based wind shear protection methods. Updated accident profiles were also used to calculate the anticipated costs of life and property in wind shear accidents.

The current state of protection from wind shear is high, with some 95% of the estimated safety-related financial exposure being removed from the system by a combination of pilot training, airborne wind shear systems and ground-based detection and prediction systems. In addition, ground-based systems provide wide-area warnings of wind shear and gust fronts that aid in the reduction of delay. A conservative approach for considering delay was taken by restricting delay reduction estimates to the algorithm directly related to wind shear detection. Delay benefit assessments were based on the wind shift prediction ability of ground-based systems and the associated reduction in runway closures for unplanned runway change operations.

The effectiveness of the various wind shear system configurations to detect wind shear was estimated by simulating the radar or other system characteristics (clutter, range-folding, beam widths/heights, etc). These system models were then used to estimate how well the system would detect the specific profile of microburst and gust front activity at that airport. In addition, life cycle cost data were approximated from FAA and industry estimates for the various systems.

Each airport's wind shear exposure and projected operations from 2010–32 were combined with the modeled performance expectation of each alternative to estimate the safety savings (from accident reduction) and decreased delay (from reduced runway down time) for each of the study airports. Safety benefits were the primary focus for benefits, delay reduction benefits were deliberately conservative and focused on the direct benefit of wind shift prediction from wind shear related algorithms. The overall goal was to determine the optimal wind shear detection system at each site taking into account not just the benefits of the system but also its costs. Figure 50 summarizes the overall results of this analysis. While

many of the existing systems of today are often not the optimal solution chosen, replacing current systems with the alternatives chosen at all sites results in a net benefits increase of only 7%.

Evaluating the multitude of system choices for an optimal alternative based on costs and benefits must be done with consideration of the variability of projected system costs and timelines. Existing systems like LLWAS, WSP and TDWR have better known operating costs than their prospective counterparts (NEXRAD, Lidar, and X-band). In addition, new systems were assumed for this analysis to begin in 2013, therefore extended timelines for implementation and siting of new systems would significantly reduce system benefits over competing systems. Finally, costs are distributed based on assumptions about how many sites would be fitted with each system. Therefore, making decisions to replace only a few systems with an alternative would require updated cost data to verify the investment decision.

Most notable in the list of most chosen alternatives, is the NEXRAD radar. NEXRAD would require new microburst detection algorithms and a rapid (1–2 minute) surface scan strategy. But, the NEXRAD's reduced cost of operations makes it an attractive alternative to pursue. TDWR and TDWR-LLWAS locations are fairly well optimized with few better alternatives being found. Many of the WSP sites have the highest NPV with WSP, but at a significant number of sites NEXRAD is the optimal alternative. LLWAS sites have limited options for alternatives as there are no nearby TDWR or WSP sensors. Therefore, NEXRAD is again chosen as a frequent alternative. Unprotected sites frequently benefit from NEXRAD but five sites are close enough to existing TDWR sites that satellite operations at the airport are the optimal choice.

New Airport weather radars, such as X-band systems, were among the best performing based on model simulations, but the large expense of a new program and radar kept this sensor from being chosen an optimal alternative at any site. Finally, systems with LIDAR were only chosen at one site (LAS). This system also suffered from high expenses but also from the wind shear exposure research that showed dry western environments generally had fewer events than had previously been estimated. However, when alternative selection is optimized by safety, without regard for costs, alternatives that include LIDAR as a complimentary system are frequently selected.

Finally, the meteorological, accident investigation and radar simulation methodologies performed for this study may prove a valuable asset in the future investigation of optimizing wind shear system investments.

Site Name	Current System	Optimal System Based on Safety+Delay	Site Name	Current System	Optimal System Based on Safety+Delay									
ABE	NoWS	None	СМІ	NoWS	None	HNL	WSP	WSP	MKE	TDWR	TDWR	RSW	LLWAS	NEXRAD & LLWAS
ABQ	WSP	NEXRAD	cos	LLWAS	NEXRAD	HOU	TDWR	NEXRAD	MLI	LLWAS	NEXRAD	SAN	NoWS	None
ADW	TDWR	None	CRP	NoWS	NEXRAD	HPN	WSP	WSP	MLU	LLWAS	None	SAT	WSP	NEXRAD
AGS	LLWAS	None	CRW	LLWAS	None	нѕѵ	WSP	None	мов	LLWAS	NEXRAD	SAV	LLWAS	NEXRAD & LLWAS
ALB	WSP	WSP	CSG	LLWAS	None	IAD	TDWR	NEXRAD	MSN	WSP	None	SBN	NoWS	None
АМА	NoWS	NEXRAD	CVG	TDWR	TDWR	IAH	TDWR	TDWR & NEXRAD	MSP	TDWR	NEXRAD	SDF	TDWR	NEXRAD
ASE	NoWS	None	DAB	LLWAS	LLWAS	ІСТ	TDWR	NEXRAD	MSY	TDWR & LLWAS	TDWR	SEA	WSP	WSP
ATL	TDWR & LLWAS	NEXRAD & LLWAS	DAL	TDWR	TDWR	ILM	NoWS	NEXRAD	MYR	NoWS	NEXRAD	SFB	NoWS	TDWR
AUS	WSP	WSP	DAY	TDWR	None	IND	TDWR	NEXRAD	OAK	NoWS	None	SFO	LLWAS	NEXRAD & LLWAS
AVL	LLWAS	None	DCA	TDWR	NEXRAD	ISP	WSP	NEXRAD	окс	TDWR	NEXRAD	SGF	LLWAS	NEXRAD
AVP	NoWS	None	DEN	TDWR & LLWAS	NEXRAD & LLWAS	JAN	LLWAS	NEXRAD	OMA	LLWAS	NEXRAD	SHV	LLWAS	NEXRAD
AZO	NoWS	None	DFW	TDWR & LLWAS	NEXRAD & LLWAS	JAX	WSP	NEXRAD	ONT	WSP	WSP	SJC	NoWS	None
BDL	WSP	WSP	DSM	WSP	NEXRAD	JFK	TDWR	TDWR	ORD	TDWR & LLWAS	TDWR,LLWAS, NEXRAD	SJU	TDWR	TDWR
BGM	NoWS	None	DTW	TDWR	TDWR	LAN	LLWAS	None	ORF	WSP	WSP	SLC	TDWR	TDWR
внм	WSP	NEXRAD	ELP	WSP	WSP	LAS	TDWR	WSP & LIDAR	ORL	NoWS	TDWR	SMF	NoWS	NEXRAD
BIL	LLWAS	NEXRAD	ERI	NoWS	None	LAX	WSP	WSP	PBI	TDWR	TDWR	SNA	NoWS	None
BIS	NoWS	None	EVV	NoWS	None	LBB	WSP	NEXRAD	PDK	NoWS	TDWR	SPI	LLWAS	None
BNA	TDWR	NEXRAD	EWR	TDWR	TDWR	LEX	LLWAS	None	PDX	WSP	WSP	SRQ	WSP	NEXRAD
BOI	NoWS	NEXRAD	FAR	NoWS	None	LFT	NoWS	None	PHF	NoWS	NEXRAD	STL	TDWR & LLWAS	NEXRAD
BOS	TDWR	TDWR	FAY	LLWAS	None	LGA	TDWR & LLWAS	TDWR	PHL	TDWR	TDWR	SUX	LLWAS	None
BTR	LLWAS	None	FLL	TDWR	TDWR & NEXRAD	LGB	NoWS	None	РНХ	TDWR	NEXRAD	SYR	WSP	None
вти	NoWS	NEXRAD	FNT	NoWS	NEXRAD	LIT	LLWAS	NEXRAD	PIA	LLWAS	None	TLH	LLWAS	NEXRAD
BUF	WSP	NEXRAD	FSD	LLWAS	NEXRAD	LNK	LLWAS	None	PIE	NoWS	TDWR	TOL	WSP	None
BUR	NoWS	None	FSM	LLWAS	None	MAF	LLWAS	NEXRAD	PIT	TDWR	NEXRAD	ТРА	TDWR & LLWAS	NEXRAD
BWI	TDWR	TDWR	FWA	WSP	None	MBS	NoWS	None	PNS	LLWAS	None	TRI	LLWAS	None
CAE	LLWAS	NEXRAD	GCN	NoWS	None	мсі	TDWR	TDWR	PVD	LLWAS	NEXRAD	TUL	TDWR	NEXRAD
САК	NoWS	TDWR	GEG	WSP	NEXRAD	мсо	TDWR&LL WAS	TDWR&LL WAS	PWM	NoWS	NEXRAD	TUS	WSP	WSP
СНА	LLWAS	None	GFK	NoWS	NEXRAD	MDT	WSP	None	RDU	TDWR	NEXRAD	TWF	NoWS	None
снѕ	WSP	WSP	GPT	NoWS	None	MDW	TDWR	NEXRAD	RIC	WSP	NEXRAD	TYS	WSP	None
CID	WSP	None	GRB	LLWAS	None	MEM	TDWR	NEXRAD	RNO	NoWS	NEXRAD & LLWAS			
CLE	TDWR	NEXRAD	GRR	WSP	NEXRAD	MGM	LLWAS	None	ROA	LLWAS	None			
CLT	TDWR	TDWR	GSO	WSP	WSP	мнт	NoWS	None	ROC	WSP	WSP			
смн	TDWR	TDWR	GSP	LLWAS	None	MIA	TDWR	NEXRAD & LLWAS	RST	LLWAS	None			

Figure 50. Summary of optimal alternatives for all 161 study sites.

This page intentionally left blank.

GLOSSARY

ARENAs	Areas Noted for Attention
ASR9	Airport Surveillance Radar-9
CREM	Clutter Residue Map
DFAD	Digital Feature Analysis Data
FAA	Federal Aviation Administration
GF	Gust Front
LLWAS-RS	Low Altitude Wind Shear Alert System Relocation/Sustainment
LMCT	Lockheed Martin Coherent Technologies
MB	Microburst
MIGFA	Machine Intelligent Gust Front Algorithm
MPAR	Multi-mission Phased Array Radar
NAS	National Airspace System
NCAR	National Center for Atmospheric Research
NEXRADs	Next Generation Weather Radar
NTSB	National Transportation Safety Board
PDF	Probability Distribution Function
SLEPs	Service Life Extension Programs
TDWR	Terminal Doppler Weather Radar
WSI	Weather Services Incorporated
WSP	Weather Systems Processor
WSR-88D	Weather Surveillance Radar-1988 Doppler

REFERENCES

- Allan, S. S., and J. E. Evans, 2005: "Operational Benefits of the Integrated Terminal Weather System (ITWS) at Atlanta," Project Report ATC-320, MIT Lincoln Laboratory, Lexington, MA.
- Biron, P. J., and M. A. Isaminger, 1991: "High Resolution Microburst Outflow Vertical Profile Data from Huntsville, Alabama and Denver, Colorado," Project Report ATC-163, MIT Lincoln Laboratory, Lexington, MA.
- Chan, P. W., C. M. Shun, and K. C. Wu, 2006: "Operational LIDAR-based system for automatic windshear alerting at the Hong Kong International Airport," preprint, 12th Conf. on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., http://ams.confex.com/ams/pdfpapers/100601.pdf.
- Cho, J. Y. N. and R. G. Hallowell, 2008: "Detection Probability Modeling for Airport Wind-Shear Sensors," Project Report ATC-340, MIT Lincoln Laboratory, Lexington, MA.
- Cho, J. Y. N., R. G. Hallowell, and M. E. Weber, 2008: "Comparative Analysis of Terminal Wind-shear Detection Systems," 13th Conf. on Aviation, Range, and Aerospace Meteorology, New Orleans, LA.
- Cho, J. Y. N., and B. D. Martin, 2007: "Technical Assessment of the Impact of Decommissioning the TDWR on Terminal Weather Services," Project Report ATC-331, MIT Lincoln Laboratory, Lexington, MA.
- Cole, R. E., 1992: "Terminal Doppler Weather Radar/Low-Level Wind Shear Alert System Integration Algorithm Specification Version 1.1," Project Report ATC-187, MIT Lincoln Laboratory, Lexington, MA.
- Cole, R. E., and R. F. Todd, 1996: "A comparative performance study of TDWR/LLWAS 3 integration algorithms for wind shear detection," preprints, *Workshop on Wind shear and Wind Shear Alert Systems*, Amer. Meteor. Soc., Oklahoma City, OK, 43–52.
- Cullen, J. A., and M. M. Wolfson, 1990: "Predicting Summer Microburst Hazard from Thunderstorm Day Statistics," *16th Conf. on Severe Local Storms/Conf. on Atmospheric Electricity*, Kananaskis Park, Alta., Canada, pp. 383–387.
- FAA, 2008: Revised Department Guidelines: Treatment of the Value of Preventing Fatalities and Injuries in Preparing Economic Analyses.
- GRA, Incorporated, 2007: "Economic Values for FAA Investment and Regulatory Decisions, A Guide," Final Report, October 3, 2007.

- Hannon, S. M., 2004: "Pulsed Doppler lidar for terminal weather area monitoring of wind and wake hazards," preprints, 11th Conf. on Aviation, Range, and Aerospace Meteorology, Amer. Meteor. Soc., Hyannis, MA, P4.21, <u>http://ams.confex.com/ams/pdfpapers/87757.pdf</u>.
- Heiss, W. D., D. L. McGrew, and D. Sirmans, 1990: "NEXRAD: Next Generation Weather Radar (WSR-88D)," *Microwave J.*, 33, 79–98.
- Klingle-Wilson, D., and M. F. Donovan, 1991: "Characteristics of gust fronts," preprints, 4th Int. Conf. on Aviation Weather Systems, Paris, France, Amer. Meteor. Soc., 387–392.
- Martin Marietta, 1994: "Wind shear systems cost-benefit and deployment study: System engineering and integration contract for implementation of the National Airspace System plan," ATC-92-1201, Martin Marietta Air Traffic Systems, 91 pp.
- NOAA, 1989: Microbursts A Handbook for Visual Identification, U.S. Department of Commerce.
- NTSB, 2007: Notes from meeting with Don Eich, NTSB, December 20, 2007.
- Rasmussen, R. G., and F. M. Robasky, 1995: "The ITWS Runway Wind Nowcast Product," 6th Conf. on Aviation Weather Systems, Dallas, TX.
- Robinson, M., J. E. Evans, B. A. Crowe, D. L. Klingle-Wilson, and S. S. Allan, 2004: "Corridor Integrated Weather System Operational Benefits 2002–2003: Initial Estimates of Convective Weather Delay Reduction," Project Report ATC-313, MIT Lincoln Laboratory, Lexington, MA.
- Smalley, D. J., B. J. Bennett, and R. Frankel, 2005: "MIGFA: The machine intelligent gust front algorithm for NEXRAD," preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., <u>http://ams.confex.com/ams/pdfpapers/96098.pdf</u>.
- Weber, M. E., J. Y. N. Cho, M. Robinson, and J. E. Evans, 2007: "Analysis of Operational Alternatives to the Terminal Doppler Weather Radar (TDWR)," Project Report ATC-332, MIT Lincoln Laboratory, Lexington, MA.
- Weber, M. E., J. E. Evans, W. R. Moser II, and O. J. Newell, 2007: "Air Traffic Management Decision Support During Convective Weather," *MIT Lincoln Laboratory Journal*, Volume 16, pp. 263–276, Number 2.
- Weber, M. E., E. R. Williams, M. M. Wolfson, and S. Goodman, 1998: "An Assessment of the Operational Utility of a GOES Lightning Mapping Sensor," Project Report NOAA-18, MIT Lincoln Laboratory, Lexington, MA.
- Weber, M. E., J. A. Cullen, S. W. Troxel, and C. A. Meuse, 1996: "ASR-9 Weather System Processor (WSP): Wind Shear Algorithms Performance Assessment," Project Report ATC-247, MIT Lincoln Laboratory, Lexington, MA.

- Weber, M. E., and M. L. Stone, 1995: "Low altitude wind shear detection using airport surveillance radars," *IEEE Aerosp. Electron. Syst. Mag.*, 1, 3–9.
- Weber, M. E., and S. W. Troxel, 1994: "Assessment of the Weather Detection Capability of an Airport Surveillance Radar with Solid-State Transmitter," Project Report ATC-209, MIT Lincoln Laboratory, Lexington, MA.
- Wilson, F. W., and R. E. Cole, 1993: "LLWAS II and LLWAS III performance evaluation," preprints, 5th Conf. on Aviation Weather Systems, Amer. Meteor. Soc., Vienna, VA, 204–208.
- Wilson, F. W., and R. H. Gramzow, 1991: "The Redesigned Low Level Wind Shear Alert System," preprints, 4th Int. Conf. on Aviation Weather Systems, Paris, France, 370.
- Wolfson, M. M., R. L. Delanoy, B. E. Forman, R. G. Hallowell, M. L. Pawlak, and P. D. Smith, 1994: "Automated Microburst Wind-Shear Prediction," *Lincoln Laboratory Journal*, Volume 7, Number 2, p. 399.
- Wolfson, M. M., et al., 1990: "Characteristics of Thunderstorm-Generated Low Altitude Wind Shear: A Survey Based on Nationwide Terminal Doppler Weather Radar Testbed Measurements," 29th IEEE Conference on Decision and Control, Honolulu, HI.

APPENDIX A WIND-SHEAR AND WIND-SHIFT EXPOSURE ASSESSMENT

	Airport Info		Microbursts	rsts	Gust Fronts	onts	SWEF	Wind Shifts
Site	Tvbe	Airport ARENA Coverage (sq-km)	Microbursts in the ARENA (mb/vear)	Mbexp	Gust Fronts in the ARENA (of/vear)	Gfexn	(0,1*GF+0.9*MB)	Annual Number of Strong Wind Shifts
ABE	NoWS	45.1	58	0.41	6498	0.97	0.46	60
ABQ	WSP	86.3	289	2.02	8978	1.34	1.95	129
ADW	TDWR	34.8	55	0.39	6668	1.00	0.45	25
AGS	LLWAS	45.6	127	0.89	6832	1.02	0.90	38
ALB	WSP	45.2	71	0.50	6016	0.90	0.54	61
AMA	NoWS	49.8	183	1.28	8164	1.22	1.27	133
ASE	NoWS	24.5	97	0.68	8455	1.26	0.74	189
ATL	TDWR- LLWAS	91.6	289	2.02	7125	1.07	1.93	62
SU	WSP	53.2	115	0.81	6871	1.03	0.83	44
AVL	LLWAS	25.1	60	0.42	2862	1.19	0.49	32
AVP	NoWS	43.8	56	0.39	6316	0.94	0.45	61
AZO	NoWS	58.9	66	0.69	6772	1.01	0.72	94
BDL	WSP	63.0	67	0.47	4917	0.74	0.49	49
BGM	NoWS	44.1	55	0.38	5434	0.81	0.43	58
BHM	WSP	46.6	159	1.11	7121	1.06	1.11	53
BIL	LLWAS	48.3	138	0.96	7438	1.11	0.98	110
BIS	NoWS	46.4	108	0.76	2527	1.16	0.80	41
BNA	TDWR	84.4	201	1.40	6269	1.04	1.37	44
BOI	NoWS	29.9	96	0.67	6008	0.90	0.69	67
BOS	TDWR	103.5	105	0.73	3863	0.58	0.72	93
BTR	LLWAS	47.8	260	1.82	8189	1.22	1.76	41

	Airport Info		Microbursts	rsts	Gust Fronts	onts	SWEF	Wind Shifts
u U	Two	Airport ARENA Coverage	Microbursts in the ARENA		Gust Fronts in the ARENA	Cfour	0 1*CE. 0 0*MD)	Annual Number of
BUF	WSP	45.3	(1110/year) 61	0.43	6306	0.94	0.48 0.48	
BUR	NoWS	44.8	19	0.13	797	0.12	0.13	44
BWI	TDWR	78.5	109	0.76	6643	0.99	0.79	48
CAE	LLWAS	46.6	130	0.91	6832	1.02	0.92	46
CAK	NoWS	44.9	79	0.55	6754	1.01	0.60	57
CHA	LLWAS	43.8	110	0.77	7049	1.05	0.80	28
CHS	WSP	46.1	139	0.97	6889	1.03	0.98	65
CID	WSP	44.4	61	0.43	6658	1.00	0.48	47
CLE	TDWR	67.6	130	0.91	6821	1.02	0.92	66
CLT	TDWR	68.8	119	0.83	6794	1.02	0.85	43
CMH	TDWR	38.2	66	0.69	6836	1.02	0.72	42
CMI	NoWS	64.5	168	1.18	6877	1.03	1.16	123
cos	LLWAS	70.5	252	1.76	9066	1.36	1.72	153
CRP	NoWS	43.8	78	0.54	6739	1.01	0.59	67
CRW	LLWAS	44.0	63	0.44	6518	0.97	0.50	23
CSG	LLWAS	43.8	165	1.15	7146	1.07	1.14	42
CVG	TDWR	88.4	193	1.35	6793	1.02	1.32	52
DAB	LLWAS	52.2	339	2.37	11991	1.79	2.31	49
DAL	TDWR	55.2	142	0.99	7015	1.05	1.00	58
DAΥ	TDWR	67.1	171	1.20	6911	1.03	1.18	47
DCA	TDWR	53.1	85	0.59	6668	1.00	0.63	56
DEN	TDWR- LLWAS	125.8	427	2.99	8946	1.34	2.82	105
DFW	TDWR- LLWAS	117.1	301	2.11	7015	1.05	2.00	52
DSM	WSP	47.8	121	0.85	7050	1.05	0.87	52
DTW	TDWR	98.3	190	1.33	6809	1.02	1.30	76
ELP	WSP	54.6	154	1.08	7911	1.18	1.09	80
ERI	NoWS	41.9	49	0.34	6246	0.93	0.40	78

	Airport Info		Microbursts	rsts	Gust Fronts	onts	SWEF	Wind Shifts
Site	Tuna	Airport ARENA Coverage	Microbursts in the ARENA (mb/voar)	uxedM	Gust Fronts in the ARENA	Gfevn	(0 1*GE+0 0*MR)	Annual Number of Strong Wind Shifts
EVV	NoWS	61.2	149	1.04	(1911) cur / 6936	1.04	1.04	45
EWR	TDWR	54.7	49	0.35	5667	0.85	0.40	71
FAR	NoWS	60.3	72	0.50	6190	0.93	0.55	59
FAY	LLWAS	44.3	100	0.70	6815	1.02	0.73	35
FLL	TDWR	57.6	343	2.40	11016	1.65	2.32	74
FNT	NoWS	61.8	92	0.64	6741	1.01	0.68	57
FSD	LLWAS	63.0	148	1.03	7113	1.06	1.04	66
FSM	LLWAS	44.5	183	1.28	7251	1.08	1.26	52
FWA	WSP	64.5	163	1.14	6898	1.03	1.13	41
GCN	NoWS	25.7	82	0.58	8778	1.31	0.65	128
GEG	WSP	46.0	137	0.96	5230	0.78	0.94	63
GFK	NoWS	56.0	61	0.43	5808	0.87	0.47	60
GPT	NoWS	44.2	247	1.73	8428	1.26	1.68	57
GRB	LLWAS	46.5	50	0.35	5155	0.77	0.39	62
GRR	WSP	62.4	67	0.47	5521	0.83	0.51	48
GSO	WSP	47.0	76	0.53	6814	1.02	0.58	32
GSP	LLWAS	26.8	50	0.35	6870	1.03	0.42	36
HNL	WSP	70.2	63	0.44	1647	0.25	0.42	58
NOH	TDWR	71.5	344	2.41	7506	1.12	2.28	48
HPN	WSP	42.7	40	0.28	5626	0.84	0.34	87
HSV	WSP	49.3	152	1.06	7058	1.06	1.06	60
IAD	TDWR	73.4	117	0.82	6679	1.00	0.84	30
IAH	TDWR	73.9	374	2.62	7866	1.18	2.48	48
ICT	TDWR	60.9	193	1.35	7286	1.09	1.33	76
ILM	NoWS	46.0	103	0.72	6776	1.01	0.75	43
IND	TDWR	66.6	213	1.49	6961	1.04	1.44	48
ISP	WSP	63.5	59	0.41	4863	0.73	0.45	62
JAN	LLWAS	41.2	169	1.18	7241	1.08	1.17	40
JAX	WSP	47.2	287	2.00	9743	1.46	1.95	57

	Airport Info		Microbursts	rsts	Gust Fronts	onts	SWEF	Wind Shifts
Site	Anv	Airport ARENA Coverage (so-km)	Microbursts in the ARENA (mb/vear)	uxedM	Gust Fronts in the ARENA	Gfayn	(0 1*GF±0 9*MR)	Annual Number of Strong Wind Shifts
JFK	TDWR	84.2	76	0.53	5667	0.85	0.56	
LAN	LLWAS	46.8	58	0.41	6477	0.97	0.46	50
LAS	TDWR	58.0	170	1.19	6471	0.97	1.17	161
LAX	WSP	54.0	23	0.16	797	0.12	0.16	25
LBB	WSP	59.7	205	1.44	8195	1.23	1.41	122
LEX	LLWAS	41.6	66	0.46	6783	1.01	0.52	42
LFT	NoWS	48.1	232	1.62	7671	1.15	1.57	43
LGA	TDWR- LLWAS	45.7	44	0.31	5804	0.87	0.36	101
LGB	NoWS	79.0	122	0.86	2332	0.35	0.80	47
LIT	LLWAS	58.8	211	1.47	7114	1.06	1.43	40
LNK	LLWAS	56.2	119	0.83	6998	1.05	0.85	58
MAF	LLWAS	70.4	205	1.43	8160	1.22	1.41	124
MBS	NoWS	45.9	51	0.35	6289	0.94	0.41	66
MCI	TDWR	73.8	269	1.88	7177	1.07	1.80	63
MCO	TDWR- LLWAS	86.8	569	3.98	12988	1.94	3.78	70
MDT	WSP	25.9	35	0.25	6587	0.99	0.32	81
MDW	TDWR	52.2	124	0.87	6833	1.02	0.88	82
MEM	TDWR	65.7	213	1.49	6958	1.04	1.45	53
MGM	LLWAS	44.7	187	1.31	7240	1.08	1.28	33
MHT	NoWS	46.7	49	0.34	5200	0.78	0.39	49
MIA	TDWR	66.9	423	2.96	12061	1.80	2.84	85
MKE	TDWR	85.0	162	1.14	6663	1.00	1.12	61
MLI	LLWAS	62.5	103	0.72	6825	1.02	0.75	53
MLU	LLWAS	61.0	250	1.75	7232	1.08	1.68	45
MOB	LLWAS	42.6	239	1.67	8480	1.27	1.63	57
MSN	WSP	61.0	92	0.64	6718	1.00	0.68	53
MSP	TDWR	86.5	103	0.72	6339	0.95	0.74	58

	Airport Info		Microbursts	rsts	Gust Fronts	onts	SWEF	Wind Shifts
Site	тор	Airport ARENA Coverage (so-km)	Microbursts in the ARENA (mb/vear)	Mbexn	Gust Fronts in the ARENA (offvear)	Gfexn	(0 1*GF+0 9*MB)	Annual Number of Strong Wind Shifts
MSY	TDWR- LLWAS	63.2	343	2.40	8189	1.22	2.28	37
MYR	NoWS	25.9	70	0.49	6838	1.02	0.54	16
OAK	NoWS	60.3	7	0.05	231	0.03	0.05	76
окс	TDWR	69.5	188	1.31	7153	1.07	1.29	68
OMA	LLWAS	49.1	123	0.86	7037	1.05	0.88	48
ONT	WSP	30.5	59	0.41	2682	0.40	0.41	49
ORD	TDWR- LLWAS	117.7	279	1.95	6833	1.02	1.86	53
ORF	WSP	45.6	60	0.42	6541	0.98	0.47	83
ORL	NoWS	43.4	284	1.99	12988	1.94	1.98	78
PBI	TDWR	46.6	295	2.06	12061	1.80	2.04	77
PDK	NoWS	61.2	188	1.32	7057	1.06	1.29	72
PDX	WSP	59.5	39	0.27	1040	0.16	0.26	49
PHF	NoWS	44.5	62	0.43	6624	0.99	0.49	90
PHL	TDWR	64.4	69	0.49	6320	0.95	0.53	54
РНХ	TDWR	46.2	89	0.63	6658	1.00	0.66	39
PIA	LLWAS	47.9	120	0.84	6893	1.03	0.86	40
PIE	NoWS	64.5	394	2.76	10557	1.58	2.64	83
PIT	TDWR	69.7	93	0.65	6257	0.94	0.68	49
PNS	LLWAS	45.6	245	1.71	8121	1.21	1.66	76
PVD	LLWAS	45.0	46	0.32	3819	0.57	0.35	84
PWM	NoWS	44.3	51	0.35	3755	0.56	0.37	52
RDU	TDWR	66.8	108	0.75	6760	1.01	0.78	39
RIC	WSP	50.0	91	0.64	6716	1.00	0.68	46
RNO	NoWS	49.9	188	1.32	5649	0.84	1.27	158
ROA	LLWAS	44.8	91	0.64	7780	1.16	0.69	60
ROC	WSP	61.2	80	0.56	5741	0.86	0.59	53
RST	LLWAS	46.8	57	0.40	6193	0.93	0.45	84

	Airport Info		Microbursts	rsts	Gust Fronts	onts	SWEF	Wind Shifts
atio Site	Tuna	Airport ARENA Coverage	Microbursts in the ARENA (mh/war)	uyedM	Gust Fronts in the ARENA	Gfavn	(0 1*GE+0 0*MB)	Annual Number of Strong Wind Shifts
RSW	LLWAS	27.4	167	1.17	11215	1.68	1.22	110
SAN	NoWS	25.9	22	0.15	1198	0.18	0.16	39
SAT	WSP	50.1	98	0.69	6851	1.02	0.72	51
SAV	LLWAS	47.0	178	1.25	7064	1.06	1.23	44
SBN	NoWS	57.8	142	0.99	6717	1.00	1.00	51
SDF	TDWR	65.1	122	0.86	6802	1.02	0.87	57
SEA	WSP	30.7	18	0.13	815	0.12	0.13	43
SFB	NoWS	60.5	393	2.75	11991	1.79	2.65	84
SFO	LLWAS	54.7	6	0.04	199	0.03	0.04	55
SGF	LLWAS	45.7	156	1.09	7196	1.08	1.09	47
SHV	LLWAS	45.9	188	1.31	7150	1.07	1.29	58
SJC	NoWS	32.5	4	0.03	231	0.03	0.03	59
SJU	TDWR	42.6	53	0.37	6396	0.96	0.43	25
SLC	TDWR	81.4	246	1.72	7454	1.11	1.66	126
SMF	NoWS	50.6	14	0.10	502	0.08	0.10	44
SNA	NoWS	25.6	11	0.08	797	0.12	0.08	98
SPI	LLWAS	63.3	167	1.17	6982	1.04	1.16	54
SRQ	WSP	44.5	261	1.82	9620	1.44	1.79	116
STL	TDWR- LLWAS	72.9	175	1.22	6860	1.03	1.20	61
SUX	LLWAS	45.1	102	0.71	7027	1.05	0.75	62
SYR	WSP	45.7	56	0.39	4757	0.71	0.42	55
тгн	LLWAS	45.7	211	1.47	7517	1.12	1.44	32
TOL	WSP	46.9	113	0.79	6823	1.02	0.81	43
TPA	TDWR- LLWAS	77.5	473	3.31	10557	1.58	3.14	33
TRI	LLWAS	43.4	93	0.65	7936	1.19	0.70	24
TUL	TDWR	64.7	187	1.31	7032	1.05	1.28	52
TUS	WSP	50.4	149	1.04	8254	1.23	1.06	109

Airport Info		Microbursts	rsts	Gust Fronts	onts	SWEF	Wind Shifts
Ai AR Cov (sq	Airport ARENA Coverage (sq-km)	Microbursts in the ARENA (mb/year)	Mbexp	Gust Fronts in the ARENA (gf/year)	Gfexp	(0.1*GF+0.9*MB)	Annual Number of Strong Wind Shifts
43	43.0	150	1.05	6641	0.99	1.04	219
31.9	6	63	0.44	6951	1.04	0.50	32
2	55	143	٢	6687	٦	161	64

PILOT OBSERVABILITY AND PWS AIRBORNE SYSTEM EFECTIVENESS APPENDIX B

				Pilot Observability	ervability			Airb	Airborne
			Estimated Visibility		Estimated Visibility	% of Time MB/GF	% of Time a Pilot Can See		
Site	Тире	% of Time High Reflectivity	of High Refl MB Fvents	% of Time Low Reflectivity	of Low RefI MB Fvents	Occur During Davlicht	Through Wx to See MB	PWS Effectiveness	Airborne % Effectiveness
ABE	NoWS	66	33	34	73	76	17.7	90.0	60%
ABQ	WSP	20	73	30	95	78	31.0	91.2	61%
ADW	TDWR	61	46	39	83	77	23.3	88.5	59%
AGS	LLWAS	77	69	23	64	79	26.5	93.2	62%
ALB	WSP	65	62	35	74	75	16.8	89.7	%09
AMA	NoWS	57	48	43	88	79	25.8	87.4	%65
ASE	NoWS	45	54	55	80	76	26.0	83.8	57%
АТС	TDWR- LLWAS	71	26	29	63	79	26.4	91.5	61%
AUS	WSP	64	63	36	94	79	29.3	89.4	60%
AVL	LLWAS	70	67	30	06	78	28.8	91.2	61%
AVP	NoWS	67	68	33	23	75	18.8	90.3	61%
AZO	NoWS	59	32	41	78	76	19.3	87.9	59%
BDL	WSP	66	32	34	76	75	17.6	90.0	60%
BGM	NoWS	66	36	34	81	75	19.2	90.0	60%
BHM	WSP	72	65	28	06	79	28.4	91.8	62%
BIL	LLWAS	43	49	57	85	74	25.7	83.2	56%
BIS	NoWS	49	45	51	88	75	25.1	85.0	57%
BNA	TDWR	58	62	42	26	78	29.9	87.6	59%
BOI	NoWS	36	61	64	95	74	30.6	81.2	55%
BOS	TDWR	63	28	37	69	75	16.2	89.1	60%
BTR	LLWAS	78	60	22	95	81	27.4	93.5	63%
BTV	NoWS	53	32	47	76	75	19.8	86.2	58%

				Pilot Observability	srvability			Airb	Airborne
Site	Type	% of Time High Reflectivity	Estimated Visibility of High Refl MB Events	% of Time Low Reflectivity	Estimated Visibility of Low Refl MB Events	% of Time MB/GF Occur During Daylight	% of Time a Pilot Can See Through Wx to See MB	PWS Effectiveness	Airborne % Effectiveness
BUF	WSP	52	48	48	84	76	24.8	85.9	58%
BUR	NoWS	49	20	51	88	77	30.5	85.0	57%
BWI	TDWR	58	46	42	81	<i>LL</i>	23.4	87.6	59%
CAE	LLWAS	64	61	36	94	62	28.8	89.4	60%
CAK	NoWS	72	46	28	80	76	21.1	91.8	62%
CHA	LLWAS	75	59	25	89	62	26.3	92.6	62%
CHS	WSP	81	57	19	91	80	25.4	94.4	63%
CID	WSP	65	31	35	74	92	17.5	89.7	60%
CLE	TDWR	56	40	44	79	22	22.0	87.1	59%
CLT	TDWR	72	52	28	88	78	24.2	91.8	62%
CMH	TDWR	67	47	33	79	77	22.2	90.3	61%
CMI	NoWS	66	42	34	77	77	20.8	90.0	60%
cos	LLWAS	68	61	32	90	27	27.1	90.6	61%
CRP	NoWS	66	63	34	96	80	29.7	90.0	60%
CRW	LLWAS	60	51	40	85	77	24.9	88.2	59%
CSG	LLWAS	70	63	30	94	80	28.9	91.2	61%
CVG	TDWR	64	45	36	82	77	22.5	89.4	60%
DAB	LLWAS	75	66	25	85	83	29.4	92.6	62%
DAL	TDWR	66	60	34	92	79	28.0	90.0	60%
DAΥ	TDWR	68	46	32	81	77	22.0	90.6	61%
DCA	TDWR	60	46	40	84	77	23.6	88.2	59%
DEN	TDWR- LLWAS	43	35	57	84	92	23.9	83.2	56%
DFW	TDWR- LLWAS	99	23	34	91	62	26.0	0.06	%09
DSM	WSP	49	42	51	89	<i>LL</i>	25.4	85.0	57%
DTW	TDWR	64	36	36	77	76	19.3	89.4	60%
ELP	WSP	71	73	29	96	78	31.1	91.5	61%
ERI	NoWS	61	35	39	75	76	19.2	88.5	59%

				Pilot Observability	∍rvability			Airborne	orne
i	I	% of Time High	Estimated Visibility of High Refl MB	% of Time Low	Estimated Visibility of Low Refl MB	% of Time MB/GF Occur During	% of Time a Pilot Can See Wx to See	SMd	Airborne %
EVV	I ype NoWS	Kerlectivity 56	Events 45	Kerlectivity 44	events 91	Daylight 78	25.4	Effectiveness	Effectiveness 59%
EWR	TDWR	63	39	37	78	76	20.3	89.1	60%
FAR	NoWS	60	29	40	75	74	17.5	88.2	59%
FAY	LLWAS	72	51	28	88	78	23.9	91.8	62%
FLL	TDWR	83	71	17	92	82	30.6	95.0	64%
FNT	NoWS	60	35	40	22	76	19.7	88.2	29%
FSD	LLWAS	42	56	58	94	76	29.7	82.9	56%
FSM	LLWAS	67	54	33	91	79	26.2	90.3	61%
FWA	WSP	64	40	36	81	77	21.1	89.4	60%
GCN	NoWS	45	54	55	77	77	25.7	83.8	57%
GEG	WSP	50	59	50	91	73	27.4	85.3	57%
GFK	NoWS	58	41	42	83	74	21.7	87.6	59%
GPT	NoWS	74	69	26	96	82	31.2	92.4	62%
GRB	LLWAS	46	43	54	87	74	24.7	84.1	57%
GRR	WSP	50	37	50	82	75	22.3	85.3	57%
GSO	WSP	20	53	30	28	78	24.6	91.2	61%
GSP	LLWAS	67	69	33	95	78	30.3	90.3	61%
HNL	WSP	64	68	36	26	80	31.4	89.4	60%
ПОН	TDWR	77	60	23	96	81	27.7	93.2	62%
NGH	WSP	60	33	40	73	75	18.4	88.2	59%
NSH	WSP	73	62	27	63	79	27.8	92.1	62%
IAD	TDWR	51	49	49	88	77	26.2	85.6	28%
IAH	TDWR	74	56	26	95	82	27.1	92.4	62%
ICT	TDWR	58	38	42	88	78	23.0	87.6	59%
ILM	NoWS	76	57	24	88	79	25.5	92.9	62%
IND	TDWR	55	43	45	91	78	25.2	86.8	58%
ISP	WSP	55	31	45	79	75	19.7	86.8	58%
JAN	LLWAS	58	20	42	26	80	32.5	87.6	59%

				Pilot Observability	srvability			Airb	Airborne
Site	Туре	% of Time High Reflectivity	Estimated Visibility of High Refl MB Events	% of Time Low Reflectivity	Estimated Visibility of Low Refl MB Events	% of Time MB/GF Occur During Daylight	% of Time a Pilot Can See Through Wx to See MB	PWS Effectiveness	Airborne % Effectiveness
JAX	WSP	64	68	36	97	81	31.8	89.4	60%
JFK	TDWR	58	38	42	76	92	20.5	87.6	29%
LAN	LLWAS	61	37	39	81	75	20.3	88.5	59%
LAS	TDWR	38	02	62	83	<i>LL</i>	30.1	81.8	55%
LAX	WSP	46	61	54	90	77	29.5	84.1	57%
LBB	WSP	61	54	39	95	62	27.6	88.5	59%
LEX	LLWAS	73	48	27	84	77	22.2	92.1	62%
LFT	NoWS	78	62	22	94	81	28.0	93.5	63%
LGA	TDWR- LLWAS	61	37	39	75	92	19.7	88.5	29%
LGB	NoWS	64	83	36	89	77	32.8	89.4	60%
LIT	LLWAS	55	53	45	06	62	27.5	86.8	58%
LNK	LLWAS	63	37	37	86	76	20.9	89.1	60%
MAF	LLWAS	66	59	34	97	79	28.4	90.0	60%
MBS	NoWS	63	39	37	76	75	19.8	89.1	60%
MCI	TDWR	71	43	29	88	78	21.9	91.5	61%
MCO	TDWR- LLWAS	78	63	22	92	83	28.8	93.5	63%
MDT	WSP	69	42	31	76	76	20.0	90.9	61%
MDW	TDWR	59	37	41	87	<i>LL</i>	22.1	87.9	29%
MEM	TDWR	48	57	52	93	79	29.9	84.7	57%
MGM	LLWAS	61	64	39	95	80	30.4	88.5	59%
MHT	NoWS	62	28	38	71	75	16.6	88.8	60%
MIA	TDWR	84	71	16	96	84	31.5	95.3	64%
MKE	TDWR	60	38	40	82	76	21.1	88.2	59%
MLI	LLWAS	50	42	50	87	76	24.5	85.3	57%
MLU	LLWAS	75	59	25	93	80	27.0	92.6	62%
MOB	LLWAS	64	66	36	96	82	31.5	89.4	60%
MSN	WSP	66	37	34	78	76	19.4	0.06	60%

				Pilot Observability	ervability			Airb	Airborne
Site	Type	% of Time High Reflectivity	Estimated Visibility of High Refl MB Events	% of Time Low Reflectivity	Estimated Visibility of Low Refl MB Events	% of Time MB/GF Occur During Daylight	% of Time a Pilot Can See Through Wx to See MB	PWS Effectiveness	Airborne % Effectiveness
MSP	TDWR	65	43	35	87	75	21.9	89.7	60%
MSY	TDWR- LLWAS	20	72	30	98	81	32.3	91.2	61%
MYR	NoWS	70	53	30	94	79	25.8	91.2	61%
OAK	NoWS	41	42	59	72	76	22.7	82.6	56%
окс	TDWR	61	48	39	92	78	25.4	88.5	59%
OMA	LLWAS	60	34	40	68	77	21.6	88.2	29%
ONT	WSP	46	23	54	06	77	31.6	84.1	27%
ORD	TDWR- LLWAS	58	98	42	83	77	21.5	87.6	%65
ORF	WSP	68	52	32	84	77	24.0	90.6	61%
ORL	NoWS	80	64	20	93	83	29.0	94.1	63%
PBI	TDWR	82	72	18	87	83	31.0	94.7	63%
PDK	NoWS	74	59	26	90	79	26.5	92.4	62%
PDX	MSP	56	40	44	23	74	20.2	87.1	29%
PHF	NoWS	68	45	32	85	78	22.5	90.6	61%
PHL	TDWR	64	40	36	81	76	20.8	89.4	60%
РНХ	TDWR	77	68	23	95	77	28.6	93.2	62%
PIA	LLWAS	62	45	38	80	77	22.4	88.8	60%
PIE	NoWS	74	72	26	95	81	31.6	92.4	62%
РІТ	TDWR	55	43	45	83	76	23.2	86.8	58%
PNS	LLWAS	73	11	27	96	82	31.9	92.1	62%
PVD	LLWAS	61	33	39	79	75	19.1	88.5	59%
PWM	NoWS	59	28	41	74	74	17.3	87.9	59%
RDU	TDWR	64	52	36	92	78	25.9	89.4	60%
RIC	WSP	65	49	35	83	77	23.4	89.7	60%
RNO	NoWS	45	81	55	88	75	31.8	83.8	57%
ROA	LLWAS	68	58	32	86	77	25.8	90.6	61%

				Pilot Observability	ervability			Airb	Airborne
Site	Туре	% of Time High Reflectivitv	Estimated Visibility of High Refl MB Events	% of Time Low Reflectivity	Estimated Visibility of Low Refl MB Events	% of Time MB/GF Occur During Davlicht	% of Time a Pilot Can See Through Wx to See MB	PWS	Airborne % Effectiveness
ROC	WSP	65	38	35	78	75	19.5	89.7	60%
RST	LLWAS	69	43	31	79	75	20.3	90.9	61%
RSW	LLWAS	85	55	15	88	81	24.3	95.6	64%
SAN	NoWS	55	88	45	91	77	34.4	86.8	58%
SAT	WSP	64	56	36	94	80	27.9	89.4	60%
SAV	LLWAS	76	61	24	93	80	27.5	92.9	62%
SBN	NoWS	63	35	37	78	76	19.3	89.1	60%
SDF	TDWR	62	40	38	87	77	22.3	88.8	60%
SEA	WSP	47	36	53	70	73	19.7	84.4	57%
SFB	NoWS	80	65	20	91	83	29.1	94.1	63%
SFO	LLWAS	38	45	62	73	76	23.7	81.8	55%
SGF	LLWAS	64	48	36	88	78	24.3	89.4	60%
SHV	LLWAS	59	57	41	94	80	28.9	87.9	59%
SJC	NoWS	36	51	64	92	76	29.4	81.2	55%
SJU	TDWR	64	68	36	97	82	32.2	89.4	60%
SLC	TDWR	49	60	51	92	75	28.6	85.0	57%
SMF	NoWS	36	38	64	84	75	25.3	81.2	55%
SNA	NoWS	42	58	58	88	77	29.0	82.9	56%
SPI	LLWAS	59	43	41	82	78	23.0	87.9	59%
SRQ	WSP	69	70	31	93	81	31.2	90.9	61%
STL	TDWR- LLWAS	62	53	38	91	77	26.0	88.8	60%
SUX	LLWAS	63	36	37	85	76	20.6	89.1	60%
SYR	dSW	65	32	35	76	75	17.8	89.7	%09
TLH	LLWAS	65	64	35	98	81	30.7	89.7	60%
TOL	WSP	61	41	39	75	76	20.6	88.5	59%
ТРА	TDWR- LLWAS	76	73	24	95	81	31.7	92.9	62%
TRI	LLWAS	72	53	28	88	77	24.2	91.8	62%

				Pilot Observability	∍rvability			1	Airborne	orne
Site	Type	% of Time High Reflectivity	Estimated Visibility of High Refl MB Events	% of Time Low Reflectivity	Estimated Visibility of Low Refl MB Events	% of Time MB/GF Occur During Daylight	% of Time a Pilot Can See Through Wx to See MB		PWS Effectiveness	Airborne % Effectiveness
TUL	TDWR	65	46	35	91	78	24.1	1	89.7	60%
TUS	dSW	61	58	68	68	62	27.7		88.5	59%
TWF	SMON	32	31	89	72	52	22.1		80.0	54%
TYS	WSP	70	57	30	90	78	26.1	1	91.2	61%
Average		62	51	38	86	78	25		89	1

APPENDIX C

WIND-SHEAR SYSTEM EFFECTIVITY BY SITE AND SYSTEM (POD MB & GF)

	Site	ABE	ABQ	ADW	AGS	ALB	AMA	ASE	ATL	AUS	AVL	AVP	AZO	BDL	BGM	BHM
			WSP	TDWR		WSP			TDWR-	WSP				WSP		WSP
	Туре	NoWS	WSP	IDWR	LLWAS	WOP	NoWS	NoWS	LLWAS	W3P	LLWAS	NoWS	NoWS	WSP	NoWS	WSP
"Current"	MB	0.0%	89.6%	89.3%	45.8%	82.8%	0.0%	0.0%	90.9%	69.6%	43.3%	0.0%	0.0%	85.9%	0.0%	79.4%
ourion	GF	0.0%	61.5%	79.4%	1.3%	74.4%	0.0%	0.0%	78.6%	41.8%	0.7%	0.0%	0.0%	76.5%	0.0%	57.7%
"Upgraded" TDWR/WSP	MB	0.0%	93.1%	95.1%	45.8%	88.2%	0.0%	0.0%	98.7%	72.5%	43.3%	0.0%	0.0%	89.9%	0.0%	90.7%
opgraded i Difficition	GF	0.0%	68.1%	91.9%	1.3%	78.2%	0.0%	0.0%	91.0%	53.1%	0.7%	0.0%	0.0%	79.6%	0.0%	66.0%
XBAND	MB	95.4%	95.9%	87.1%	90.8%	93.3%	95.1%	49.5%	94.3%	95.2%	87.9%	74.2%	95.3%	93.2%	95.8%	48.2%
7127 012	GF	83.0%	75.6%	88.7%	70.5%	90.5%	92.3%	2.7%	87.9%	90.4%	32.2%	29.1%	94.3%	77.2%	93.9%	15.9%
XBAND + LIDAR	MB	96.7%	97.0%	96.1%	94.2%	96.3%	96.0%	79.9%	96.2%	97.0%	93.4%	83.0%	97.1%	95.3%	96.9%	57.2%
ABAILD I LIDAIL	GF	90.0%	81.5%	94.3%	87.3%	93.7%	94.5%	3.5%	93.3%	93.7%	47.5%	41.9%	94.9%	87.9%	94.6%	30.5%
XBAND + LLWAS	MB	97.6%	97.9%	93.4%	95.3%	96.6%	97.5%	74.3%	97.9%	97.5%	93.9%	86.8%	97.6%	96.5%	97.9%	73.6%
XBAID I EEIIAG	GF	90.0%	81.5%	94.3%	87.3%	93.7%	94.5%	3.5%	93.3%	93.7%	47.5%	41.9%	94.9%	87.9%	94.6%	30.5%
Lidar Only	MB	37.2%	19.2%	38.6%	15.7%	40.8%	21.8%	63.0%	16.3%	23.1%	22.6%	35.4%	48.6%	37.3%	31.6%	17.8%
Lidar Only	GF	58.3%	50.2%	65.1%	46.9%	64.0%	56.9%	2.9%	53.2%	56.6%	22.8%	22.4%	71.8%	54.6%	60.7%	11.9%
LLWAS Only	MB	48.8%	48.8%	48.8%	45.8%	48.8%	48.8%	48.8%	61.9%	48.8%	43.3%	48.8%	48.8%	48.8%	48.8%	48.8%
LEMAS ONly	GF	1.4%	1.4%	1.4%	1.3%	1.4%	1.4%	1.4%	5.4%	1.4%	0.7%	1.4%	1.4%	1.4%	1.4%	1.4%
NEXRAD	MB	0.0%	96.8%	75.4%	0.0%	0.0%	97.2%	0.0%	97.1%	0.0%	0.0%	0.0%	0.0%	0.0%	97.5%	95.7%
NEXIND	GF	0.0%	76.7%	63.5%	0.0%	0.0%	87.6%	0.0%	93.0%	18.1%	0.0%	0.0%	18.4%	0.0%	92.9%	94.0%
NEXRAD + Lidar	MB	37.2%	97.9%	97.0%	15.7%	40.8%	97.5%	63.0%	97.8%	23.1%	22.6%	35.4%	48.6%	37.3%	97.8%	98.0%
	GF	58.3%	78.4%	82.7%	46.9%	64.0%	93.0%	2.9%	94.0%	67.8%	22.8%	22.4%	79.1%	54.6%	94.1%	94.0%
NEXRAD + LLWAS	MB	49.0%	98.4%	87.5%	49.0%	49.0%	98.6%	49.0%	98.9%	49.0%	49.0%	49.0%	49.0%	49.0%	98.7%	97.8%
NEXINAD + EENIAG	GF	58.3%	78.4%	82.7%	46.9%	64.0%	93.0%	2.9%	94.0%	67.8%	22.8%	22.4%	79.1%	54.6%	94.1%	94.0%
TDWR	MB	0.0%	NA	95.1%	NA	NA	0.0%	0.0%	96.5%	NA	NA	0.0%	0.0%	NA	0.0%	NA
IDWIN	GF	0.0%	NA	91.9%	NA	NA	0.0%	0.0%	91.0%	NA	NA	0.0%	0.0%	NA	0.0%	NA
TDWR + LLWAS	MB	49.0%	NA	97.5%	NA	NA	49.0%	49.0%	98.7%	NA	NA	49.0%	49.0%	NA	49.0%	NA
IDWK † EEWAS	GF	0.0%	NA	91.9%	NA	NA	0.0%	0.0%	91.0%	NA	NA	0.0%	0.0%	NA	0.0%	NA
TDWR +LIDAR	MB	37.2%	NA	97.5%	NA	NA	21.8%	63.0%	97.1%	NA	NA	35.4%	48.6%	NA	31.6%	NA
	GF	58.3%	NA	94.5%	NA	NA	56.9%	2.9%	93.6%	NA	NA	22.4%	71.8%	NA	60.7%	NA
TDWR + NEXRAD	MB	0.0%	NA	95.8%	NA	NA	97.2%	0.0%	97.8%	NA	NA	0.0%	0.0%	NA	97.5%	NA
IDWK + NEXKAD	GF	0.0%	NA	94.0%	NA	NA	87.6%	0.0%	94.7%	NA	NA	0.0%	18.4%	NA	92.9%	NA
TDWR + NXRAD + LLWAS	MB	49.0%	NA	97.8%	NA	NA	98.6%	49.0%	99.2%	NA	NA	49.0%	49.0%	NA	98.7%	NA
IDWK + NAKAD + LLWAS	GF	0.0%	NA	94.0%	NA	NA	87.6%	0.0%	94.7%	NA	NA	0.0%	18.4%	NA	92.9%	NA
TDWR + NEXRAD + LIDAR	MB	37.2%	NA	98.0%	NA	NA	97.5%	63.0%	98.0%	NA	NA	35.4%	48.6%	NA	97.8%	NA
	GF	58.3%	NA	94.7%	NA	NA	93.0%	2.9%	94.8%	NA	NA	22.4%	79.1%	NA	94.1%	NA
TDWR	MB	0.0%	NA	95.1%	NA	NA	0.0%	0.0%	96.5%	NA	NA	0.0%	0.0%	NA	0.0%	NA
	GF	0.0%	NA	91.9%	NA	NA	0.0%	0.0%	91.0%	NA	NA	0.0%	0.0%	NA	0.0%	NA
WSP	MB	0.0%	93.1%	81.4%	NA	88.2%	0.0%	0.0%	90.6%	72.5%	NA	0.0%	0.0%	89.9%	0.0%	90.7%
	GF	0.0%	68.1%	72.0%	NA	78.2%	0.0%	0.0%	65.8%	53.1%	NA	0.0%	0.0%	79.6%	0.0%	66.0%
WSP + LLWAS	MB	49.0%	96.5%	90.5%	NA	94.0%	49.0%	49.0%	96.4%	86.0%	NA	49.0%	49.0%	94.9%	49.0%	95.3%
	GF	0.0%	68.1%	72.0%	NA	78.2%	0.0%	0.0%	65.8%	53.1%	NA	0.0%	0.0%	79.6%	0.0%	66.0%
WSP + LIDAR	MB	37.2%	97.0%	96.8%	NA	97.6%	21.8%	63.0%	95.2%	85.9%	NA	35.4%	48.6%	97.6%	31.6%	95.8%
	GF	58.3%	79.7%	88.6%	NA	89.6%	56.9%	2.9%	82.9%	76.3%	NA	22.4%	71.8%	89.5%	60.7%	71.7%
WSP + NEXRAD	MB	0.0%	97.0%	84.9%	NA	88.2%	97.2%	0.0%	97.3%	72.5%	NA	0.0%	0.0%	89.9%	97.5%	96.5%
	GF	0.0%	86.0%	85.8%	NA	78.2%	87.6%	0.0%	93.9%	66.4%	NA	0.0%	18.4%	79.6%	92.9%	94.1%
WSP + NEXRAD + LLWAS	MB	49.0%	98.5%	92.3%	NA	94.0%	98.6%	49.0%	99.0%	86.0%	NA	49.0%	49.0%	94.9%	98.7%	98.2%
TO T NEARAD T LEWAS	GF	0.0%	86.0%	85.8%	NA	78.2%	87.6%	0.0%	93.9%	66.4%	NA	0.0%	18.4%	79.6%	92.9%	94.1%
MOD-XBAND	MB	95.4%	95.9%	87.1%	90.8%	93.3%	95.1%	49.5%	97.9%	95.2%	87.9%	74.2%	95.3%	93.2%	95.8%	48.2%
	GF	83.0%	75.6%	88.7%	70.5%	90.5%	92.3%	2.7%	93.3%	90.4%	32.2%	29.1%	94.3%	77.2%	93.9%	15.9%
WSP + NEXRAD + LIDAR	MB	37.2%	98.0%	97.8%	NA	97.6%	97.5%	63.0%	98.0%	85.9%	NA	35.4%	48.6%	97.6%	97.8%	98.0%
						89.6%	93.0%	2.9%	94.5%	84.2%				89.5%		94.5%

	Site	BIL	BIS	BNA	BOI	BOS	BTR	BTV	BUF	BUR	BWI	CAE	CAK	CHA	CHS	CID
				TDWR	NoWS	TDWR				-		-	-	-	WSP	-
	Туре	LLWAS	NoWS	IDWR	NOVIS	IDWR	LLWAS	NoWS	WSP	NoWS	TDWR	LLWAS	NoWS	LLWAS	WSP	WSP
"Current"	MB	62.5%	0.0%	92.0%	0.0%	90.8%	42.9%	0.0%	85.8%	0.0%	90.4%	47.5%	0.0%	52.7%	83.6%	89.1%
Guitein	GF	1.9%	0.0%	79.7%	0.0%	79.8%	1.4%	0.0%	74.9%	0.0%	77.7%	1.3%	0.0%	1.5%	24.3%	72.4%
"Upgraded" TDWR/WSP	MB	62.5%	0.0%	97.7%	0.0%	96.5%	42.9%	0.0%	90.5%	0.0%	96.0%	47.5%	0.0%	52.7%	93.4%	92.3%
opgraded TDWR/W3F	GF	1.9%	0.0%	92.9%	0.0%	92.5%	1.4%	0.0%	79.4%	0.0%	89.8%	1.3%	0.0%	1.5%	49.2%	76.7%
XBAND	MB	65.7%	92.1%	95.2%	88.3%	93.6%	94.4%	92.3%	95.5%	78.4%	83.5%	50.5%	96.0%	79.2%	93.9%	95.3%
ABAND	GF	78.8%	88.4%	90.6%	55.6%	91.1%	80.4%	73.1%	93.6%	37.8%	85.1%	42.4%	91.9%	44.5%	75.2%	92.3%
XBAND + LIDAR	MB	85.8%	96.7%	96.7%	96.3%	95.6%	96.0%	95.6%	97.0%	87.2%	96.8%	64.3%	96.9%	83.2%	95.9%	96.5%
ADAND + LIDAN	GF	92.5%	93.7%	93.9%	67.0%	93.9%	90.5%	82.8%	94.7%	51.5%	94.4%	55.6%	94.1%	62.8%	87.7%	94.4%
XBAND + LLWAS	MB	82.5%	96.0%	97.5%	94.0%	96.7%	97.1%	96.1%	97.7%	89.0%	91.6%	74.7%	97.9%	89.4%	96.9%	97.6%
ABAND + LLWAS	GF	92.5%	93.7%	93.9%	67.0%	93.9%	90.5%	82.8%	94.7%	51.5%	94.4%	55.6%	94.1%	62.8%	87.7%	94.4%
Lidar Only	MB	65.6%	41.9%	24.1%	63.5%	34.8%	14.6%	51.0%	42.9%	36.8%	47.7%	22.3%	24.7%	17.1%	12.4%	31.0%
Liuar Only	GF	68.3%	65.3%	57.8%	52.4%	63.3%	49.9%	59.4%	68.4%	33.4%	73.0%	26.4%	56.5%	28.2%	48.6%	61.0%
	MB	62.5%	48.8%	48.8%	48.8%	48.8%	42.9%	48.8%	48.8%	48.8%	48.8%	47.5%	48.8%	52.7%	48.8%	48.8%
LLWAS Only	GF	1.9%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.3%	1.4%	1.5%	1.4%	1.4%
	MB	91.7%	92.3%	94.4%	97.8%	80.1%	0.0%	94.4%	96.7%	0.0%	0.0%	91.5%	32.2%	0.0%	0.0%	0.0%
NEXRAD	GF	88.1%	84.4%	85.2%	75.0%	77.1%	0.0%	69.5%	89.1%	0.0%	0.5%	71.6%	42.2%	0.0%	0.0%	0.0%
	MB	97.0%	96.4%	97.0%	98.0%	97.9%	14.6%	96.7%	97.5%	36.8%	47.7%	94.6%	53.4%	17.1%	12.4%	31.0%
NEXRAD + Lidar	GF	92.3%	92.9%	92.8%	87.7%	85.7%	49.9%	82.5%	93.5%	33.4%	73.4%	79.5%	74.0%	28.2%	48.6%	61.0%
	MB	95.8%	96.1%	97.2%	98.9%	89.9%	49.0%	97.1%	98.3%	49.0%	49.0%	95.7%	65.4%	49.0%	49.0%	49.0%
NEXRAD + LLWAS	GF	92.3%	92.9%	92.8%	87.7%	85.7%	49.9%	82.5%	93.5%	33.4%	73.4%	79.5%	74.0%	28.2%	48.6%	61.0%
	MB	NA	0.0%	97.7%	0.0%	96.5%	NA	0.0%	NA	0.0%	96.0%	NA	75.2%	NA	NA	NA
TDWR	GF	NA	0.0%	92.9%	0.0%	92.5%	NA	0.0%	NA	0.0%	89.8%	NA	51.8%	NA	NA	NA
	MB	NA	49.0%	98.8%	49.0%	98.2%	NA	49.0%	NA	49.0%	98.0%	NA	87.4%	NA	NA	NA
TDWR + LLWAS	GF	NA	0.0%	92.9%	0.0%	92.5%	NA	0.0%	NA	0.0%	89.8%	NA	51.8%	NA	NA	NA
	MB	NA	41.9%	97.9%	63.5%	97.8%	NA	51.0%	NA	36.8%	97.6%	NA	86.4%	NA	NA	NA
TDWR +LIDAR	GF	NA	65.3%	94.1%	52.4%	93.9%	NA	59.4%	NA	33.4%	94.2%	NA	75.9%	NA	NA	NA
	MB	NA	92.3%	97.8%	97.8%	96.8%	NA	94.4%	NA	0.0%	96.0%	NA	75.2%	NA	NA	NA
TDWR + NEXRAD	GF	NA	84.4%	94.2%	75.0%	94.4%	NA	69.5%	NA	0.0%	89.8%	NA	52.9%	NA	NA	NA
	MB	NA	96.1%	98.9%	98.9%	98.4%	NA	97.1%	NA	49.0%	98.0%	NA	87.4%	NA	NA	NA
TDWR + NXRAD + LLWAS	GF	NA	84.4%	94.2%	75.0%	94.4%	NA	69.5%	NA	0.0%	89.8%	NA	52.9%	NA	NA	NA
	MB	NA	96.4%	98.0%	98.0%	98.0%	NA	96.7%	NA	36.8%	97.6%	NA	86.4%	NA	NA	NA
TDWR + NEXRAD + LIDAR	GF	NA	92.9%	94.8%	87.7%	94.6%	NA	82.5%	NA	33.4%	94.3%	NA	76.2%	NA	NA	NA
	MB	NA	0.0%	97.7%	0.0%	96.5%	NA	0.0%	NA	0.0%	96.0%	NA	75.2%	NA	NA	NA
TDWR	GF	NA	0.0%	92.9%	0.0%	92.5%	NA	0.0%	NA	0.0%	89.8%	NA	51.8%	NA	NA	NA
	MB	NA	0.0%	88.9%	0.0%	88.8%	NA	0.0%	90.5%	76.6%	74.3%	NA	0.0%	NA	93.4%	92.3%
WSP	GF	NA	0.0%	66.7%	0.0%	80.4%	NA	0.0%	79.4%	41.9%	68.1%	NA	0.0%	NA	49.2%	76.7%
	MB	NA	49.0%	94.4%	49.0%	94.3%	NA	49.0%	95.2%	88.1%	86.9%	NA	49.0%	NA	96.6%	96.1%
WSP + LLWAS	GF	NA	0.0%	66.7%	0.0%	80.4%	NA	0.0%	79.4%	41.9%	68.1%	NA	0.0%	NA	49.2%	76.7%
	MB	NA	41.9%	95.5%	63.5%	97.6%	NA	51.0%	97.4%	94.7%	96.5%	NA	24.7%	NA	96.0%	97.5%
WSP + LIDAR	GF	NA	65.3%	85.0%	52.4%	90.5%	NA	59.4%	91.0%	56.0%	92.5%	NA	56.5%	NA	71.8%	87.4%
	MB	NA	92.3%	96.2%	97.8%	89.4%	NA	94.4%	97.4%	76.6%	74.3%	NA	32.2%	NA	93.4%	92.3%
WSP + NEXRAD	GF	NA	84.4%	90.6%	75.0%	89.2%	NA	69.5%	92.3%	41.9%	68.3%	NA	42.2%	NA	49.2%	76.7%
	MB	NA	96.1%	98.0%	98.9%	94.6%	NA	97.1%	98.7%	88.1%	86.9%	NA	65.4%	NA	96.6%	96.1%
WSP + NEXRAD + LLWAS	GF	NA	84.4%	90.6%	75.0%	89.2%	NA	69.5%	92.3%	41.9%	68.3%	NA	42.2%	NA	49.2%	76.7%
	MB	65.7%	92.1%	95.2%	88.3%	93.6%	94.4%	92.3%	95.5%	78.4%	83.5%	50.5%	96.0%	79.2%	93.9%	95.3%
MOD-XBAND	GF	78.8%	88.4%	90.6%	55.6%	91.1%	80.4%	73.1%	93.6%	37.8%	85.1%	42.4%	91.9%	44.5%	75.2%	92.3%
	MB	NA	96.4%	97.8%	98.0%	98.0%	NA	96.7%	97.8%	94.7%	96.5%	NA	53.4%	NA	96.0%	97.5%
WSP + NEXRAD + LIDAR	GF	NA	92.9%	94.1%	87.7%	93.5%	NA	82.5%	94.4%	56.0%	92.5%	NA	74.0%	NA	71.8%	87.4%
			52.070	5,0	570	50.070		52.070	5	50.070	52.070					5

	Site	CLE	CLT	CMH	COS	CRP	CRW	CSG	CVG	DAB	DAL	DAY	DCA	DEN	DFW	DSM
	Туре	TDWR	TDWR	TDWR	11.14/46	NoWS	LLWAS	LLWAS	TDWR	LLWAS	TDWR	TDWR	TDWR	TDWR-	TDWR-	WSP
	туре	IDWR	IDWR	IDWR	LLWAS	NOVV S	LLWAS	LLWAS	IDWR	LLWAS	IDWR	IDWR	IDWR	LLWAS	LLWAS	WSP
"Current"	MB	91.2%	91.8%	92.0%	51.9%	0.0%	43.6%	63.7%	91.6%	57.1%	90.4%	91.4%	90.9%	90.5%	91.3%	79.8%
Guitein	GF	80.3%	78.8%	80.3%	1.6%	0.0%	1.3%	2.0%	80.5%	1.9%	78.7%	79.9%	77.5%	80.6%	79.4%	69.7%
"Upgraded" TDWR/WSP	MB	96.9%	97.5%	97.9%	51.9%	0.0%	43.6%	63.7%	97.3%	57.1%	95.9%	97.1%	96.7%	99.9%	98.9%	88.5%
opgraded TDWR/W3F	GF	94.0%	91.5%	93.9%	1.6%	0.0%	1.3%	2.0%	93.8%	1.9%	91.3%	92.8%	89.9%	94.6%	92.9%	75.2%
XBAND	MB	95.8%	90.8%	93.9%	82.3%	96.2%	64.4%	87.9%	94.0%	94.3%	93.9%	95.7%	88.0%	92.7%	96.0%	94.3%
ADAID	GF	93.6%	90.0%	90.5%	64.5%	94.2%	56.4%	82.7%	92.1%	87.0%	90.6%	91.7%	68.8%	93.9%	91.3%	93.9%
XBAND + LIDAR	MB	97.1%	95.9%	96.6%	85.4%	97.0%	74.0%	95.7%	97.0%	96.3%	96.9%	96.9%	94.9%	97.1%	97.2%	96.9%
XDAND T LIDAN	GF	94.8%	94.1%	94.6%	71.1%	94.9%	67.2%	93.2%	94.7%	93.3%	94.2%	94.0%	86.7%	94.9%	93.5%	94.9%
XBAND + LLWAS	MB	97.9%	95.3%	96.9%	91.0%	98.0%	81.8%	93.9%	97.0%	97.1%	96.9%	97.8%	93.9%	99.8%	98.5%	97.1%
ADAND + LLWAS	GF	94.8%	94.1%	94.6%	71.1%	94.9%	67.2%	93.2%	94.7%	93.3%	94.2%	94.0%	86.7%	94.9%	93.5%	94.9%
Lidea Oaki	MB	36.8%	18.8%	31.0%	21.8%	22.4%	29.9%	25.6%	30.4%	15.7%	27.8%	23.6%	37.8%	62.3%	20.7%	35.8%
Lidar Only	GF	65.7%	52.8%	60.2%	43.8%	53.2%	36.4%	56.6%	62.3%	50.7%	59.4%	57.2%	50.4%	83.8%	57.7%	64.3%
LLWAS Only	MB	48.8%	48.8%	48.8%	51.9%	48.8%	43.6%	63.7%	48.8%	57.1%	48.8%	48.8%	48.8%	97.0%	61.8%	48.8%
LLWAS Only	GF	1.4%	1.4%	1.4%	1.6%	1.4%	1.3%	2.0%	1.4%	1.9%	1.4%	1.4%	1.4%	11.6%	6.9%	1.4%
	MB	96.0%	0.0%	0.0%	78.7%	97.2%	96.0%	0.0%	0.0%	0.0%	68.3%	4.9%	86.6%	92.7%	91.0%	95.4%
NEXRAD	GF	89.0%	0.0%	0.0%	56.6%	90.3%	86.7%	0.0%	0.0%	0.0%	49.6%	29.6%	74.4%	91.9%	90.6%	89.0%
	MB	97.0%	18.8%	31.0%	89.6%	97.4%	97.4%	25.6%	30.4%	15.7%	84.9%	28.7%	97.9%	97.6%	97.8%	97.5%
NEXRAD + Lidar	GF	93.7%	52.8%	60.2%	64.0%	93.5%	91.5%	56.6%	62.3%	50.7%	76.8%	71.1%	84.6%	94.7%	92.2%	93.8%
	MB	98.0%	49.0%	49.0%	89.1%	98.6%	98.0%	49.0%	49.0%	49.0%	83.8%	51.5%	93.2%	99.8%	96.6%	97.7%
NEXRAD + LLWAS	GF	93.7%	52.8%	60.2%	64.0%	93.5%	91.5%	56.6%	62.3%	50.7%	76.8%	71.1%	84.6%	94.7%	92.2%	93.8%
	MB	96.9%	97.5%	97.9%	NA	0.0%	NA	NA	97.3%	NA	95.9%	97.1%	96.7%	96.1%	97.0%	NA
TDWR	GF	94.0%	91.5%	93.9%	NA	0.0%	NA	NA	93.8%	NA	91.3%	92.8%	89.9%	94.6%	92.9%	NA
	MB	98.4%	98.7%	98.9%	NA	49.0%	NA	NA	98.6%	NA	97.9%	98.5%	98.3%	99.9%	98.9%	NA
TDWR + LLWAS	GF	94.0%	91.5%	93.9%	NA	0.0%	NA	NA	93.8%	NA	91.3%	92.8%	89.9%	94.6%	92.9%	NA
	MB	97.8%	97.8%	98.0%	NA	22.4%	NA	NA	97.9%	NA	97.4%	97.7%	97.7%	98.0%	97.7%	NA
TDWR +LIDAR	GF	94.7%	93.4%	94.5%	NA	53.2%	NA	NA	94.7%	NA	94.2%	94.3%	92.4%	95.0%	94.3%	NA
	MB	97.8%	97.5%	97.9%	NA	97.2%	NA	NA	97.3%	NA	96.4%	97.1%	97.4%	96.3%	97.3%	NA
TDWR + NEXRAD	GF	94.5%	91.5%	93.9%	NA	90.3%	NA	NA	93.8%	NA	93.1%	93.0%	93.8%	94.7%	94.8%	NA
	MB	98.9%	98.7%	98.9%	NA	98.6%	NA	NA	98.6%	NA	98.2%	98.5%	98.7%	99.9%	99.0%	NA
TDWR + NXRAD + LLWAS	GF	94.5%	91.5%	93.9%	NA	90.3%	NA	NA	93.8%	NA	93.1%	93.0%	93.8%	94.7%	94.8%	NA
	MB	97.9%	97.8%	98.0%	NA	97.4%	NA	NA	97.9%	NA	97.8%	97.7%	98.0%	98.0%	98.0%	NA
TDWR + NEXRAD + LIDAR	GF	94.9%	93.4%	94.5%	NA	93.5%	NA	NA	94.7%	NA	94.7%	94.4%	94.6%	95.0%	94.9%	NA
	MB	96.9%	97.5%	97.9%	NA	0.0%	NA	NA	97.3%	NA	95.9%	97.1%	96.7%	96.1%	97.0%	NA
TDWR	GF	94.0%	91.5%	93.9%	NA	0.0%	NA	NA	93.8%	NA	91.3%	92.8%	89.9%	94.6%	92.9%	NA
	MB	90.3%	90.3%	88.7%	NA	0.0%	NA	NA	87.8%	NA	40.8%	90.9%	83.7%	59.8%	87.9%	88.5%
WSP	GF	79.1%	67.8%	69.2%	NA	0.0%	NA	NA	75.9%	NA	31.8%	69.3%	74.5%	75.4%	66.5%	75.2%
	MB	95.1%	95.1%	94.3%	NA	49.0%	NA	NA	93.8%	NA	69.8%	95.4%	91.7%	98.8%	95.4%	94.1%
WSP + LLWAS	GF	79.1%	67.8%	69.2%	NA	0.0%	NA	NA	75.9%	NA	31.8%	69.3%	74.5%	75.4%	66.5%	75.2%
	MB	97.2%	96.5%	97.0%	NA	22.4%	NA	NA	96.8%	NA	68.2%	97.2%	96.4%	91.8%	95.2%	96.6%
WSP + LIDAR	GF	90.0%	90.5 % 81.9%	86.0%	NA	53.2%	NA	NA	90.8 % 88.6%	NA	72.6%	97.2 % 84.6%	90.4% 87.2%	93.4%	93.2 <i>%</i> 82.6%	90.0 % 88.9%
	MB	97.1%	90.3%	88.7%	NA	97.2%	NA	NA	87.8%	NA	74.4%	90.9%	90.4%	93.4%	93.2%	96.4%
WSP + NEXRAD	GF	92.7%	90.3 <i>%</i>	69.2%	NA	90.3%	NA	NA	75.9%	NA	56.7%	90.9 <i>%</i>	90.4%	93.6%	93.1%	92.8%
	MB	98.5%	95.1%	94.3%	NA	98.6%	NA	NA	93.8%	NA	86.9%	95.4%	95.1%	99.8%	97.4%	98.2%
WSP + NEXRAD + LLWAS	GF	92.7%	67.8%	69.2%	NA	90.3%	NA	NA	75.9%	NA	56.7%	77.6%	91.1%	93.6%	93.1%	92.8%
	MB	95.8%	90.8%	93.9%	82.3%	96.2%	64.4%	87.9%	94.0%	94.3%	93.9%	95.7%	88.0%	99.8%	98.5%	94.3%
MOD-XBAND	GF	93.6%	90.0%	90.5%	64.5%	94.2%	56.4%	82.7%	92.1%	94.3 % 87.0%	90.6%	91.7%	68.8%	94.9%	93.5%	93.9%
	MB	93.6% 97.6%	90.0% 96.5%	90.5% 97.0%	04.5%	94.2% 97.4%	56.4% NA	02.7% NA	92.1% 96.8%	87.0% NA	90.8%	97.3%	97.9%	94.9% 97.8%	93.5% 97.9%	93.9% 97.9%
WSP + NEXRAD + LIDAR	GF	97.6% 94.5%	96.5% 81.9%	97.0% 86.0%	NA	97.4%	NA	NA	90.8% 88.6%	NA	91.0% 80.8%	97.3% 89.0%	97.9%	97.8%	97.9% 94.1%	97.9% 94.5%
	GF	94.5%	01.9%	00.0%	NA	93.5%	INA	NA	00.0%	INA	00.8%	09.0%	92.9%	94.9%	94.1%	94.5%

	Site	DTW	ELP	ERI	EVV	EWR	FAR	FAY	FLL	FNT	FSD	FSM	FWA	GCN	GEG	GFK
																-
	Туре	TDWR	WSP	NoWS	NoWS	TDWR	NoWS	LLWAS	TDWR	NoWS	LLWAS	LLWAS	WSP	NoWS	WSP	NoWS
"Current"	MB	91.9%	90.1%	0.0%	0.0%	90.2%	0.0%	44.7%	91.5%	0.0%	46.7%	49.1%	79.5%	0.0%	81.1%	0.0%
Guirein	GF	80.7%	64.7%	0.0%	0.0%	72.4%	0.0%	1.3%	75.8%	0.0%	1.8%	1.4%	63.3%	0.0%	73.3%	0.0%
"Upgraded" TDWR/WSP	MB	97.7%	94.1%	0.0%	0.0%	95.8%	0.0%	44.7%	97.0%	0.0%	46.7%	49.1%	88.3%	0.0%	85.9%	0.0%
opgraded TDWR/WSP	GF	94.3%	69.4%	0.0%	0.0%	84.6%	0.0%	1.3%	86.7%	0.0%	1.8%	1.4%	73.6%	0.0%	76.6%	0.0%
XBAND	MB	96.3%	95.8%	83.9%	95.3%	94.7%	89.5%	93.0%	96.2%	94.8%	91.7%	93.3%	93.7%	92.3%	93.5%	95.2%
XBAND	GF	94.7%	78.7%	66.7%	94.5%	86.9%	91.6%	81.5%	84.5%	92.6%	93.1%	68.0%	91.1%	78.4%	86.0%	94.1%
	MB	97.2%	96.6%	94.6%	96.8%	96.8%	97.2%	96.5%	96.8%	96.8%	97.1%	95.8%	96.9%	96.6%	97.1%	97.3%
XBAND + LIDAR	GF	95.0%	85.8%	78.4%	94.9%	91.4%	94.8%	90.4%	92.8%	94.7%	95.0%	83.0%	94.4%	81.9%	92.7%	94.9%
	MB	98.1%	97.9%	91.8%	97.6%	97.3%	94.6%	96.4%	98.0%	97.4%	95.8%	96.6%	96.8%	96.1%	96.7%	97.5%
XBAND + LLWAS	GF	95.0%	85.8%	78.4%	94.9%	91.4%	94.8%	90.4%	92.8%	94.7%	95.0%	83.0%	94.4%	81.9%	92.7%	94.9%
	МВ	29.0%	17.7%	46.6%	35.5%	39.4%	43.7%	20.7%	9.5%	41.9%	51.9%	21.9%	29.6%	61.2%	47.0%	45.3%
Lidar Only	GF	62.0%	47.3%	53.1%	64.3%	63.6%	69.9%	54.0%	47.1%	68.4%	75.4%	39.3%	60.7%	68.5%	69.3%	69.9%
	MB	48.8%	48.8%	48.8%	48.8%	48.8%	48.8%	44.7%	48.8%	48.8%	46.7%	49.1%	48.8%	48.8%	48.8%	48.8%
LLWAS Only	GF	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.3%	1.4%	1.4%	1.8%	1.4%	1.4%	1.4%	1.4%	1.4%
	MB	0.0%	3.2%	0.0%	0.0%	0.0%	0.0%	0.0%	94.3%	52.3%	88.0%	97.1%	6.9%	0.0%	93.4%	38.4%
NEXRAD	GF	0.0%	31.7%	0.0%	0.0%	0.0%	0.0%	0.0%	57.2%	72.4%	89.7%	87.4%	29.5%	0.0%	85.4%	68.6%
	MB	29.0%	20.4%	46.6%	35.5%	39.4%	43.7%	20.7%	96.7%	90.2%	96.7%	97.5%	36.7%	61.2%	97.6%	82.0%
NEXRAD + Lidar	GF	62.0%	70.2%	53.1%	64.3%	63.6%	69.9%	54.0%	73.5%	85.2%	94.8%	90.3%	73.3%	68.5%	92.9%	85.1%
	MB	49.0%	50.6%	49.0%	49.0%	49.0%	49.0%	49.0%	97.1%	75.7%	93.9%	98.5%	52.5%	49.0%	96.6%	68.6%
NEXRAD + LLWAS	GF	62.0%	70.2%	53.1%	64.3%	63.6%	69.9%	54.0%	73.5%	85.2%	94.8%	90.3%	73.3%	68.5%	92.9%	85.1%
	MB	97.7%	NA	0.0%	0.0%	95.8%	0.0%	NA	97.0%	0.0%	NA	NA	NA	0.0%	NA	0.0%
TDWR	GF	94.3%	NA	0.0%	0.0%	84.6%	0.0%	NA	86.7%	0.0%	NA	NA	NA	0.0%	NA	0.0%
	MB	98.8%	NA	49.0%	49.0%	97.9%	49.0%	NA	98.5%	49.0%	NA	NA	NA	49.0%	NA	49.0%
TDWR + LLWAS	GF	94.3%	NA	0.0%	0.0%	84.6%	0.0%	NA	86.7%	0.0%	NA	NA	NA	0.0%	NA	0.0%
	MB	94.3 <i>%</i> 98.0%	NA	46.6%	35.5%	97.4%	43.7%	NA	97.1%	41.9%	NA	NA	NA	61.2%	NA	45.3%
TDWR +LIDAR	GF	94.7%	NA	40.0 %	64.3%	90.1%	43.7 % 69.9%	NA	92.4%	68.4%	NA	NA	NA	68.5%	NA	43.3 <i>%</i>
	MB	94.7% 97.7%	NA	0.0%	0.0%	90.1%	0.0%	NA	92.4%	52.3%	NA	NA	NA	0.0%	NA	38.4%
TDWR + NEXRAD	GF	94.3%	NA	0.0%	0.0%	95.8% 84.6%	0.0%	NA		72.4%	NA	NA	NA	0.0%	NA	
	MB	94.3% 98.8%	NA	49.0%	49.0%	97.9%	49.0%	NA	91.1% 98.9%	75.7%	NA	NA	NA	49.0%	NA	68.6% 68.6%
TDWR + NXRAD + LLWAS	GF				49.0%			NA			NA	NA	NA	49.0%	NA	
	MB	94.3% 98.0%	NA NA	0.0%	35.5%	84.6% 97.4%	0.0%	NA	91.1% 98.0%	72.4% 90.2%	NA	NA	NA	61.2%	NA	68.6% 82.0%
TDWR + NEXRAD + LIDAR																
	GF MB	94.7% 97.7%	NA NA	53.1% 0.0%	64.3% 0.0%	90.1%	69.9% 0.0%	NA NA	93.8% 97.0%	85.2% 0.0%	NA	NA NA	NA	68.5% 0.0%	NA NA	85.1%
TDWR	GF	97.7% 94.3%	NA	0.0%	0.0%	95.8%	0.0%	NA	97.0% 86.7%	0.0%	NA	NA	NA	0.0%	NA	0.0%
	MB					84.6%						NA		0.0%	NA 85.9%	
WSP	GF	88.8% 78.7%	94.1% 69.4%	0.0%	0.0%	85.2% 77.6%	0.0%	NA NA	96.1% 61.8%	0.0%	NA NA	NA	88.3% 73.6%	0.0%	85.9% 76.6%	0.0%
	MB			0.0% 49.0%	0.0% 49.0%			NA	61.8% 98.0%		NA	NA				
WSP + LLWAS	GF	94.3%	97.0%			92.5% 77.6%	49.0%			49.0%			94.0%	49.0%	92.8%	49.0%
	-	78.7%	69.4%	0.0%	0.0%	96.7%	0.0% 43.7%	NA	61.8%	0.0%	NA	NA	73.6%	0.0%	76.6%	0.0%
WSP + LIDAR	MB GF	96.5%	96.6%	46.6%		96.7% 90.1%		NA	97.1%	41.9%		NA NA	97.0% 87.7%	61.2% 68.5%	97.5%	45.3%
	-	88.7%	81.6%	53.1%	64.3%		69.9%	NA	81.4%	68.4%	NA				91.5%	69.9%
WSP + NEXRAD	MB	88.8%	94.4%	0.0%	0.0%	85.2%	0.0%	NA	97.3%	52.3%	NA	NA	88.3%	0.0%	96.2%	38.4%
	GF	78.7%	79.0%	0.0%	0.0%	77.6%	0.0%	NA	80.6%	72.4%	NA	NA	77.7%	0.0%	90.8%	68.6%
WSP + NEXRAD + LLWAS	MB	94.3%	97.1%	49.0%	49.0%	92.5%	49.0%	NA	98.6%	75.7%	NA	NA	94.1%	49.0%	98.1%	68.6%
	GF	78.7%	79.0%	0.0%	0.0%	77.6%	0.0%	NA	80.6%	72.4%	NA	NA	77.7%	0.0%	90.8%	68.6%
MOD-XBAND	MB	96.3%	95.8%	83.9%	95.3%	94.7%	89.5%	93.0%	96.2%	94.8%	91.7%	93.3%	93.7%	92.3%	93.5%	95.2%
	GF	94.7%	78.7%	66.7%	94.5%	86.9%	91.6%	81.5%	84.5%	92.6%	93.1%	68.0%	91.1%	78.4%	86.0%	94.1%
WSP + NEXRAD + LIDAR	MB	96.5%	96.8%	46.6%	35.5%	96.7%	43.7%	NA	98.0%	90.2%	NA	NA	97.0%	61.2%	97.9%	82.0%
	GF	88.7%	88.7%	53.1%	64.3%	90.1%	69.9%	NA	88.2%	85.2%	NA	NA	89.9%	68.5%	93.9%	85.1%
	GF	00.770	00.170	00.170	04.070	30.170	00.070	10.0	00.270	00.270	11/4	INA	03.370	00.070	00.070	00.170

	Site	GPT	GRB	GRR	GSO	GSP	HNL	HPN	HSV	IAD	IAH	ICT	ILM	IND	ISP	JAN
		-	-	-					-			-			-	-
	Туре	NoWS	LLWAS	WSP	WSP	LLWAS	WSP	WSP	WSP	TDWR	TDWR	TDWR	NoWS	TDWR	WSP	LLWAS
"Current"	MB	0.0%	47.4%	86.7%	85.9%	47.2%	87.4%	87.2%	89.2%	91.1%	91.5%	91.4%	0.0%	90.5%	71.9%	59.1%
Current	GF	0.0%	1.3%	77.6%	59.0%	0.6%	34.9%	78.6%	62.6%	78.2%	79.1%	79.2%	0.0%	80.3%	70.2%	1.5%
"Ungraded" TDW/D/WCD	MB	0.0%	47.4%	90.2%	91.7%	47.2%	95.7%	89.8%	93.9%	96.7%	97.0%	97.2%	0.0%	96.2%	79.0%	59.1%
"Upgraded" TDWR/WSP	GF	0.0%	1.3%	80.2%	70.3%	0.6%	55.8%	80.5%	71.5%	90.9%	89.1%	92.4%	0.0%	93.6%	76.8%	1.5%
XBAND	MB	94.7%	90.4%	95.8%	72.1%	93.8%	92.3%	92.5%	91.8%	87.9%	92.6%	93.6%	92.8%	95.9%	94.1%	88.4%
XBAND	GF	81.5%	90.1%	94.6%	75.4%	88.8%	61.0%	84.9%	87.4%	85.6%	72.4%	89.2%	71.9%	93.7%	92.0%	86.6%
	MB	96.5%	96.6%	97.1%	78.8%	96.3%	92.8%	95.3%	93.6%	96.2%	95.6%	96.5%	96.3%	96.8%	97.4%	95.8%
XBAND + LIDAR	GF	91.1%	94.6%	95.0%	88.3%	93.2%	65.9%	91.5%	92.1%	94.2%	87.4%	94.4%	88.0%	94.5%	94.7%	94.0%
	MB	97.3%	95.1%	97.8%	85.8%	96.9%	96.1%	96.2%	95.8%	93.8%	96.2%	96.7%	96.3%	97.9%	97.0%	94.1%
XBAND + LLWAS	GF	91.1%	94.6%	95.0%	88.3%	93.2%	65.9%	91.5%	92.1%	94.2%	87.4%	94.4%	88.0%	94.5%	94.7%	94.0%
	MB	16.2%	49.7%	44.4%	23.8%	21.7%	13.7%	44.6%	18.8%	34.8%	12.1%	29.7%	16.7%	24.9%	54.0%	29.6%
Lidar Only	GF	51.4%	73.2%	71.0%	56.1%	51.9%	39.0%	44.0%	50.8%	67.0%	50.5%	61.0%	51.4%	58.0%	77.0%	58.8%
	MB	48.8%	47.4%	48.8%	48.8%	47.2%	48.8%	48.8%	48.8%	48.8%	48.8%	48.8%	48.8%	48.8%	48.8%	59.1%
LLWAS Only	GF	1.4%	1.3%	1.4%	1.4%	0.6%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.5%
	MB	0.0%	93.4%	97.2%	0.0%	97.1%	0.0%	0.0%	0.0%	85.2%	76.2%	92.7%	76.0%	96.0%	94.8%	95.2%
NEXRAD	GF	6.1%	33.4 <i>%</i>	92.7%	0.0%	81.6%	0.0%	15.2%	0.0%	75.4%	52.2%	79.9%	54.7%	87.8%	90.5%	84.0%
	MB	16.2%	97.3%	97.7%	23.8%	97.5%	13.7%	44.6%	18.8%	94.7%	80.7%	96.4%	83.5%	96.4%	98.0%	96.8%
NEXRAD + Lidar	GF	57.1%	92.4%	94.7%	56.1%	89.3%	39.0%	74.0%	50.8%	92.2%	73.6%	92.5%	74.5%	92.1%	94.0%	91.4%
	MB	49.0%	96.6%	98.6%	49.0%	98.5%	49.0%	49.0%	49.0%	92.4%	87.9%	96.3%	87.8%	97.9%	97.3%	97.5%
NEXRAD + LLWAS	GF	43.0%	92.4%	94.7%	43.0%	89.3%	39.0%	74.0%	50.8%	92.2%	73.6%	92.5%	74.5%	92.1%	94.0%	91.4%
	MB	0.0%	32.470 NA	NA	NA	NA	NA	NA	NA	96.7%	97.0%	97.2%	0.0%	96.2%	NA	NA
TDWR	GF	0.0%	NA	NA	NA	NA	NA	NA	NA	90.9%	97.0% 89.1%	92.4%	0.0%	93.6%	NA	NA
	MB	49.0%	NA	NA	NA	NA	NA	NA	NA	98.3%	98.5%	98.6%	49.0%	98.0%	NA	NA
TDWR + LLWAS	GF	49.0%	NA	NA	NA	NA	NA	NA	NA	90.9%	89.1%	92.4%	49.0%	93.6%	NA	NA
	MB	16.2%	NA	NA	NA	NA	NA	NA	NA	90.9% 97.7%	97.3%	92.4%	16.7%	93.0% 97.4%	NA	NA
TDWR +LIDAR	GF			NA								97.8%				
	-	51.4%	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	94.0%	92.4%		51.4%	94.6%	NA NA	NA NA
TDWR + NEXRAD	MB GF	0.0%	NA						NA	97.0%	97.7%	97.6%	76.0%	97.9%		
	MB	6.1% 49.0%	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	92.3% 98.5%	92.1% 98.8%	93.7% 98.8%	54.7% 87.8%	94.5% 98.9%	NA NA	NA NA
TDWR + NXRAD + LLWAS																
	GF	6.1%	NA	NA	NA	NA	NA	NA	NA	92.3%	92.1%	93.7%	54.7%	94.5%	NA	NA
TDWR + NEXRAD + LIDAR	MB	16.2%	NA	NA	NA	NA	NA	NA	NA	97.7%	97.9%	97.9%	83.5%	98.0%	NA	NA
	GF	57.1%	NA	NA	NA	NA	NA	NA	NA	94.6%	93.4%	94.7%	74.5%	94.8%	NA	NA
TDWR	MB	0.0%	NA	NA	NA	NA	NA	NA	NA	96.7%	97.0%	97.2%	0.0%	96.2%	NA	NA
	GF	0.0%	NA	NA	NA	NA	NA 05.70/	NA	NA	90.9%	89.1%	92.4%	0.0%	93.6%	NA	NA
WSP	MB	0.0%	NA	90.2%	91.7%	NA	95.7%	89.8%	93.9%	81.2%	91.8%	88.6%	0.0%	92.6%	79.0%	NA
	GF	0.0%	NA	80.2%	70.3%	NA	55.8%	80.5%	71.5%	68.6%	52.0%	70.2%	0.0%	77.3%	76.8%	NA
WSP + LLWAS	MB	49.0%	NA	95.0%	95.8%	NA	97.8%	94.8%	96.9%	90.4%	95.8%	94.2%	49.0%	96.2%	89.3%	NA
	GF	0.0%	NA	80.2%	70.3%	NA	55.8%	80.5%	71.5%	68.6%	52.0%	70.2%	0.0%	77.3%	76.8%	NA
WSP + LIDAR	MB	16.2%	NA	97.7%	97.0%	NA	96.7%	97.7%	97.1%	95.1%	94.3%	96.6%	16.7%	95.7%	97.1%	NA
	GF	51.4%	NA	92.7%	85.5%	NA	67.2%	86.5%	83.7%	89.9%	73.9%	87.2%	51.4%	86.9%	93.9%	NA
WSP + NEXRAD	MB	0.0%	NA	97.6%	91.7%	NA	95.7%	89.8%	93.9%	90.7%	95.7%	95.1%	76.0%	96.7%	94.8%	NA
	GF	6.1%	NA	94.1%	70.3%	NA	55.8%	83.8%	71.5%	84.5%	75.6%	87.6%	54.7%	91.2%	93.0%	NA
WSP + NEXRAD + LLWAS	MB	49.0%	NA	98.8%	95.8%	NA	97.8%	94.8%	96.9%	95.3%	97.8%	97.5%	87.8%	98.3%	97.3%	NA
	GF	6.1%	NA	94.1%	70.3%	NA	55.8%	83.8%	71.5%	84.5%	75.6%	87.6%	54.7%	91.2%	93.0%	NA
MOD-XBAND	MB	94.7%	90.4%	95.8%	72.1%	93.8%	92.3%	92.5%	91.8%	87.9%	92.6%	93.6%	92.8%	95.9%	94.1%	88.4%
	GF	81.5%	90.1%	94.6%	75.4%	88.8%	61.0%	84.9%	87.4%	85.6%	72.4%	89.2%	71.9%	93.7%	92.0%	86.6%
	MB	16.2%	NA	97.9%	97.0%	NA	96.7%	97.7%	97.1%	97.3%	97.5%	97.6%	83.5%	97.1%	98.0%	NA
WSP + NFXRAD + LIDAR																1
WSP + NEXRAD + LIDAR	GF	57.1%	NA	94.9%	85.5%	NA	67.2%	89.4%	83.7%	94.1%	83.8%	93.8%	74.5%	93.4%	94.8%	NA

	Site	JAX	JFK	LAN	LAS	LAX	LBB	LEX	LFT	LGA	LGB	LIT	LNK	MAF	MBS	MCI	MCO
		-								TDWR-	-						TDWR-
	Туре	WSP	TDWR	LLWAS	TDWR	WSP	WSP	LLWAS	NoWS	LLWAS	NoWS	LLWAS	LLWAS	LLWAS	NoWS	TDWR	LLWAS
"Common till	MB	84.3%	91.4%	47.8%	78.4%	70.4%	88.2%	47.4%	0.0%	91.5%	0.0%	57.8%	62.1%	53.3%	0.0%	91.8%	91.9%
"Current"	GF	64.7%	80.2%	1.5%	48.6%	41.0%	69.3%	1.3%	0.0%	80.3%	0.0%	2.1%	1.8%	2.3%	0.0%	80.7%	78.3%
	MB	84.5%	97.0%	47.8%	84.6%	84.7%	92.1%	47.4%	0.0%	98.4%	0.0%	57.8%	62.1%	53.3%	0.0%	97.6%	99.6%
"Upgraded" TDWR/WSP	GF	67.1%	92.4%	1.5%	57.2%	60.4%	73.9%	1.3%	0.0%	94.0%	0.0%	2.1%	1.8%	2.3%	0.0%	94.5%	90.6%
XBAND	MB	96.3%	95.2%	92.4%	61.6%	92.5%	95.6%	95.2%	94.9%	94.7%	87.6%	91.5%	94.8%	94.7%	93.8%	96.5%	96.5%
XBAND	GF	94.5%	94.2%	92.8%	58.1%	78.2%	94.2%	93.6%	86.5%	93.2%	69.1%	87.0%	94.3%	90.1%	87.9%	94.8%	91.7%
	MB	96.8%	97.2%	96.9%	83.2%	97.3%	96.4%	96.5%	96.2%	96.8%	92.7%	96.2%	96.9%	96.3%	96.8%	96.9%	97.1%
XBAND + LIDAR	GF	94.9%	95.0%	94.8%	76.9%	88.6%	94.9%	94.9%	93.6%	94.6%	85.4%	94.0%	94.9%	93.5%	92.8%	95.0%	93.9%
	MB	98.1%	97.6%	96.1%	80.4%	96.2%	97.7%	97.6%	97.4%	96.8%	93.7%	95.7%	97.4%	97.3%	96.8%	98.2%	99.5%
XBAND + LLWAS	GF	94.9%	95.0%	94.8%	76.9%	88.6%	94.9%	94.9%	93.6%	94.6%	85.4%	94.0%	94.9%	93.5%	92.8%	95.0%	93.9%
Lider Only	MB	17.6%	40.3%	44.5%	59.3%	32.0%	25.7%	21.2%	15.0%	42.2%	22.4%	29.7%	30.5%	19.1%	37.1%	19.5%	11.7%
Lidar Only	GF	52.4%	69.7%	69.9%	60.0%	61.5%	58.0%	53.8%	49.9%	66.7%	47.6%	61.0%	62.0%	53.2%	64.3%	54.6%	50.1%
	MB	48.8%	48.8%	47.8%	48.8%	48.8%	48.8%	47.4%	48.8%	40.5%	48.8%	57.8%	62.1%	53.3%	48.8%	48.8%	84.6%
LLWAS Only	GF	1.4%	1.4%	1.5%	1.4%	1.4%	1.4%	1.3%	1.4%	1.8%	1.4%	2.1%	1.8%	2.3%	1.4%	1.4%	7.0%
	MB	97.4%	0.0%	0.0%	0.0%	0.0%	96.0%	0.0%	0.0%	0.0%	0.0%	96.6%	58.2%	96.0%	0.0%	13.3%	0.0%
NEXRAD	GF	90.3%	0.0%	4.3%	0.0%	0.0%	85.8%	0.0%	0.0%	0.0%	0.0%	87.9%	51.3%	82.6%	0.0%	31.8%	17.9%
	MB	97.5%	40.3%	44.5%	59.3%	32.0%	97.3%	21.2%	15.0%	42.2%	22.4%	97.4%	79.7%	96.9%	37.1%	32.2%	11.7%
NEXRAD + Lidar	GF	93.2%	69.7%	72.4%	60.0%	61.5%	92.2%	53.8%	49.9%	66.7%	47.6%	92.7%	78.9%	90.4%	64.3%	70.1%	62.8%
	MB	98.7%	49.0%	49.0%	49.0%	49.0%	98.0%	49.0%	49.0%	40.0%	49.0%	98.3%	78.7%	98.0%	49.0%	55.8%	85.0%
NEXRAD + LLWAS	GF	93.2%	69.7%	72.4%	60.0%	61.5%	92.2%	53.8%	49.9%	66.7%	47.6%	92.7%	78.9%	90.4%	64.3%	70.1%	62.8%
TDWR	MB	NA	97.0%	NA	84.6%	NA	NA	NA	0.0%	97.3%	0.0%	NA	NA	NA	0.0%	97.6%	97.5%
IDWK	GF	NA	92.4%	NA	57.2%	NA	NA	NA	0.0%	94.0%	0.0%	NA	NA	NA	0.0%	94.5%	90.6%
TDWR + LLWAS	MB	NA	98.5%	NA	92.1%	NA	NA	NA	49.0%	98.4%	49.0%	NA	NA	NA	49.0%	98.8%	99.6%
IDWR + LLWAS	GF	NA	92.4%	NA	57.2%	NA	NA	NA	0.0%	94.0%	0.0%	NA	NA	NA	0.0%	94.5%	90.6%
	MB	NA	97.6%	NA	95.8%	NA	NA	NA	15.0%	98.0%	22.4%	NA	NA	NA	37.1%	97.9%	97.7%
TDWR +LIDAR	GF	NA	94.4%	NA	65.5%	NA	NA	NA	49.9%	94.7%	47.6%	NA	NA	NA	64.3%	94.9%	93.2%
TDWR + NEXRAD	MB	NA	97.0%	NA	84.6%	NA	NA	NA	0.0%	97.3%	0.0%	NA	NA	NA	0.0%	97.6%	97.5%
	GF	NA	92.4%	NA	57.2%	NA	NA	NA	0.0%	94.0%	0.0%	NA	NA	NA	0.0%	94.6%	90.9%
TDWR + NXRAD + LLWAS	MB	NA	98.5%	NA	92.1%	NA	NA	NA	49.0%	98.4%	49.0%	NA	NA	NA	49.0%	98.8%	99.6%
	GF	NA	92.4%	NA	57.2%	NA	NA	NA	0.0%	94.0%	0.0%	NA	NA	NA	0.0%	94.6%	90.9%
TDWR + NEXRAD + LIDAR	MB	NA	97.6%	NA	95.8%	NA	NA	NA	15.0%	98.0%	22.4%	NA	NA	NA	37.1%	97.9%	97.7%
	GF	NA	94.4%	NA	65.5%	NA	NA	NA	49.9%	94.7%	47.6%	NA	NA	NA	64.3%	94.9%	93.4%
TDWR	MB	NA	97.0%	NA	84.6%	NA	NA	NA	0.0%	97.3%	0.0%	NA	NA	NA	0.0%	97.6%	97.5%
IBIIK	GF	NA	92.4%	NA	57.2%	NA	NA	NA	0.0%	94.0%	0.0%	NA	NA	NA	0.0%	94.5%	90.6%
WSP	MB	84.5%	86.4%	NA	69.5%	84.7%	92.1%	NA	0.0%	27.1%	52.0%	NA	NA	NA	0.0%	94.9%	95.7%
	GF	67.1%	79.9%	NA	59.5%	60.4%	73.9%	NA	0.0%	38.8%	30.7%	NA	NA	NA	0.0%	81.6%	69.8%
WSP + LLWAS	MB	92.1%	93.1%	NA	84.4%	92.2%	96.0%	NA	49.0%	56.3%	75.5%	NA	NA	NA	49.0%	97.4%	99.4%
	GF	67.1%	79.9%	NA	59.5%	60.4%	73.9%	NA	0.0%	38.8%	30.7%	NA	NA	NA	0.0%	81.6%	69.8%
WSP + LIDAR	MB	89.4%	96.7%	NA	95.4%	95.0%	96.9%	NA	15.0%	69.0%	73.4%	NA	NA	NA	37.1%	97.2%	97.3%
	GF	79.3%	92.1%	NA	78.8%	83.1%	86.5%	NA	49.9%	78.4%	47.6%	NA	NA	NA	64.3%	88.0%	81.8%
WSP + NEXRAD	MB	97.6%	86.4%	NA	69.5%	84.7%	97.2%	NA	0.0%	27.1%	52.0%	NA	NA	NA	0.0%	94.9%	95.7%
	GF	92.7%		NA	59.5%	60.4%	90.8%	NA	0.0%	38.8%	30.7%	NA	NA	NA	0.0%	85.2%	72.1%
WSP + NEXRAD + LLWAS	MB	98.8%	93.1%	NA	84.4%	92.2%	98.6%	NA	49.0%	56.3%	75.5%	NA	NA	NA	49.0%	97.4%	99.4%
	GF	92.7%	79.9%	NA	59.5%	60.4%	90.8%	NA	0.0%	38.8%	30.7%	NA	NA	NA	0.0%	85.2%	72.1%
MOD-XBAND	MB	96.3%	95.2%	92.4%	61.6%	92.5%	95.6%	95.2%	94.9%	96.8%	87.6%	91.5%	94.8%	94.7%	93.8%	96.5%	99.5%
	GF	94.5%	94.2%	92.8%	58.1%	78.2%	94.2%	93.6%	86.5%	94.6%	69.1%	87.0%	94.3%	90.1%	87.9%	94.8%	93.9%
WSP + NEXRAD + LIDAR	MB	97.7%	96.7%	NA	95.4%	95.0%	97.8%	NA	15.0%	69.0%	73.4%	NA	NA	NA	37.1%	97.2%	97.3%
	GF	94.1%	92.1%	NA	78.8%	83.1%	93.7%	NA	49.9%	78.4%	47.6%	NA	NA	NA	64.3%	90.7%	83.3%

	Site	MDT	MDW	MEM	MGM	MHT	MIA	MKE	MLI	MLU	MOB	MSN	MSP	MSY	MYR	OAK
					-					-	-	-		TDWR-		-
	Туре	WSP	TDWR	TDWR	LLWAS	NoWS	TDWR	TDWR	LLWAS	LLWAS	LLWAS	WSP	TDWR	LLWAS	NoWS	NoWS
"Current"	MB	81.8%	92.0%	91.9%	41.1%	0.0%	90.2%	91.2%	55.0%	53.6%	49.0%	75.8%	91.6%	91.0%	0.0%	0.0%
Current	GF	55.8%	80.7%	79.4%	1.2%	0.0%	75.7%	80.4%	2.0%	2.1%	1.3%	62.5%	80.7%	78.4%	0.0%	0.0%
	MB	81.8%	97.8%	97.6%	41.1%	0.0%	95.4%	96.9%	55.0%	53.6%	49.0%	86.4%	97.5%	97.4%	0.0%	0.0%
"Upgraded" TDWR/WSP	GF	60.9%	94.0%	91.9%	1.2%	0.0%	85.7%	93.8%	2.0%	2.1%	1.3%	70.9%	94.6%	89.3%	0.0%	0.0%
	MB	84.8%	95.6%	92.3%	93.1%	94.7%	95.7%	91.1%	83.9%	94.4%	93.9%	92.2%	95.7%	93.5%	87.0%	91.5%
XBAND	GF	28.5%	94.2%	89.1%	89.0%	76.3%	82.1%	92.8%	67.9%	73.7%	88.5%	91.8%	93.8%	87.0%	71.9%	64.0%
	MB	88.7%	96.8%	95.6%	96.3%	97.0%	96.3%	97.0%	91.9%	96.2%	96.0%	95.7%	97.0%	95.8%	95.5%	96.9%
XBAND + LIDAR	GF	37.6%	94.9%	94.5%	93.8%	85.2%	91.6%	94.9%	79.9%	88.5%	93.8%	94.4%	94.9%	93.7%	88.8%	71.3%
	МВ	92.2%	97.8%	96.1%	96.5%	97.3%	97.8%	95.5%	91.8%	97.1%	96.9%	96.0%	97.8%	95.5%	93.4%	95.7%
XBAND + LLWAS	GF	37.6%	94.9%	94.5%	93.8%	85.2%	91.6%	94.9%	79.9%	88.5%	93.8%	94.4%	94.9%	93.7%	88.8%	71.3%
	MB	32.8%	36.9%	26.7%	32.5%	43.6%	8.4%	39.6%	35.9%	15.8%	22.2%	28.2%	27.5%	14.6%	23.4%	39.9%
Lidar Only	GF	19.2%	64.3%	62.0%	61.7%	59.2%	47.0%	67.6%	49.2%	51.1%	55.0%	59.4%	60.1%	51.4%	55.0%	51.0%
	мв	48.8%	48.8%	48.8%	41.1%	48.8%	48.8%	48.8%	55.0%	53.6%	49.0%	48.8%	48.8%	30.5%	48.8%	48.8%
LLWAS Only	GF	1.4%	1.4%	1.4%	1.2%	1.4%	1.4%	1.4%	2.0%	2.1%	1.3%	1.4%	1.4%	1.8%	1.4%	1.4%
	MB	0.0%	93.4%	96.1%	0.0%	0.0%	96.1%	13.8%	93.4%	0.0%	95.3%	0.0%	95.0%	60.5%	81.6%	0.0%
NEXRAD	GF	0.0%	95.0%	89.4%	9.0%	0.0%	75.6%	41.1%	83.7%	0.0%	79.7%	22.3%	93.3%	49.7%	54.5%	0.0%
	MB	32.8%	98.0%	97.4%	32.5%	43.6%	96.4%	53.0%	96.9%	15.8%	96.8%	28.2%	97.7%	67.0%	93.4%	39.9%
NEXRAD + Lidar	GF	19.2%	95.0%	93.9%	67.9%	43.0 % 59.2%	90.4 % 88.5%	79.5%	90.9 <i>%</i> 84.4%	51.1%	90.3%	70.7%	94.4%	72.9%	76.2%	51.0%
	MB	49.0%	96.7%	98.0%	49.0%	49.0%	98.0%	79.3% 56.0%	96.7%	49.0%	97.6%	49.0%	97.4%	72.7%	90.6%	49.0%
NEXRAD + LLWAS	GF	49.0% 19.2%	96.7% 95.0%	98.0% 93.9%	49.0% 67.9%	49.0% 59.2%	98.0% 88.5%	79.5%	90.7% 84.4%	49.0% 51.1%	97.6%	49.0% 70.7%	94.4%	72.9%	90.0% 76.2%	49.0% 51.0%
	-			93.9% 97.6%		0.0%	95.4%	96.9%	04.4%		90.3% NA	NA	94.4% 97.5%	96.2%	0.0%	
TDWR	MB	NA	97.8%		NA	0.0%	95.4% 85.7%			NA						0.0%
	GF	NA	94.0%	91.9%	NA			93.8%	NA	NA	NA	NA	94.6%	89.3%	0.0%	0.0%
TDWR + LLWAS	MB	NA	98.9%	98.8%	NA	49.0%	97.7%	98.4%	NA	NA	NA	NA	98.7%	97.4%	49.0%	49.0%
	GF	NA	94.0%	91.9%	NA	0.0%	85.7%	93.8%	NA	NA	NA	NA	94.6%	89.3%	0.0%	0.0%
TDWR +LIDAR	MB	NA	98.0%	97.7%	NA	43.6%	96.0%	97.9%	NA	NA	NA	NA	98.0%	96.6%	23.4%	39.9%
	GF	NA	94.7%	94.3%	NA	59.2%	91.9%	94.7%	NA	NA	NA	NA	94.9%	93.2%	55.0%	51.0%
TDWR + NEXRAD	MB	NA	97.8%	97.8%	NA	0.0%	97.7%	96.9%	NA	NA	NA	NA	97.5%	97.3%	81.6%	0.0%
	GF	NA	95.0%	94.2%	NA	0.0%	91.0%	94.6%	NA	NA	NA	NA	95.0%	92.3%	54.5%	0.0%
TDWR + NXRAD + LLWAS	MB	NA	98.9%	98.9%	NA	49.0%	98.8%	98.4%	NA	NA	NA	NA	98.7%	98.1%	90.6%	49.0%
	GF	NA	95.0%	94.2%	NA	0.0%	91.0%	94.6%	NA	NA	NA	NA	95.0%	92.3%	54.5%	0.0%
TDWR + NEXRAD + LIDAR	MB	NA	98.0%	97.9%	NA	43.6%	97.7%	97.9%	NA	NA	NA	NA	98.0%	97.6%	93.4%	39.9%
	GF	NA	95.0%	94.9%	NA	59.2%	94.0%	94.9%	NA	NA	NA	NA	95.0%	94.0%	76.2%	51.0%
TDWR	MB	NA	97.8%	97.6%	NA	0.0%	95.4%	96.9%	NA	NA	NA	NA	97.5%	96.2%	0.0%	0.0%
	GF	NA	94.0%	91.9%	NA	0.0%	85.7%	93.8%	NA	NA	NA	NA	94.6%	89.3%	0.0%	0.0%
WSP	MB	81.8%	23.1%	84.1%	NA	40.3%	92.3%	78.8%	NA	NA	NA	86.4%	91.5%	92.8%	0.0%	83.3%
	GF	60.9%	36.9%	60.9%	NA	49.1%	52.3%	65.4%	NA	NA	NA	70.9%	79.0%	57.9%	0.0%	58.3%
WSP + LLWAS	MB	90.7%	60.8%	91.9%	NA	69.6%	96.1%	89.2%	NA	NA	NA	93.1%	95.7%	95.1%	49.0%	91.5%
	GF	60.9%	36.9%	60.9%	NA	49.1%	52.3%	65.4%	NA	NA	NA	70.9%	79.0%	57.9%	0.0%	58.3%
WSP + LIDAR	MB	94.1%	59.5%	92.7%	NA	81.9%	93.6%	96.5%	NA	NA	NA	96.2%	97.2%	95.5%	23.4%	95.2%
	GF	64.7%	76.9%	86.6%	NA	81.0%	77.2%	87.9%	NA	NA	NA	86.8%	88.5%	79.3%	55.0%	76.8%
WSP + NEXRAD	MB	81.8%	93.4%	96.9%	NA	40.3%	97.5%	78.9%	NA	NA	NA	86.4%	95.6%	95.5%	81.6%	83.3%
	GF	60.9%	95.0%	92.4%	NA	49.1%	83.3%	76.7%	NA	NA	NA	75.3%	94.4%	76.7%	54.5%	58.3%
WSP + NEXRAD + LLWAS	MB	90.7%	96.7%	98.4%	NA	69.6%	98.7%	89.2%	NA	NA	NA	93.1%	97.8%	96.9%	90.6%	91.5%
TO THEATAD T LEWAS	GF	60.9%	95.0%	92.4%	NA	49.1%	83.3%	76.7%	NA	NA	NA	75.3%	94.4%	76.7%	54.5%	58.3%
MOD-XBAND	MB	84.8%	95.6%	92.3%	93.1%	94.7%	95.7%	91.1%	83.9%	94.4%	93.9%	92.2%	95.7%	95.5%	87.0%	91.5%
	GF	28.5%	94.2%	89.1%	89.0%	76.3%	82.1%	92.8%	67.9%	73.7%	88.5%	91.8%	93.8%	93.7%	71.9%	64.0%
	MB	94.1%	98.0%	97.9%	NA	81.9%	97.7%	96.7%	NA	NA	NA	96.2%	97.9%	97.3%	93.4%	95.2%
WSP + NEXRAD + LIDAR	GF	64.7%	95.0%	94.5%	NA	81.0%	91.7%	89.9%	NA	NA	NA	89.1%	94.8%	87.0%	76.2%	76.8%
																·

	Site	OKC	OMA	ONT	ORD	ORF	ORL	PBI	PDK	PDX	PHF	PHL	PHX	PIA	PIE	PNS
				-	TDWR-											
	Туре	TDWR	LLWAS	WSP	LLWAS	WSP	NoWS	TDWR	NoWS	WSP	NoWS	TDWR	TDWR	LLWAS	NoWS	LLWAS
"Current"	MB	91.6%	46.8%	82.9%	90.7%	68.4%	0.0%	89.5%	0.0%	80.9%	0.0%	87.7%	88.8%	48.4%	0.0%	45.8%
Current	GF	78.7%	1.2%	51.9%	80.0%	26.5%	0.0%	78.4%	0.0%	63.4%	0.0%	74.6%	48.9%	1.3%	0.0%	1.3%
	MB	97.3%	46.8%	90.7%	99.1%	82.9%	0.0%	94.6%	0.0%	91.0%	0.0%	93.2%	94.0%	48.4%	0.0%	45.8%
"Upgraded" TDWR/WSP	GF	92.2%	1.2%	59.8%	92.2%	52.2%	0.0%	89.4%	0.0%	69.2%	0.0%	86.3%	57.8%	1.3%	0.0%	1.3%
XBAND	MB	95.6%	94.3%	94.0%	91.9%	88.8%	92.6%	95.9%	94.7%	80.4%	86.3%	89.6%	94.0%	91.2%	95.7%	94.6%
XBAND	GF	92.2%	63.6%	65.5%	88.9%	81.8%	83.5%	85.3%	88.4%	32.4%	81.5%	79.8%	62.9%	88.6%	82.8%	82.7%
	MB	96.8%	96.2%	96.4%	96.5%	96.0%	95.6%	96.7%	96.6%	84.8%	96.2%	96.6%	95.7%	96.7%	96.8%	95.7%
XBAND + LIDAR	GF	94.5%	65.6%	77.4%	94.3%	92.8%	92.7%	93.0%	94.1%	46.4%	93.0%	92.3%	76.6%	93.4%	91.1%	83.2%
	MB	97.8%	97.1%	96.9%	98.1%	94.3%	96.2%	97.9%	97.3%	90.0%	93.0%	94.7%	97.0%	95.5%	97.8%	97.2%
XBAND + LLWAS	GF	94.5%	65.6%	77.4%	94.3%	92.8%	92.7%	93.0%	94.1%	46.4%	93.0%	92.3%	76.6%	93.4%	91.1%	83.2%
Lider Only	MB	24.1%	32.1%	34.0%	36.9%	29.9%	14.6%	10.8%	18.2%	24.6%	28.8%	35.6%	19.6%	36.9%	13.8%	17.9%
Lidar Only	GF	58.7%	43.0%	47.2%	68.4%	58.8%	49.3%	47.8%	52.4%	26.0%	58.8%	65.0%	42.5%	62.3%	49.9%	45.7%
	MB	48.8%	46.8%	48.8%	76.0%	48.8%	48.8%	48.8%	48.8%	48.8%	48.8%	48.8%	48.8%	48.4%	48.8%	45.8%
LLWAS Only	GF	1.4%	1.2%	1.4%	8.5%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.3%	1.4%	1.3%
NEXRAD	MB	96.0%	89.7%	0.0%	73.1%	0.0%	0.0%	0.0%	77.4%	0.0%	85.3%	0.0%	94.9%	23.1%	97.5%	0.0%
NEXICAD	GF	87.9%	87.9%	0.0%	94.1%	4.3%	0.7%	0.0%	53.6%	0.0%	77.0%	5.3%	88.9%	37.6%	94.3%	0.0%
NEXRAD + Lidar	MB	97.5%	98.0%	34.0%	90.8%	29.9%	14.6%	10.8%	86.6%	24.6%	97.6%	35.6%	97.6%	58.4%	98.0%	17.9%
	GF	93.4%	87.9%	47.2%	95.0%	63.1%	50.1%	47.8%	74.9%	26.0%	84.0%	69.1%	93.0%	77.7%	94.5%	45.7%
NEXRAD + LLWAS	MB	97.9%	94.7%	49.0%	93.5%	49.0%	49.0%	49.0%	88.5%	49.0%	92.5%	49.0%	97.4%	60.8%	98.8%	49.0%
NEXINAD + EEWAO	GF	93.4%	87.9%	47.2%	95.0%	63.1%	50.1%	47.8%	74.9%	26.0%	84.0%	69.1%	93.0%	77.7%	94.5%	45.7%
TDWR	MB	97.3%	NA	NA	96.4%	NA	95.2%	94.6%	97.9%	NA	0.0%	93.2%	94.0%	NA	96.7%	NA
IDIIK	GF	92.2%	NA	NA	92.2%	NA	91.3%	89.4%	92.5%	NA	0.0%	86.3%	57.8%	NA	87.9%	NA
TDWR + LLWAS	MB	98.6%	NA	NA	99.1%	NA	97.5%	97.2%	98.9%	NA	49.0%	96.5%	96.9%	NA	98.3%	NA
	GF	92.2%	NA	NA	92.2%	NA	91.3%	89.4%	92.5%	NA	0.0%	86.3%	57.8%	NA	87.9%	NA
TDWR +LIDAR	MB	97.8%	NA	NA	97.6%	NA	96.3%	95.9%	98.0%	NA	28.8%	96.9%	95.8%	NA	97.3%	NA
	GF	94.4%	NA	NA	94.4%	NA	94.1%	93.5%	93.7%	NA	58.8%	93.3%	72.5%	NA	92.2%	NA
TDWR + NEXRAD	MB	97.6%	NA	NA	96.8%	NA	95.2%	94.6%	97.9%	NA	85.3%	93.2%	97.0%	NA	97.9%	NA
	GF	93.3%	NA	NA	94.9%	NA	91.3%	89.4%	94.5%	NA	77.0%	86.6%	91.7%	NA	94.7%	NA
TDWR + NXRAD + LLWAS	MB	98.8%	NA	NA	99.2%	NA	97.5%	97.2%	98.9%	NA	92.5%	96.5%	98.5%	NA	98.9%	NA
	GF	93.3%	NA	NA	94.9%	NA	91.3%	89.4%	94.5%	NA	77.0%	86.6%	91.7%	NA	94.7%	NA
TDWR + NEXRAD + LIDAR	MB	97.8%	NA	NA	97.9%	NA	96.3%	95.9%	98.0%	NA	97.6%	96.9%	98.0%	NA	98.0%	NA
	GF	94.6%	NA	NA	95.0%	NA	94.2%	93.5%	94.8%	NA	84.0%	93.6%	93.8%	NA	94.7%	NA
TDWR	MB	97.3%	NA	NA	96.4%	NA	95.2%	94.6%	97.9%	NA	0.0%	93.2%	94.0%	NA	96.7%	NA
	GF	92.2%	NA	NA	92.2%	NA	91.3%	89.4%	92.5%	NA	0.0%	86.3%	57.8%	NA	87.9%	NA
WSP	MB	92.0%	NA	90.7%	82.2%	82.9%	46.1%	0.0%	4.1%	91.0%	0.4%	77.6%	88.9%	NA	48.0%	NA
	GF	75.7%	NA	59.8%	66.1%	52.2%	36.7%	0.0%	9.4%	69.2%	1.1%	56.6%	56.8%	NA	42.6%	NA
WSP + LLWAS	MB	95.9%	NA	95.3%	95.7%	91.3%	72.5%	49.0%	51.1%	95.4%	49.2%	88.6%	94.3%	NA	73.5%	NA
	GF	75.7%	NA	59.8%	66.1%	52.2%	36.7%	0.0%	9.4%	69.2%	1.1%	56.6%	56.8%	NA	42.6%	NA
WSP + LIDAR	MB	97.2%	NA	97.0%	95.1%	95.5%	60.4%	10.8%	22.1%	95.8%	28.8%	94.8%	93.6%	NA	61.5%	NA
	GF	87.8%	NA	77.0%	88.2%	79.7%	67.9%	47.8%	60.0%	75.6%	60.1%	85.8%	75.8%	NA	69.4%	NA
WSP + NEXRAD	MB	96.9%	NA	90.7%	84.9%	82.9%	46.1%	0.0%	77.4%	91.0%	85.3%	77.6%	95.7%	NA	97.5%	NA
	GF	92.8%	NA	59.8%	94.2%	54.5%	36.8%	0.0%	53.7%	69.2%	77.2%	60.0%	92.2%	NA	94.4%	NA
WSP + NEXRAD + LLWAS	MB	98.4%	NA	95.3%	96.4%	91.3%	72.5%	49.0%	88.5%	95.4%	92.5%	88.6%	97.8%	NA	98.8%	NA
	GF	92.8%	NA	59.8%	94.2%	54.5%	36.8%	0.0%	53.7%	69.2%	77.2%	60.0%	92.2%	NA	94.4%	NA
MOD-XBAND	MB	95.6%	94.3%	94.0%	98.1%	88.8%	92.6%	95.9%	94.7%	80.4%	86.3%	89.6%	94.0%	91.2%	95.7%	94.6%
	GF	92.2%	63.6%	65.5%	94.3%	81.8%	83.5%	85.3%	88.4%	32.4%	81.5%	79.8%	62.9%	88.6%	82.8%	82.7%
WSP + NEXRAD + LIDAR	MB	97.9%	NA	97.0%	96.1%	95.5%	60.4%	10.8%	86.6%	95.8%	97.6%	94.8%	97.9%	NA	98.0%	NA
	GF	94.5%	NA	77.0%	95.0%	81.3%	67.9%	47.8%	75.1%	75.6%	84.8%	88.3%	93.9%	NA	94.7%	NA

Image LuxAs Numb TuxAs Numb TuxAs Numb TuxAs Numb TuxAs Currunt: Off 1.5.% 0.00% 7.8.% 0.01% 1.5.% 0.01% 1.5.% 0.01% 1.5.% 0.01% 1.5.% 0.01% 1.5.% 0.01% 1.5.% 0.01% 1.5.% 0.01% 1.5.% 0.01%		Site	PVD	PWM	RDU	RIC	RNO	ROA	ROC	RST	RSW	SAN	SAT	SAV	SBN	SDF	SEA
N N N N N N N N N N N N N 'Current'' MB 52.2% 0.0% 91.5% 64.8% 0.0% 52.8% 91.7% 0.2% 0.0% 74.7%																	
Current GP 1 1 7 9 1 2 0.05 7.83 1.43 0.06 7.437 1.435 0.05 7.437 0.274 0.274 0.274 0.275		туре	LLWAS	NOVVS	IDWR	WSP	NOVIS	LLWAS	WSP	LLWAS	LLWAS	NOVIS	WSP	LLWAS	NOWS	IDWR	WSP
Current GP 1 1 0 1																	
GF 1.5% 0.5% 7.8% 0.5%	"Current"	MB	53.2%	0.0%	91.5%	68.4%	0.0%	52.8%	91.3%	43.5%	48.3%	0.0%	89.5%	51.1%	0.0%	91.7%	76.9%
"Upgrade" TDWRWS9 GP 1 1 9 1 1 2 0 0 7 1 1 0 0 2 7 1	ourrent	GF	1.5%	0.0%	78.9%	40.1%	0.0%	1.5%	79.9%	1.2%	0.6%	0.0%	74.3%	1.4%	0.0%	79.3%	64.6%
GF 1.5% 0.0% 9.7% 6.5% 0.5% 9.7% 5.5% 9.7% 9.5% 9.7% 9.5% 9.7% 9.5% 9.7% 9.5% 9.7% 9.7% 9.5% 9.7% 9	"Upgraded" TDWR/WSP	MB	53.2%	0.0%	97.4%	82.6%	0.0%	52.8%	92.7%	43.5%	48.3%	0.0%	91.6%	51.1%	0.0%	97.4%	87.0%
StaND GF 94.0% 97.7% 9	opgradou i Dinistroi	GF			91.7%	55.9%			81.1%	1.2%	0.6%	0.0%	77.4%		0.0%	92.2%	71.9%
GF 94.0% 94.3% 97.7% 77.3% 16.3% 96.3% 97	XBAND	MB	95.2%	95.4%	86.6%	87.4%	65.2%	80.2%	95.7%	95.5%	95.2%	89.5%	95.9%	90.7%	93.0%	88.9%	93.8%
XBAND + LIDAR OF 94.9% 95.0% 94.9% 90.3% 94.9% 90.3% 94.9% 90.3% 97.7% 97.8% 97.8% 97.9%	70700	GF	94.0%	94.4%	87.7%			36.1%	94.5%	93.2%	93.7%	52.5%	93.9%	70.8%	88.1%	77.3%	83.6%
GF 94.9% 95.0% 94.6% 94.9% 90.3% 96.3% 94.6% 94.9% 97.8% 97	XBAND + LIDAR											94.1%					96.7%
XBAN0 + LLWAS GF 9.4.% 9.5.% 9.2.% 9.2.% 9.5.% 2.5.% 5.5.% 9.5.% 9.4.% 9.0.% 9.3.% 8.9.% 9.0.% Lidar Only GF 67.3% 7.0.% 56.9% 0.0.% 19.8% 3.0.% 2.9.% 4.2.% 2.7.8% 2.8.% 5.8.% 5.0.% 6.4.% 5.8.% 5.0.% 6.4.% 5.8.% 5.0.% 6.4.% 1.4.%		GF	94.9%						95.0%		94.9%	60.3%					90.0%
GF 94.9% 95.7% 95.7% 95.7% 95.7% 92.8% 97.2% 28.7% 15.7% 66.7% 93.9% 83.9% 90.0 Lldar Oniy GF 67.3% 25.0% 25.0% 25.0% 25.0% 25.7% <th25.7%< th=""> <th25.7%< th=""> <th25.7%< t<="" th=""><th>XBAND + I I WAS</th><th>MB</th><th>97.6%</th><th>97.7%</th><th></th><th></th><th>82.2%</th><th>89.9%</th><th>97.8%</th><th>97.7%</th><th>97.6%</th><th>94.6%</th><th>97.9%</th><th>95.3%</th><th>96.4%</th><th>94.3%</th><th>96.9%</th></th25.7%<></th25.7%<></th25.7%<>	XBAND + I I WAS	MB	97.6%	97.7%			82.2%	89.9%	97.8%	97.7%	97.6%	94.6%	97.9%	95.3%	96.4%	94.3%	96.9%
Lidar Only GF 67.3% 70.7% 56.9% 60.8% 19.8% 30.7% 61.3% 59.5% 47.8% 35.1% 58.8% 50.7% 64.3% 58.1% 58.4% LLWAS Only MB 53.2% 48.8% 48.8% 48.8% 48.8% 43.5% 48.8% <td< th=""><th>/2/10/12/100</th><th>GF</th><th>94.9%</th><th>95.0%</th><th>94.2%</th><th>90.7%</th><th>25.3%</th><th>55.5%</th><th>95.0%</th><th>94.6%</th><th>94.9%</th><th>60.3%</th><th>94.8%</th><th>87.2%</th><th>93.9%</th><th>89.8%</th><th>90.0%</th></td<>	/2/10/12/100	GF	94.9%	95.0%	94.2%	90.7%	25.3%	55.5%	95.0%	94.6%	94.9%	60.3%	94.8%	87.2%	93.9%	89.8%	90.0%
GF 6.3% 70.7% 76.3% 90.7% 91.3% 93.7% 94.3% 43.5% 43.	Lidar Only	MB	41.5%	46.9%	25.0%	29.8%	65.7%	25.6%	30.9%	29.8%	12.2%	27.8%	28.6%	15.5%	36.6%	30.0%	38.7%
LLWAS Only GF 1.5% 1.4% 1.4% 1.5% 1.4% 1.2% 0.6% 0.4% 1.4%	Eldar Only	GF	67.3%	70.7%	56.9%	60.6%	19.8%	30.7%	61.3%	59.5%	47.8%	35.1%	58.8%	50.7%	64.3%	58.1%	59.4%
GF 1.5% 1.4% 1.2% 1.2% 1.2% 1.4% 1.4% 1.4% 1.2% 1.2% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1		MB	53.2%	48.8%	48.8%	48.8%	48.8%	52.8%	48.8%	43.5%	48.3%	48.8%	48.8%	51.1%	48.8%	48.8%	48.8%
NERRAD GF 94.6% 94.7% 84.8% 42.9% 0.0% 0.0% 0.0% 0.0% 9.0% 9.2% 93.8% 36.5% 71.2% 71.8% 97.9% 31.2% 53.5% 71.2% 71.9% 93.8% 30.7% 51.3% 53.5% 47.8% 31.7% 53.6% 71.9% 31.2% 51.9% 71.9% 31.2% 53.5% 71.9% 31.2% 53.5% 71.9% 31.2% 30.7% 51.3% 53.5% 47.8% 35.1% 95.0% 68.8% 71.9% 93.1% 59.4 NEXRAD + LLWAS MB NA 0.0% 74.8% NA 0.0% NA	LEWAS Only	GF	1.5%	1.4%	1.4%	1.4%	1.4%	1.5%	1.4%	1.2%	0.6%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%
F 94.5% 94.7% 84.8% 70.2% 0.0% </th <th>NEVRAD</th> <th>MB</th> <th>89.4%</th> <th>64.8%</th> <th>91.0%</th> <th>42.3%</th> <th>0.0%</th> <th>0.0%</th> <th>0.0%</th> <th>0.0%</th> <th>0.0%</th> <th>0.0%</th> <th>89.3%</th> <th>15.8%</th> <th>0.0%</th> <th>95.3%</th> <th>0.0%</th>	NEVRAD	MB	89.4%	64.8%	91.0%	42.3%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	89.3%	15.8%	0.0%	95.3%	0.0%
NEXRAD + Lidar GF 94.9% 91.3% 76.3% 19.8% 30.7% 61.3% 59.5% 47.8% 35.1% 95.0% 68.8% 71.9% 93.1% 59.4% NEXRAD + LLWAS GF 94.9% 90.9% 91.5% 70.5% 49.0% 40.0% 40.0% 49.0% 49.0% 49.0% 49.0% 49.0% 49.0% 49.0% 40.0% 49.0% 49.0% 49.0% 49.0% 40.0% 40.0% 49.0% 49.0% A0.0% AN AN AN 49.0% AN ANA		GF	94.6%	94.7%	84.8%	42.9%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	93.8%	36.5%	14.0%	88.9%	0.0%
Image with the problem w		MB	97.6%	96.2%	95.2%	67.2%	65.7%	25.6%	30.9%	29.8%	12.2%	27.8%	97.9%	31.2%	36.6%	97.9%	38.7%
NEXRAD + LLWAS GF 94.9% 94.9% 91.3% 76.3% 19.8% 30.7% 61.3% 59.5% 47.8% 35.1% 95.0% 68.8% 71.9% 93.1% 59.4 TDWR MB NA 0.0% 91.7% NA 0.0% NA NA NA NA NA 0.0% NA 0.0% NA NA NA 0.0% NA 0.0% NA 0.0% NA 0.0% NA NA NA 0.0% NA 0.0% NA NA NA 0.0% NA 0.0% NA NA <td< th=""><th>NEARAD + LIUUI</th><th>GF</th><th>94.9%</th><th>94.9%</th><th>91.3%</th><th>76.3%</th><th>19.8%</th><th>30.7%</th><th>61.3%</th><th>59.5%</th><th>47.8%</th><th>35.1%</th><th>95.0%</th><th>68.8%</th><th>71.9%</th><th>93.1%</th><th>59.4%</th></td<>	NEARAD + LIUUI	GF	94.9%	94.9%	91.3%	76.3%	19.8%	30.7%	61.3%	59.5%	47.8%	35.1%	95.0%	68.8%	71.9%	93.1%	59.4%
GF94%94%91.3%76.3%19.8%70.3%19.3%76.3%19.3%76.3%19.3%76.3%74.9%35.1%95.0%66.8%71.9%93.1%50.4%TDWRGFNA0.0%91.7%NA0.0%NANANANANANANA0.0%NANA0.0%NANA0.0%NANA0.0%NANA0.0%NANA0.0%NANA0.0%NANA0.0%NANA0.0%NANA0.0%NANA0.0%NANA0.0%NANA0.0%NANA0.0%NANA0.0%NANANA0.0%NANA0.0%NANANANA0.0%NANANANA0.0%NANANANANANANANA0.0%NA <th< th=""><th></th><th>MB</th><th>94.6%</th><th>82.0%</th><th>95.4%</th><th>70.6%</th><th>49.0%</th><th>49.0%</th><th>49.0%</th><th>49.0%</th><th>49.0%</th><th>49.0%</th><th>94.6%</th><th>57.1%</th><th>49.0%</th><th>97.6%</th><th>49.0%</th></th<>		MB	94.6%	82.0%	95.4%	70.6%	49.0%	49.0%	49.0%	49.0%	49.0%	49.0%	94.6%	57.1%	49.0%	97.6%	49.0%
TDWR GF NA 0.0% 91.7% NA 0.0% NA	NEXRAD + LLWAS	GF	94.9%	94.9%	91.3%	76.3%	19.8%	30.7%	61.3%	59.5%	47.8%	35.1%	95.0%	68.8%	71.9%	93.1%	59.4%
GFNAURURURNAURNA <th>TDWD</th> <th>MB</th> <th>NA</th> <th>0.0%</th> <th>97.4%</th> <th>NA</th> <th>0.0%</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>0.0%</th> <th>NA</th> <th>NA</th> <th>0.0%</th> <th>97.4%</th> <th>NA</th>	TDWD	MB	NA	0.0%	97.4%	NA	0.0%	NA	NA	NA	NA	0.0%	NA	NA	0.0%	97.4%	NA
TDWR + LLWAS GF NA 0.0% 91.7% NA 0.0% NA NA <th>IDWR</th> <th>GF</th> <th>NA</th> <th>0.0%</th> <th>91.7%</th> <th>NA</th> <th>0.0%</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>0.0%</th> <th>NA</th> <th>NA</th> <th>0.0%</th> <th>92.2%</th> <th>NA</th>	IDWR	GF	NA	0.0%	91.7%	NA	0.0%	NA	NA	NA	NA	0.0%	NA	NA	0.0%	92.2%	NA
GFNA0.0%91.7%NA0.0%NANANANANA0.0%NA0.0%NA0.0%NA0.0%NANANANANA0.0%NA		MB	NA	49.0%	98.7%	NA	49.0%	NA	NA	NA	NA	49.0%	NA	NA	49.0%	98.7%	NA
TDWR + LIDAR GF NA 70.7% 93.8% NA 19.8% NA NA NA NA NA S1.% NA NA S1.% NA NA S1.% NA NA S1.% NA	IDWR + LLWAS	GF	NA	0.0%	91.7%	NA	0.0%	NA	NA	NA	NA	0.0%	NA	NA	0.0%	92.2%	NA
MBNA70.7%93.8%NANANANANANAS1.1%NANA6A.894.1%NATDWR + NEXRADMBNA64.8%97.6%NA0.0%NANANANANANANA0.0%NA0.0%NA0.0%NA0.0%NA0.0%NA0.0%NA0.0%NA0.0%NANA0.0%NANA0.0%NANANA0.0%NANANA0.0%NANANANA0.0%NANANANANA0.0%NANANANANANA1.0%9.0%NA <t< th=""><th></th><th>MB</th><th>NA</th><th>46.9%</th><th>97.8%</th><th>NA</th><th>65.7%</th><th>NA</th><th>NA</th><th>NA</th><th>NA</th><th>27.8%</th><th>NA</th><th>NA</th><th>36.6%</th><th>97.8%</th><th>NA</th></t<>		MB	NA	46.9%	97.8%	NA	65.7%	NA	NA	NA	NA	27.8%	NA	NA	36.6%	97.8%	NA
TDWR + NEXRAD GF NA 94.2% NA 0.0% NA NA <th>IDWR +LIDAR</th> <th>GF</th> <th>NA</th> <th>70.7%</th> <th>93.8%</th> <th>NA</th> <th>19.8%</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>35.1%</th> <th>NA</th> <th>NA</th> <th>64.3%</th> <th>94.1%</th> <th>NA</th>	IDWR +LIDAR	GF	NA	70.7%	93.8%	NA	19.8%	NA	NA	NA	NA	35.1%	NA	NA	64.3%	94.1%	NA
GFNA94.7%94.2%NA0.0%NANANANANANA0.0%NANA14.0%94.3%NATDWR + NXRAD + LLWABMBNA94.2%98.8%NA49.0%NANANANANANANANANA49.0%NA49.0%98.8%NATDWR + NEXRAD + LLDABMBNA94.2%94.2%NA0.0%NANANANANANANANANANA14.0%94.3%NANATDWR + NEXRAD + LLDABMBNA94.9%94.2%NA0.0%NA <th< th=""><th></th><th>МВ</th><th>NA</th><th>64.8%</th><th>97.6%</th><th>NA</th><th>0.0%</th><th>NA</th><th>NA</th><th>NA</th><th>NA</th><th>0.0%</th><th>NA</th><th>NA</th><th>0.0%</th><th>97.7%</th><th>NA</th></th<>		МВ	NA	64.8%	97.6%	NA	0.0%	NA	NA	NA	NA	0.0%	NA	NA	0.0%	97.7%	NA
TDWR + NXRAD + LLWAS MB NA 82.0% 98.8% NA 49.0% NA NA NA NA NA 49.0% NA 49.0% NA NA 49.0% NA NA 49.0% NA NA 49.0% NA 49.0% NA NA <t< th=""><th>IDWR + NEXRAD</th><th>GF</th><th>NA</th><th>94.7%</th><th>94.2%</th><th>NA</th><th>0.0%</th><th>NA</th><th>NA</th><th>NA</th><th>NA</th><th>0.0%</th><th>NA</th><th>NA</th><th>14.0%</th><th>94.3%</th><th>NA</th></t<>	IDWR + NEXRAD	GF	NA	94.7%	94.2%	NA	0.0%	NA	NA	NA	NA	0.0%	NA	NA	14.0%	94.3%	NA
GFNA94.7%94.2%NA0.0%NANANANANA0.0%NANA14.0%94.3%NATDWR + NEXRAD + LIDARMBNA96.2%97.9%NA65.7%NANANANANAZ7.8%NANANAS6.5%NANATDWRMBNA0.0%94.9%NA19.8%NANANANANANAS5.1%NANANANATDWRMBNA0.0%97.4%NA0.0%NA <th></th> <th>MB</th> <th>NA</th> <th>82.0%</th> <th>98.8%</th> <th>NA</th> <th>49.0%</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>NA</th> <th>49.0%</th> <th>NA</th> <th>NA</th> <th></th> <th>98.8%</th> <th>NA</th>		MB	NA	82.0%	98.8%	NA	49.0%	NA	NA	NA	NA	49.0%	NA	NA		98.8%	NA
TDWR + NEXRAD + LIDAR MB NA 96.2% 97.9% NA 65.7% NA NA NA NA Z7.8% NA NA NA NA TDWR MB NA 94.9% 94.8% NA 19.8% NA	TDWR + NXRAD + LLWAS	GF	NA	94.7%	94.2%	NA	0.0%	NA	NA	NA	NA	0.0%	NA	NA	14.0%	94.3%	NA
TDWR + NEXRAD + LIDAR GF NA 94.9% 94.8% NA 19.8% NA NA NA NA S1.5% NA NA NA TDWR MB NA 0.0% 97.4% NA 0.0% NA NA NA NA NA NA NA 0.0% NA NA TDWR MB NA 0.0% 91.7% NA 0.0% NA NA NA NA NA NA 0.0% NA 0.0% NA NA NA NA NA 0.0% NA NA 0.0% NA NA 0.0% NA NA 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%		МВ				NA	65.7%	NA	NA	NA	NA		NA	NA		98.0%	NA
TDWR MB NA 0.0% 97.4% NA 0.0% NA NA NA NA NA NA 0.0% NA NA NA NA NA 0.0% NA 0.0% 92.2% NA WSP MB NA 0.4% 65.0% 55.9% 0.0% NA 81.1% NA NA 54.5% 95.7% NA 97.3% NA NA 54.5% 95.7% NA 97.3% NA NA	TDWR + NEXRAD + LIDAR												NA				NA
GF NA 0.0% 91.7% NA 0.0% NA NA NA NA NA NA 0.0% NA NA NA NA 0.0% NA 0.0% NA NA NA NA NA NA NA NA 0.0% NA 0.0% NA 0.0% NA NA NA NA 0.0% NA 0.0% NA NA NA 0.0% 0.0% 0.0% NA 0.0% 0.0% 0.0% NA 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0		MB						NA		NA							NA
WSP MB NA 0.4% 86.8% 82.6% 0.0% NA 92.7% NA NA 10.7% 91.6% NA 0.0% 81.6% 87.0 WSP ILIWAS MB NA 26.7% 65.0% 55.9% 0.0% NA 81.1% NA NA 26.4% 77.4% NA 0.0% 59.7% 71.9 WSP+LLWAS MB NA 49.2% 93.2% 91.1% 49.0% NA 96.3% NA NA 54.5% 95.7% NA 49.0% 90.6% 93.4 WSP+LIDAR MB NA 46.9% 96.4% 95.7% 65.7% NA 97.5% NA NA 26.4% 77.4% NA 0.0% 59.7% WSP+LIDAR MB NA 46.9% 96.4% 95.7% 65.7% NA 97.5% NA NA 38.0% 97.4% NA 36.6% 97.4% 36.8% 37.0% 36.6% 37.4% 30.0%	TDWR																NA
WSP GF NA 26.7% 65.0% 55.9% 0.0% NA 81.1% NA NA 26.4% 77.4% NA 0.0% 59.7% 71.9 WSP + LLWAS MB NA 49.2% 93.2% 91.1% 49.0% NA 96.3% NA NA 55.7% NA 49.0% 96.3% WSP + LIDAR MB NA 46.9% 95.7% 65.7% NA 97.5% NA NA 26.4% 77.4% NA 49.0% 96.3% WSP + LIDAR MB NA 46.3% 95.7% 65.7% NA 97.5% NA NA 26.4% 77.4% NA 46.3% 94.3% 95.7% 71.9 WSP + NEXRAD MB NA 46.3% 94.5% 84.7% 0.0% NA 92.7% NA NA 88.8% NA NA 26.4% 97.4% NA 96.3% 75.9 NA 64.3% 94.9% 96.3% 70.9																	87.0%
WSP + LLWAS MB NA 49.2% 93.2% 91.1% 49.0% NA 96.3% NA NA 54.5% 95.7% NA 49.0% 93.4% WSP + LIDAR MB NA 26.7% 65.0% 55.9% 0.0% NA 81.1% NA NA 26.4% 77.4% NA 0.0% 59.7% 71.9 WSP + LIDAR MB NA 46.9% 96.4% 95.7% 65.7% NA 97.5% NA NA 26.4% 77.4% NA 0.0% 59.7% 71.9 WSP + LIDAR MB NA 46.3% 95.7% 65.7% NA 97.5% NA NA 38.0% 97.4% NA 36.6% 94.9% 96.3% WSP + NEXRAD MB NA 64.8% 94.5% 84.7% 0.0% NA 92.7% NA NA 10.7% 92.9% NA 14.0% 91.6% 71.9 WSP + NEXRAD MB NA 82.0%	WSP	GF		26.7%			0.0%	NA		NA				NA	0.0%		71.9%
WSP + LLWAS GF NA 26.7% 65.0% 55.9% 0.0% NA 81.1% NA NA 26.4% 77.4% NA 0.0% 59.7% 71.9 WSP + LIDAR MB NA 46.9% 96.4% 95.7% 65.7% NA 97.5% NA NA 26.4% 77.4% NA 0.0% 59.7% 71.9 WSP + LIDAR MB NA 46.9% 96.4% 95.7% 65.7% NA 97.5% NA NA 38.0% 97.4% NA 36.6% 94.9% 96.3 WSP + NEXRAD MB NA 64.3% 94.5% 84.7% 0.0% NA 92.7% NA NA 10.7% 92.9% NA 0.0% 95.3% WSP + NEXRAD MB NA 64.8% 94.8% 92.2% 40.0% NA 81.1% NA NA 26.4% 93.9% NA 41.0% 91.6% 91.6% 91.6% 91.6% 91.6% 91.6%																	93.4%
MB NA 46.9% 96.4% 95.7% 65.7% NA 97.5% NA NA 38.0% 97.4% NA 36.6% 94.9% 96.3 WSP + NEXRAD MB NA 79.0% 84.3% 80.9% 19.8% NA 88.8% NA NA 68.5% 87.5% NA 64.3% 83.7% 85.5 WSP + NEXRAD MB NA 64.8% 94.5% 84.7% 0.0% NA 92.7% NA NA 10.7% 92.9% NA 0.0% 95.4% 87.0 WSP + NEXRAD + LLUWAS MB NA 82.0% 92.7% Q.0% NA 81.1% NA NA 54.5% 96.4% NA 90.6% 93.4% MDO-XBAND MB S5.2% 92.5% 92.4% Q.0% NA 96.3% NA NA 54.5% 96.4% NA 90.4% 93.4% MDO-XBAND MB S5.2% 95.2% 95.5% 95.2% 95.5% <th>WSP + LLWAS</th> <th></th> <th>71.9%</th>	WSP + LLWAS																71.9%
WSP + LIDAR GF NA 79.0% 84.3% 80.9% 19.8% NA 88.8% NA NA 68.5% 87.5% NA 64.3% 83.7% 85.5 WSP + NEXRAD MB NA 64.8% 94.5% 84.7% 0.0% NA 92.7% NA NA 10.7% 92.9% NA 0.0% 97.9% NA 10.7% 92.9% NA 10.9% 97.9% 93.4% 71.9% 93.4% NA 91.9% 92.9% 93.4%		-															96.3%
MB NA 64.8% 94.5% 84.7% 0.0% NA 92.7% NA NA 10.7% 92.9% NA 0.0% 95.4% 87.0 WSP + NEXRAD + LLWAS GF NA 94.8% 90.8% 72.4% 0.0% NA 81.1% NA NA 26.4% 93.9% NA 14.0% 91.6% 71.9 WSP + NEXRAD + LLWAS MB NA 82.0% 97.2% 92.2% 49.0% NA 96.3% NA NA 54.5% 96.4% NA 49.0% 97.7% 93.4 MB NA 94.8% 90.8% 72.4% 0.0% NA 81.1% NA NA 54.5% 96.4% NA 49.0% 97.7% 93.4 MD-XBAD MB 95.2% 95.4% 86.6% 87.4% 65.2% 80.2% 95.7% 95.5% 95.5% 95.5% 95.4% 90.6% 90.6% 93.8% 93.8% MOD-XBAN MB 9A. 96.	WSP + LIDAR																85.5%
WSP + NEXRAD GF NA 94.8% 90.8% 72.4% 0.0% NA 81.1% NA NA 26.4% 93.9% NA 14.0% 91.6% 71.9 WSP + NEXRAD + LLWAS MB NA 82.0% 97.2% 92.2% 49.0% NA 96.3% NA NA 54.5% 96.4% NA 49.0% 97.7% 93.4 MB NA 94.8% 90.8% 72.4% 0.0% NA 81.1% NA NA 54.5% 96.4% NA 49.0% 97.7% 93.4 MOD-XBAND MB 95.2% 95.4% 96.3% NA 81.1% NA NA 26.4% 93.9% NA 14.0% 91.6% 71.9 MOD-XBAND MB 95.2% 95.4% 95.7% 95.5% 95.2% 89.5% 95.9% 90.7% 93.6% 88.9% 93.8% 93.8% WSP + NEXRAD + LIDAR MB NA 96.2% 97.5% NA 97.5%		-															87.0%
MB NA 82.0% 97.2% 92.2% 49.0% NA 96.3% NA NA 54.5% 96.4% NA 49.0% 97.7% 93.4 MB NA 94.8% 90.8% 72.4% 0.0% NA 81.1% NA NA 26.4% 93.9% NA 14.0% 91.6% 71.9 MOD-XBAND MB 95.2% 95.4% 86.6% 87.4% 65.2% 80.2% 95.7% 95.5% 95.2% 89.5% 90.7% 93.6% 71.9 MOD-XBAND MB 95.2% 95.4% 95.7% 95.5% 95.2% 89.5% 95.9% 90.7% 93.0% 88.8% 93.8% WSP + NEXRAD + LIDAR MB NA 96.2% 97.7% 16.3% 36.1% 94.5% 93.2% 93.7% 52.5% 93.9% NA 88.1% 77.3% 83.6% MSP + NEXRAD + LIDAR MB NA 96.2% 97.9% NA 97.5% NA NA NA <th>WSP + NEXRAD</th> <th></th> <th>71.9%</th>	WSP + NEXRAD																71.9%
WSP + NEXRAD + LLWAS GF NA 94.8% 90.8% 72.4% 0.0% NA 81.1% NA NA 26.4% 93.9% NA 14.0% 91.6% 71.9 MOD-XBAND MB 95.2% 95.4% 86.6% 87.4% 65.2% 80.2% 95.7% 95.5% 95.2% 89.5% 95.9% 90.7% 93.0% 88.9% 93.8% MOD-XBAND MB 94.4% 87.7% 77.7% 16.3% 36.1% 94.5% 95.2% 89.5% 95.9% 90.7% 93.0% 88.9% 93.8% WSP + NEXRAD + LIDAR MB NA 96.2% 97.0% 65.7% NA 97.5% NA NA 26.4% 93.9% NA 14.0% 91.6% 93.8% WSP + NEXRAD + LIDAR MB NA 96.2% 97.0% 65.7% NA 97.5% NA NA S8.0% 98.0% NA 88.6% 98.0% 98.0% 98.0% 98.0% 98.0% 98.0% 9		-															93.4%
MB 95.2% 95.4% 86.6% 87.4% 65.2% 90.7% 95.5% 95.2% 89.5% 95.7% 95.6% 95.7% 95	WSP + NEXRAD + LLWAS																71.9%
MOD-XBAND GF 94.0% 94.7% 77.7% 16.3% 36.1% 94.5% 93.2% 93.7% 52.5% 93.9% 70.8% 88.1% 77.3% 83.6 WSP + NEXRAD + LIDAR MB NA 96.2% 97.0% 65.7% NA 97.5% NA NA 38.0% 98.0% NA 36.6% 96.3%<		÷.											00.070				93.8%
WSP + NEXRAD + LIDAR MB NA 96.2% 97.8% 97.0% 65.7% NA 97.5% NA NA 38.0% 98.0% NA 36.6% 98.0% 96.3%	MOD-XBAND																83.6%
WSP + NEXRAD + LIDAR																	96.3%
OF 11A 34.570 53.170 01.470 15.00 AVI 00.00 AVI 00.00 AVI 00.00 AVI 01.470 15.00 AVI	WSP + NEXRAD + LIDAR																90.3% 85.5%
		Gr	INA	34.970	55.170	07.4%	13.0%	INA	00.0%	INA	INA	00.5%	30.0%	INPA	11.970	33.0%	00.0%

	Site	SFB	SFO	SGF	SHV	SJC	SJU	SLC	SMF	SNA	SPI	SRQ	STL	SUX	SYR	TLH
	Туре	NoWS	LLWAS	LLWAS	LLWAS	NoWS	TDWR	TDWR	NoWS	NoWS	LLWAS	WSP	TDWR-	LLWAS	WSP	LLWAS
	Type	1101/3	LLWAS	LLWAS	LLWAS	1101/3	IDWR	IDWR	1101/3	1101/3	LLWAS	WSP	LLWAS	LLWAS	WSP	LLWAS
"Current"	MB	0.0%	54.7%	42.5%	50.0%	0.0%	91.3%	87.7%	0.0%	0.0%	44.1%	95.8%	91.4%	58.4%	76.9%	49.7%
ourrent	GF	0.0%	1.6%	1.2%	1.4%	0.0%	73.6%	56.0%	0.0%	0.0%	1.7%	77.8%	80.5%	1.5%	66.6%	1.4%
"Upgraded" TDWR/WSP	MB	0.0%	54.7%	42.5%	50.0%	0.0%	96.8%	93.1%	0.0%	0.0%	44.1%	97.0%	98.4%	58.4%	84.0%	49.7%
opgraded TDWR/W3P	GF	0.0%	1.6%	1.2%	1.4%	0.0%	84.5%	64.9%	0.0%	0.0%	1.7%	80.9%	94.2%	1.5%	72.0%	1.4%
XBAND	MB	96.1%	78.7%	94.9%	93.2%	88.5%	94.0%	89.4%	95.6%	87.1%	95.7%	96.3%	95.5%	91.7%	91.5%	90.7%
ADAND	GF	75.8%	47.7%	93.3%	91.6%	56.4%	73.8%	69.4%	89.4%	65.3%	94.3%	94.0%	94.6%	89.6%	88.7%	77.9%
	MB	96.9%	87.7%	96.8%	96.1%	96.4%	95.5%	97.0%	97.2%	96.7%	97.1%	96.8%	96.7%	96.7%	96.7%	96.0%
XBAND + LIDAR	GF	88.2%	63.0%	94.6%	94.8%	72.8%	85.9%	79.1%	94.0%	83.1%	94.9%	94.8%	95.0%	94.1%	92.8%	91.9%
	MB	98.0%	89.1%	97.4%	96.5%	94.1%	96.9%	94.6%	97.7%	93.4%	97.8%	98.1%	97.5%	95.8%	95.6%	95.3%
XBAND + LLWAS	GF	88.2%	63.0%	94.6%	94.8%	72.8%	85.9%	79.1%	94.0%	83.1%	94.9%	94.8%	95.0%	94.1%	92.8%	91.9%
	МВ	12.0%	40.4%	26.1%	23.1%	44.2%	19.0%	48.1%	36.5%	48.0%	40.3%	18.1%	27.3%	36.3%	39.5%	18.4%
Lidar Only	GF	48.6%	38.6%	57.3%	54.6%	58.8%	49.5%	63.8%	63.6%	58.0%	67.2%	51.9%	59.3%	64.3%	65.8%	53.2%
	мв	48.8%	54.7%	42.5%	50.0%	48.8%	48.8%	48.8%	48.8%	48.8%	44.1%	48.8%	44.3%	58.4%	48.8%	49.7%
LLWAS Only	GF	1.4%	1.6%	1.2%	1.4%	40.0 %	1.4%	1.4%	1.4%	1.4%	1.7%	1.4%	3.1%	1.5%	1.4%	1.4%
	MB	0.0%	0.0%	96.7%	96.2%	0.0%	0.0%	0.0%	95.8%	0.0%	59.7%	97.3%	95.8%	0.0%	0.0%	92.8%
NEXRAD	GF	0.0%	0.0%	90.7 % 84.4%	90.2 % 78.7%	0.0%	0.0%	0.0%	95.8% 85.4%	0.0%	91.0%	94.8%	94.3%	0.0%	0.0%	92.8 <i>%</i>
	MB	12.0%	40.4%	97.5%	96.8%	44.2%	19.0%	48.1%	97.3%	48.0%	91.0% 89.8%	94.6%	94.3% 97.8%	36.3%	39.5%	95.3%
NEXRAD + Lidar	GF	48.6%	38.6%	97.5% 91.9%	90.0% 88.4%	44.2% 58.8%	49.5%	48.1% 63.8%	91.9%	48.0% 58.0%	92.5%	95.0%	97.8%	64.3%	65.8%	95.3% 83.5%
	-															
NEXRAD + LLWAS	MB	49.0%	49.0%	98.3%	98.1%	49.0%	49.0%	49.0%	97.9%	49.0%	79.5%	98.6%	97.7%	49.0%	49.0%	96.3%
	GF	48.6%	38.6%	91.9%	88.4%	58.8%	49.5%	63.8%	91.9%	58.0%	92.5%	95.0%	94.8%	64.3%	65.8%	83.5%
TDWR	MB	97.7%	NA	NA	NA	0.0%	96.8%	93.1%	0.0%	0.0%	NA	NA	97.2%	NA	NA	NA
	GF	82.2%	NA	NA	NA	0.0%	84.5%	64.9%	0.0%	0.0%	NA	NA	94.2%	NA	NA	NA
TDWR + LLWAS	MB	98.8%	NA	NA	NA	49.0%	98.4%	96.5%	49.0%	49.0%	NA	NA	98.4%	NA	NA	NA
-	GF	82.2%	NA	NA	NA	0.0%	84.5%	64.9%	0.0%	0.0%	NA	NA	94.2%	NA	NA	NA
TDWR +LIDAR	MB	98.0%	NA	NA	NA	44.2%	97.1%	96.7%	36.5%	48.0%	NA	NA	97.6%	NA	NA	NA
	GF	83.9%	NA	NA	NA	58.8%	88.2%	85.7%	63.6%	58.0%	NA	NA	94.8%	NA	NA	NA
TDWR + NEXRAD	MB	97.7%	NA	NA	NA	0.0%	96.8%	93.1%	95.8%	0.0%	NA	NA	97.9%	NA	NA	NA
	GF	82.2%	NA	NA	NA	0.0%	84.5%	64.9%	85.4%	0.0%	NA	NA	94.9%	NA	NA	NA
TDWR + NXRAD + LLWAS	MB	98.8%	NA	NA	NA	49.0%	98.4%	96.5%	97.9%	49.0%	NA	NA	98.8%	NA	NA	NA
	GF	82.2%	NA	NA	NA	0.0%	84.5%	64.9%	85.4%	0.0%	NA	NA	94.9%	NA	NA	NA
TDWR + NEXRAD + LIDAR	MB	98.0%	NA	NA	NA	44.2%	97.1%	96.7%	97.3%	48.0%	NA	NA	98.0%	NA	NA	NA
	GF	83.9%	NA	NA	NA	58.8%	88.2%	85.7%	91.9%	58.0%	NA	NA	95.0%	NA	NA	NA
TDIMD	MB	97.7%	NA	NA	NA	0.0%	96.8%	93.1%	0.0%	0.0%	NA	NA	97.2%	NA	NA	NA
TDWR	GF	82.2%	NA	NA	NA	0.0%	84.5%	64.9%	0.0%	0.0%	NA	NA	94.2%	NA	NA	NA
WCD	MB	0.0%	NA	NA	NA	54.3%	0.0%	74.3%	20.0%	16.5%	NA	97.0%	89.9%	NA	84.0%	NA
WSP	GF	0.2%	NA	NA	NA	37.2%	0.0%	55.2%	32.7%	27.1%	NA	80.9%	80.6%	NA	72.0%	NA
	МВ	49.0%	NA	NA	NA	76.7%	49.0%	86.9%	59.2%	57.4%	NA	98.4%	94.3%	NA	91.9%	NA
WSP + LLWAS	GF	0.2%	NA	NA	NA	37.2%	0.0%	55.2%	32.7%	27.1%	NA	80.9%	80.6%	NA	72.0%	NA
	MB	12.0%	NA	NA	NA	82.7%	19.0%	95.4%	56.0%	63.9%	NA	97.5%	95.5%	NA	97.1%	NA
WSP + LIDAR	GF	48.7%	NA	NA	NA	58.8%	49.5%	78.1%	74.7%	58.0%	NA	86.6%	88.7%	NA	88.2%	NA
	MB	0.0%	NA	NA	NA	54.3%	0.0%	74.3%	95.8%	16.5%	NA	97.8%	96.5%	NA	84.0%	NA
WSP + NEXRAD	GF	0.2%	NA	NA	NA	37.2%	0.0%	55.2%	88.4%	27.1%	NA	94.8%	94.8%	NA	72.0%	NA
	MB	49.0%	NA	NA	NA	76.7%	49.0%	86.9%	97.9%	57.4%	NA	98.9%	98.0%	NA	91.9%	NA
WSP + NEXRAD + LLWAS	GF	0.2%	NA	NA	NA	37.2%	0.0%	55.2%	88.4%	27.1%	NA	94.8%	94.8%	NA	72.0%	NA
	MB	96.1%	78.7%	94.9%	93.2%	88.5%	94.0%	89.4%	95.6%	87.1%	95.7%	96.3%	97.5%	91.7%	91.5%	90.7%
MOD-XBAND	GF	75.8%	47.7%	93.3%	91.6%	56.4%	73.8%	69.4%	89.4%	65.3%	94.3%	94.0%	95.0%	89.6%	88.7%	77.9%
	MB	12.0%	47.7% NA	93.3% NA	91.6% NA	56.4% 82.7%	19.0%	95.4%	89.4% 97.3%	63.9%	94.3% NA	94.0% 98.0%	95.0% 98.0%	89.6% NA	97.1%	77.9% NA
WSP + NEXRAD + LIDAR																
	GF	48.7%	NA	NA	NA	58.8%	49.5%	78.1%	93.0%	58.0%	NA	95.0%	94.9%	NA	88.2%	NA

	_						TYS
	Typo	WSP	TDWR-	LLWAS	TDWR	NoWS	WSP
	Туре	W3F	LLWAS	LLWAS	IDWK	10003	WSF
"Current"	MB	65.9%	90.5%	48.7%	91.6%	0.0%	88.0%
	GF	45.8%	75.1%	1.4%	79.2%	0.0%	68.3%
"Upgraded" TDWR/WSP	MB	79.1%	98.3%	48.7%	97.4%	0.0%	92.9%
-pg	GF	64.1%	85.2%	1.4%	92.3%	0.0%	73.5%
XBAND	MB	87.3%	96.8%	76.3%	93.1%	89.2%	26.7%
	GF	86.3%	93.3%	57.0%	87.8%	74.1%	36.3%
XBAND + LIDAR	MB	96.3%	97.1%	81.3%	96.4%	97.3%	46.0%
	GF	94.1%	94.6%	76.3%	94.3%	88.7%	68.1%
XBAND + LLWAS	MB	93.5%	98.7%	87.9%	96.5%	94.5%	62.6%
	GF	94.1%	94.6%	76.3%	94.3%	88.7%	68.1%
Lidar Only	MB	42.8%	12.2%	21.6%	25.1%	78.5%	24.2%
	GF	68.4%	49.3%	35.1%	58.0%	70.5%	45.8%
LLWAS Only	MB	48.8%	60.3%	48.7%	48.8%	48.8%	48.8%
	GF	1.4%	4.5%	1.4%	1.4%	1.4%	1.4%
NEXRAD	MB	0.0%	97.7%	0.0%	96.6%	0.0%	0.0%
	GF	0.0%	93.3%	0.0%	92.8%	0.0%	0.0%
NEXRAD + Lidar	MB	42.8%	98.0%	21.6%	98.0%	78.5%	24.2%
	GF	68.4%	94.0%	35.1%	94.1%	70.5%	45.8%
NEXRAD + LLWAS	MB	49.0%	99.1%	49.0%	98.3%	49.0%	49.0%
	GF	68.4%	94.0%	35.1%	94.1%	70.5%	45.8%
TDWR	MB	NA	95.6%	NA	97.4%	0.0%	NA
	GF	NA	85.2%	NA	92.3%	0.0%	NA
TDWR + LLWAS	MB	NA	98.3%	NA	98.7%	49.0%	NA
	GF	NA	85.2%	NA	92.3%	0.0%	NA
TDWR +LIDAR	MB	NA	96.6%	NA	97.8%	78.5%	NA
	GF	NA	91.4%	NA	94.3%	70.5%	NA
TDWR + NEXRAD	MB GF	NA	97.9%	NA	97.8%	0.0%	NA
	-	NA	94.3%	NA	94.9%	0.0%	NA
TDWR + NXRAD + LLWAS	MB GF	NA NA	99.2%	NA NA	98.9% 94.9%	49.0%	NA NA
	MB	NA	94.3% 98.0%	NA	94.9% 98.0%	0.0% 78.5%	NA
TDWR + NEXRAD + LIDAR	GF	NA	98.0 <i>%</i> 94.6%	NA	95.0%	70.5%	NA
	MB	NA	94.0 <i>%</i> 95.6%	NA	97.4%	0.0%	NA
TDWR	GF	NA	95.0 % 85.2%	NA	97.4%	0.0%	NA
	MB	79.1%	96.3%	NA	92.3 <i>%</i> 89.2%	0.0%	92.9%
WSP	GF	64.1%	79.8%	NA	69.2%	0.0%	73.5%
	MB	89.4%	98.5%	NA	94.5%	49.0%	96.4%
WSP + LLWAS	GF	64.1%	79.8%	NA	69.2%	0.0%	73.5%
	MB	97.1%	96.9%	NA	96.8%	78.5%	97.4%
WSP + LIDAR	GF	87.9%	85.7%	NA	86.5%	70.5%	84.2%
	MB	79.1%	97.9%	NA	96.7%	0.0%	92.9%
WSP + NEXRAD	GF	64.1%	94.3%	NA	93.9%	0.0%	73.5%
	MB	89.4%	99.1%	NA	98.3%	49.0%	96.4%
WSP + NEXRAD + LLWAS	GF	64.1%	94.3%	NA	93.9%	0.0%	73.5%
	MB	87.3%	98.7%	76.3%	93.1%	89.2%	26.7%
MOD-XBAND	GF	86.3%	94.6%	57.0%	87.8%	74.1%	36.3%
	MB	97.1%	98.0%	NA	98.0%	78.5%	97.4%
WSP + NEXRAD + LIDAR	GF	87.9%	94.6%	NA	94.6%	70.5%	84.2%
	-						

APPENDIX D SAFETY AND DELAY EXPOSURE AND BENEFITS BY SITE AND SYSTEM (LIFE CYCLE 2010–32 FY08\$M)

RAW, PILOT and PWS are residual safety exposure values, remaining alternatives show safety exposure relative to NAS protected by pilot training and PWS, and delay reduction benefits based on reduced runway closure time due to wind shift prediction.

Site	ABE	ABQ	ADW	AGS	ALB	AMA	ASE	ATL	AUS	AVL	AVP	AZO	BDL	BGM	BHM	BIL
Type	NoWS	WSP	TDWR	LLWAS	WSP	NoWS	NoWS	TDWR- LLWAS	WSP	LLWAS	NoWS	NoWS	WSP	NoWS	WSP	LLWAS
RAW SAFETY	1.253	24.296	0.023	0.446	2.910	1.656	0.778	227.379	14.023	0.349	0.745	0.366	5.733	0.079	266.9	2.311
PILOT SAFETY	1.031	16.754	0.018	0.328	2.422	1.230	0.576	167.445	9.915	0.249	0.605	0.296	4.724	0.064	5.007	1.717
PWS SAFETY	0.530	7.280	0.014	0.193	1.173	0.663	0.333	68.768	4.234	0.197	0.323	0.239	2.122	0.064	2.337	1.057
CURRENT SAFETY	0.000	6.315	0.012	0:080	0.961	0000	0.000	61.692	2.828	0.077	0.000	0.000	1.803	000.0	1.804	0.596
DELAY	0.000	1.528	0.006	0.001	0.368	0.000	0.000	27.785	0.459	0.001	0.000	0.000	0.611	0.000	0.315	0.011
TOTAL	0.000	7.843	0.018	0.080	1.329	0.000	0.000	89.477	3.288	0.077	0.000	0.000	2.414	0.000	2.119	0.607
UPGRADED SAFETY	0.000	6.596	0.013	0.080	1.023	0.000	0.000	67.317	2.989	0.077	0.000	0.000	1.886	0.000	2.061	0.596
DELAY	0.000	1.693	0.007	0.001	0.387	0.000	0.000	32.166	0.583	0.001	0.000	0.000	0.636	0.000	0.361	0.011
TOTAL	0.000	8.289	0.020	0.080	1.410	0.000	0.000	99.483	3.572	0.077	0.000	0.000	2.522	0.000	2.422	0.607
TDWR SAFETY	0.000	N/A	0.013	N/A	N/A	0.000	0.000	65.961	N/A	N/A	0.000	0.000	N/A	0.000	N/A	N/A
DELAY	0.000	N/A	0.007	N/A	N/A	0.000	0.000	32.166	N/A	N/A	0.000	0.000	N/A	0.000	N/A	N/A
TOTAL	0.000	N/A	0.020	N/A	N/A	0.000	0.000	98.127	N/A	N/A	0.000	0.000	N/A	0.000	N/A	N/A
WSP SAFETY	0.000	6.596	0.011	N/A	1.023	0.000	0.000	60.617	2.989	NA	0.000	0.000	1.886	0.000	2.061	N/A
DELAY	0.000	1.693	0.005	N/A	0.387	0.000	0.000	23.248	0.583	N/A	0.000	0.000	0.636	0.000	0.361	N/A
TOTAL	0.000	8.289	0.016	N/A	1.410	0.000	0.000	83.866	3.572	N/A	0.000	0.000	2.522	0.000	2.422	N/A
NEXRAD SAFETY	0.000	006:9	0.010	0.000	0.000	0.638	0.000	66.461	0.077	0.000	0.000	0.004	0000	0.062	2.233	0.965
DELAY	0.000	1.907	0.005	0.000	0.000	0.324	0.000	32.859	0.199	0.000	0.000	0.035	0.000	0.039	0.514	0.512
TOTAL	0.000	8.807	0.015	0.000	0.000	0.962	0.000	99.320	0.276	0.000	0.000	0.039	0.000	0.100	2.747	1.477
XBAND SAFETY	0.499	6.833	0.012	0.171	1.091	0.628	0.149	64.436	4.009	0.162	0.225	0.227	1.943	0.061	1.051	0.708
DELAY	0.322	1.881	0.007	0.033	0.448	0.341	0.012	31.071	0.993	0.026	0.066	0.178	0.617	0.039	0.087	0.457
TOTAL	0.821	8.713	0.018	0.204	1.539	0.970	0.162	95.507	5.002	0.188	0.291	0.405	2.560	0.100	1.138	1.166
LIDAR SAFETY	0.208	1.623	900.0	0.036	0.506	0.168	0.190	13.747	1.120	0.044	0.110	0.122	0.828	0.022	0.402	0.696
DELAY	0.226	1.248	0.005	0.022	0.317	0.211	0.013	18.797	0.622	0.018	0.051	0.135	0.436	0.025	0.065	0.397
TOTAL	0.434	2.872	0.010	0.058	0.823	0.378	0.203	32.543	1.742	0.063	0.161	0.257	1.265	0.047	0.467	1.093
LLWAS SAFETY	0.234	3.208	0.006	0.080	0.517	0.292	0.147	38.684	1.865	0.077	0.142	0.105	0.935	0.028	1.029	0.596
DELAY	0.005	0.035	0.000	0.001	0.007	0.005	0.006	1.908	0.015	0.001	0.003	0.003	0.011	0.001	0.008	0.011
TOTAL	0.239	3.242	0.006	0.080	0.524	0.297	0.153	40.592	1.881	0.077	0.145	0.108	0.946	0.029	1.037	0.607
TDWR + LIDAR SAFETY	0.208	N/A	0.013	N/A	N/A	0.168	0.190	66.553	N/A	N/A	0.110	0.122	N/A	0.022	N/A	N/A
DELAY	0.226	N/A	0.007	N/A	N/A	0.211	0.013	33.078	N/A	N/A	0.051	0.135	N/A	0.025	N/A	N/A
TOTAL	0.434	N/A	0.020	N/A	N/A	0.378	0.203	99.631	N/A	N/A	0.161	0.257	N/A	0.047	N/A	N/A
WSP + LIDAR	0.208	6.939	0.013	NA	1.136	0.168	0.190	64.619	3.598	NA	0.110	0.122	2.053	0.022	2.181	N/A
SAFETY																
DELAY	0.226	1.982	0.007	N/A	0.443	0.211	0.013	29.276	0.838	N/A	0.051	0.135	0.716	0.025	0.392	N/A
TOTAL	0.434	8.921	0.020	N/A	1.579	0.378	0.203	93.895	4.436	N/A	0.161	0.257	2.769	0.047	2.573	N/A

BIL	LLWAS	1.020	0.536	1.556	0.913	0.537	1.451	N/A	N/A	N/A	NA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.008	0.536	1.545	0.883	0.537	1.420	N/A	N/A	AN NA	NIA	NA	N/A	N/A	N/A	N/A	NA	N/A
BHM	WSP	2.280	0.514	2.794	1.274	0.166	1.440	N/A	N/A	N/A	2.281	0.516	2.798	N/A	NA	N/A	2.157	0.361	2.518	2.277	0.514	2.790	1.619	0.166	1.785	N/A	N/A	AN NA	MIA	NA N	2.248	0.515	2.763	2.285	0.515	2.799
BGM	NoWS	0.062	0.039	0.101	0.061	0.039	0.101	0.062	0.039	0.101	0.062	0.039	0.101	0.028	0.000	0.028	0.028	0.000	0.028	0.062	0.039	0.102	0.062	0.039	0.101	0.062	0.039	0.062	0.030	0.101	0.062	0.039	0.100	0.062	0.039	0.101
BDL	WSP	0.828	0.436	1.265	2.006	0.702	2.708	N/A	N/A	N/A	2.053	0.716	2.769	N/A	N/A	N/A	1.980	0.636	2.616	1.052	0.436	1.488	2.030	0.702	2.732	N/A	N/A	A/A	NIA	NA	1.886	0.636	2.522	1.980	0.636	2.616
AZO	SMON	0.123	0.149	0.273	0.231	0.179	0.410	0.123	0.149	0.273	0.123	0.149	0.273	0.105	0.000	0.105	0.105	0.00.0	0.105	0.124	0.149	0.273	0.232	0.179	0.411	0.004	0.035	0.110	0.035	0.144	0.004	0.035	0.039	0.110	0.035	0.144
AVP	SWoN	0.110	0.051	0.161	0.255	0.095	0.350	0.110	0.051	0.161	0.110	0.051	0.161	0.142	0.000	0.142	0.142	0.000	0.142	0.150	0.051	0.200	0.266	0.095	0.361	0.000	0.000	0.142		0.142	0.000	0.000	0.000	0.142	0.000	0.142
AVL	LLWAS	0.044	0.018	0.063	0.174	0.038	0.213	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.091	0.018	0.110	0.175	0.038	0.214	N/A	N/A	AW	MIA	NA	N/A	N/A	N/A	N/A	N/A	N/A
AUS	dSW	1.167	0.745	1.912	4.092	1.029	5.121	V/N	N/A	N/A	3.631	0.925	4.556	N/A	N/A	N/A	3.501	0.583	4.085	2.154	0.745	2.899	4.114	1.029	5.143	N/A	N/A	AIN AIN	NIA	NIA	3.045	0.730	3.775	3.558	0.730	4.288
ATL	TDWR- LLWAS	67.011	33.205	100.216	65.950	32.965	98.914	67.175	33.505	100.680	67.151	33.382	100.533	67.317	32.166	99.483	64.213	23.248	87.462	67.661	33.205	100.866	66.977	32.965	99.942	67.064	33.445	67.894	33 AAE	101.339	66.703	33.180	99.884	67.724	33.180	100.905
ASE	SMON	0.190	0.013	0.203	0.241	0.016	0.256	0.190	0.013	0.203	0.190	0.013	0.203	0.147	0.000	0.147	0.147	0.000	0.147	0.148	0.013	0.161	0.224	0.016	0.239	0.00.0	0.000	0.147	0000	0.147	0.00.0	0.000	0.000	0.147	0.000	0.147
AMA	SWoN	0.643	0.344	0.987	0.635	0.350	0.985	0.643	0.344	0.987	0.643	0.344	0.987	0.292	0.000	0.292	0.292	0000	0.292	0.650	0.344	0.994	0.644	0.350	0.994	0.638	0.324	0.646	1 32A	0.970	0.638	0.324	0.962	0.646	0.324	0.970
ALB	MSP	0.506	0.317	0.823	1.127	0.463	1.590	N/A	N/A	N/A	1.136	0.443	1.579	N/A	N/A	N/A	1.084	0.387	1.471	0.593	0.317	0.909	1.130	0.463	1.593	N/A	N/A	AIN	VIN	NA	1.023	0.387	1.410	1.084	0.387	1.471
AGS	LLWAS	0.036	0.022	0.058	0.180	0.041	0.221	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.094	0.022	0.116	0.182	0.041	0.223	N/A	N/A	AIN	VIN	NN	N/A	N/A	N/A	N/A	N/A	N/A
ADW	TDWR	0.013	0.006	0.019	0.013	0.007	0.020	0.013	200.0	0.020	0.013	0.007	0.020	0.013	0.007	0.020	0.012	0.005	0.017	0.012	0.006	0.018	0.013	0.007	0.020	0.013	0.007	0.013	0.007	0.020	0.012	0.006	0.018	0.012	0.006	0.019
ABQ	MSP	6.988	1.949	8.937	6.946	2.027	8.972	N/A	N/A	N/A	7.060	2.187	9.248	N/A	N/A	N/A	6.817	1.693	8.510	7.015	1.949	8.964	7.008	2.027	9.034	N/A	N/A	AN	NIN	NA	6.983	2.137	9.121	7.079	2.137	9.217
ABE	NoWS	0.208	0.226	0.434	0.509	0.349	0.858	0.208	0.226	0.434	0.208	0.226	0.434	0.234	0.000	0.234	0.234	0.000	0.234	0.265	0.226	0.491	0.514	0.349	0.862	0.000	0.000	0.234	0000	0.234	0.000	0.000	0.000	0.234	0.000	0.234
Site	Type	NEXRAD + LIDAR SAFETY	DELAY	TOTAL	XBAND + LIDAR SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	WSP + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	TDWR + LLLWAS SAFETY	DELAY	TOTAL	WSP + LLWAS SAFETY	DELAY	TOTAL	NEXRAD + LLWAS SAFETY	DELAY	TOTAL	XBAND + LLWAS SAFETY	DELAY	TOTAL	TDWR + NEXRAD SAFETY	DELAY	TDWR + NEXRAD + LLWAS	SAFETY DEL AV	TOTAL	WSP + NEXRAD SAFETY	DELAY	TOTAL	WSP + NEXRAD + LLWAS SAFETY	DELAY	TOTAL

CLT	TDWR	41.759	31.648	13.555	12.261	3.078	15.339	13.131	3.574	16.705	13.131	3.574	16.705	11.939	2.647	14.586	0.000	0.000	0.000	12.294	3.516	15.810	3.009	2.063	5.072	5.973	0.055	6.027	13.197	3.650	16.847	12.887	3.201	16.088
CLE	TDWR	14.111	11.006	5.720	5.155	1.144	6.299	5.528	1.339	6.867	5.528	1.339	6.867	5.103	1.127	6.230	5.452	1.268	6.720	5.468	1.333	6.801	2.270	0.936	3.206	2.520	0.020	2.540	5.579	1.349	6.928	5.518	1.282	6.800
CID	WSP	0.761	0.628	0.362	0.317	0.120	0.437	0.329	0.127	0.456	N/A	V/N	N/A	0.329	0.127	0.456	0.000	0.000	0.000	0.344	0.153	0.497	0.123	0.101	0.224	0.160	0.002	0.162	N/A	N/A	N/A	0.350	0.145	0.494
CHS	WSP	3.711	2.769	1.304	1.012	0.108	1.121	191.1	0.220	1.380	V/N	N/A	N/A	1.161	0.220	1.380	000'0	0000	0.000	1.200	0.336	1.536	602.0	0.217	0.426	0.575	0.006	0.581	N/A	V/N	V/N	1.220	0.321	1.541
CHA	LLWAS	0.720	0.531	0.358	0.170	0.001	0.172	0.170	0.001	0.172	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.000	0.271	0.033	0.304	0.065	0.021	0.086	0.170	0.001	0.172	N/A	N/A	N/A	N/A	N/A	N/A
CAK	NoWS	2.062	1.627	0.744	0.000	0.000	0.000	0.000	0.000	0.000	0.542	0.202	0.743	0.000	0.000	0.000	0.247	0.164	0.411	0.711	0.358	1.069	0.207	0.220	0.427	0.328	0.005	0.333	0.634	0.296	0.930	0.207	0.220	0.427
CAE	LLWAS	1.968	1.402	0.899	0.385	0.003	0.388	0.385	0.003	0.388	N/A	N/A	N/A	N/A	N/A	N/A	0.805	0.159	0.964	0.446	0.094	0.540	0.204	0.058	0.263	0.385	0.003	0.388	N/A	N/A	N/A	NIA	NA	N/A
BWI	TDWR	30.573	23.428	9.938	8.854	1.621	10.475	9.478	1.873	11.351	9.478	1.873	11.351	7.321	1.420	8.741	0.005	0.010	0.014	8.318	1.776	10.094	4.992	1.522	6.514	4.379	0.029	4.408	9.669	1.965	11.634	9.547	1.929	11.475
BUR	NoWS	1.299	0.903	0.432	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.316	0.305	0.621	0.000	0.000	0.000	0.321	0.275	0.596	0.158	0.243	0.401	0.190	0.010	0.201	0.158	0.243	0.401	0.393	0.408	0.800
BUF	WSP	3.863	2.905	1.418	1.201	0.591	1.792	1.268	0.627	1.895	N/A	N/A	N/A	1.268	0.627	1.895	1.361	0.704	2.065	1.352	0.739	2.092	0.645	0.540	1.185	0.625	0.011	0.636	N/A	N/A	N/A	1.373	0.719	2.091
BTV	NoWS	0.765	0.614	0.381	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.350	0.174	0.524	0.344	0.183	0.527	0.197	0.149	0.346	0.168	0.004	0.171	0.197	0.149	0.346	0.197	0.149	0.346
BTR	LLWAS	2.272	1.649	1.095	0.424	0.002	0.426	0.424	0.002	0.426	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.00	1.018	0.113	1.131	0.198	0.070	0.269	0.424	0.002	0.426	N/A	N/A	N/A	N/A	N/A	N/A
BOS	TDWR	26.065	21.845	9.737	8.737	4.313	13.050	9.358	5.003	14.360	9.358	5.003	14.360	8.566	4.345	12.911	7.773	4.170	11.943	9.088	4.926	14.015	3.666	3.422	7.088	4.290	0.076	4.366	9.488	5.076	14.564	9.430	4.890	14.320
BOI	NoWS	5.438	3.773	1.974	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	1.886	0.655	2.541	1.678	0.486	2.164	1.232	0.458	1.690	0.870	0.012	0.882	1.232	0.458	1.690	1.232	0.458	1.690
BNA	TDWR	23.604	16.543	7.548	6.847	0.904	7.752	7.340	1.054	8.394	7.340	1.054	8.394	6.545	0.757	7.303	7.058	0.967	8.024	7.147	1.028	8.175	2.073	0.656	2.729	3.325	0.016	3.341	7.363	1.068	8.431	7.128	0.965	8.092
BIS	NoWS	0.538	0.403	0.255	000.0	0.000	0.000	000.0	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.233	0.063	0.296	0.234	0.066	0.300	0.113	0.048	0.161	0.112	0.001	0.113	0.113	0.048	0.161	0.113	0.048	0.161
Site	Type	RAW SAFETY	PILOT SAFETY	PWS SAFETY	CURRENT SAFETY	DELAY	TOTAL	UPGRADED SAFETY	DELAY	TOTAL	TDWR SAFETY	DELAY	TOTAL	WSP SAFETY	DELAY	TOTAL	NEXRAD SAFETY	DELAY	TOTAL	XBAND SAFETY	DELAY	TOTAL	LIDAR SAFETY	DELAY	TOTAL	LLWAS SAFETY	DELAY	TOTAL	TDWR + LIDAR SAFETY	DELAY	TOTAL	WSP + LIDAR SAFETY	DELAY	TOTAL

CLT	TDWR	3.009	2.063	5.072	12.969	3.675	16.644	13.197	3.650	16.847	12.887	3.201	16.088	13.282	3.574	16.856	12.517	2.647	15.164	6.694	2.063	8.757	12.900	3.675	16.575	13.131	3.574	16.705	13.282	3.574	16.856	11.939	2.647	14.586	12.517	2.647	15.164
CLE	TDWR	5.529	1.334	6.863	5.539	1.350	6.890	5.585	1.352	6.937	5.567	1.346	6.913	5.605	1.339	6.944	5.347	1.127	6.474	5.579	1.334	6.914	5.581	1.350	6.931	5.578	1.347	6.924	5.632	1.347	6.979	5.528	1.320	6.848	5.602	1.320	6.922
CD	WSP	0.123	0.101	0.224	0.349	0.156	0.505	N/A	N/A	N/A	0.350	0.145	0.494	N/A	N/A	N/A	0.341	0.127	0.468	0.182	0.101	0.283	0.352	0.156	0.509	N/A	N/A	N/A	N/A	N/A	N/A	0.329	0.127	0.456	0.341	0.127	0.468
CHS	WSP	0.209	0.217	0.426	1.240	0.392	1.631	N/A	N/A	N/A	1.220	0.321	1.541	VIN	N/A	N/A	1.198	0.220	1.418	0.639	0.217	0.856	1.251	0.392	1.643	N/A	N/A	N/A	N/A	N/A	N/A	1.161	0.220	1.380	1.198	0.220	1.418
СНА	LLWAS	0.065	0.021	0.086	0.291	0.046	0.337	NIA	N/A	N/A	N/A	N/A	N/A	NIA	N/A	N/A	N/A	V/N	N/A	0.168	0.021	0.189	0.311	0.046	0.357	NA	N/A	N/A	N/A	N/A	N/A	NA	V/N	N/A	NIA	N/A	N/A
CAK	NoWS	0.413	0.288	0.701	0.718	0.366	1.085	0.635	0.297	0.931	0.413	0.288	0.701	0.623	0.202	0.825	0.328	000.0	0.328	0.493	0.288	0.781	0.725	0.366	1.092	0.543	0.206	0.749	0.624	0.206	0.830	0.247	0.164	0.411	0.469	0.164	0.634
CAE	LLWAS	0.837	0.176	1.013	0.570	0.123	0.694	NIA	N/A	N/A	N/A	N/A	N/A	NIA	N/A	N/A	N/A	N/A	N/A	0.846	0.176	1.022	0.655	0.123	0.778	NIA	N/A	N/A	N/A	N/A	N/A	NA	N/A	N/A	NIA	N/A	N/A
BWI	TDWR	4.996	1.531	6.527	9.597	1.968	11.565	9.669	1.966	11.635	9.547	1.929	11.476	9.653	1.873	11.526	8.448	1.420	9.868	5.112	1.531	6.644	9.132	1.968	11.100	9.478	1.874	11.352	9.654	1.874	11.527	7.323	1.424	8.747	8.450	1.424	9.874
BUR	NoWS	0.158	0.243	0.401	0.361	0.375	0.736	0.158	0.243	0.401	0.393	0.408	0.800	0.191	0.000	0.191	0.361	0.305	0.666	0.205	0.243	0.448	0.368	0.375	0.743	0.000	0.000	0.000	0.191	0.000	0.191	0.316	0.305	0.621	0.361	0.305	0.666
BUF	WSP	1.377	0.738	2.115	1.373	0.747	2.120	NIA	N/A	N/A	1.383	0.745	2.128	V/N	N/A	N/A	1.327	0.627	1.954	1.388	0.738	2.126	1.382	0.747	2.129	N/A	N/A	N/A	NA	N/A	N/A	1.374	0.729	2.103	1.390	0.729	2.119
BTV	NoWS	0.362	0.207	0.569	0.359	0.207	0.566	0.362	0.207	0.569	0.362	0.207	0.569	0.168	0.000	0.168	0.168	000'0	0.168	0.364	0.207	0.571	0.361	0.207	0.568	0.350	0.174	0.524	0.359	0.174	0.533	0.350	0.174	0.524	0.359	0.174	0.533
BTR	LLWAS	0.198	0.070	0.269	1.045	0.127	1.172	NIA	N/A	N/A	NVA	N/A	N/A	V/N	N/A	N/A	N/A	V/N	N/A	0.537	0.070	0.607	1.056	0.127	1.183	N/A	V/N	N/A	N/A	N/A	N/A	N/A	V/N	N/A	V/N	N/A	N/A
BOS	TDWR	9.418	4.633	14.050	9.289	5.073	14.363	9.511	5.112	14.623	9.498	5.052	14.550	9.508	5.003	14.510	9.047	4.345	13.391	8.710	4.633	13.343	9.391	5.073	14.464	9.399	5.103	14.501	9.538	5.103	14.641	8.703	4.824	13.527	9.158	4.824	13.982
BOI	NoWS	1.915	0.767	2.681	1.844	0.586	2.429	1.915	0.767	2.681	1.915	0.767	2.681	0.871	0.000	0.871	0.871	0000	0.871	1.930	0.767	2.697	1.803	0.586	2.389	1.886	0.655	2.541	1.905	0.655	2.560	1.886	0.655	2.541	1.905	0.655	2.560
BNA	TDWR	7.291	1.053	8.344	7.278	1.066	8.343	7.370	1.076	8.445	7.352	1.068	8.420	7.415	1.054	8.469	6.913	0.757	7.671	006.7	1.053	8.353	7.334	1.066	8.400	7.354	1.069	8.423	7.427	1.069	8.496	7.215	1.029	8.244	7.344	1.029	8.372
BIS	NoWS	0.245	0.069	0.314	0.246	0.070	0.315	0.245	0.069	0.314	0.245	0.069	0.314	0.112	0.000	0.112	0.112	0000	0.112	0.244	0.069	0.313	0.244	0.070	0.314	0.233	0.063	0.296	0.242	0.063	0.305	0.233	0.063	0.296	0.242	0.063	0.305
Site	Type	NEXRAD + LIDAR SAFETY	DELAY	TOTAL	XBAND + LIDAR SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	WSP + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	TDWR + LLLWAS SAFETY	DELAY	TOTAL	WSP + LLLWAS SAFETY	DELAY	TOTAL	NEXRAD + LLWAS SAFETY	DELAY	TOTAL	XBAND + LLWAS SAFETY	DELAY	TOTAL	TDWR + NEXRAD SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LLWAS SAFETY	DELAY	TOTAL	WSP + NEXRAD SAFETY	DELAY	TOTAL	WSP + NEXRAD + LLWAS SAFETY	DELAY	TOTAL

DTW	TDWR	60.065	48.479	21.406	19.428	3.481	22.910	20.845	4.069	24.914	20.845	4.069	24.914	18.793	3.397	22.190	0.000	0.000	0.000	20.579	4.088	24.667	6.914	2.675	9.590	9.432	0.060	9.492	20.903	4.086	24.989	20.494	3.828	24.323	6.914	2.675
DSM	WSP	2.603	1.942	1.145	0.902	0.230	1.131	0.998	0.248	1.245	N/A	N/A	N/A	966.0	0.248	1.245	1.085	0.293	1.378	1.079	0.309	1.388	0.442	0.212	0.654	0.504	0.005	0.509	N/A	N/A	N/A	1.097	0.293	1.389	1.112	0.309
DFW	TDWR- LLWAS	162.500	120.188	50.823	45.798	3.668	49.466	49.938	4.288	54.226	49.083	4.288	53.371	43.601	3.073	46.674	46.228	4.184	50.412	48.556	4.216	52.772	12.401	2.665	15.065	28.603	0.318	28.921	49.498	4.354	53.852	47.749	3.816	51.565	49.400	4.256
DEN	TDWR- LLWAS	210.892	160.460	73.450	65.721	8.098	73.819	72.974	9.500	82.474	70.501	9.500	80.001	45.040	7.569	52.609	68.014	9.226	77.240	68.162	9.429	77.591	47.338	8.416	55.754	64.976	1.168	66.143	71.737	9.535	81.272	67.548	9.376	76.924	71.445	9.507
DCA	TDWR	13.912	10.634	4.787	4.288	2.000	6.288	4.595	2.321	6.916	4.595	2.321	6.916	3.964	1.922	5.886	4.086	1.921	6.007	4.122	1.776	5.898	1.870	1.301	3.171	2.109	0.036	2.145	4.653	2.385	7.037	4.572	2.251	6.823	4.623	2.185
DAY	TDWR	4.386	3.420	1.745	1.575	0.256	1.831	1.687	0.297	1.984	1.687	0.297	1.984	1.549	0.222	1.771	0.129	0.095	0.224	1.663	0.294	1.957	0.471	0.183	0.654	0.769	0.004	0.774	1.700	0.302	2.002	1.675	0.271	1.947	0.575	0.228
DAL	TDWR	18.149	13.068	5.736	5.117	1.111	6.228	5.475	1.289	6.763	5.475	1.289	6.763	2.287	0.448	2.735	3.811	0.700	4.511	5.369	1.279	6.648	1.776	0.839	2.614	2.527	0.020	2.547	5.568	1.330	6.898	3.937	1.025	4.963	4.824	1.084
DAB	LLWAS	4.453	3.146	2.251	1.162	0.008	1.170	1.162	0.008	1.170	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.000	2.107	0.379	2.486	0.432	0.221	0.653	1.162	0.008	1.170	N/A	N/A	N/A	N/A	N/A	N/A	0.432	0.221
CVG	TDWR	25.901	20.085	10.445	9.451	1.061	10.511	10.129	1.236	11.365	10.129	1.236	11.365	9.042	1.000	10.042	0.000	0.000	0.000	9.801	1.213	11.014	3.509	0.821	4.329	4.602	0.018	4.621	10.188	1.247	11.435	10.026	1.168	11.194	3.509	0.821
CSG	LLWAS	0.520	0.369	0.228	0.131	0.001	0.133	0.131	0.001	0.133	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.000	0.199	0.056	0.256	0.065	0.039	0.104	0.131	0.001	0.133	N/A	N/A	N/A	N/A	N/A	N/A	0.065	0.039
CRW	LLWAS	0.337	0.253	0.252	660'0	0.001	0.100	660'0	0.001	0.100	N/A	N/A	N/A	N/A	N/A	N/A	0.239	0.045	0.284	0.160	0.029	0.189	0.077	0.019	0.096	0.099	0.001	0.100	N/A	N/A	N/A	N/A	N/A	N/A	0.244	0.047
CRP	NoWS	0.536	0.377	0.243	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.234	0.128	0.363	0.233	0.134	0.367	0.062	0.076	0.137	0.107	0.002	0.109	0.062	0.076	0.137	0.062	0.076	0.137	0.236	0.133
cos	LLWAS	5.225	3.811	2.002	0.937	0.017	0.954	0.937	0.017	0.954	N/A	N/A	N/A	N/A	N/A	N/A	1.531	0.604	2.135	1.611	0.689	2.300	0.480	0.468	0.948	0.937	0.017	0.954	N/A	N/A	N/A	N/A	N/A	N/A	1.743	0.684
CMI	NoWS	0.526	0.417	0.410	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.393	0.331	0.725	0.133	0.212	0.345	0.181	0.005	0.186	0.133	0.212	0.345	0.133	0.212	0.345	0.133	0.212
CMH	TDWR	7.264	5.654	2.722	2.472	0.511	2.983	2.653	0.597	3.250	2.653	0.597	3.250	2.362	0.440	2.801	0.000	0.000	0.000	2.548	0.575	3.123	0.923	0.383	1.306	1.199	0.009	1.208	2.659	0.600	3.259	2.609	0.547	3.156	0.923	0.383
Site	Type	RAW SAFETY	PILOT SAFETY	PWS SAFETY	CURRENT SAFETY	DELAY	TOTAL	UPGRADED SAFETY	DELAY	TOTAL	TDWR SAFETY	DELAY	TOTAL	WSP SAFETY	DELAY	TOTAL	NEXRAD SAFETY	DELAY	TOTAL	XBAND SAFETY	DELAY	TOTAL	LIDAR SAFETY	DELAY	TOTAL	LLWAS SAFETY	DELAY	TOTAL	TDWR + LIDAR SAFETY	DELAY	TOTAL	WSP + LIDAR SAFETY	DELAY	TOTAL	NEXRAD + LIDAR SAFETY	DELAY

DTW	TDWR	9.590	20.761	4.099	24.860	20.903	4.086	24.989	20.494	3.828	24.323	21.061	4.069	25.130	19.851	3.397	23.248	10.767	2.675	13.443	20.935	4.099	25.034	20.845	4.069	24.914	21.061	4.069	25.130	18.793	3.397	22.190	19.851	3.397	23.248
DSM	WSP	1.420	1.107	0.312	1.420	NV	NVA	NA	1.117	0.311	1.428	NA	NA	NA	1.056	0.248	1.303	1.113	0.309	1.422	1.109	0.312	1.421	NA	NA	NA	NA	NA	NA	1.099	0.305	1.405	1.118	0.305	1.423
DFW	TDWR- LLWAS	53.656	49.198	4.318	53.516	49.644	4.382	54.026	49.578	4.348	53.926	49.938	4.288	54.226	47.023	3.073	50.096	48.860	4.256	53.116	49.797	4.318	54.115	49.326	4.376	53.701	50.090	4.376	54.465	47.376	4.300	51.676	49.297	4.300	53.597
DEN	TDWR- LLWAS	80.952	71.160	9.533	80.693	71.745	9.537	81.282	71.621	9.530	81.151	72.974	9.500	82.474	70.841	7.569	78.410	72.913	9.507	82.420	72.932	9.533	82.465	70.643	9.513	80.156	72.990	9.513	82.503	68.718	9.403	78.121	72.856	9.403	82.259
DCA	TDWR	6.808	4.502	2.239	6.741	4.674	2.441	7.116	4.664	2.399	7.063	4.665	2.321	6.987	4.308	1.922	6.230	4.418	2.185	6.603	4.461	2.239	6.700	4.645	2.422	7.067	4.700	2.422	7.122	4.331	2.352	6.683	4.533	2.352	6.885
DAY	TDWR	0.803	1.687	0.301	1.988	1.700	0.303	2.003	1.683	0.285	1.969	1.709	0.297	2.007	1.619	0.222	1.841	0.933	0.228	1.161	1.700	0.301	2.002	1.687	0.298	1.985	1.710	0.298	2.008	1.564	0.249	1.812	1.633	0.249	1.882
DAL	TDWR	5.907	5.540	1.330	6.871	5.590	1.337	6.927	5.158	1.140	6.299	5.578	1.289	6.867	3.785	0.448	4.233	4.768	1.084	5.852	5.543	1.330	6.874	5.509	1.315	6.824	5.601	1.315	6.916	4.164	0.801	4.965	4.812	0.801	5.613
DAB	LLWAS	0.653	2.161	0.406	2.567	N/A	N/A	N/A	V/N	N/A	N/A	V/N	N/A	N/A	Y/N	N/A	N/A	1.107	0.221	1.328	2.177	0.406	2.583	V/N	N/A	N/A	N/A	N/A	N/A	V/N	N/A	N/A	N/A	N/A	N/A
CVG	TDWR	4.329	10.109	1.248	11.357	10.188	1.247	11.435	10.026	1.168	11.194	10.252	1.236	11.488	909'6	1.000	10.606	5.257	0.821	6.078	10.104	1.248	11.353	10.129	1.236	11.365	10.252	1.236	11.488	9.042	1.000	10.042	9.606	1.000	10.606
CSG	LLWAS	0.104	0.218	0.064	0.281	N/A	N/A	N/A	V/N	N/A	N/A	V/N	N/A	N/A	V/N	N/A	N/A	0.113	0.039	0.152	0.214	0.064	0.277	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRW	LLWAS	0.291	0.184	0.035	0.219	N/A	N/A	N/A	V/N	N/A	N/A	N/A	N/A	N/A	V/N	N/A	N/A	0.245	0.047	0.292	0.202	0.035	0.237	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CRP	NoWS	0.368	0.235	0.135	0.370	0.236	0.133	0.368	0.236	0.133	0.368	0.107	0.000	0.107	0.107	0.000	0.107	0.238	0.133	0.371	0.237	0.135	0.372	0.234	0.128	0.363	0.237	0.128	0.366	0.234	0.128	0.363	0.237	0.128	0.366
cos	LLWAS	2.426	1.680	0.759	2.440	N/A	N/A	N/A	V/N	N/A	N/A	V/N	N/A	N/A	Y/N	N/A	N/A	1.734	0.684	2.417	1.781	0.759	2.540	V/N	N/A	N/A	N/A	N/A	N/A	V/N	N/A	N/A	N/A	N/A	N/A
CMI	NoWS	0.345	0.397	0.334	0.731	0.133	0.212	0.345	0.133	0.212	0.345	0.181	0.000	0.181	0.181	0.000	0.181	0.205	0.212	0.418	0.401	0.334	0.735	0.000	0.000	0.000	0.181	0.000	0.181	0.000	0.000	0.000	0.181	0.000	0.181
CMH	TDWR	1.306	2.623	0.602	3.224	2.659	0.600	3.259	2.609	0.547	3.156	2.679	0.597	3.275	2.497	0.440	2.937	1.364	0.383	1.747	2.632	0.602	3.233	2.653	0.597	3.250	2.679	0.597	3.275	2.362	0.440	2.801		0.440	2.937
Site	Type	TOTAL	XBAND + LIDAR SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	WSP + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	TDWR + LLLWAS SAFETY	DELAY	TOTAL	WSP + LLLWAS SAFETY	DELAY	TOTAL	NEXRAD + LLWAS SAFETY	DELAY	TOTAL	X BAND + LLWAS SAFETY	DELAY	TOTAL	TDWR + NEXRAD SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LLWAS SAFETY	DELAY	TOTAL	WSP + NEXRAD SAFETY	DELAY	TOTAL	WSP + NEXRAD + LLWAS SAFETY	DELAY	TOTAL

GRB	LLWAS	0.497	0.374	0.244	0.104	0.003	0.107	0.104	0.003	0.107	N/A	N/A	N/A	N/A	N/A	N/A	0.224	0.168	0.393	0.220	0.190	0.410	0.127	0.154	0.281	0.104	0.003	0.107	N/A	N/A	N/A	N/A	N/A	N/A	0.236	0.195
GPT	NoWS	2.164	1.489	0.780	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0:000	0.000	0.000	0.000	0.005	0.008	0.012	0.728	0.103	0.832	0.154	0.065	0.219	0.344	0.002	0.346	0.154	0.065	0.219	0.154	0.065	0.219	0.158	0.072
GFK	NoWS	0.963	0.754	0.645	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.267	0.295	0.562	0.613	0.405	1.019	0.308	0.301	0.609	0.284	0.006	0.290	0.308	0.301	0.609	0.308	0.301	0.609	0.531	0.367
GEG	WSP	6.799	4.937	2.305	1.851	0.500	2.350	1.958	0.522	2.480	N/A	N/A	N/A	1.958	0.522	2.480	2.134	0.582	2.717	2.137	0.587	2.724	1.135	0.473	1.607	1.015	0.010	1.025	N/A	N/A	N/A	2.233	0.624	2.857	2.238	0.633
GCN	NoWS	1.017	0.756	0.755	000'0	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.687	625.0	1.066	0.468	0.332	0.799	0.333	0.007	0.340	0.468	0.332	0.799	0.468	0.332	0.799	0.468	0.332
FWA	WSP	1.913	1.510	0.854	0.665	0.098	0.764	0.742	0.114	0.856	N/A	N/A	N/A	0.742	0.114	0.856	0.078	0.046	0.124	0.798	0.141	0.939	0.279	0.094	0.374	0.376	0.002	0.379	N/A	N/A	N/A	0.821	0.136	0.957	0.345	0.114
FSM	LLWAS	0.307	0.227	0.215	0.095	0.001	0.096	0.095	0.001	0.096	N/A	N/A	N/A	N/A	N/A	N/A	0.207	0.054	0.261	0.196	0.042	0.237	0.051	0.024	0.075	0.095	0.001	0.096	N/A	N/A	N/A	N/A	N/A	N/A	0.209	0.056
FSD	LLWAS	1.879	1.322	0.814	0.344	0.005	0.348	0.344	0.005	0.348	N/A	N/A	N/A	N/A	N/A	N/A	0.718	0.245	0.963	0.748	0.254	1.002	0.442	0.206	0.648	0.344	0.005	0.348	N/A	N/A	N/A	N/A	N/A	N/A	0.785	0.259
FNT	NoWS	1.548	1.243	0.639	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.347	0.186	0.533	0.604	0.237	0.842	0.285	0.175	0.460	0.281	0.004	0.285	0.285	0.175	0.460	0.285	0.175	0.460	0.573	0.219
FLL	TDWR	79.466	55.171	21.326	19.172	6.660	25.832	20.459	7.616	28.075	20.459	7.616	28.075	19.762	5.431	25.193	19.326	5.027	24.352	20.257	7.425	27.683	2.828	4.137	6.965	9.396	0.123	9.519	20.606	8.117	28.723	20.367	7.148	27.514	20.135	6.456
FAY	LLWAS	0.256	0.194	171.0	690'0	0.001	0.070	690'0	0.001	0.070	N/A	N/A	N/A	V/N	N/A	N/A	0.000	0.000	0.000	0.157	0.039	0.196	0.041	0.026	0.067	0.069	0.001	0.070	NA	V/N	N/A	NIA	N/A	N/A	0.041	0.026
FAR	NoWS	0.633	0.522	0.321	000'0	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000	0.288	0.161	0.449	0.149	0.123	0.271	0.142	0.002	0.144	0.149	0.123	0.271	0.149	0.123	0.271	0.149	0.123
EWR	TDWR	20.013	15.950	6.875	6.080	9.748	15.828	6.512	11.385	17.897	6.512	11.385	17.897	5.806	10.443	16.249	0.000	0.000	0.000	6.454	11.698	18.153	2.875	8.560	11.435	3.029	0.188	3.218	6.647	12.126	18.773	6.605	12.132	18.737	2.875	8.560
EVV	NoWS	0.493	0.368	0.362	000'0	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.344	0.084	0.428	0.139	0.057	0.196	0.159	0.001	0.161	0.139	0.057	0.196	0.139	0.057	0.196	0.139	0.057
ERI	NoWS	0.121	0.098	0.096	000.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.000	0.000	0.000	0.079	0.056	0.135	0.045	0.045	0.090	0.042	0.001	0.043	0.045	0.045	0.090	0.045	0.045	0:090	0.045	0.045
ELP	WSP	7.400	5.101	2.150	1.883	0.585	2.468	1.970	0.627	2.598	N/A	N/A	N/A	1.970	0.627	2.598	0.129	0.287	0.416	2.023	0.712	2.735	0.444	0.428	0.872	0.947	0.013	0.960	N/A	N/A	N/A	2.044	0.738	2.782	0.546	0.635
Site	Type	RAW SAFETY	PILOT SAFETY	PWS SAFETY	CURRENT SAFETY	DELAY	TOTAL	UPGRADED SAFETY	DELAY	TOTAL	TDWR SAFETY	DELAY	TOTAL	WSP SAFETY	DELAY	TOTAL	NEXRAD SAFETY	DELAY	TOTAL	XBAND SAFETY	DELAY	TOTAL	LIDAR SAFETY	DELAY	TOTAL	LLWAS SAFETY	DELAY	TOTAL	TDWR + LIDAR SAFETY	DELAY	TOTAL	WSP + LIDAR SAFETY	DELAY	TOTAL	NEXRAD + LIDAR SAFETY	DELAY

GRB	LLWAS	0.431	0.235	0.200	0.435	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.235	0.195	0.430	0.232	0.200	0.431	N/A	N/A	NIA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
GPT	NoWS	0.231	0.748	0.116	0.864	0.158	0.072	0.231	0.158	0.072	0.231	0.344	0.000	0.344	0.344	0.000	0.344	0.389	0.072	0.461	0.754	0.116	0.870	0.005	0.008	0.349	0.008	0.356	0.005	0.008	0.012	0.349	0.008	0.356
GFK	NoWS	0.898	0.626	0.409	1.035	0.531	0.367	0.898	0.531	0.367	0.898	0.285	0.000	0.285	0.285	0.000	0.285	0.453	0.367	0.820	0.628	0.409	1.036	0.267	0.295	0.442	0.295	0.738	0.267	0.295	0.562	0.442	0.295	0.738
GEG	WSP	2.872	2.227	0.632	2.859	N/A	N/A	N/A	2.247	0.641	2.888	N/A	N/A	N/A	2.101	0.522	2.624	2.219	0.633	2.852	2.219	0.632	2.851	N/A	N/A	AIN	N/A	N/A	2.204	0.619	2.824	2.243	0.619	2.862
GCN	NoWS	0.799	0.718	0.397	1.115	0.468	0.332	0.799	0.468	0.332	0.799	0.333	0.000	0.333	0.333	0.000	0.333	0.385	0.332	0.716	0.715	0.397	1.111	0.000	0.000	0.333	0.000	0.333	0.000	0.000	0.000	0.333	0.000	0.333
FWA	WSP	0.459	0.825	0.147	0.972	N/A	V/N	N/A	0.823	0.139	0.962	V/N	N/A	N/A	0.786	0.114	0.900	0.466	0.114	0.580	0.825	0.147	0.971	V/N	N/A	NIA	N/A	N/A	0.745	0.121	0.866	0.789	0.121	0.910
FSM	LLWAS	0.264	0.204	0.051	0.255	NIA	N/A	N/A	V/N	NA	NA	VN	NA	NA	V/N	N/A	N/A	0.210	0.056	0.266	0.205	0.051	0.256	V/N	N/A	AN	NA	NA	NA	N/A	N/A	NIA	NA	NA
FSD	LLWAS	1.045	0.789	0.259	1.048	N/A	N/A	N/A	VN	NA	NA	VN	NA	NA	N N	NA	NA	0.765	0.259	1.024	0.779	0.259	1.038	V/N	NA	NA	NA	NA	N/A	N/A	N/A	NA	NA	NA
FNT	NoWS	0.792	0.617	0.243	0.860	0.573	0.219	0.792	0.573	0.219	0.792	0.282	0.000	0.282	0.282	0.000	0.282	0.490	0.219	0.708	0.620	0.243	0.863	0.347	0.186	0.481	0.186	0.667	0.347	0.186	0.533	0.481	0.186	0.667
FLL	TDWR	26.591	20.548	8.149	28.697	20.805	8.242	29.047	20.680	7.744	28.424	20.745	7.616	28.361	20.130	5.431	25.562	20.206	6.456	26.662	20.796	8.149	28.945	20.728	7.997	20.928	7.997	28.925	20.397	7.082	27.479	20.650	7.082	27.732
FΑΥ	LLWAS	0.067	0.164	0.044	0.207	NIA	V/N	V/N	VIN	N/A	N/A	VIN	N/A	N/A	VIN	N/A	N/A	0.085	0.026	0.111	0.164	0.044	0.207	V/N	N/A	NIA	N/A	N/A	NIA	N/A	N/A	NIA	N/A	N/A
FAR	NoWS	0.271	0.311	0.166	0.477	0.149	0.123	0.271	0.149	0.123	0.271	0.142	0.000	0.142	0.142	0.000	0.142	0.164	0.123	0.287	0.304	0.166	0.470	000.0	0.000	0.142	0.000	0.142	0.000	0.000	0.000	0.142	0.000	0.142
EWR	TDWR	11.435	6.615	12.299	18.913	6.647	12.126	18.773	6.605	12.132	18.737	6.638	11.385	18.023	6.254	10.443	16.697	3.469	8.560	12.029	6.647	12.299	18.946	6.512	11.385	6.638	11.385	18.023	5.806	10.443	16.249	6.254	10.443	16.697
EVV	NoWS	0.196	0.349	0.084	0.434	0.139	0.057	0.196	0.139	0.057	0.196	0.159	0.000	0.159	0.159	0.000	0.159	0.183	0.057	0.240	0.352	0.084	0.436	0.000	0.000	0.159	0.000	0.159	0.00	0.000	0.000	0.159	0.000	0.159
ERI	NoWS	060.0	0.089	0.066	0.155	0.045	0.045	060.0	0.045	0.045	060.0	0.042	0.000	0.042	0.042	0.000	0.042	0.047	0.045	0.092	0.087	0.066	0.152	0.000	0.000	0.042	0.000	0.042	0.00	0.000	0.000	0.042	0.000	0.042
ELP	WSP	1.180	2.054	0.776	2.830	NIA	N/A	N/A	2.062	0.802	2.864	NIA	N/A	N/A	2.026	0.627	2.653	1.130	0.635	1.765	2.078	0.776	2.854	NIA	N/A	NIA	N/A	N/A	1.995	0.715	2.710	2.049	0.715	2.764
Site	Type	TOTAL	XBAND + LIDAR SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	WSP + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	TDWR + LLLWAS SAFETY	DELAY	TOTAL	WSP + LLLWAS SAFETY	DELAY	TOTAL	NEXRAD + LLWAS SAFETY	DELAY	TOTAL	XBAND + LLWAS SAFETY	DELAY	TOTAL	TDWR + NEXRAD SAFETY	DELAY	TDWR + NEXRAD + LLWAS	DELAY	TOTAL	WSP + NEXRAD SAFETY	DELAY	TOTAL	WSP + NEXRAD + LLWAS SAFETY	DELAY	TOTAL

JFK	TDWR	37.584	29.877	12.658	11.426	58.221	69.647	12.220	67.112	79.332	12.220	67.112	79.332	10.859	58.046	68.905	0.000	0.000	0.000	12.039	68.441	80.480	5.473	50.630	56.103	5.577	1.017	6.594	12.314	68.564	80.878	12.185	66.930	79.115	5.473	50.630
JAX	WSP	21.929	14.962	6.551	5.394	0.568	5.963	5.421	0.590	6.011	N/A	N/A	N/A	5.421	0.590	6.011	6.337	0.794	7.131	6.296	0.831	7.127	1.381	0.461	1.842	2.886	0.012	2.899	N/A	N/A	N/A	5.788	0.698	6.485	6.360	0.820
JAN	LLWAS	2.251	1.519	0.829	0.442	0.002	0.444	0.442	0.002	0.444	N/A	N/A	N/A	N/A	N/A	N/A	0.779	0.124	0.904	0.731	0.128	0.859	0.269	0.087	0.357	0.442	0.002	0.444	N/A	N/A	N/A	N/A	N/A	N/A	0.797	0.135
ISP	WSP	2.450	1.967	0.944	0.677	0.440	1.117	0.743	0.481	1.224	N/A	N/A	N/A	0.743	0.481	1.224	0.890	0.567	1.457	0.886	0.577	1.462	0.531	0.483	1.014	0.416	0.009	0.425	NA	N/A	V/N	0.913	0.589	1.501	0.921	0.589
QNI	TDWR	26.160	19.569	8.927	7.987	1.042	9.028	8.561	1.215	9.777	8.561	1.215	9.777	8.132	1.004	9.136	8.492	1.139	9.632	8.542	1.216	9.758	2.518	0.753	3.271	3.933	0.018	3.951	8.670	1.227	868.6	8.464	1.127	9.591	8.570	1.196
ILM	NoWS	0.947	0.706	0.438	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.323	0.078	0.401	0.397	0.102	0.499	0.088	0.073	0.161	0.193	0.002	0.195	0.088	0.073	0.161	0.088	0.073	0.161	0.361	0.106
ICT	TDWR	3.822	2.942	1.735	1.564	0.442	2.006	1.678	0.516	2.193	1.678	0.516	2.193	1.505	0.392	1.897	1.585	0.445	2.031	1.616	0.497	2.114	0.570	0.340	0.910	0.765	0.008	0.772	1.691	0.526	2.217	1.659	0.486	2.145	1.665	0.516
IAH	TDWR	133.451	97.262	42.794	38.643	6.586	45.229	41.159	7.412	48.572	41.159	7.412	48.572	37.588	4.325	41.914	31.576	4.348	35.924	38.755	6.026	44.781	6.821	4.203	11.024	18.855	0.117	18.972	41.440	7.689	49.129	39.479	6.153	45.633	34.219	6.125
IAD	TDWR	35.413	26.127	12.206	10.961	1.100	12.061	11.730	1.279	13.008	11.730	1.279	13.008	9.753	0.966	10.719	10.276	1.061	11.337	10.703	1.205	11.908	4.641	0.943	5.584	5.378	0.020	5.398	11.878	1.323	13.201	11.541	1.266	12.807	11.528	1.297
HSV	WSP	1.550	1.119	0.693	0.600	0.121	0.721	0.636	0.139	0.774	N/A	N/A	N/A	0.636	0.139	0.774	0.000	0.000	0.000	0.633	0.169	0.802	0.153	0.098	0.251	0.305	0.003	0.308	N/A	N/A	N/A	0.664	0.162	0.826	0.153	0.098
НРN	WSP	066.0	0.808	0.577	0.498	0.549	1.048	0.513	0.563	1.076	N/A	N/A	N/A	0.513	0.563	1.076	0.009	0.106	0.115	0.530	0.593	1.123	0.257	0.308	0.565	0.254	0.010	0.264	N/A	N/A	N/A	0.557	0.605	1.162	0.274	0.518
ПОН	TDWR	42.192	30.525	12.545	11.355	1.055	12.410	12.086	1.206	13.292	12.086	1.206	13.292	11.227	0.713	11.940	11.916	1.116	13.032	11.840	1.139	12.979	1.987	0.659	2.646	5.527	0.019	5.546	12.157	1.257	13.414	11.710	1.023	12.733	12.067	1.210
HNL	WSP	13.291	9.121	3.826	3.144	0.757	3.901	3.510	1.210	4.721	N/A	N/A	N/A	3.510	1.210	4.721	0.000	0.000	0.000	3.412	1.323	4.735	0.621	0.846	1.467	1.686	0.030	1.716	N/A	N/A	N/A	3.586	1.459	5.045	0.621	0.846
GSP	LLWAS	0.590	0.412	0.291	0.124	0.001	0.125	0.124	0.001	0.125	N/A	N/A	N/A	N/A	N/A	N/A	0.279	0.088	0.367	0.272	0.096	0.368	0.072	0.056	0.128	0.124	0.001	0.125	N/A	N/A	N/A	N/A	N/A	N/A	0.282	0.097
GSO	WSP	3.952	2.978	1.421	1.182	0.122	1.304	1.272	0.146	1.418	N/A	N/A	N/A	1.272	0.146	1.418	0.000	0.000	0.000	1.030	0.156	1.186	0.384	0.116	0.500	0.626	0.003	0.629	N/A	N/A	N/A	1.363	0.177	1.540	0.384	0.116
GRR	WSP	1.679	1.304	0.734	0.630	0.224	0.855	0.655	0.232	0.887	N/A	N/A	N/A	0.655	0.232	0.887	0.711	0.268	0.979	0.703	0.274	0.976	0.346	0.205	0.551	0.324	0.004	0.328	N/A	N/A	N/A	0.714	0.268	0.982	0.715	0.274
Site	Type	RAW SAFETY	PILOT SAFETY	PWS SAFETY	CURRENT SAFETY	DELAY	TOTAL	UPGRADED SAFETY	DELAY	TOTAL	TDWR SAFETY	DELAY	TOTAL	WSP SAFETY	DELAY	TOTAL	NEXRAD SAFETY	DELAY	TOTAL	XBAND SAFETY	DELAY	TOTAL	LIDAR SAFETY	DELAY	TOTAL	LLWAS SAFETY	DELAY	TOTAL	TDWR + LIDAR SAFETY	DELAY	TOTAL	WSP + LIDAR SAFETY	DELAY	TOTAL	NEXRAD + LIDAR SAFETY	DELAY

JFK	TDWR	56.103	12.275	68.986	81.261	12.314	68.564	80.878	12.185	66.930	79.115	12.387	67.112	79.499	11.615	58.046	69.662	6.464	50.630	57.094	12.316	68.986	81.302	12.220	67.112	79.332	12.387	67.112	79.499	10.859	58.046	68.905	11.615	58.046	69.662
JAX	WSP	7.180	6.327	0.834	7.161	NIA	N/A	N/A	6.376	0.827	7.203	V/N	N/A	N/A	5.869	0.590	6.459	6.429	0.820	7.249	6.406	0.834	7.240	V/N	N/A	N/A	N/A	N/A	N/A	6.362	0.815	7.178	6.431	0.815	7.247
NAL	LLWAS	0.933	0.792	0.139	0.932	NIA	NA	NA	MN	NA	N/A	N/N	N/A	N/A	N/N	N/A	N/A	0.803	0.135	0.938	0.780	0.139	0.919	VN	NA	NA	NA	NA	N/A	V/N	N/A	N/A	N/A	N/A	N/A
ISP	WSP	1.510	0.917	0.594	1.511	NA	NA	N/A	0.922	0.594	1.516	N/A	N/A	N/A	0.830	0.481	1.312	0.915	0.589	1.504	0.913	0.594	1.507	NA	NA	N/A	N/A	N/A	N/A	0.893	0.583	1.476	0.914	0.583	1.497
QNI	TDWR	9.766	8.617	1.227	9.844	8.716	1.231	9.947	8.633	1.213	9.846	8.712	1.215	9.928	8.422	1.004	9.427	8.690	1.196	9.886	8.710	1.227	9.936	8.707	1.227	9.933	8.790	1.227	10.017	8.586	1.183	9.769	8.715	1.183	9.898
ILM	NoWS	0.467	0.418	0.125	0.543	0.361	0.106	0.467	0.361	0.106	0.467	0.193	0.000	0.193	0.193	0.000	0.193	0.378	0.106	0.484	0.418	0.125	0.543	0.323	0.078	0.401	0.370	0.078	0.448	0.323	0.078	0.401	0.370	0.078	0.448
ICT	TDWR	2.181	1.670	0.526	2.197	1.693	0.528	2.221	1.687	0.523	2.211	1.699	0.516	2.215	1.593	0.392	1.984	1.664	0.516	2.179	1.675	0.526	2.201	1.686	0.523	2.209	1.705	0.523	2.227	1.637	0.489	2.125	1.674	0.489	2.163
IAH	TDWR	40.344	40.562	7.277	47.838	41.709	7.769	49.478	41.139	6.975	48.114	41.729	7.412	49.142	39.133	4.325	43.458	36.985	6.125	43.109	40.800	7.277	48.077	41.566	7.665	49.231	42.001	7.665	49.666	40.073	6.289	46.362	40.893	6.289	47.182
IAD	TDWR	12.826	11.713	1.325	13.038	11.891	1.331	13.222	11.831	1.324	13.155	11.909	1.279	13.187	10.767	0.966	11.732	11.280	1.297	12.577	11.458	1.325	12.783	11.785	1.299	13.084	11.945	1.299	13.244	10.992	1.188	12.181	11.494	1.188	12.683
ЛSH	WSP	0.251	0.648	0.178	0.826	N/A	N/A	N/A	0.664	0.162	0.826	N/A	N/A	N/A	0.654	0.139	0.793	0.341	0.098	0.439	0.662	0.178	0.840	N/A	N/A	N/A	N/A	N/A	N/A	0.636	0.139	0.774	0.654	0.139	0.793
NGH	WSP	0.792	0.548	0.640	1.188	NIA	N/A	N/A	0.559	0.625	1.184	N/A	N/A	N/A	0.539	0.563	1.102	0.297	0.518	0.815	0.552	0.640	1.193	N/A	N/A	N/A	N/A	N/A	N/A	0.515	0.586	1.101	0.541	0.586	1.127
ПОН	TDWR	13.277	12.035	1.249	13.284	12.220	1.275	13.495	12.202	1.248	13.450	12.243	1.206	13.449	11.581	0.713	12.294	12.202	1.210	13.413	12.189	1.249	13.438	12.196	1.258	13.455	12.323	1.258	13.581	12.129	1.196	13.325	12.260	1.196	13.456
HNL	WSP	1.467	3.446	1.429	4.876	N/A	N/A	N/A	3.586	1.459	5.045	V/N	N/A	N/A	3.582	1.210	4.793	1.837	0.846	2.683	3.561	1.429	4.990	V/N	N/A	N/A	N/A	N/A	N/A	3.510	1.210	4.721	3.582	1.210	4.793
GSP	LLWAS	0.378	0.280	0.101	0.381	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.284	0.097	0.381	0.281	0.101	0.382	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
GSO	WSP	0.500	1.134	0.183	1.317	N/A	N/A	N/A	1.363	0.177	1.540	N/A	N/A	N/A	1.325	0.146	1.470	0.706	0.116	0.823	1.223	0.183	1.406	N/A	N/A	N/A	N/A	N/A	N/A	1.272	0.146	1.418	1.325	0.146	1.470
GRR	WSP	0.989	0.711	0.275	0.986	N/A	N/A	N/A	0.717	0.274	0.991	N/A	N/A	N/A	0.687	0.232	0.919	0.721	0.274	0.995	0.716	0.275	0.991	N/A	N/A	N/A	N/A	N/A	N/A	0.714	0.272	0.986	0.722	0.272	0.994
Site	Type	TOTAL	XBAND + LIDAR SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	WSP + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	TDWR + LLLWAS SAFETY	DELAY	TOTAL	WSP + LLWAS SAFETY	DELAY	TOTAL	NEXRAD + LLWAS SAFETY	DELAY	TOTAL	XBAND + LLWAS SAFETY	DELAY	TOTAL	TDWR + NEXRAD SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LLWAS SAFETY	DELAY	TOTAL	WSP + NEXRAD SAFETY	DELAY	TOTAL	WSP + NEXRAD + LLWAS SAFETY	DELAY	TOTAL

MDT	WSP	0.587	0.470	0.269	0.213	0.177	0.390	0.215	0.193	0.407	N/A	N/A	N/A	0.215	0.193	0.407	0.000	0.000	0.000	0.213	060.0	0.303	0.085	0.061	0.145	0.119	0.004	0.123	N/A	N/A	N/A	0.245	0.205	0.450	0.085	0.061
MCO	TDWR- LLWAS	191.072	136.057	52.361	47.382	3.013	50.396	51.693	3.487	55.179	50.694	3.487	54.180	48.734	2.687	51.421	0.935	0.688	1.623	50.264	3.531	53.795	8.137	1.929	10.066	40.257	0.270	40.526	50.928	3.586	54.515	50.111	3.149	53.260	8.804	2.419
MCI	TDWR	40.716	31.816	13.026	11.811	1.574	13.385	12.669	1.844	14.513	12.669	1.844	14.513	12.183	1.591	13.774	1.977	0.621	2.597	12.546	1.850	14.396	2.997	1.065	4.063	5.739	0.027	5.766	12.713	1.851	14.564	12.539	1.717	14.256	4.685	1.368
MBS	NoWS	0.528	0.424	0.197	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.183	0.156	0.339	0.078	0.114	0.192	0.087	0.002	0.089	0.078	0.114	0.192	0.078	0.114	0.192	0.078	0.114
MAF	LLWAS	2.180	1.561	0.819	0.394	0.009	0.404	0.394	0.009	0.404	N/A	N/A	N/A	N/A	N/A	N/A	0.775	0.336	1.111	0.771	0.366	1.138	0.184	0.216	0.401	0.394	0.009	0.404	N/A	N/A	N/A	N/A	N/A	N/A	0.788	0.367
LNK	LLWAS	0.398	0.314	0.246	0.138	0.002	0.140	0.138	0.002	0.140	N/A	N/A	N/A	N/A	N/A	N/A	0.142	0.053	0.194	0.233	0.097	0.330	0.083	0.064	0.146	0.138	0.002	0.140	N/A	N/A	N/A	N/A	N/A	N/A	0.196	0.081
LT	LLWAS	6.006	4.354	2.245	1.173	0.007	1.180	1.173	0.007	1.180	N/A	N/A	N/A	V/N	N/A	N/A	2.150	0.300	2.449	2.045	0.297	2.341	0.737	0.208	0.945	1.173	0.007	1.180	N/A	N/A	N/A	N/A	N/A	N/A	2.177	0.316
LGB	NoWS	5.046	3.392	1.803	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.899	0.224	1.122	0.000	0.000	0.000	1.546	0.504	2.050	0.449	0.347	0.796	0.794	0.010	0.804	0.449	0.347	0.796	1.277	0.347	1.624	0.449	0.347
LGA	TDWR- LLWAS	11.227	9.016	4.064	3.673	9.822	13.494	3.981	11.494	15.475	3.942	11.494	15.436	1.148	4.748	5.897	0.000	0.000	0.000	3.842	11.389	15.231	1.814	8.154	9.969	1.487	0.215	1.703	3.969	11.577	15.546	2.840	9.587	12.427	1.814	8.154
LFT	NoWS	1.284	0.925	0.785	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.738	060.0	0.828	0.145	0.052	0.197	0.346	0.001	0.347	0.145	0.052	0.197	0.145	0.052	0.197	0.145	0.052
LEX	LLWAS	0.461	0.359	0.303	0.130	0.002	0.131	0.130	0.002	0.131	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.000	0.288	0.109	0.397	0.074	0.063	0.137	0.130	0.002	0.131	N/A	N/A	N/A	N/A	N/A	N/A	0.074	0.063
LBB	WSP	3.308	2.393	1.237	1.068	0.393	1.461	1.116	0.420	1.536	N/A	N/A	N/A	1.116	0.420	1.536	1.175	0.487	1.661	1.180	0.535	1.715	0.358	0.329	0.687	0.545	0.008	0.553	N/A	N/A	N/A	1.185	0.491	1.676	1.196	0.523
LAX	WSP	14.401	10.151	4.659	3.144	1.127	4.271	3.832	1.660	5.493	N/A	N/A	N/A	3.832	1.660	5.493	0.000	0.000	0.000	4.243	2.149	6.393	1.628	1.690	3.318	2.053	0.038	2.091	N/A	N/A	N/A	4.371	2.285	6.656	1.628	1.690
LAS	TDWR	93.831	65.632	30.719	23.168	7.000	30.168	25.143	8.237	33.381	25.143	8.237	33.381	21.031	8.569	29.600	0.000	0.000	0.000	18.818	892.8	27.186	18.238	8.644	26.881	13.535	0.202	13.737	28.494	9.432	37.926	28.794	11.353	40.147	18.238	8.644
LAN	LLWAS	0.773	0.616	0.333	0.144	0.003	0.147	0.144	0.003	0.147	N/A	N/A	N/A	N/A	N/A	N/A	0.001	0.009	0.010	0.307	0.184	0.491	0.156	0.139	0.295	0.144	0.003	0.147	N/A	N/A	N/A	NIA	N/A	N/A	0.157	0.144
Site	Type	RAW SAFETY	PILOT SAFETY	PWS SAFETY	CURRENT SAFETY	DELAY	TOTAL	UPGRADED SAFETY	DELAY	TOTAL	TDWR SAFETY	DELAY	TOTAL	WSP SAFETY	DELAY	TOTAL	NEXRAD SAFETY	DELAY	TOTAL	XBAND SAFETY	DELAY	TOTAL	LIDAR SAFETY	DELAY	TOTAL	LLWAS SAFETY	DELAY	TOTAL	TDWR + LIDAR SAFETY	DELAY	TOTAL	WSP + LIDAR SAFETY	DELAY	TOTAL	NEXRAD + LIDAR SAFETY	DELAY

MDT	WSP	0.145	0.225	0.119	0.344	N/A	N/A	N/A	0.245	0.205	0.450	NIA	N/A	N/A	0.236	0.193	0.429	0.124	0.061	0.185	0.233	0.119	0.352	N/A	N/A	N/A	N/A	N/A	N/A	0.215	0.193	0.407	0.236	0.193	0.429
MCO	TDWR- LLWAS	11.223	50.653	3.613	54.266	50.938	3.594	54.532	50.189	3.206	53.396	51.693	3.487	55.179	50.473	2.687	53.159	43.346	2.419	45.766	51.789	3.613	55.402	50.713	3.501	54.214	51.712	3.501	55.213	48.854	2.775	51.630	50.593	2.775	53.368
MCI	TDWR	6.053	12.599	1.853	14.452	12.716	1.852	14.568	12.582	1.77.1	14.352	12.808	1.844	14.652	12.478	1.591	14.070	7.455	1.368	8.823	12.749	1.853	14.602	12.674	1.846	14.521	12.813	1.846	14.659	12.238	1.663	13.900	12.529	1.663	14.192
MBS	NoWS	0.192	0.190	0.165	0.354	0.078	0.114	0.192	0.078	0.114	0.192	0.087	0.000	0.087	280.0	0.000	0.087	0.099	0.114	0.213	0.190	0.165	0.354	000.0	0.000	0.00	0.087	0.000	0.087	0.000	0.000	0.000	280.0	0.000	0.087
MAF	LLWAS	1.155	0.786	0.380	1.166	N/A	N/A	N/A	N/A	V/N	N/A	N/A	N/A	N/A	V/N	N/A	N/A	0.796	0.367	1.163	0.793	0.380	1.173	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	VIN	N/A	N/A
LNK	LLWAS	0.277	0.238	0.097	0.335	N/A	N/A	N/A	N/A	V/N	N/A	N/A	N/A	N/A	V/N	N/A	N/A	0.194	0.081	0.275	0.239	0.097	0.336	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	VIN	N/A	N/A
ΓЦ	LLWAS	2.493	2.155	0.321	2.476	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2.194	0.316	2.510	2.144	0.321	2.465	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
LGB	NoWS	0.796	1.658	0.623	2.280	0.449	0.347	0.796	1.277	0.347	1.624	0.795	0.000	0.795	1.280	0.224	1.504	0.881	0.347	1.228	1.674	0.623	2.296	0.000	0.000	0.000	0.795	0.000	0.795	0.899	0.224	1.122	1.280	0.224	1.504
LGA	TDWR- LLWAS	9.969	3.926	11.564	15.490	3.969	11.577	15.546	2.840	9.587	12.427	3.981	11.494	15.475	2.215	4.748	6.963	1.734	8.154	9.888	3.925	11.564	15.489	3.942	11.494	15.436	3.981	11.494	15.475	1.148	4.748	5.897	2.215	4.748	6.963
LFT	NoWS	0.197	0.753	0.098	0.851	0.145	0.052	0.197	0.145	0.052	0.197	0.346	0.000	0.346	0.346	0.000	0.346	0.385	0.052	0.437	0.761	0.098	0.859	0.000	0.000	0.000	0.346	0.000	0.346	0.000	0.000	0.000	0.346	0.00	0.346
LEX	LLWAS	0.137	0.292	0.110	0.403	NVA	N/A	NA	NVA	NA	N/A	N/A	N/A	N/A	N/A	NA	NA	0.150	0.063	0.213	0.295	0.110	0.405	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
LBB	WSP	1.720	1.190	0.538	1.729	N/A	N/A	N/A	1.205	0.532	1.736	N/A	N/A	N/A	1.159	0.420	1.579	1.204	0.523	1.728	1.205	0.538	1.743	N/A	N/A	N/A	N/A	N/A	N/A	1.194	0.516	1.710	1.209	0.516	1.725
LAX	WSP	3.318	4.492	2.436	6.928	N/A	N/A	N/A	4.371	2.285	6.656	N/A	N/A	N/A	4.147	1.660	5.807	2.341	1.690	4.031	4.446	2.436	6.882	N/A	N/A	N/A	N/A	N/A	N/A	3.832	1.660	5.493	4.147	1.660	5.807
LAS	TDWR	26.881	25.368	11.081	36.449	28.494	9.432	37.926	28.794	11.353	40.147	27.231	8.237	35.468	25.167	8.569	33.736	15.390	8.644	24.034	24.597	11.081	35.678	25.143	8.237	33.381	27.231	8.237	35.468	21.031	8.569	29.600	25.167	8.569	33.736
LAN	LLWAS	0.301	0.322	0.188	0.510	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A		0.144	0.315	0.319	0.188	0.507	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Site	Type	TOTAL	XBAND + LIDAR SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	WSP + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	TDWR + LLWAS SAFETY	DELAY	TOTAL	WSP + LLWAS SAFETY	DELAY	TOTAL	NEXRAD + LLWAS SAFETY	DELAY	TOTAL VPAND -	ADAND + LLWAS SAFETY	DELAY	TOTAL	TDWR + NEXRAD SAFETY	DELAY	TOTAL TDWP +	NEXRAD + LLWAS SAFETY	DELAY	TOTAL	WSP + NEXRAD SAFETY	DELAY	TOTAL	WSP + NEXRAD + LLWAS SAFETY	DELAY	TOTAL

окс	TDWR	7.393	5.514	2.576	2.326	0.518	2.844	2.494	0.606	3.100	2.494	0.606	3.100	2.327	0.498	2.825	2.452	0.578	3.029	2.455	0.607	3.061	0.710	0.386	1.096	1.135	0.009	1.144	2.511	0.621	3.131	2.479	0.578	3.057	2.502	0.614
	F	7.	5.	2	2	0	2	2	0	3	2	0	3	2	0	2	2	0	3	2	0	3	0	0	4	1	0	4	3	0	3	2	0	3	5	0
OAK	NoWS	1.638	1.267	0.581	0.000	0000	0.000	0.000	0000	0.000	0.000	0.000	0.000	0.469	1.928	2.397	0.000	0.000	0.000	0.515	2.117	2.632	0.238	1.688	1.926	0.256	0.046	0.302	0.238	1.688	1.926	0.542	2.542	3.084	0.238	1.688
MYR	NoWS	1.726	1.281	0.566	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.447	0.040	0.487	0.484	0.053	0.537	0.150	0.041	0.191	0.250	0.001	0.251	0.150	0.041	0.191	0.150	0.041	0.191	0.519	0.056
MSΥ	TDWR- LLWAS	31.483	21.308	8.704	7.813	0.516	8.330	8.407	0.588	8.995	8.316	0.588	8.904	7.776	0.381	8.157	5.169	0.327	5.496	8.078	0.573	8.651	1.591	0.338	1.930	2.406	0.012	2.418	8.381	0.614	8.995	8.172	0.522	8.695	5.884	0.480
MSP	TDWR	35.687	27.871	12.061	10.919	4.466	15.385	11.722	5.239	16.962	11.722	5.239	16.962	10.882	4.376	15.258	11.435	5.165	16.600	11.519	5.196	16.714	3.710	3.328	7.038	5.314	0.078	5.391	11.781	5.254	17.035	11.620	4.898	16.517	11.748	5.227
MSN	WSP	1.584	1.277	0.759	0.565	0.176	0.741	0.644	0.199	0.843	N/A	N/A	N/A	0.644	0.199	0.843	0.017	0.063	0.080	0.699	0.258	0.957	0.238	0.167	0.405	0.334	0.004	0.338	N/A	N/A	N/A	0.723	0.244	0.967	0.246	0.199
MOB	LLWAS	1.239	0.849	0.556	0.246	0.001	0.247	0.246	0.001	0.247	N/A	N/A	N/A	N/A	N/A	N/A	0.521	0.085	0.607	0.519	0.095	0.614	0.142	0.059	0.201	0.246	0.001	0.247	N/A	N/A	N/A	N/A	N/A	N/A	0.535	0.097
MLU	LLWAS	0.476	0.347	0.342	0.166	0.001	0.167	0.166	0.001	0.167	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.000	0.316	0.039	0.355	0.066	0.027	0.093	0.166	0.001	0.167	N/A	N/A	N/A	N/A	N/A	N/A	0.066	0.027
MLI	LLWAS	0.876	0.661	0.406	0.202	0.003	0.205	0.202	0.003	0.205	N/A	N/A	N/A	N/A	N/A	N/A	0.376	0.119	0.495	0.334	0.097	0.431	0.151	0.070	0.221	0.202	0.003	0.205	N/A	N/A	N/A	N/A	N/A	N/A	0.389	0.120
MKE	TDWR	15.128	11.932	5.842	5.264	0.960	6.224	5.643	1.121	6.764	5.643	1.121	6.764	4.523	0.781	5.304	0.966	0.491	1.456	5.334	1.109	6.443	2.477	0.808	3.284	2.574	0.017	2.591	5.698	1.132	6.830	5.589	1.050	6.638	3.249	0.950
MIA	TDWR	136.686	93.630	35.527	31.542	4.408	35.950	33.557	4.990	38.547	33.557	4.990	38.547	31.358	3.047	34.405	33.413	4.403	37.816	33.500	4.782	38.282	4.356	2.737	7.093	15.653	0.082	15.735	33.948	5.354	39.303	32.660	4.494	37.154	33.952	5.155
MHT	NoWS	2.615	2.180	0.985	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.405	0.254	0.660	0.000	0.000	0.000	0.914	0.395	1.310	0.445	0.306	0.751	0.434	0.007	0.441	0.445	0.306	0.751	0.805	0.420	1.225	0.445	0.306
MGM	LLWAS	0.691	0.481	0.320	0.119	0.001	0.119	0.119	0.001	0.119	N/A	N/A	N/A	N/A	N/A	N/A	0.003	0.005	0.008	0.297	0.048	0.345	0.114	0.033	0.147	0.119	0.001	0.119	N/A	N/A	N/A	N/A	N/A	N/A	0.115	0.036
MEM	TDWR	53.627	37.588	17.327	15.707	1.782	17.489	16.811	2.063	18.874	16.811	2.063	18.874	14.174	1.366	15.540	16.540	2.007	18.546	15.935	2.000	17.935	5.238	1.392	6.630	7.634	0.031	7.666	16.873	2.118	18.991	15.960	1.943	17.904	16.815	2.108
MDW	TDWR	34.439	26.815	11.314	10.278	6.186	16.464	11.020	7.207	18.228	11.020	7.207	18.228	2.768	2.831	5.598	10.589	7.285	17.873	10.799	7.226	18.025	4.485	4.932	9.417	4.985	0.107	5.093	11.046	7.267	18.313	6.929	5.896	12.824	11.052	7.286
Site	Type	RAW SAFETY	PILOT SAFETY	PWS SAFETY	CURRENT SAFETY	DELAY	TOTAL	UPGRADED SAFETY	DELAY	TOTAL	TDWR SAFETY	DELAY	TOTAL	WSP SAFETY	DELAY	TOTAL	NEXRAD SAFETY	DELAY	TOTAL	XBAND SAFETY	DELAY	TOTAL	LIDAR SAFETY	DELAY	TOTAL	LLWAS SAFETY	DELAY	TOTAL	TDWR + LIDAR SAFETY	DELAY	TOTAL	WSP + LIDAR SAFETY	DELAY	TOTAL	NEXRAD + LIDAR SAFETY	DELAY

OKC	TDWR	3.116	2.488	0.622	3.110	2.512	0.622	3.135	2.513	0.621	3.135	2.525	0.606	3.131	2.419	0.498	2.916	2.512	0.614	3.126	2.511	0.622	3.132	2.503	0.614	3.116	2.530	0.614	3.144	2.485	0.610	3.095	2.521	0.610	3.131
OAK	NoWS	1.926	0.548	2.361	2.909	0.238	1.688	1.926	0.542	2.542	3.084	0.256	0.000	0.256	0.512	1.928	2.440	0.286	1.688	1.974	0.541	2.361	2.902	0.000	0.000	0.000	0.256	0.000	0.256	0.469	1.928	2.397	0.512	1.928	2.440
MYR	NoWS	0.575	0.537	0.065	0.602	0.519	0.056	0.575	0.519	0.056	0.575	0.250	0.000	0.250	0.250	0.000	0.250	0.505	0.056	0.561	0.526	0.065	0.591	0.447	0.040	0.487	0.493	0.040	0.533	0.447	0.040	0.487	0.493	0.040	0.533
MSY	TDWR- LLWAS	6.364	8.323	0.617	8.940	8.461	0.619	9.080	8.377	0.573	8.949	8.407	0.588	8.995	7.950	0.381	8.331	6.331	0.480	6.812	8.295	0.617	8.913	8.421	0.608	9.029	8.488	0.608	9.096	8.145	0.505	8.650	8.255	0.505	8.761
MSP	TDWR	16.975	11.671	5.255	16.926	11.782	5.260	17.042	11.773	5.251	17.024	11.856	5.239	17.095	11.336	4.376	15.712	11.715	5.227	16.943	11.760	5.255	17.015	11.726	5.258	16.985	11.860	5.258	17.118	11.513	5.227	16.741	11.749	5.227	16.976
MSN	WSP	0.445	0.725	0.265	0.990	N/A	N/A	N/A	0.724	0.250	0.975	N/A	N/A	N/A	0.689	0.199	0.888	0.388	0.199	0.587	0.727	0.265	0.993	N/A	N/A	N/A	N/A	N/A	N/A	0.647	0.211	0.858	0.692	0.211	0.904
MOB	LLWAS	0.632	0.533	0.101	0.633	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.539	0.097	0.636	0.537	0.101	0.638	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MLU	LLWAS	0.093	0.327	0.047	0.373	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.168	0.027	0.195	0.329	0.047	0.376	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MLI	LLWAS	0.509	0.368	0.114	0.482	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.388	0.120	0.508	0.368	0.114	0.482	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
MKE	TDWR	4.199	5.654	1.134	6.788	5.702	1.134	6.835	5.607	1.074	6.681	5.722	1.121	6.843	5.070	0.781	5.851	3.411	0.950	4.361	5.574	1.134	6.708	5.649	1.130	6.780	5.728	1.130	6.859	4.595	0.916	5.512	5.139	0.916	6.056
MIA	TDWR	39.108	34.037	5.337	39.374	34.580	5.473	40.053	34,488	5.342	39.831	34.273	4.990	39.263	32.570	3.047	35.617	34.483	5.155	39.638	34.520	5.337	39.856	34.463	5.302	39.765	34.828	5.302	40.129	34.140	4.851	38.991	34.530	4.851	39.381
MHT	NoWS	0.751	0.943	0.441	1.384	0.445	0.306	0.751	0.805	0.420	1.225	0.434	0.000	0.434	0.665	0.254	0.919	0.492	0.306	0.799	0.946	0.441	1.387	0.000	0.000	0.000	0.434	0.000	0.434	0.405	0.254	0.660	0.665	0.254	0.919
MGM	LLWAS	0.152	0.308	0.050	0.358	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA	0.163	0.036	0.199	0.308	0.050	0.359	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NVA	NA	NA
MEM	TDWR	18.923	16.540	2.122	18.661	16.914	2.130	19.043	16.902	2.122	19.024	16.995	2.063	19.058	15.387	1.366	16.753	16.914	2.108	19.023	16.619	2.122	18.741	16.890	2.115	19.005	17.055	2.115	19.170	16.714	2.075	18.789	16.949	2.075	19.024
MDW	TDWR	18.339	10.930	7.280	18.210	11.053	7.287	18.340	11.052	7.287	18.339	11.131	7.207	18.339	909'9	2.831	9.436	10.917	7.286	18.203	11.028	7.280	18.308	11.038	7.287	18.325	11.146	7.287	18.433	10.589	7.286	17.874	10.917	7.286	18.202
Site	Type	TOTAL	XBAND + LIDAR SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	WSP + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	TDWR + LLLWAS SAFETY	DELAY	TOTAL	WSP + LLLWAS SAFETY	DELAY	TOTAL NEXRAD +	LLWAS	DELAY	TOTAL	XBAND + LLWAS SAFETY	DELAY	TOTAL	TDWR + NEXRAD SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LLWAS SAFETY	DELAY	TOTAL	WSP + NEXRAD SAFETY	DELAY	TOTAL	WSP + NEXRAD + LLWAS SAFETY	DELAY	TOTAL

PVD	LLWAS	2.728	2.207	0.988	0.474	0.015	0.490	0.474	0.015	0.490	N/A	N/A	N/A	N/A	N/A	N/A	0.888	0.960	1.848	0.939	0.954	1.894	0.435	0.683	1.118	0.474	0.015	0.490	NIA	N/A	N/A	NIA	N/A	N/A	0.961	0.963
PNS	LLWAS	3.791	2.582	1.413	0.584	0.005	0.588	0.584	0.005	0.588	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.000	1.319	0.307	1.626	0.292	0.170	0.462	0.584	0.005	0.588	N/A	N/A	N/A	N/A	N/A	N/A	0.292	0.170
PIT	TDWR	8.826	6.780	3.193	2.881	0.493	3.374	3.093	0.579	3.671	3.093	0.579	3.671	2.705	0.476	3.181	3.097	0.572	3.669	0.630	0.166	0.796	1.144	0.128	1.272	1.407	0.009	1.415	3.116	0.579	3.695	3.013	0.492	3.505	3.107	0.574
PIE	NoWS	5.398	3.693	2.139	0.000	0.000	0.000	0.000	0.000	0.000	2.049	0.452	2.502	1.016	0.219	1.235	2.080	0.485	2.565	2.019	0.426	2.445	0.372	0.257	0.629	0.943	0.007	0.950	2.070	0.475	2.545	1.333	0.357	1.690	2.089	0.486
PIA	LLWAS	0.703	0.545	0.334	0.146	0.001	0.147	0.146	0.001	0.147	N/A	N/A	N/A	N/A	N/A	N/A	0.082	0.030	0.112	0.304	0.071	0.375	0.132	0.050	0.182	0.146	0.001	0.147	N/A	N/A	N/A	N/A	N/A	N/A	0.202	0.062
ХНЧ	TDWR	49.283	35.202	13.776	11.681	2.458	14.139	12.449	2.907	15.356	12.449	2.907	15.356	11.800	2.858	14.658	12.996	4.474	17.470	12.526	3.162	15.688	3.016	2.138	5.153	6.070	0.070	6.140	12.879	3.648	16.527	12.650	3.813	16.463	13.380	4.680
PHL	TDWR	28.414	22.501	9.860	8.521	5.369	13.890	9.123	6.207	15.330	9.123	6.207	15.330	7.442	4.074	11.516	0.052	0.380	0.432	8.741	5.741	14.482	3.800	4.677	8.477	4.344	0.101	4.445	9.514	6.713	16.227	9.258	6.170	15.428	3.840	4.972
PHF	NoWS	1.179	0.914	0.526	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.002	0.006	0.008	0.444	0.424	0.868	0.452	0.449	006.0	0.167	0.324	0.491	0.232	0.008	0.240	0.167	0.324	0.491	0.168	0.331	0.499	0.506	0.463
PDX	WSP	6.466	5.161	2.314	1.831	0.848	2.679	2.055	0.925	2.980	N/A	N/A	N/A	2.055	0.925	2.980	0.000	0.000	0.000	1.749	0.433	2.181	0.573	0.348	0.920	1.020	0.019	1.038	N/A	N/A	N/A	2.171	1.011	3.182	0.573	0.348
PDK	NoWS	1.289	0.947	0.946	0.000	0.000	0.000	0.000	0.000	0.000	0.921	0.394	1.315	0.044	0.040	0.084	0.709	0.229	0.938	0.889	0.377	1.266	0.204	0.224	0.428	0.417	0.006	0.423	0.923	0.400	1.322	0.245	0.256	0.501	0.808	0.319
PBI	TDWR	23.502	16.216	6.814	6.022	1.065	7.086	6.408	1.215	7.623	6.408	1.215	7.623	000.0	0.000	0.000	0.000	0.000	0.000	6.463	1.159	7.622	0.988	0.649	1.638	3.002	0.019	3.021	6.517	1.270	7.787	0.988	0.649	1.638	886.0	0.649
ORL	NoWS	1.308	0.929	0.929	0.000	0.000	0.000	0.000	0.000	0.000	0.880	0.285	1.165	0.420	0.115	0.534	0.001	0.002	0.003	0.852	0.260	1.112	0.168	0.154	0.322	0.409	0.004	0.414	0.892	0.294	1.186	0.568	0.212	0.779	0.169	0.156
ORF	WSP	3.767	2.864	1.232	0.791	0.307	1.098	0.983	0.605	1.589	N/A	N/A	N/A	0.983	0.605	1.589	0.005	0.049	0.055	1.086	0.948	2.034	0.404	0.682	1.086	0.543	0.016	0.559	N/A	N/A	N/A	1.157	0.923	2.080	0.409	0.732
ORD	TDWR- LLWAS	200.647	157.589	68.858	61.708	12.229	73.936	67.774	14.084	81.857	66.057	14.084	80.141	55.470	10.105	65.575	51.765	14.383	66.148	63.084	13.578	76.662	27.578	10.450	38.028	47.693	1.303	48.996	66.991	14.423	81.414	64.974	13.468	78.442	62.781	14.514
ONT	WSP	5.434	3.715	1.702	1.359	0.540	1.899	1.492	0.622	2.115	N/A	N/A	N/A	1.492	0.622	2.115	0.000	0.000	0.000	1.551	0.683	2.234	0.601	0.492	1.093	0:750	0.015	0.765	N/A	N/A	N/A	1.617	0.802	2.420	0.601	0.492
OMA	LLWAS	6.235	4.891	2.459	1.038	0.007	1.045	1.038	0.007	1.045	N/A	N/A	N/A	N/A	N/A	N/A	2.200	0.505	2.705	2.242	0.365	2.608	0.816	0.247	1.063	1.038	0.007	1.045	N/A	N/A	N/A	V/N	N/A	N/A	2.383	0.505
Site	Type	RAW SAFETY	PILOT SAFETY	PWS SAFETY	CURRENT SAFETY	DELAY	TOTAL	UPGRADED SAFETY	DELAY	TOTAL	TDWR SAFETY	DELAY	TOTAL	WSP SAFETY	DELAY	TOTAL	NEXRAD SAFETY	DELAY	TOTAL	XBAND SAFETY	DELAY	TOTAL	LIDAR SAFETY	DELAY	TOTAL	LLWAS SAFETY	DELAY	TOTAL	TDWR + LIDAR SAFETY	DELAY	TOTAL	WSP + LIDAR SAFETY	DELAY	TOTAL	NEXRAD + LIDAR SAFETY	DELAY

PVD	LLWAS	1.925	0.956	0.963	1.919	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.935	0.963	1.898	0.961	0.963	1.924	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
PNS	LLWAS	0.462	1.334	0.309	1.643	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.687	0.170	0.857	1.353	0.309	1.662	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ЪЦ	TDWR	3.681	1.526	0.254	1.780	3.118	0.580	3.698	3.115	0.577	3.692	3.134	0.579	3.712	2.909	0.476	3.386	3.135	0.574	3.709	1.818	0.254	2.072	3.116	0.580	3.696	3.146	0.580	3.725	3.109	0.577	3.685	3.141	0.577	3.718
PIE	NoWS	2.575	2.058	0.469	2.527	2.089	0.488	2.577	2.089	0.487	2.577	2.081	0.452	2.533	1.506	0.219	1.725	2.103	0.486	2.590	2.078	0.469	2.547	2.088	0.487	2.575	2.107	0.487	2.595	2.080	0.486	2.566	2.103	0.486	2.589
PIA	LLWAS	0.264	0.322	0.075	0.397	NVA	NA	NA	NA	NA	N/A	N/A	N/A	N/A	NVA	NA	NA	0.209	0.062	0.271	0.318	0.075	0.393	NVA	N/A	N/A	N/A	N/A	N/A	V/N	NA	NA	N/A	N/A	N/A
ХНА	TDWR	18.060	12.923	3.855	16.778	13.437	4.716	18.153	13.436	4.725	18.161	12.814	2.907	15.721	12.477	2.858	15.335	13.360	4.680	18.040	13.077	3.855	16.932	13.294	4.610	17.904	13.474	4.610	18.084	13.137	4.640	17.777	13.398	4.640	18.037
PHL	TDWR	8.812	9.481	6.642	16.123	9.517	6.738	16.256	9.283	6.354	15.637	9.417	6.207	15.624	8.417	4.074	12.491	5.029	4.972	10.001	9.315	6.642	15.957	9.126	6.234	15.360	9.421	6.234	15.655	7.475	4.317	11.792	8.450	4.317	12.767
PHF	NoWS	0.969	0.504	0.513	1.017	0.506	0.463	0.969	0.507	0.468	0.975	0.232	0.000	0.232	0.234	0.006	0.240	0.482	0.463	0.945	0.489	0.513	1.002	0.444	0.424	0.868	0.479	0.424	0.903	0.444	0.425	0.870	0.479	0.425	0.904
УDД	WSP	0.920	1.873	0.621	2.494	VIN	N/A	N/A	2.171	1.011	3.182	NIA	N/A	N/A	2.147	0.925	3.072	1.081	0.348	1.428	1.982	0.621	2.602	N/A	N/A	N/A	NIA	N/A	N/A	2.055	0.925	2.980	2.147	0.925	3.072
PDK	NoWS	1.127	0.911	0.401	1.312	0.924	0.404	1.328	0.808	0.320	1.128	0.929	0.394	1.324	0.444	0.040	0.484	0.824	0.319	1.143	0.917	0.401	1.318	0.923	0.403	1.326	0.931	0.403	1.334	0.709	0.229	0.938	0.804	0.229	1.033
PBI	TDWR	1.638	6.562	1.263	7.825	6.517	1.270	7.787	0.988	0.649	1.638	6.572	1.215	7.787	3.005	0.000	3.005	3.331	0.649	3.980	6.638	1.263	7.901	6.408	1.215	7.623	6.572	1.215	7.787	000.0	0.000	0.000	3.005	0.000	3.005
ORL	NoWS	0.325	0.886	0.289	1.175	0.892	0.294	1.186	0.568	0.212	0.779	0.900	0.285	1.185	0.640	0.115	0.755	0.456	0.156	0.612	0.891	0.289	1.180	0.880	0.285	1.165	0.900	0.285	1.185	0.420	0.115	0.534	0.640	0.115	0.755
ORF	WSP	1.141	1.179	1.075	2.254	VIN	N/A	N/A	1.159	0.943	2.102	NIA	N/A	N/A	1.077	0.605	1.682	0.621	0.732	1.353	1.160	1.075	2.235	N/A	N/A	N/A	N/A	N/A	N/A	986'0	0.631	1.618	1.079	0.631	1.711
ORD	TDWR- LLWAS	77.295	66.293	14.400	80.693	67.231	14.514	81.745	66.109	14.514	80.623	67.774	14.084	81.857	63.874	10.105	73.979	64.510	14.514	79.024	67.260	14.400	81.659	66.501	14.504	81.004	68.025	14.504	82.529	59.123	14.386	73.509	66.218	14.386	80.604
ONT	WSP	1.093	1.609	0.806	2.416	N/A	N/A	N/A	1.617	0.802	2.420	N/A	N/A	N/A	1.562	0.622	2.184	0.831	0.492	1.323	1.617	0.806	2.423	N/A	N/A	N/A	N/A	N/A	N/A	1.492	0.622	2.115	1.562	0.622	2.184
OMA	LLWAS	2.888	2.291	0.377	2.668	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2.312	0.505	2.817	2.309	0.377	2.686	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Site	Type	TOTAL	XBAND + LIDAR SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	WSP + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	TDWR + LLLWAS SAFETY	DELAY	TOTAL	WSP + LLWAS SAFETY	DELAY	TOTAL	NEXRAD + LLWAS SAFETY	DELAY	TOTAL	XBAND + LLWAS SAFETY	DELAY	TOTAL	TDWR + NEXRAD SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LLWAS SAFETY	DELAY	TOTAL	WSP + NEXRAD SAFETY	DELAY	TOTAL	WSP + NEXRAD + LLWAS SAFETY	DELAY	TOTAL

SFO	LLWAS	1.889	1.441	0.672	0.332	0.066	0.398	0.332	0.066	0.398	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.000	0.508	1.995	2.503	0.270	1.614	1.885	0.332	0.066	0.398	N/A	N/A	N/A	N/A	N/A	N/A	0.270	
SFB	NoWS	6.983	4.949	2.999	0.000	0.000	0.000	0.000	0.00	0.000	2.882	0.678	3.560	0.001	0.002	0.003	0.000	0.000	0.000	2.821	0.626	3.447	0.470	0.401	0.870	1.321	0.012	1.333	2.897	0.692	3.589	0.470	0.402	0.871	0.470	
SEA	WSP	5.868	4.711	2.095	1.585	2.669	4.253	1.791	2.971	4.762	N/A	N/A	N/A	1.791	2.971	4.762	0.000	0.000	0.000	1.944	3.456	5.400	0.854	2.455	3.309	0.923	0.058	0.981	N/A	N/A	N/A	1.995	3.535	5.530	0.854	
SDF	TDWR	14.640	11.379	5.016	4.539	1.078	5.616	4.858	1.254	6.112	4.858	1.254	6.112	3.981	0.811	4.792	4.749	1.208	5.957	4.401	1.050	5.452	1.646	0.790	2.436	2.210	0.019	2.229	4.887	1.279	6.167	4.705	1.138	5.843	4.889	
SBN	NoWS	0.927	0.748	0.508	0.000	0.000	0.00	0.00	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.007	0.017	0.024	0.470	0.105	0.575	0.200	0.077	0.277	0.224	0.002	0.225	0.200	0.077	0.277	0.200	0.077	0.277	0.204	
SAV	LLWAS	3.965	2.875	1.434	0.662	0.004	0.666	0.662	0.004	0.666	N/A	N/A	N/A	N/A	N/A	N/A	0.257	0.099	0.356	1.272	0.193	1.465	0.273	0.138	0.411	0.662	0.004	0.666	N/A	N/A	N/A	N/A	N/A	N/A	0.501	
SAT	WSP	12.835	9.258	3.918	3.448	0.978	4.425	3.534	1.019	4.552	N/A	N/A	N/A	3.534	1.019	4.552	3.516	1.235	4.751	3.750	1.236	4.986	1.239	0.774	2.013	1.726	0.018	1.745	N/A	N/A	N/A	3.776	1.152	4.928	3.824	
SAN	NoWS	4.581	3.005	1.308	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.160	0.580	0.741	0.000	0.000	0.000	1.122	1.154	2.276	0.373	0.771	1.144	0.576	0.031	0.607	0.373	0.771	1.144	0.537	1.505	2.042	0.373	
RSW	LLWAS	15.701	11.889	4.412	1.922	0.012	1.933	1.922	0.012	1.933	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.000	4.194	1.705	5.899	0.695	0.870	1.565	1.922	0.012	1.933	N/A	N/A	N/A	N/A	N/A	N/A	0.695	
RST	LLWAS	0.314	0.250	0.169	0.066	0.002	0.068	0.066	0.002	0.068	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.000	0.161	0.158	0.319	0.055	0.101	0.156	0.066	0.002	0.068	N/A	N/A	N/A	N/A	N/A	N/A	0.055	
ROC	WSP	2.799	2.253	1.136	1.024	0.365	1.389	1.040	0.370	1.410	N/A	N/A	N/A	1.040	0.370	1.410	0.000	0.000	0.000	1.085	0.431	1.517	0.385	0.280	0.665	0.500	0.006	0.507	N/A	N/A	N/A	1.098	0.405	1.503	0.385	0000
ROA	LLWAS	0.643	0.477	0.356	0.170	0.003	0.173	0.170	0.003	0.173	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.000	0.270	0.063	0.333	0.093	0.054	0.147	0.170	0.003	0.173	N/A	N/A	N/A	N/A	N/A	N/A	0.093	0.054
RNO	NoWS	12.557	8.561	4.142	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	2.496	0.380	2.877	2.531	0.464	2.995	1.825	0.033	1.858	2.531	0.464	2.995	2.531	0.464	2.995	2.531	0.404
RIC	WSP	3.462	2.650	1.413	0.927	0.164	1.091	1.129	0.229	1.358	V/N	N/A	N/A	1.129	0.229	1.358	0.598	0.176	0.774	1.221	0.319	1.540	0.465	0.248	0.713	0.623	0.006	0.628	N/A	N/A	N/A	1.331	0.332	1.662	0.962	0.10
RDU	TDWR	11.988	8.883	4.243	3.829	0.726	4.555	4.107	0.843	4.950	4.107	0.843	4.950	3.588	0.598	4.186	3.834	0.780	4.614	3.680	0.807	4.487	1.196	0.523	1.719	1.869	0.013	1.882	4.133	0.863	4.996	4.040	0.776	4.816	4.023	0.040
PWM	NoWS	0.887	0.733	0.402	0.000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0.012	0.063	0.075	0.272	0.223	0.495	0.383	0.222	0.605	0.198	0.166	0.364	0.177	0.003	0.180	0.198	0.166	0.364	0.201	0.186	0.387	0.386	0000
Site	Type	RAW SAFETY	PILOT SAFETY	PWS SAFETY	CURRENT SAFETY	DELAY	TOTAL	UPGRADED SAFETY	DELAY	TOTAL	TDWR SAFETY	DELAY	TOTAL	WSP SAFETY	DELAY	TOTAL	NEXRAD SAFETY	DELAY	TOTAL	XBAND SAFETY	DELAY	TOTAL	LIDAR SAFETY	DELAY	TOTAL	LLWAS SAFETY	DELAY	TOTAL	TDWR + LIDAR SAFETY	DELAY	TOTAL	WSP + LIDAR SAFETY	DELAY	TOTAL	NEXRAD + LIDAR SAFETY	

SFO	LLWAS	1.885	0.573	2.634	3.207	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.323	1.614	1.937	0.582	2.634	3.215	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SFB	NoWS	0.870	2.879	0.728	3.607	2.897	0.692	3.589	0.470	0.402	0.871	2.913	0.678	3.591	1.324	0.002	1.325	1.468	0.401	1.869	2.910	0.728	3.638	2.882	0.678	3.560	2.913	0.678	3.591	0.001	0.002	0.003	1.324	0.002	1.325
SEA	WSP	3.309	2.011	3.722	5.733	V/N	N/A	N/A	1.995	3.535	5.530	N/A	V/N	N/A	1.911	2.971	4.882	1.048	2.455	3.504	2.015	3.722	5.737	N/A	N/A	N/A	N/A	N/A	N/A	1.791	2.971	4.762	1.911	2.971	4.882
SDF	TDWR	6.154	4.782	1.220	6.002	4.900	1.288	6.188	4.893	1.275	6.168	4.917	1.254	6.171	4.389	0.811	5.200	4.874	1.265	6.139	4.710	1.220	5.930	4.882	1.281	6.163	4.934	1.281	6.215	4.768	1.246	6.013	4.869	1.246	6.114
SBN	NoWS	0.290	0.491	0.112	0.603	0.204	0.086	0.290	0.204	0.086	0.290	0.224	0.000	0.224	0.224	0.000	0.224	0.260	0.086	0.346	0.488	0.112	0.600	0.007	0.017	0.024	0.231	0.017	0.248	0.007	0.017	0.024	0.231	0.017	0.248
SAV	LLWAS	0.688	1.361	0.237	1.599	V/N	N/A	N/A	N/A	V/N	N/A	N/A	V/N	N/A	NN	NA	NA	0.835	0.187	1.022	1.354	0.237	1.592	NN	N/A	N/A	N/A	N/A	NA	NA	NA	NA	N/A	N/A	N/A
SAT	WSP	5.075	3.792	1.248	5.041	VIN	N/A	N/A	3.827	1.251	5.078	NIA	VN	NA	3.678	1.019	4.697	3.706	1.250	4.956	3.824	1.248	5.073	NIA	N/A	N/A	N/A	NA	N/A	3.644	1.236	4.879	3.766	1.236	5.002
SAN	NoWS	1.144	1.187	1.324	2.510	0.373	0.771	1.144	0.537	1.505	2.042	0.577	0.000	0.577	0.676	0.580	1.256	0.623	0.771	1.394	1.193	1.324	2.516	0.000	0.000	0.000	0.577	0.000	0.577	0.160	0.580	0.741	0.676	0.580	1.256
RSW	LLWAS	1.565	4.224	1.727	5.951	VIN	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2.157	0.870	3.027	4.292	1.727	6.020	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NIA	N/A	N/A
RST	LLWAS	0.156	0.163	0.160	0.323	NIA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.085	0.101	0.186	0.165	0.160	0.325	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
ROC	WSP	0.665	1.099	0.433	1.532	N/A	N/A	N/A	1.098	0.405	1.503	N/A	N/A	N/A	1.076	0.370	1.447	0.570	0.280	0.850	1.107	0.433	1.541	N/A	N/A	N/A	N/A	N/A	N/A	1.040	0.370	1.410	1.076	0.370	1.447
ROA	LLWAS	0.147	0.291	0.097	0.388	V/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.168	0.054	0.222	0.308	0.097	0.405	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
RNO	NoWS	2.995	3.463	0.592	4.055	2.531	0.464	2.995	2.531	0.464	2.995	1.827	0.000	1.827	1.827	0.000	1.827	1.909	0.464	2.372	3.170	0.592	3.762	0.000	0.000	0.000	1.827	0.000	1.827	0.000	0.000	0.000	1.827	0.000	1.827
RIC	WSP	1.275	1.352	0.372	1.724	N/A	N/A	N/A	1.357	0.358	1.715	N/A	N/A	N/A	1.238	0.229	1.467	1.005	0.313	1.318	1.318	0.372	1.690	N/A	N/A	N/A	N/A	N/A	N/A	1.179	0.297	1.476	1.275	0.297	1.572
RDU	TDWR	4.863	4.002	0.866	4.868	4.141	0.872	5.013	4.131	0.862	4.993	4.156	0.843	4.999	3.836	0.598	4.434	4.030	0.840	4.870	3.957	0.866	4.823	4.125	0.866	4.991	4.171	0.866	5.037	3.995	0.835	4.830	4.097	0.835	4.933
MMd	NoWS	0.609	0.389	0.223	0.613	985.0	0.223	0.609	0.386	0.223	0.609	0.177	000.0	0.177	0.189	0.063	0.251	0.335	0.223	0.558	0.391	0.223	0.615	0.272	0.223	0.495	0.335	0.223	0.557	0.272	0.223	0.495	0.335	0.223	0.558
Site	Type	TOTAL	XBAND + LIDAR SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	WSP + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	TDWR + LLWAS SAFETY	DELAY	TOTAL	WSP + LLWAS SAFETY	DELAY	TOTAL	NEXRAD + LLWAS SAFETY	DELAY	TOTAL VD AND	LLWAS SAFETY	DELAY	TOTAL	TDWR + NEXRAD SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LLWAS SAFETY	DELAY	TOTAL	WSP + NEXRAD SAFETY	DELAY	TOTAL	WSP + NEXRAD + LLWAS SAFETY	DELAY	TOTAL

TRI	LLWAS	0.643	0.488	0.325	0.143	0.001	0.144	0.143	0.001	0.144	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.000	0.242	0.036	0.278	0.075	0.022	0.097	0.143	0.001	0.144	N/A	N/A	N/A	N/A	N/A	N/A	0.075	0.022
TPA	TDWR- LLWAS	92.695	63.308	24.927	22.175	0.834	23.009	24.164	0.945	25.109	23.577	0.945	24.522	23.597	0.885	24.482	24.243	1.036	25.278	24.049	1.036	25.085	3.966	0.547	4.513	13.636	0.049	13.685	23.947	1.014	24.961	23.869	0.952	24.821	24.318	1.043
TOL	WSP	1.280	1.016	0.538	0.343	0.068	0.412	0.417	0.096	0.513	N/A	N/A	N/A	0.417	0.096	0.513	0.000	0.000	0.000	0.469	0.129	0.598	0.244	0.102	0.346	0.237	0.002	0.239	N/A	N/A	N/A	0.517	0.131	0.648	0.244	0.102
тгн	LLWAS	1.695	1.174	0.817	0.367	0.001	0.368	0.367	0.001	0.368	N/A	N/A	N/A	N/A	N/A	N/A	0.732	0.065	0.798	0.730	0.083	0.813	0.179	0.056	0.235	0.367	0.001	0.368	N/A	N/A	N/A	N/A	N/A	N/A	0.769	0.088
SYR	WSP	1.525	1.254	0.651	0.494	0.252	0.746	0.540	0.273	0.812	N/A	N/A	N/A	0.540	0.273	0.812	0.000	0.000	0.000	0.594	0.336	0.930	0.274	0.249	0.524	0.287	0.005	0.292	N/A	N/A	N/A	0.627	0.334	0.961	0.274	0.249
SUX	LLWAS	0.081	0.064	0.062	0.033	0.001	0.033	0.033	0.001	0.033	N/A	N/A	N/A	N/A	N/A	N/A	0.000	0.000	0.000	0.056	0.031	0.088	0.024	0.022	0.047	0.033	0.001	0.033	N/A	N/A	N/A	N/A	N/A	N/A	0.024	0.022
STL	TDWR- LLWAS	26.554	19.659	8.767	7.920	1.230	9.150	8.592	1.440	10.032	8.493	1.440	9.933	7.796	1.231	9.026	8.386	1.441	9.828	8.363	1.445	9.808	2.674	0.906	3.580	3.523	0.047	3.570	8.532	1.449	9.981	8.314	1.355	9.669	8.545	1.448
SRQ	WSP	5.195	3.572	1.795	1.688	0.631	2.318	1.712	0.656	2.368	N/A	N/A	N/A	1.712	0.656	2.368	1.742	0.769	2.511	1.724	0.762	2.486	0.386	0.421	0.806	0.791	0.011	0.802	N/A	N/A	N/A	1.730	0.702	2.432	1.754	0.770
SPI	LLWAS	0.250	0.193	0.188	0.075	0.001	0.076	0.075	0.001	0.076	N/A	N/A	N/A	N/A	N/A	N/A	0.118	0.055	0.174	0.180	0.057	0.237	0.081	0.041	0.122	0.075	0.001	0.076	N/A	N/A	N/A	N/A	N/A	N/A	0.170	0.056
SNA	NoWS	1.329	0.943	0.453	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.080	0.717	0.796	0.000	0.000	0.000	0.385	1.729	2.114	0.222	1.537	1.759	0.200	0.037	0.237	0.222	1.537	1.759	0.287	1.537	1.823	0.222	1.537
SMF	NoWS	2.072	1.548	0.719	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.153	0.400	0.553	0.682	1.044	1.725	0.683	1.093	1.776	0.282	0.778	1.060	0.317	0.017	0.334	0.282	0.778	1.060	0.416	0.913	1.329	969.0	1.124
SLC	TDWR	49.861	35.591	17.397	14.706	3.269	17.975	15.711	3.788	19.499	15.711	3.788	19.499	12.590	3.219	15.809	0.000	0.000	0.000	15.210	4.048	19.258	8.641	3.723	12.364	7.665	0.082	7.747	16.632	4.999	21.631	16.300	4.558	20.858	8.641	3.723
SJU	TDWR	7.293	4.947	2.148	1.924	0.478	2.402	2.052	0.549	2.602	2.052	0.549	2.602	0.000	0.000	0.000	0.000	0.000	0.000	1.975	0.480	2.455	0.474	0.322	0.796	0.947	0.009	0.956	2.067	0.574	2.640	0.474	0.322	0.796	0.474	0.322
SJC	NoWS	0.698	0.493	0.231	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.122	0.657	0.779	0.000	0.000	0.000	0.197	0.996	1.193	0.106	1.038	1.144	0.102	0.025	0.127	0.106	1.038	1.144	0.186	1.038	1.224	0.106	1.038
SHV	LLWAS	1.324	0.941	0.647	0.292	0.002	0.294	0.292	0.002	0.294	N/A	N/A	N/A	N/A	N/A	N/A	0.611	0.111	0.722	0.602	0.130	0.732	0.170	0.077	0.247	0.292	0.002	0.294	N/A	N/A	N/A	N/A	N/A	N/A	0.621	0.125
SGF	LLWAS	1.344	1.017	0.673	0.258	0.002	0.260	0.258	0.002	0.260	N/A	N/A	N/A	N/A	N/A	N/A	0.643	0.119	0.762	0.638	0.132	0.770	0.197	0.081	0.278	0.258	0.002	0.260	N/A	N/A	N/A	NIA	N/A	N/A	0.652	0.130
Site	Type	RAW SAFETY	PILOT SAFETY	PWS SAFETY	CURRENT SAFETY	DELAY	TOTAL	UPGRADED SAFETY	DELAY	TOTAL	TDWR SAFETY	DELAY	TOTAL	WSP SAFETY	DELAY	TOTAL	NEXRAD SAFETY	DELAY	TOTAL	XBAND SAFETY	DELAY	TOTAL	LIDAR SAFETY	DELAY	TOTAL	LLWAS SAFETY	DELAY	TOTAL	TDWR + LIDAR SAFETY	DELAY	TOTAL	WSP + LIDAR SAFETY	DELAY	TOTAL	NEXRAD + LIDAR SAFETY	DELAY

TRI	LLWAS	0.097	0.263	0.048	0.310	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.155	0.022	0.177	0.282	0.048	0.330	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TPA	TDWR- LLWAS	25.361	24.151	1.050	25.200	24.337	1.050	25.387	24.338	1.049	25.387	24.164	0.945	25.109	24.093	0.885	24.978	24.571	1.043	25.615	24.507	1.050	25.557	24.309	1.047	25.356	24.594	1.047	25.641	24.304	1.046	25.350	24.591	1.046	25.638
TOL	WSP	0.346	0.516	0.141	0.657	N/A	N/A	N/A	0.517	0.131	0.648	N/A	N/A	N/A	0.467	0.096	0.563	0.274	0.102	0.376	0.503	0.141	0.644	N/A	N/A	N/A	N/A	N/A	N/A	0.417	0.096	0.513	0.467	0.096	0.563
TLH	LLWAS	0.857	0.781	0.097	0.878	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.776	0.088	0.865	0.775	0.097	0.873	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
SYR	WSP	0.524	0.627	0.352	0.979	NIA	N/A	NA	0.627	0.334	0.961	NA	NA	NA	0.585	0.273	0.858	0.330	0.249	0.580	0.621	0.352	0.973	NA	NA	NA	NA	NA	N/A	0.540	0.273	0.812	0.585	0.273	0.858
SUX	LLWAS	0.047	0.060	0.033	0.092	VN	NA	NA	NIA	NA	NA	NN	NA	NA	VN	N/A	N/A	0.031	0.022	0.054	0.059	0.033	0.092	V/N	N/A	N/A	N/A	N/A	N/A	NA	NA	N/A	N/A	N/A	N/A
STL	TDWR- LLWAS	9.994	8.463	1.452	9.914	8.564	1.451	10.016	8.563	1.451	10.014	8.592	1.440	10.032	8.148	1.231	9.379	8.536	1.448	9.984	8.523	1.452	9.975	8.553	1.450	10.003	8.628	1.450	10.078	8.442	1.449	9.891	8.565	1.449	10.014
SRQ	WSP	2.524	1.733	0.769	2.502	VIN	N/A	N/A	1.754	0.77.0	2.524	N/A	N/A	N/A	1.736	0.656	2.392	1.764	0.77.0	2.534	1.755	0.769	2.524	VN	N/A	NA	NA	NN	NA	1.749	0.769	2.518	1.767	0.769	2.536
SPI	LLWAS	0.226	0.182	0.058	0.240	V/N	N/A	N/A	N/A	N/A	N/A	VIN	N/A	N/A	VIN	N/A	N/A	0.152	0.056	0.208	0.184	0.058	0.242	VIN	N/A	N/A	N/A	N/A	N/A	NIA	N/A	N/A	N/A	N/A	N/A
SNA	NoWS	1.759	0.432	2.200	2.632	0.222	1.537	1.759	0.287	1.537	1.823	0.200	0.000	0.200	0.246	0.717	0.963	0.226	1.537	1.763	0.418	2.200	2.619	000.0	0.000	0.000	0.200	0.000	0.200	0.080	0.717	0.796	0.246	0.717	0.963
SMF	NoWS	1.820	169.0	1.149	1.846	0.696	1.124	1.820	0.697	1.137	1.834	0.317	0.000	0.317	0.407	0.400	0.807	0.699	1.124	1.823	0.700	1.149	1.849	0.682	1.044	1.725	0.695	1.044	1.738	0.684	1.081	1.765	0.697	1.081	1.778
SLC	TDWR	12.364	16.564	4.618	21.182	16.632	4.999	21.631	16.300	4.558	20.858	16.238	3.788	20.026	14.563	3.219	17.781	8.782	3.723	12.505	16.190	4.618	20.808	15.711	3.788	19.499	16.238	3.788	20.026	12.590	3.219	15.809	14.563	3.219	17.781
SJU	TDWR	0.796	2.031	0.558	2.589	2.067	0.574	2.640	0.474	0.322	0.796	2.083	0.549	2.632	0.947	0.000	0.947	1.054	0.322	1.376	2.058	0.558	2.617	2.052	0.549	2.602	2.083	0.549	2.632	0.000	0.000	0.000	0.947	0.000	0.947
SJC	NoWS	1.144	0.217	1.285	1.502	0.106	1.038	1.144	0.186	1.038	1.224	0.102	0.000	0.102	0.168	0.657	0.825	0.116	1.038	1.154	0.213	1.285	1.497	0.000	0.000	0.000	0.102	0.000	0.102	0.122	0.657	0.779	0.168	0.657	0.825
SHV	LLWAS	0.746	0.621	0.134	0.755	N/A	N/A	N/A	NIA	N/A	N/A	N/A	N/A	N/A	NIA	N/A	N/A	0.628	0.125	0.753	0.623	0.134	0.758	N/A	N/A	N/A	N/A	N/A	N/A	NIA	N/A	N/A	N/A	N/A	N/A
SGF	LLWAS	0.782	0.650	0.134	0.784	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.657	0.130	0.787	0.654	0.134	0.787	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Site	Type	TOTAL	XBAND + LIDAR SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	WSP + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	TDWR + LLLWAS SAFETY	DELAY	TOTAL	WSP + LLLWAS SAFETY	DELAY	TOTAL	NEXRAD + LLWAS SAFETY	DELAY	TOTAL	X BAND + LLWAS SAFETY	DELAY	TOTAL	TDWR + NEXRAD SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LLWAS SAFETY	DELAY	TOTAL	WSP + NEXRAD SAFETY	DELAY	TOTAL	WSP + NEXRAD + LLWAS SAFETY	DELAY	TOTAL

ANNUAL		263.4	194.3	85.2	71.4	22.0	93.4	1.77	25.5	102.6	70.0	23.7	93.7	64.8	20.4	85.1	51.3	12.7	64.0	7.77	27.9	105.6	26.8	19.9	46.7	45.4	0.9	46.3	72.1	25.6	97.7	74.7	26.5	101.2	63.6	24.8
TOTALS	2010 to 2032	2775.2	2046.4	897.3	751.7	231.8	983.5	812.1	268.5	1080.5	737.6	249.5	987.1	682.4	214.7	897.0	540.4	133.3	673.8	818.4	293.9	1112.2	282.4	209.3	491.7	478.3	9.0	487.3	759.4	270.0	1029.4	787.5	278.9	1066.4	0.079	260.8
TYS	WSP	1.044	0.771	0.524	0.451	0.112	0.563	0.477	0.120	0.597	N/A	N/A	N/A	0.477	0.120	0.597	0.000	0.000	0.000	0.145	0.059	0.204	0.138	0.075	0.213	0.231	0.002	0.233	N/A	N/A	N/A	0.503	0.138	0.641	0.138	0.075
TWF	NoWS	0.272	0.212	0.201	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.176	0.169	0.345	0.156	0.160	0.316	0.088	0.003	0.092	0.156	0.160	0.316	0.156	0.160	0.316	0.156	0.160
TUS	WSP	7.918	5.726	2.771	2.158	0.740	2.898	2.343	0.886	3.230	N/A	N/A	N/A	2.343	0.886	3.230	0.000	0.000	0.000	2.608	1.303	3.910	0.598	0.798	1.396	1.221	0.022	1.243	N/A	N/A	N/A	2.497	1.201	3.699	0.598	0.798
TUL	TDWR	6.159	4.676	2.253	2.037	0.389	2.426	2.182	0.454	2.636	2.182	0.454	2.636	1.964	0.340	2.305	2.169	0.456	2.625	2.086	0.432	2.518	0.640	0.285	0.925	0.993	0.007	1.000	2.196	0.464	2.659	2.157	0.425	2.582	2.199	0.463
Site	Type	RAW SAFETY	PILOT SAFETY	PWS SAFETY	CURRENT SAFETY	DELAY	TOTAL	UPGRADED SAFETY	DELAY	TOTAL	TDWR SAFETY	DELAY	TOTAL	WSP SAFETY	DELAY	TOTAL	NEXRAD SAFETY	DELAY	TOTAL	XBAND SAFETY	DELAY	TOTAL	LIDAR SAFETY	DELAY	TOTAL	LLWAS SAFETY	DELAY	TOTAL	TDWR + LIDAR SAFETY	DELAY	TOTAL	WSP + LIDAR SAFETY	DELAY	TOTAL	NEXRAD + LIDAR SAFETY	DELAY

Т

Т

Т

ANNUAL		88.4	81.0	29.8	110.7	72.8	26.0	98.7	77.6	27.9	105.5	72.5	23.7	96.2	73.5	20.4	93.9	70.3	24.8	95.0	81.7	29.8	111.4	71.2	24.5	95.7	73.2	24.5	97.8	72.0	24.3	96.3	76.8	24.3	101.1
TOTALS	2010 to 2032	930.8	853.2	313.4	1166.7	766.7	273.5	1040.2	817.2	294.3	1111.5	764.1	249.5	1013.6	774.4	214.7	989.1	740.3	260.8	1001.2	860.6	313.4	1174.0	749.8	258.5	1008.3	771.3	258.5	1029.8	758.5	255.9	1014.4	808.7	255.9	1064.6
TYS	WSP	0.213	0.253	0.111	0.364	N/A	NA	NA	0.503	0.138	0.641	NA	NA	NA	0.493	0.120	0.613	0.255	0.075	0.330	0.331	0.111	0.442	NA	NA	NA	NA	NA	N/A	0.477	0.120	0.597	0.493	0.120	0.613
TWF	NoWS	0.316	0.194	0.202	0.395	0.156	0.160	0.316	0.156	0.160	0.316	0.089	0.000	0.089	0.089	0.000	0.089	0.103	0.160	0.263	0.189	0.202	0.390	0.000	0.000	0.000	0.089	0.00	0.089	0.000	0.000	0.000	0.089	0.00	0.089
TUS	WSP	1.396	2.650	1.414	4.065	N/A	N/A	N/A	2.497	1.201	3.699	N/A	N/A	N/A	2.494	0.886	3.381	1.364	0.798	2.161	2.685	1.414	4.099	N/A	N/A	N/A	N/A	N/A	N/A	2.343	0.886	3.230	2.494	0.886	3.381
TUL	TDWR	2.662	2.167	0.464	2.630	2.201	0.467	2.668	2.200	0.465	2.665	2.208	0.454	2.662	2.072	0.340	2.412	2.205	0.463	2.668	2.169	0.464	2.633	2.197	0.466	2.664	2.219	0.466	2.685	2.172	0.462	2.634	2.205	0.462	2.667
Site	Type	TOTAL	XBAND + LIDAR SAFETY	DELAY	TOTAL	TDWR + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	WSP + NEXRAD + LIDAR SAFETY	DELAY	TOTAL	TDWR + LLWAS SAFETY	DELAY	TOTAL	WSP + LLWAS SAFETY	DELAY	TOTAL	NEXRAD + LLWAS SAFETY	DELAY	TOTAL	XBAND + LLWAS SAFETY	DELAY	TOTAL	TDWR + NEXRAD SAFETY	DELAY	TOTAL TDWD -	NEXRAD + LLWAS SAFETY	DELAY	TOTAL	WSP + NEXRAD SAFETY	DELAY	TOTAL	WSP + NEXRAD + LLWAS SAFETY	DELAY	TOTAL

This page intentionally left blank.

NET PRESENT VALUE BASED ON SAFETY AND DELAY BY SITE AND SYSTEM (LIFE CYCLE 2010–32 FY08\$M) **APPENDIX E**

Wind	ABE	ABQ	ADW	AGS	ALB	AMA	ASE	ATL	AUS	AVL	AVP	AZO	BDL	BGM	MHB	BIL
Shear Svstem	NoWS	WSP	TDWR	LLWAS	WSP	NoWS	NoWS	TDWR&L LWAS	WSP	LLWAS	NoWS	NoWS	WSP	NoWS	MSP	LLWAS
TDWR	N/A	N/A	(2.49)	N/A	N/A	N/A	N/A	95.48	N/A							
WSP	N/A	7.34	(4.04)	N/A	0.46	N/A	N/A	83.09	2.62	N/A	N/A	N/A	1.57	N/A	1.47	N/A
NEXRAD	(0.24)	8.29	(0.71)	(0.36)	(0.11)	0.51	(0.24)	98.46	0.55	(0.36)	(0.24)	(0.21)	0.11	(0.16)	2.28	0.90
LIDAR	(2.32)	1.17	(3.14)	(2.74)	(1.88)	(2.37)	(2.50)	43.16	(0.71)	(2.73)	(2.53)	(2.46)	(1.31)	(2.62)	(1.95)	(1.82)
LLWAS	(1.18)	2.79	(1.85)	(0.53)	(0.82)	(1.14)	(1.25)	52.79	0.71	(0.53)	(1.25)	(1.29)	(0.26)	(1.35)	(0.21)	(00.0)
X-Band	(5.72)	2.11	(6.82)	(6.31)	(2.00)	(5.60)	(6.22)	89.36	(1.81)	(6.33)	(6.12)	(6.04)	(3.96)	(6.27)	(5.11)	(5.45)
TDWR & NEXRAD	N/A	N/A	(2.73)	N/A	N/A	N/A	N/A	97.10	N/A							
TDWR, NEXRAD,																
LLWAS	N/A	N/A	(4.09)	N/A	N/A	N/A	N/A	97.58	N/A							
TDWR & LIDAR	N/A	N/A	(5.39)	N/A	N/A	N/A	N/A	94.57	N/A							
TDWR & LLWAS	N/A	A/N	(5.14)	N/A	N/A	N/A	A/N	94.00	N/A	N/A	N/A	A/N	A/N	N/A	A/N	N/A
WSP & NEXRAD	N/A	A/N	(3.85)	N/A	N/A	N/A	A/N	26.37	N/A	N/A	N/A	A/N	A/N	A/N	A/N	N/A
WSP & LIDAR	N/A	7.75	(4.29)	N/A	0.22	N/A	N/A	95.32	2.54	N/A	N/A	N/A	1.33	N/A	1.50	N/A
WSP & LLWAS	N/A	5.18	(0.70)	N/A	(2.06)	N/A	N/A	88.25	0.65	N/A	N/A	N/A	(0.88)	N/A	(1.06)	N/A
WSP, NEXRAD, LIDAR	N/A	6.16	(5.41)	N/A	(0.85)	N/A	A/A	84.73	1.67	N/A	N/A	A/A	0.29	A/A	0.19	N/A
WSP, NEXRAD, LLWAS	N/A	5.20	(6.94)	N/A	(2.30)	N/A	A/A	93.18	0.51	N/A	N/A	A/N	(1.12)	A/A	(1.12)	N/A
NEXRAD & LIDAR	N/A	6.46	(5.65)	N/A	(1.09)	N/A	N/A	94.92	1.59	N/A	N/A	N/A	0.05	N/A	0.17	N/A
NEXRAD & LLWAS	(2.56)	5.74	(3.37)	(2.98)	(2.12)	(2.13)	(2.74)	96.51	(0.82)	(2.97)	(2.77)	(2.69)	(1.55)	(2.82)	(0.35)	(1.70)
X-Band & LIDAR	(1.23)	7.05	(2.08)	(0.74)	(0.76)	(0.84)	(1.49)	99.22	1.26	(0.75)	(1.45)	(1.40)	(0.08)	(1.53)	0.94	0.48
X-Band & LLLWAS	(8.35)	(0.35)	(9.48)	(8.96)	(7.62)	(8.25)	(8.81)	89.36	(4.37)	(8.97)	(8.74)	(8.69)	(6.50)	(8.93)	(7.53)	(7.89)
TDWR,NE XRAD,LID AR	(7.05)	0.99	(8.19)	(6.91)	(6.33)	(6.95)	(7.53)	91.47	(3.07)	(6.92)	(7.44)	(7.40)	(5.19)	(7.64)	(5.96)	(5.86)
Legacy Case (Upgrade d)	0.00	7.34	(2.49)	(0.53)	0.46	0.00	0.00	96.37	2.62	(0.53)	0.00	0.00	1.57	0.00	1.47	(00.00)

1 UWK 4.36	10 49) 2 30 1 10 98	1000	6.02	6.02 0.78	6.02 0.78 1.56	6.02 6.02 1.56 (0.03)		0.03 0.03	2.85 2.85 2.85 2.85 1.51	0.78 0.78 0.78 0.78 1.56 1.56 4.16 2.85 2.85 1.51 1.51 1.51	0.78 0.78 0.78 0.78 1.56 1.56 1.56 1.56 1.51 1.51 1.51 3.06	0.78 0.78 0.78 0.78 1.56 1.56 1.51 1.51 1.51 2.85 2.85 3.06 3.06 3.06	6.02 0.78 1.56 1.56 1.56 1.56 1.56 1.56 2.85 2.85 1.51 1.51 1.56 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 3.06 2.54 2.54 0.10	6.02 0.78 0.78 1.56 1.56 1.51 1.51 1.51 1.51 2.85 3.06 3.06 2.54 0.10 0.10 1.13	0.78 0.78 0.78 1.56 1.56 1.56 1.56 2.85 2.85 3.06 3.06 2.54 0.10 0.10 1.13 1.13 1.13	0.78 0.78 0.78 0.78 1.56 1.56 1.56 1.16 1.76 1.76 2.85 2.85 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.74 1.24	0.78 0.78 0.78 0.78 1.56 1.56 1.56 2.85 2.85 2.85 1.51 1.51 1.51 1.51 1.76 3.06 2.54 2.54 1.13 1.13 1.13 1.13 1.24 1.24 3.47 3.47	0.78 0.78 0.78 0.78 1.56 1.56 1.56 1.56 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.51 1.13 1.13 1.24 1.24 1.24 1.24 3.47 3.47	6.02 0.78 0.78 1.56 1.56 1.56 1.56 2.85 2.85 2.85 1.151 1.76 1.76 1.76 1.76 1.76 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.13 1.14 1.24 1.24 1.24 1.24 1.24 2.553	0.78 0.78 0.78 0.78 1.56 1.56 1.56 1.56 1.51 1.51 1.51 1.51 1.76 3.06 2.54 2.54 1.76 1.13 1.13 1.13 1.124 1.13 1.24 1.24 1.25 1.24 1.24 1.24 1.25 1.24 1.25 1.24 1.24 1.24 1.25 1.24 1.24 1.24 1.25 1.24 1.24 1.24 1.25 1.24 1.24 1.24 1.25 1.24 1.25 1.25 1.25 1.25
		0.43 (0.4																		
╞			0.08 (0.34)																	
N/A		8 0.46 0.08	8 (2.51) (2.3;		(0.22) ((0.22) (5.98)	(0.22) (5.98) N/A	(0.22) (5.98) N/A N/A	(0.22) (5.98) N/A N/A N/A N/A	(0.22) (5.38) N/A N/A N/A N/A N/A	(0.22) (5.98) N/A N/A N/A N/A N/A N/A	(5.98) (5.98) N/A N/A N/A N/A N/A N/A N/A	(0.22) (5.98) N/A N/A N/A N/A N/A N/A N/A N/A	(0.22) (5.38) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(5.98) (5.98) (5.98) (5.98) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A	(5.98) (5.98) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(5.38) (5.98) (5.98) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	(0.22) N/A 0.033 0.033	(0.22) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 0.0.03 0.033
		(0.24) 1.48	(2.35) 4.28	(1.21) 3.93		(5.88) 3.49	_													
	N/A 0.94	0.17 1.63	(2.39) (1.49)	(1.24) (0.62)		(5.94) (4.46)														
N/A	N/A	(0.29)	(2.50) (2	(0.18) (1	(5.51) (5		N/A	, AVA	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
		1.78 11.73		(0.66) 4.69	(4.63) 7.25															
	3.47	7.37	0.73	2.53	1.38		5.67	5.67	5.67 5.67 4.36 3.02	5.67 5.67 4.36 3.02 3.26	5.67 5.67 4.36 3.02 3.26 3.26 4.58	5.67 5.67 4.36 3.02 3.22 4.58 4.58 3.96	5.67 5.67 4.36 3.02 3.26 4.58 3.96 1.44	5.67 5.67 4.36 3.02 3.26 4.58 3.96 1.44 1.44	5.67 5.67 4.36 3.02 3.26 4.58 3.96 1.44 1.45	5.67 5.67 4.36 3.02 3.02 3.02 4.58 4.58 3.96 1.44 1.45 1.45 2.40	5.67 5.67 4.36 3.02 3.02 4.58 3.96 1.44 1.44 1.45 1.45 2.40 2.71 2.71	5.67 5.67 4.36 3.02 3.02 3.26 4.58 3.96 1.44 1.44 1.45 1.44 1.45 2.71 2.71 6.26	5.67 5.67 4.36 3.02 3.02 3.02 3.06 4.58 3.96 1.44 1.44 1.45 1.44 1.45 2.40 2.40 2.71 2.71 2.71 6.26 6.26 6.26	5.67 5.67 4.36 3.02 3.26 4.58 3.96 1.44 1.44 1.45 1.45 2.40 2.71 2.71 2.71 6.26 6.26 6.26 0.19
- E	WSP N/A	9	<u> </u>	LLWAS (1.28)	X-Band (6.12)		DWR & N/A	<u>م</u> م	<u>ه م</u> م	യ വ വ് പ യ യ പ	<u>80</u> 20 20 20 20 20 20 20 20 20 20 20 20 20	<u>80</u>	<u>a O Ó "a a a O "</u>	<u>a O Ó ,, a</u> a, <u>O</u> ,, Ó		TDWR & NIA TDWR, NIA NEXRAD, NIA LLWAS NIA LLWAS NIA LLWAS NIA UDAR NIA WSP & NIA				

Wind	CMH	CMI	cos	CRP	CRW	CSG	CVG	DAB	DAL	DAY	DCA	DEN	DFW	DSM	DTW
Shear System	TDWR	NoWS	LLWAS	NoWS	LLWAS	LLWAS	TDWR	LLWAS	TDWR	TDWR	TDWR	TDWR&L LWAS	TDWR&L LWAS	WSP	TDWR
TDWR	0.74	N/A	N/A	N/A	N/A	N/A	8.86	N/A	4.25	(0.53)	4.41	77.35	50.72	N/A	22.40
WSP	(1.17)	N/A	N/A	N/A	N/A	N/A	6.25	N/A	(0.57)	(2.24)	2.06	54.45	43.99	0.30	18.71
NEXRAD	(0.07)	(0.24)	1.49	0.04	(0.14)	(0.35)	1.51	(0.13)	4.21	(0.13)	5.49	77.43	50.29	0.95	4.47
LIDAR	(1.46)	(2.39)	(1.86)	(2.55)	(2.70)	(2.69)	2.55	(2.04)	0.21	(2.21)	0.87	57.85	19.43	(2.04)	9.61
LLWAS	(0.23)	(1.23)	0.34	(1.28)	(0.51)	(0.48)	4.11	0.56	1.50	(0.82)	1.38	20.69	33.37	(0.86)	10.89
X-Band	(3.69)	(5.79)	(4.49)	(90.9)	(6.32)	(6.26)	4.24	(4.29)	(0.17)	(4.88)	(0.71)	71.59	46.08	(5.15)	17.88
TDWR & NEXRAD	0.50	N/A	N/A	N/A	N/A	N/A	8.62	N/A	4.06	(0.77)	4.28	77.23	50.74	N/A	22.16
TDWR, NEXRAD,															
LLWAS	(0.84)	N/A	N/A	N/A	N/A	N/A	7.35	N/A	2.78	(2.11)	2.96	79.15	51.07	N/A	20.98
TDWR & LIDAR	(2.15)	N/A	N/A	N/A	N/A	N/A	6.01	N/A	1.49	(3.41)	1.66	75.47	48.35	N/A	19.56
TDWR & LLWAS	(1.90)	A/A	N/A	N/A	N/A	N/A	6.26	N/A	1.71	(3.16)	1.85	75.72	48.46	N/A	19.81
WSP & NEXRAD	(09.0)	A/A	N/A	N/A	N/A	N/A	7.59	A/N	2.98	(1.87)	3.10	29.36	51.12	N/A	21.22
WSP & LIDAR	(1.42)	N/A	N/A	N/A	N/A	N/A	6.00	N/A	1.00	(2.46)	2.43	74.55	47.72	0.18	18.46
WSP & LLWAS	(3.54)	N/A	N/A	N/A	N/A	N/A	4.51	N/A	(1.43)	(4.76)	0.12	71.18	45.24	(2.24)	17.73
WSP, NEXRAD, LIDAR	(2.43)	N/A	N/A	N/A	N/A	N/A	5.33	A/N	(0.71)	(3.56)	0.96	73.86	45.51	(1.02)	18.18
WSP, NEXRAD, LLWAS	(3.78)	A/N	A/N	N/A	A/N	N/A	4.27	V/N	(0.57)	(4.99)	0.07	74.31	46.88	(2.45)	17.49
NEXRAD & LIDAR	(2.67)	N/A	N/A	N/A	N/A	N/A	5.09	N/A	0.17	(3.77)	1.22	76.64	48.05	(1.17)	17.94
NEXRAD & LLWAS	(1.70)	(2.63)	(0.95)	(2.61)	(2.79)	(2.93)	2.31	(2.28)	2.68	(2.34)	3.44	27.73	50.24	(1.68)	9.37
X-Band & LIDAR	(0.05)	(1.29)	1.24	(1.32)	(0.60)	(0.70)	5.01	0.44	3.92	(0.76)	4.57	81.09	51.99	(0.39)	13.72
X-Band & LLLWAS	(6.27)	(8.44)	(7.05)	(8.72)	(8.96)	(8.90)	1.86	(6.89)	(2.65)	(7.51)	(2.72)	71.41	44.01	(67.7)	15.37
TDWR,NE XRAD,LID AR	(4.97)	(7.15)	(4.92)	(7.43)	(6.89)	(6.85)	3.14	(4.82)	(1.36)	(6.21)	(1.46)	74.12	45.79	(6.50)	16.80
Legacy Case (Upgrade d)	0.74	0.00	0.34	0.00	(0.51)	(0.48)	8.86	0.56	4.25	(0.53)	4.41	79.36	51.12	0.30	22.40

Wind	ELP	ERI	EVV	EWR	FAR	FAY	FLL	FNT	FSD	FSM	FWA	GCN	GEG	GFK	GPT	GRB
Shear System	WSP	NoWS	NoWS	TDWR	NoWS	LLWAS	TDWR	NoWS	LLWAS	LLWAS	WSP	NoWS	WSP	NoWS	NoWS	LLWAS
TDWR	N/A	N/A	N/A	15.39	N/A	N/A	25.56	N/A								
WSP	1.65	N/A	N/A	12.54	N/A	N/A	21.78	N/A	N/A	N/A	(0.09)	N/A	1.53	N/A	N/A	N/A
NEXRAD	0.50	(0.24)	(0.24)	3.16	(0.24)	(0.37)	24.44	0.18	0.45	(0.16)	(0.11)	(0.24)	2.27	0.20	(0.23)	(0.05)
LIDAR	(1.57)	(2.59)	(2.51)	9.64	(2.45)	(2.73)	8.05	(2.30)	(2.22)	(2.72)	(2.34)	(2.03)	(1.04)	(2.19)	(2.49)	(2.56)
LLWAS	(0.20)	(1.34)	(1.24)	4.63	(1.26)	(0.54)	11.55	(1.14)	(0.26)	(0.51)	(1.04)	(1.10)	(0.20)	(1.14)	(1.09)	(0.50)
X-Band	(3.81)	(6.24)	(6.01)	11.25	(00.9)	(6.32)	20.93	(5.68)	(5.63)	(6.28)	(5.59)	(5.51)	(3.84)	(5.55)	(5.68)	(6.15)
TDWR & NEXRAD	N/A	N/A	N/A	15.15	N/A	N/A	25.83	N/A								
TDWR.																
NEXRAD,																
LLWAS	N/A	N/A	N/A	13.89	N/A	N/A	24.64	N/A								
TDWR & LIDAR	N/A	N/A	N/A	13.16	N/A	N/A	23.42	N/A								
TDWR &	N/A	VIV	NIA	12 11	VIV	N/N	03 40	N/A	VIV	VIN	N/A	V/V	VIV	N/A	VIV	N/A
							74.07									
WSP & NEXRAD	N/A	N/A	N/A	14.13	N/A	N/A	24.44	N/A								
WSP &				00 0									0			
	1.49	N/A	N/A	12.29	N/A	N/A	23.30	N/A	N/A	N/A	(0.33)	N/A	1.56	N/A	N/A	N/A
WSP &	(0.86)	N/A	N/A	11.83	A/A	N/A	20.92	N/A	N/A	N/A	(2.67)	N/A	(0.82)	N/A	N/A	N/A
WSP.	(2222)										()		()			
NEXRAD, LIDAR	0.33	N/A	N/A	11.54	A/A	N/A	20.70	N/A	A/A	A/A	(1.42)	N/A	0.29	N/A	N/A	N/A
WSP,																
NEXRAD, LLWAS	(1.04)	N/A	N/A	11.59	N/A	N/A	21.39	N/A	N/A	N/A	(2.90)	N/A	(1.04)	N/A	N/A	N/A
NEXRAD & LIDAR	0.18	A/A	N/A	11.30	N/A	N/A	22,15	N/A	N/A	N/A	(1.65)	A/A	0.23	N/A	N/A	N/A
	5			201									010			
NEXRAD & LLWAS	(1.57)	(2.83)	(2.75)	9.40	(2.69)	(2.97)	23.53	(2.27)	(2.15)	(2.81)	(2.51)	(2.27)	(0.27)	(2.20)	(2.72)	(2.68)
X-Band & LIDAR	0.18	(1.54)	(1.42)	11.17	(1.39)	(0.75)	24.88	(1.05)	0.02	(0.62)	(1.13)	(1.05)	1.00	(0.97)	(1.24)	(0.49)
X-Band &																
LLLWAS	(6.39)	(8.89)	(8.67)	9.18	(8.64)	(8.97)	19.06	(8.33)	(8.26)	(8.93)	(8.22)	(8.13)	(6.39)	(8.20)	(8.32)	(8.79)
I UWK,NE XRAD,LID AR	(5.08)	(2.60)	(7.38)	10.50	(7.35)	(6.92)	20.55	(7.04)	(6.22)	(6.88)	(6.93)	(6.85)	(5.11)	(6.91)	(7.02)	(6.74)
Legacy Case (Upgrade																
d)	1.65	0.00	0.00	15.39	0.00	(0.54)	25.56	0.00	(0.26)	(0.51)	(0.0)	0.00	1.53	0.00	0.00	(0.50)

Wind	GRR	GSO	GSP	HNL	ПОН	NdH	NSH	IAD	IAH	ICT	ILM	QNI	ISP	JAN	JAX	JFK	LAN
Shear System	WSP	WSP	LLWAS	WSP	TDWR	WSP	WSP	TDWR	TDWR	TDWR	NoWS	TDWR	WSP	LLWAS	WSP	TDWR	LLWAS
TDWR	N/A	N/A	N/A	N/A	10.78	N/A	N/A	10.50	46.06	(0.32)	N/A	7.27	N/A	N/A	N/A	76.82	N/A
WSP	(0.06)	0.47	N/A	3.77	8.17	0.13	(0.18)	7.06	39.26	(2.10)	N/A	5.21	0.27	N/A	5.06	67.21	N/A
NEXRAD	0.56	(0.16)	(0.07)	0.57	12.36	(0.07)	(0.24)	10.90	37.76	1.34	0.08	8.93	1.01	0.42	6.51	17.16	(0.34)
LIDAR	(2.20)	(2.17)	(2.67)	(0.70)	1.72	(2.14)	(2.46)	3.70	15.27	(1.95)	(2.53)	1.47	(1.77)	(2.43)	(0.17)	58.04	(2.54)
LLWAS	(1.08)	(0.76)	(0.49)	0.82	5.33	(1.08)	(1.12)	4.90	23.13	(0.77)	(1.22)	3.32	(0.93)	(0.17)	1.99	21.35	(0.46)
X-Band	(5.55)	(5.29)	(6.17)	(1.78)	6.21	(5.40)	(5.71)	5.26	38.73	(4.71)	(2.96)	2.92	(5.10)	(5.72)	0.39	73.36	(6.08)
TDWR & NEXRAD	N/A	N/A	N/A	N/A	10.67	N/A	N/A	10.32	46.34	(0.54)	N/A	7.15	N/A	N/A	N/A	76.58	N/A
TDWR, NEXRAD,																	
LLWAS	N/A	N/A	N/A	N/A	9.41	N/A	N/A	9.09	45.33	(1.89)	N/A	5.86	N/A	N/A	N/A	75.36	N/A
TDWR & LIDAR	N/A	N/A	N/A	N/A	8.04	N/A	N/A	7.77	43.88	(3.20)	N/A	4.50	N/A	N/A	N/A	75.11	N/A
TDWR & LLWAS	N/A	N/A	N/A	N/A	8.23	N/A	N/A	8.01	43.85	(2.95)	N/A	4.71	N/A	N/A	N/A	75.36	N/A
WSP & NEXRAD	N/A	N/A	N/A	N/A	9.55	N/A	N/A	9.29	45.16	(1.66)	N/A	6.03	N/A	A/N	N/A	75.60	N/A
WSP & LIDAR	(0.22)	0.23	N/A	3.53	9.01	(0.10)	(0.42)	8.02	42.52	(2.17)	N/A	5.46	0.23	N/A	5.75	66.96	N/A
WSP & LLWAS	(2.64)	(2.08)	N/A	1.37	6.13	(2.46)	(2.79)	6.12	39.53	(4.56)	N/A	2.91	(2.16)	N/A	2.79	72.44	N/A
WSP, NEXRAD, LIDAR	(1.40)	(0.85)	N/A	2.47	7.08	(1.21)	(1.52)	6.54	39.14	(3.40)	N/A	4.07	(1.02)	A/A	4.06	66.45	N/A
WSP, NEXRAD, LLWAS	(2.87)	(2.32)	N/A	1.13	6.46	(2.68)	(3.03)	6.17	41.26	(4.75)	A/A	2.87	(2.38)	N/A	3.12	72.20	N/A
NEXRAD & LIDAR	(1.58)	(1.09)	N/A	2.23	7.75	(1.43)	(1.76)	7.07	41.83	(3.50)	N/A	4.20	(1.11)	N/A	4.45	66.21	N/A
NEXRAD & LLWAS	(2.09)	(2.41)	(2.72)	(0.94)	9.89	(2.21)	(2.70)	9.47	38.60	(1.21)	(2.53)	6.38	(1.61)	(2.21)	3.89	57.80	(2.77)
X-Band & LIDAR	(0.80)	(0.85)	(0.52)	1.33	11.29	(06.0)	(1.26)	10.55	42.12	0.08	(1.23)	7.76	(0.32)	(0.02)	5.23	59.90	(0.57)
X-Band & LLLWAS	(8.21)	(7.84)	(8.82)	(4.33)	3.78	(8.01)	(8.36)	3.53	38.49	(7.30)	(8.58)	0.33	(7.72)	(8.33)	(2.24)	71.31	(8.72)
TDWR,NE XRAD,LID AR	(6.91)	(6.48)	(6.77)	(2.95)	5.20	(6.71)	(7.05)	4.61	39.97	(6.01)	(7.29)	1.69	(6.43)	(6.29)	(0.89)	72.64	(6.67)
Legacy Case (Upgrade d)	(0.06)	0.47	(0.49)	3.77	10.78	0.13	(0.18)	10.50	46.06	(0.32)	0.00	7.27	0.27	(0.17)	5.06	76.82	(0.46)

Wind	LAS	LAX	LBB	LEX	LFT	LGA	LGB	ΓL	LNK	MAF	MBS	MCI	MCO	MDT	MDW	MEM
Shear System	TDWR	WSP	WSP	LLWAS	NoWS	TDWR&L LWAS	NoWS	LLWAS	LLWAS	LLWAS	NoWS	TDWR	TDWR&L LWAS	WSP	TDWR	TDWR
H	30.87	N/A	N/A	N/A	N/A	12.79	N/A	N/A	N/A	N/A	N/A	12.00	51.53	N/A	15.72	16.36
	26.20	4.54	0.59	N/A	N/A	3.90	N/A	N/A	N/A	N/A	N/A	9.87	47.98	(0.54)	4.08	12.16
NEXRAD	5.69	0.70	1.23	(0.35)	(0.24)	2.70	(0.24)	1.78	(0.20)	0.57	(0.24)	4.26	11.21	(0.31)	17.21	17.88
	26.37	06.0	(1.95)	(2.67)	(2.51)	7.94	(2.03)	(1.80)	(2.66)	(2.40)	(2.51)	3.00	15.55	(2.61)	8.01	5.92
LLWAS	15.83	1.27	(0.76)	(0.48)	(1.09)	4.28	(0.72)	0.57	(0.47)	(0.21)	(1.30)	5.70	42.87	(1.34)	6.00	8.09
X-Band	21.45	(0.31)	(4.84)	(6.15)	(5.70)	8.31	(4.72)	(4.41)	(6.20)	(5.52)	(6.09)	7.58	47.08	(6.18)	11.22	11.28
TDWR & NEXRAD	30.63	N/A	N/A	N/A	N/A	12.55	N/A	N/A	N/A	N/A	N/A	11.77	51.32	N/A	15.55	16.23
TDWR,																
NEXRAD,																
LLWAS	30.98	N/A	N/A	N/A	N/A	12.13	N/A	N/A	N/A	N/A	N/A	10.52	51.86	N/A	14.28	15.00
	31 67		NIA		VIV	0 07					N/A	0.15	18.01	N/A	10 01	13 60
TDWR &	5.0					10.0						0.0	0.01		10.7	00.0
LLWAS	33.38	N/A	N/A	N/A	N/A	10.22	N/A	N/A	N/A	N/A	N/A	9.39	49.15	N/A	13.13	13.81
WSP &																
NEXRAD	31.22	N/A	N/A	N/A	N/A	12.37	N/A	N/A	N/A	N/A	N/A	10.75	52.07	N/A	14.45	15.15
	75.05	1 30	0.48		VIV	2 65					N/A	0 7.0	17 80	(0.78)	13 63	11 60
	02.07		04.0			0.0						3.12	20.14	(01.0)	0.01	00.4
LLWAS	33.54	2.81	(1.96)	N/A	N/A	6.27	N/A	N/A	N/A	N/A	N/A	7.59	46.78	(3.16)	7.17	11.38
6																
LIDAR	28.22	3.44	(0.74)	N/A	N/A	3.50	N/A	N/A	N/A	N/A	N/A	8.74	48.15	(1.89)	5.84	11.77
t																
NEXRAD,			í t c				V/V	VIV	VIV	V/V		1	10.01		10.11	000
LLWAS	33.30	2.57	(2.15)	N/A	N/A	6.03	N/A	N/A	N/A	N/A	N/A	7.43	46.65	(3.40)	11.35	12.03
NEXRAD & LIDAR	27.98	3.20	(0.87)	N/A	N/A	3.26	N/A	N/A	N/A	N/A	N/A	8.59	48.08	(2.13)	12.53	13.32
	76.12	990	(1 20)	(10 0)	10 76)	02 2	(20.0)	(10 0)	(02.07	10 05)	() 7E)	1 36	16.02	(7 05)	01100	1 E EO
X-Band &	20.12	00.0	(00.1)	(10.3)	(5.1.3)	0	(13:3)	(10:0)	(21.2)	(002)	(0.1.2)	00°+	040	(002)	40.11	70.01
LIDAR	23.59	2.53	(0.09)	(0.66)	(1.26)	9.83	(0.63)	1.36	(0.61)	0.14	(1.45)	7.86	46.29	(1.53)	16.10	16.89
X-Band &	07 7E	() EE)	(7.48)	(8 81)	(18 37)	л 85 85	(06.2)	(E 07)	(8 86)	(8.16)	(8 71)	7 06	04 <i>N</i> V	(8 81)	8 71	00 0
FDWR,NE	01.12	(00.2)	(ot. 1)	(10.0)		000	(03.1)	(10.0)	(00.0)	(01.0)	(+	00.4	00.1	(10.0)		07.0
XRAD,LID AR	26.90	(1.29)	(6.18)	(6.75)	(7.04)	7.14	(5.90)	(4.92)	(6.81)	(6.10)	(7.45)	6.37	47.00	(7.51)	10.08	10.56
Legacy Case																
(Upgrade d)	30.87	4.54	0.59	(0.48)	0.00	12.37	0.00	0.57	(0.47)	(0.21)	0.00	12.00	52.07	(0.54)	15.72	16.36
1																

Wind	MGM	THM	MIA	MKE	MLI	MLU	MOB	MSN	MSP	λSM	MYR	OAK	окс	OMA	ONT
Shear System	LLWAS	NoWS	TDWR	TDWR	LLWAS	LLWAS	LLWAS	WSP	TDWR	TDWR&L LWAS	NoWS	NoWS	TDWR	LLWAS	WSP
TDWR	N/A	N/A	36.04	4.25	N/A	N/A	N/A	N/A	14.45	6.25	N/A	N/A	0.59	N/A	N/A
WSP	N/A	N/A	31.24	1.54	N/A	N/A	N/A	(0.11)	11.57	4.13	N/A	N/A	(1.17)	N/A	1.16
NEXRAD	(0.35)	(0.24)	37.25	1.78	0.05	(0.35)	0.15	(0.16)	15.95	5.31	0.15	(0.24)	2.32	1.97	0.07
LIDAR	(2.66)	(2.07)	10.31	0.82	(2.58)	(2.69)	(2.59)	(2.33)	5.95	(00.0)	(2.51)	(1.17)	(1.62)	(1.75)	(1.50)
LLWAS	(0.49)	(1.02)	18.60	1.58	(0.41)	(0.44)	(0.36)	(1.08)	6.02	3.09	(1.17)	(1.13)	(0.28)	0.43	(0.46)
X-Band	(6.20)	(5.32)	31.50	(0.33)	(6.11)	(6.18)	(5.96)	(5.58)	9.93	1.74	(5.92)	(4.31)	(3.77)	(4.21)	(4.30)
TDWR & NEXRAD	N/A	N/A	36.76	4.03	N/A	N/A	N/A	N/A	14.23	6.11	N/A	N/A	0.36	N/A	N/A
TDWR, NEXRAD,															
LLWAS	N/A	N/A	35.69	2.73	N/A	N/A	N/A	N/A	12.98	5.73	N/A	N/A	(0.98)	N/A	N/A
TDWR & LIDAR	N/A	N/A	34.33	1.41	N/A	N/A	N/A	N/A	11.62	3.50	N/A	N/A	(2.28)	N/A	N/A
TDWR & LLWAS	A/N	N/A	33.98	1.66	N/A	N/A	N/A	N/A	11.86	3.68	N/A	A/N	(2.04)	N/A	N/A
WSP & NEXRAD	A/A	N/A	35.25	2.96	N/A	N/A	N/A	N/A	13.20	5.89	N/A	A/A	(0.75)	N/A	N/A
WSP & LIDAR	N/A	N/A	34.60	1.45	N/A	N/A	N/A	(0.34)	12.48	4.27	N/A	N/A	(1.21)	N/A	0.92
WSP & LLWAS	N/A	N/A	30.73	(0.05)	N/A	N/A	N/A	(2.66)	9.90	1.90	N/A	N/A	(3.65)	N/A	(1.25)
WSP, NEXRAD, LIDAR	A/A	N/A	30.84	0.61	A/N	A/N	N/A	(1.43)	10.56	3.04	N/A	A/A	(2.47)	N/A	(0.14)
WSP, NEXRAD, LLWAS	A/A	N/A	32.60	(0.26)	N/A	N/A	N/A	(2.89)	10.05	1.86	N/A	A/A	(3.83)	N/A	(1.49)
NEXRAD & LIDAR	N/A	N/A	33.55	0.53	N/A	N/A	N/A	(1.66)	11.30	3.14	N/A	N/A	(2.55)	N/A	(0.38)
NEXRAD & LLWAS	(2.90)	(2.31)	35.60	1.31	(2.60)	(2.93)	(2.49)	(2.53)	13.58	3.34	(2.44)	(1.41)	(0.28)	(0.54)	(1.74)
X-Band & LIDAR	(0.67)	(0.98)	37.31	2.73	(0.41)	(0.66)	(0.30)	(1.13)	14.85	5.89	(1.16)	(0.08)	1.02	1.59	(0.27)
X-Band & LLLWAS	(8.84)	(26.2)	29.70	(2.72)	(8.73)	(8.82)	(8.60)	(8.21)	7.43	(0.69)	(8.52)	(6.75)	(6:39)	(6.82)	(6.82)
TDWR,NE XRAD,LID AR	(6.79)	(6.63)	31.37	(1.49)	(6.68)	(6.77)	(6.55)	(6.92)	8.79	0.58	(7.24)	(5.47)	(5.09)	(4.76)	(5.53)
Legacy Case (Upgrade d)	(0.49)	0.00	36.04	4.25	(0.41)	(0.44)	(0.36)	(0.11)	14.45	5.89	0.00	0.00	0.59	0.43	1.16

Wind	ORD	ORF	ORL	PBI	PDK	ХОЧ	PHF	PHL	ХНА	PIA	PIE	ΡΙΤ	SNG	PVD	PWM	RDU
Shear System	TDWR&L LWAS	WSP	NoWS	TDWR	NoWS	WSP	NoWS	TDWR	TDWR	LLWAS	NoWS	TDWR	LLWAS	LLWAS	NoWS	TDWR
TDWR	77.49	N/A	N/A	5.11	N/A	N/A	N/A	12.82	12.85	N/A	N/A	1.16	N/A	N/A	N/A	2.44
WSP	64.72	0.64	N/A	(2.51)	N/A	2.03	N/A	8.26	10.73	N/A	N/A	(0.77)	N/A	N/A	N/A	0.29
NEXRAD	68.36	0.00	(0.24)	0.82	0.50	0.23	0.44	2.74	16.27	(0.26)	1.79	2.94	(0.26)	1.16	0.15	3.95
LIDAR	43.50	(1.62)	(2.41)	(0.31)	(2.33)	(1.47)	(2.28)	6.67	3.92	(2.63)	(2.17)	(1.36)	(2.32)	(1.83)	(2.38)	(0.78)
LLWAS	55.31	(0.74)	(1.04)	2.11	(1.04)	(20.0)	(1.18)	4.89	6.11	(0.46)	(0.61)	0.04	(0.02)	(0.12)	(1.23)	0.66
X-Band	70.72	(4.58)	(5.48)	0.78	(5.36)	(4.15)	(5.64)	7.82	8.77	(6.17)	(4.42)	(5.43)	(2.09)	(4.91)	(5.88)	(2.26)
TDWR & NEXRAD	27.93	N/A	V/N	4.87	N/A	N/A	N/A	12.60	14.60	N/A	N/A	0.94	A/A	N/A	N/A	2.23
TDWR, NFXRAD																
LLWAS	79.03	N/A	N/A	3.64	N/A	N/A	N/A	11.48	13.39	N/A	N/A	(0.40)	N/A	N/A	N/A	0.91
TDWR & LIDAR	75.86	N/A	N/A	2.34	A/A	N/A	N/A	10.65	12.14	N/A	N/A	(1.72)	A/A	N/A	N/A	(0.41)
TDWR & LLWAS	75.85	N/A	N/A	2.59	N/A	N/A	N/A	10.88	11.12	N/A	N/A	(1.47)	N/A	N/A	N/A	(0.17)
WSP & NEXRAD	78.75	N/A	N/A	3.88	N/A	N/A	N/A	11.70	11.78	N/A	N/A	(0.17)	N/A	N/A	N/A	1.12
WSP & LIDAR	70.69	0.42	N/A	(2.76)	N/A	1.79	N/A	8.23	12.94	N/A	N/A	(0.63)	N/A	N/A	N/A	0.54
WSP & LLWAS	72.28	(1.63)	N/A	(3.88)	N/A	(0.46)	N/A	8.69	9.50	N/A	N/A	(3.18)	N/A	N/A	N/A	(1.88)
WSP, NEXRAD, LIDAR	70.24	(0.65)	A/A	(1.47)	N/A	0.74	N/A	7.69	9.91	A/N	N/A	(1.98)	A/A	N/A	N/A	(0.88)
WSP, NEXRAD, LLWAS	73.75	(1.86)	A/A	(4.12)	A/A	(02.0)	N/A	8.61	10.60	V/N	N/A	(3.27)	A/N	N/A	N/A	(1.98)
NEXRAD & LIDAR	75.17	(0.87)	N/A	(1.71)	N/A	0.50	N/A	7.66	11.79	N/A	N/A	(1.96)	N/A	N/A	N/A	(0.73)
NEXRAD & LLWAS	74.65	(1.82)	(2.65)	(0.55)	(2.02)	(1.71)	(2.14)	6.69	14.09	(2.80)	(0.86)	0.29	(2.56)	(1.44)	(2.42)	1.49
X-Band & LIDAR	78.23	(0.37)	(1.13)	2.62	(0.71)	(0.01)	(0.87)	8.95	15.36	(0.61)	0.44	1.60	(0.05)	0.73	(1.17)	2.79
X-Band & LLLWAS	71.27	(7.07)	(8.09)	(1.72)	(7.98)	(6.57)	(8.21)	6.46	6.97	(8.81)	(7.01)	(7.31)	(7.74)	(7.55)	(8.53)	(4.62)
TDWR,NE XRAD,LID AR	73.34	(5.79)	(62.9)	(20.37)	(6:69)	(5.19)	(6.93)	7.61	8.39	(92.9)	(5.71)	(62.79)	(5.67)	(5.50)	(7.24)	(3.36)
Legacy Case (Upgrade d)	78.75	0.64	0.00	5.11	00.0	2.03	0.00	12.82	12.85	(0.46)	0.00	1.16	(0.02)	(0.12)	0.00	2.44

Wind	RIC	RNO	ROA	ROC	RST	RSW	SAN	SAT	SAV	SBN	SDF	SEA	SFB	SFO	SGF	SHV
Shear System	WSP	NoWS	LLWAS	WSP	LLWAS	LLWAS	NoWS	WSP	LLWAS	NoWS	TDWR	WSP	NoWS	LLWAS	LLWAS	LLWAS
TDWR	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	3.60	N/A	N/A	N/A	N/A	N/A
WSP	0.41	N/A	N/A	0.46	N/A	N/A	N/A	3.60	N/A	N/A	1.01	3.81	N/A	V/N	N/A	N/A
NEXRAD	0.49	(0.24)	(0.34)	(0.10)	(0.37)	(0.01)	(0.24)	4.30	0.04	(0.22)	5.26	0.64	(0.24)	(02.0)	0.27	0.25
LIDAR	(1.98)	(0.27)	(2.65)	(2.00)	(2.66)	(1.20)	(1.77)	(0:30)	(2.34)	(2.44)	0.03	0.79	(1.98)	(1.26)	(2.53)	(2.54)
LLWAS	(0.75)	0.12	(0.44)	(0.83)	(0.54)	1.32	(0.88)	0.80	0.06	(1.19)	1.18	0.30	(0.31)	(0.21)	(0.35)	(0.32)
X-Band	(5.01)	(4.05)	(6.19)	(5.02)	(6.23)	(1.42)	(4.55)	(1.62)	(5.20)	(2.90)	(1.25)	(1.25)	(3.63)	(4.47)	(2.83)	(5.85)
	V 1 V		4 / 1 4	V/14	V/14	V 1 V	0 / 1 4	V 1 4	V 1 V	0 / I 4	01	871 N	V // V	V/14	V 1 V	
	K N	۲N	E M	A/N	E/N	¥/۲	K/N	A/N	E N	۲×	0.40	E/N	E/N	A/N	۲N	Y/N
NEXRAD																
LLWAS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2.08	N/A	N/A	N/A	N/A	N/A
TDWR &																
LIDAR	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.76	N/A	N/A	N/A	N/A	N/A
TDWR &																
LLWAS	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.00	N/A	N/A	N/A	N/A	N/A
WSP &		NIZ	NIA		N/N	N/ N	VI/V	N/A	V/V	NI/A			VIV	N/A		V/V
											67.7					
	0.26	N/A	N/A	0.22	N/A	N/A	N/A	3.62	N/A	N/A	1.72	3.57	N/A	N/A	N/A	N/A
WSP &	2							1000			1	200				
LLWAS	(2.00)	N/A	N/A	(2.12)	N/A	N/A	N/A	1.25	N/A	N/A	(0.82)	1.76	N/A	N/A	N/A	N/A
WSP,																
NEXRAD,	ĺ			ĺ							į	1				
LIDAR	(0.87)	N/A	N/A	(0.87)	N/A	N/A	N/A	2.36	N/A	N/A	(0.03)	2.55	N/A	N/A	N/A	N/A
WSP, NEXRAD.																
LLWAS	(2.20)	N/A	N/A	(2.36)	N/A	N/A	N/A	1.13	N/A	N/A	(0.80)	1.52	N/A	N/A	N/A	N/A
NEXRAD																
& LIDAR	(1.02)	N/A	N/A	(1.11)	N/A	N/A	N/A	2.36	N/A	N/A	0.44	2.31	N/A	N/A	N/A	N/A
NEXRAD																
& LLWAS	(1.77)	(0.51)	(2.89)	(2.24)	(2.90)	(1.44)	(2.01)	1.90	(2.36)	(2.67)	2.75	0.55	(2.22)	(1.50)	(2.37)	(2.39)
X-Band &	(0.46)				(0 0)	0		07 0	000		00			C 4 0	(010)	
LIUAR	(0.4.0)	0.20	(U.04)	(00.0)	(60.0)	.50	(10.0)	3.10	0.03	(+0.1)	4.03	7.00	(0. 14)	c7.0	(0.10)	(UZU)
X-Band &	i I Į	ĺ		Į			i i l		ĺ		Į		ĺ			
	(7.53)	(11.6)	(8.81)	(1:67)	(88.8)	(4.03)	(7.03)	(4.23)	(97.7)	(8.54)	(3.47)	(3.66)	(0.17)	(66.99)	(8.48)	(06.8)
I DWR,NE XRAD,LID																
AR	(6.26)	(4.71)	(6.75)	(6.37)	(6.83)	(1.93)	(5.74)	(2.92)	(5.71)	(7.25)	(2.24)	(2.36)	(4.85)	(4.53)	(6.43)	(6.44)
Legacy Case (Upgrade																
d)	0.41	00.0	(0.44)	0.46	(0.54)	1.32	00.0	3.60	0.06	0.00	3.60	3.81	0.00	(0.21)	(0.35)	(0.32)

sJC	NLS	SLC	SMF	SNA	SPI	SRQ	STL	SUX	SYR	ТСН	TOL	TPA	TRI	TUL	TUS
NoWS TDWR		TDWR	NoWS	NoWS	LLWAS	WSP	TDWR&L LWAS	LLWAS	WSP	LLWAS	WSP	TDWR&L LWAS	LLWAS	TDWR	WSP
		16.99	N/A	N/A	N/A	N/A	7.28	N/A	N/A	N/A	N/A	21.87	N/A	0.13	N/A
N/A (3.51)		12.51	N/A	N/A	N/A	1.42	5.04	N/A	(0.14)	N/A	(0.44)	20.41	N/A	(1.68)	2.28
(0.24) (0.18)		3.33	1.11	(0.24)	(0.23)	2.08	9.00	(0.37)	(0.22)	0.32	(0.28)	24.37	(0.35)	1.90	0.29
(10.66	(1.84)	(1.30)	(2.69)	(1.67)	1.62	(2.76)	(2.23)	(2.54)	(2.44)	5.31	(2.69)	(1.83)	(1.04)
		8.38	(1.10)	(1.18)	(0.53)	(0.38)	4.31	(0.58)	(1.12)	(0.24)	(1.23)	15.37	(0.47)	(0.49)	0.15
N/A (0.15)		16.75	A/N	N/A	N/A	A/N	7.10	N/A		N/A	A/A	22.30	N/A	(0°0-4)	A/A
		15.81	N/A	N/A	N/A	N/A	6.72	N/A	N/A	N/A	N/A	22.18	N/A	(1.44)	N/A
N/A (2.78)	8	15.75	N/A	N/A	N/A	N/A	4.45	N/A	N/A	N/A	N/A	19.66	N/A	(2.75)	N/A
N/A (2.53)	(2)	16.00	N/A	N/A	N/A	N/A	4.67	N/A	N/A	N/A	N/A	19.57	N/A	(2.51)	N/A
N/A (1.	(1.24)	16.05	N/A	N/A	N/A	N/A	6.92	N/A	N/A	N/A	N/A	22.00	N/A	(1.21)	N/A
N/A (3.	(3.76)	12.26	N/A	N/A	N/A	1.29	5.47	N/A	(0.38)	N/A	(0.68)	20.85	N/A	(1.68)	2.04
N/A (5	(5.54)	13.84	N/A	N/A	N/A	(1.18)	2.89	N/A	(2.67)	N/A	(2.98)	18.02	N/A	(4.13)	(0.01)
N/A (4	(4.12)	12.72	N/A	N/A	N/A	0.08	4.09	N/A	(1.46)	N/A	(1.76)	19.58	N/A	(2.97)	1.04
N/A (5	(5.78)	13.60	N/A	N/A	N/A	(1.35)	2.92	N/A	(2.91)	N/A	(3.22)	18.23	N/A	(4.30)	(0.25)
N/A (4	(4.36)	12.48	N/A	N/A	N/A	(0.05)	4.35	N/A	(1.70)	N/A	(2.00)	19.86	N/A	(3.01)	0.80
(2.02)	(2.21)	10.42	(1.47)	(1.54)	(2.85)	(0.57)	6.47	(3.00)	(2.47)	(2.29)	(2.68)	21.78	(2.93)	(0.73)	(1.28)
(0.72) (0.	.46)	11.82	(0.18)	(0.25)	(0.67)	0.73	8.65	(0.80)	(1.14)	(0.10)	(1.36)	24.17	(0.68)	0.56	0.62
(7.85) (6	(6.91)	11.32	(7.56)	(6.98)	(8.95)	(6.70)	0:30	(20.6)	(8.23)	(8.38)	(8.55)	15.54	(8.88)	(6.87)	(5.29)
(6.56) (5	(5.60)	12.31	(6.27)	(5.70)	(06.90)	(5.39)	1.64	(7.02)	(6.94)	(6.34)	(7.27)	17.11	(6.81)	(5.58)	(3.97)
0.00	0.09	16.99	00.0	00.0	(0.53)	1.42	6.92	(0.58)	(0.14)	(0.24)	(0.44)	22.00	(0.47)	0.13	2.28

VAT: and	TWE	TVC	
Shear		01	
System	NoWS	WSP	Total
TDWR	N/A	N/A	861.07
WSP	N/A	(0.35)	703.31
NEXRAD	(0.24)	(0.27)	684.33
LIDAR	(2.42)	(2.52)	148.10
LLWAS	(1.30)	(1.22)	406.15
X-Band	(6.08)	(6.22)	47.30
TDWR &			
NEXRAD	N/A	N/A	858.84
NEXRAD			
LLWAS	N/A	N/A	817.14
TDWR &			
LIDAR	N/A	N/A	748.83
TDWR &	V/14	V / 1 V	
	N/A	N/A	15.101
WSP &	N/A	N/A	821.21
WSP &			
LIDAR	N/A	(0.59)	766.79
WSP &			
LLWAS	N/A	(2.97)	607.92
WSP,			
NEXKAD, I IDAR	N/A	(1 70)	658 41
WSP.		(01.1)	
NEXRAD,			
LLWAS	N/A	(3.21)	618.95
	VI V		601 EE
	A/N	(1.34)	00.160
EXRAD			
& LLWAS	(2.66)	(2.76)	459.69
X-Band & LIDAR	(1.41)	(1.38)	766.49
X-Rand &			
	(8.70)	(8.76)	(336.34)
TDWR,NE XRAD I ID			
AR AR	(7.42)	(7.40)	(93.92)
Legacy			
Case (Upgrade			
d)	0.00	(0.35)	902.02

This page intentionally left blank.

100 C		C G V		a Ca		A WA) 104		1			020		MUC	MUD	
Shear	Nows				WSP	SMON	NoWS	TDWR&L	dSW		Nows	Nows	WSP	SMON	MSP	
System	CWUN				NOT A	CANON	CMON	LWAS			CMON	SWON		CMON		
	N/A	N/A	(7.50)	N/A	N/A	N/A	N/A	63.31 17 77	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	N/A	C0.C	(4.05)	A/A	0.07	N/A	N/A	11.1C	2.04	A/A	N/A	N/A	0.94	A/A	1.11	N/A
	(0.24)	0.44	(0.72)	(0:30)	(0.2.0)	07.0	(0.24)	02.70	07.0	(0.30) (0.7E)	(0.24)	(0.24)	(0.04)	(0.13)	00.1	0.0
	(00.2)	0.10)	(3.14) (1 06)	(01.2)	(12.2)	(00.2)	(10.2)	N9 21	930	(0.53)	(10.7)	(10:2)	(87.1)	(4.04) (4.26)	(20.2)	(0.04)
LLWAG	(E 1.13)	70.0	(00) (6 83)	(00.0)	(5 43)	(1.14) (5 86)	(1.20) (6.23)	58 04	00.0		(07) (6 17)	(E 1 7)	(1 5 8)	(00.1) (05.3)	(DC.0)	(10.0) (7, 84)
TDWR &	N/A	0.2.V	(0.00)	N/A	N/A	N/A	N/A	50.07 63.95	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TDWR, NEXRAD.																
LLWAS	N/A	N/A	(4.10)	N/A	N/A	N/A	N/A	64.43	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TDWR & LIDAR	N/A	N/A	(5.15)	N/A	N/A	N/A	A/A	61.13	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TDWR & LLWAS	N/A	N/A	(3.86)	N/A	N/A	N/A	N/A	64.21	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
WSP & NEXRAD	N/A	5.71	(4.30)	N/A	(0.17)	N/A	N/A	62.38	1.84	N/A	N/A	N/A	0.70	N/A	1.02	N/A
WSP & LIDAR	N/A	3.27	(6.71)	N/A	(2.49)	N/A	N/A	58.30	(0.12)	N/A	N/A	N/A	(1.58)	N/A	(1.44)	N/A
WSP & LLWAS	N/A	4.46	(5.42)	N/A	(1.24)	N/A	N/A	59.41	1.09	N/A	N/A	N/A	(0.35)	N/A	(0.17)	N/A
WSP, NEXRAD, LIDAR	N/A	3.13	(6.95)	A/A	(2.73)	A/A	∀/N	60.08	(0.34)	A/A	N/A	N/A	(1.82)	N/A	(1.60)	N/A
WSP, NEXRAD, LLWAS	N/A	4.43	(5.66)	A/A	(1.48)	A/A	∀/N	61.97	0.89	A/A	N/A	N/A	(0.59)	N/A	(0.31)	N/A
NEXRAD & LIDAR	(2.74)	3.85	(3.38)	(2.99)	(2.45)	(2.40)	(2.75)	63.54	(1.53)	(2.99)	(2.81)	(2.80)	(2.03)	(2.85)	(0.82)	(2.11)
NEXRAD & LLWAS	(1.40)	5.16	(2.09)	(0.76)	(1.09)	(1.10)	(1.50)	66.25	0.55	(0.76)	(1.49)	(1.51)	(0.56)	(1.56)	0.46	0.07
X-Band & LIDAR	(8.61)	(2.30)	(9.49)	(8.99)	(8.06)	(8.51)	(8.82)	56.59	(5.30)	(0.00)	(8.81)	(8.83)	(7.19)	(8.96)	(7.74)	(8.31)
X-Band & LLLWAS	(7.32)	(0.96)	(8.20)	(6.94)	(6.77)	(7.22)	(7.55)	58.70	(3.99)	(6.95)	(7.51)	(7.54)	(5.88)	(7.67)	(6.17)	(6.28)
TDWR,NE XRAD,LID AR	N/A	N/A	(5.40)	N/A	N/A	N/A	N/A	61.38	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Legacy Case (Upgrade d)	0.00	5.65	(2.50)	(0.53)	0.07	0.00	0.00	64.21	2.04	(0.53)	0.00	0.00	0.94	0.00	1.11	(0.01)

BIS	BNA	BOI	BOS	BTR	BTV	BUF	BUR	BWI	CAE	CAK	СНА	CHS	CID	CLE	CLT
TDWR	WR	NoWS	TDWR	LLWAS	NoWS	WSP	NoWS	TDWR	LLWAS	NoWS	LLWAS	WSP	WSP	TDWR	TDWR
4	4.83	N/A	6.85	N/A	N/A	N/A	N/A	6.97	N/A	0.44	N/A	N/A	N/A	3.02	10.62
2	.65	N/A	4.67	N/A	N/A	0.32	(3.25)	3.66	N/A	N/A	N/A	0.21	(0.62)	1.12	8.11
9	6.38	1.28	7.37	(0.29)	0.03	0.94	(0.24)	1.04	0.33	(0.05)	(0.34)	(0.15)	(0.33)	4.74	1.87
	(0.01)	(1.67)	1.69	(2.55)	(2.51)	(2.05)	(2.54)	2.68	(2.56)	(2.50)	(2.71)	(2.41)	(2.65)	(0.25)	1.86
	2.28	(0.67)	3.47	(0.19)	(1.24)	(0.78)	(1.22)	3.47	(0.22)	(1.11)	(0.44)	(0.83)	(1.33)	1.24	5.53
	0.35	(2.00)	2.30	(5.60)	(6.08)	(5.17)	(6.10)	1.69	(0.06)	(5.79)	(6.24)	(5.32)	(6.17)	(1.36)	5.62
	4.60	N/A	6.64	N/A	N/A	N/A	N/A	6.73	N/A	0.20	N/A	N/A	N/A	2.82	10.38
	3.30	N/A	5.39	N/A	N/A	A/N	N/A	5.51	N/A	(1.09)	N/A	A/A	A/A	1.50	9.14
	2.20	N/A	4.30	N/A	N/A	N/A	N/A	4.47	N/A	(2.13)	N/A	N/A	N/A	0.41	8.02
_	3.53	N/A	5.61	N/A	N/A	N/A	N/A	5.75	N/A	(0.85)	N/A	N/A	N/A	1.72	9.38
	2.93	N/A	4.53	N/A	N/A	0.16	(3.49)	3.41	N/A	N/A	N/A	(0.03)	(0.86)	1.22	7.86
	0.45	N/A	2.69	N/A	N/A	(2.25)	(5.84)	2.81	N/A	N/A	N/A	(2.39)	(3.25)	(1.20)	6.22
	1.57	N/A	3.68	N/A	N/A	(0.99)	(4.58)	3.21	N/A	N/A	N/A	(1.12)	(1.97)	(0.05)	7.21
	0.39	N/A	2.51	N/A	N/A	(2.48)	(6.08)	2.57	N/A	N/A	N/A	(2.63)	(3.49)	(1.40)	5.98
	1.67	N/A	3.53	N/A	N/A	(1.18)	(4.82)	2.97	N/A	N/A	N/A	(1.36)	(2.21)	(0.08)	6.97
	3.91	(1.36)	6.02	(2.79)	(2.62)	(1.70)	(2.78)	2.44	(2.30)	(2.58)	(2.95)	(2.65)	(2.89)	2.14	1.62
	5.21	(0.06)	6.74	(0.34)	(1.33)	(0.41)	(1.45)	3.83	(0.10)	(1.22)	(0.68)	(1.02)	(1.56)	3.47	5.87
	(2.21)	(7.53)	(0.20)	(8.23)	(8.73)	(7.82)	(8.72)	0.07	(8.62)	(8.45)	(8.89)	(7.95)	(8.83)	(3.96)	3.50
	(0.87)	(6.27)	1.17	(6.18)	(7.44)	(6.52)	(7.43)	0.99	(6.50)	(7.15)	(6.82)	(6.65)	(7.53)	(2.64)	4.74
	1.95	N/A	4.07	N/A	N/A	N/A	N/A	4.22	N/A	(2.37)	N/A	N/A	N/A	0.16	7.77
	4.83	0.00	6.85	(0.19)	0.00	0.32	0.00	6.97	(0.22)	0.00	(0.44)	0.21	(0.62)	3.02	10.62

ELP	WSP	N/A	1.02	0.13	(2.04)	(0.36)	(4.50)	N/A	N/A	N/A	N/A	0.80	(1.57)	(0:30)	(1.80)	(0.52)	(2.20)	(0.46)	(7.13)	(5.83)	N/A	1.02
DTW	TDWR	18.33	15.15	3.52	6.61	06.6	13.79	18.09	16.91	15.73	17.15	14.90	13.85	14.62	13.61	14.38	6.37	10.72	11.28	12.71	15.48	18.33
DSM	WSP	N/A	0.05	0.67	(2.26)	(0.92)	(5.45)	N/A	A/N	N/A	N/A	(0.11)	(2.53)	(1.27)	(2.75)	(1.46)	(1.97)	(0.68)	(8.09)	(6.80)	A/A	0.05
DFW	TDWR&L LWAS	46.43	40.63	46.08	16.39	32.13	41.84	46.39	46.71	44.12	46.83	43.42	41.31	42.16	42.55	43.75	45.97	47.73	39.70	41.47	43.99	46.83
DEN	TDWR&L LWAS	67.85	46.43	68.14	49.18	65.97	62.14	67.72	69.64	66.19	69.86	65.12	61.77	65.84	64.79	67.21	68.22	71.58	61.88	64.59	65.95	69.86
DCA	TDWR	2.09	0.05	3.47	(0.66)	0.81	(2.61)	1.88	0.57	(0.52)	0.78	0.08	(2.14)	(1.06)	(2.31)	(1.12)	1.23	2.36	(4.98)	(3.72)	(0.75)	2.09
DAY	TDWR	(0.82)	(2.48)	(0.27)	(2.42)	(06.0)	(5.17)	(1.06)	(2.41)	(3.46)	(2.17)	(2.72)	(5.04)	(3.80)	(5.28)	(4.03)	(2.58)	(1.01)	(7.81)	(6.51)	(3.71)	(0.82)
DAL	TDWR	2.96	(1.22)	3.37	(0.73)	1.18	(1.45)	2.75	1.47	0.39	1.69	0.08	(2.51)	(1.35)	(1.75)	(0.74)	1.55	2.79	(3.97)	(2.68)	0.16	2.96
DAB	LLWAS	N/A	N/A	(0.13)	(2.21)	0.55	(4.58)	N/A	∀/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(2.45)	0.27	(7.20)	(5.14)	N/A	0.55
CVG	TDWR	7.62	5.19	1.22	1.63	3.81	3.02	7.38	6.12	5.02	6.36	4.94	3.33	4.28	3.09	4.04	1.39	4.10	0.61	1.90	4.77	7.62
CSG	LLWAS	N/A	N/A	(0.35)	(2.72)	(0.48)	(6.31)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(2.96)	(0.73)	(8.95)	(6.90)	N/A	(0.48)
CRW	LLWAS	N/A	N/A	(0.17)	(2.72)	(0.51)	(6.34)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(2.83)	(0.64)	(8.98)	(6.92)	N/A	(0.51)
CRP	NoWS	N/A	N/A	(0.06)	(2.61)	(1.29)	(6.17)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(2.71)	(1.42)	(8.82)	(7.53)	N/A	0.00
cos	LLWAS	N/A	N/A	1.02	(2.22)	0.33	(5.03)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(1.47)	0.71	(7.63)	(5.50)	N/A	0.33
CMI	NoWS	N/A	N/A	(0.24)	(2.56)	(1.23)	(6.04)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(2.80)	(1.45)	(8.70)	(7.41)	N/A	0.00
CMH	TDWR	0.14	(1.64)	(0.21)	(1.89)	(0.38)	(4.27)	(0.10)	(1.44)	(2.50)	(1.20)	(1.89)	(4.10)	(2.90)	(4.34)	(3.14)	(2.13)	(0.48)	(6.87)	(5.57)	(2.75)	0.14
Wind	Shear System	TDWR	WSP	NEXRAD	LIDAR	LLWAS	X-Band	TDWR & NEXRAD	TDWR, NEXRAD, LLWAS	TDWR & LIDAR	TDWR & LLWAS	WSP & NEXRAD	WSP & LIDAR	WSP & LLWAS	WSP, NEXRAD, LIDAR	WSP, NEXRAD, LLWAS	NEXRAD & LIDAR	NEXRAD & LLWAS	X-Band & LIDAR	X-Band & LLLWAS	TDWR,NE XRAD,LID AR	Legacy Case (Upgrade d)

GPT GRB GRR	NoWS LLWAS WSP	N/A	N/A N/A (0.29)	(0.24) (0.18) 0.30	(2.54) (2.68) (2.41)	(1.09) (0.51) (1.14)	(5.76) (6.29) (5.82)	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A		N/A N/A N/A	N/A N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A (2.83)	N/A N/A N/A N/A N/A N/A N/A (2.83)	N/A N/A N/A N/A N/A N/A (2.83) (0.64)	N/A N/A N/A N/A N/A N/A N/A N/A N/A (6.90)	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
	NoWS	N/A	N/A	(0.03)	(2.42)	(1.15)	(5.86)	N/A	A/A	N/A	VIIV	N/A	N/A N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	NA NA NA NA NA	N/A N/A N/A N/A N/A N/A N/A (2.48)	N/A N/A N/A N/A N/A N/A (2.48) (1.25)	N/A N/A N/A N/A N/A N/A (2.48) (2.48) (1.25) (8.51)	N/A N/A N/A N/A N/A N/A (1.25) (8.51) (7.22)	N/A N/A N/A N/A N/A N/A (1.25) (1.25) (1.25) (7.22) N/A
GEG	WSP	N/A	1.01	1.70	(1.52)	(0.33)	(4.41)	N/A	N/A	N/A	N/A		0.97	0.97 (1.42)	0.97 (1.42) (0.24)	0.97 (1.42) (0.24) (1.65)	0.97 (1.42) (0.24) (1.65) (0.36)	0.97 (1.42) (0.24) (1.65) (1.65) (0.36) (0.88)	0.97 (1.42) (0.24) (0.36) (0.36) (0.88) 0.40	0.97 (1.42) (0.24) (0.24) (0.36) (0.36) (0.88) (0.88) (0.80) (7.00)	0.97 (1.42) (0.24) (0.24) (0.36) (0.88) (0.88) 0.40 0.40 (7.00) (5.71)	0.97 (1.42) (0.24) (0.36) (0.36) (0.38) (0.88) (0.88) (0.88) (0.88) (0.88) (0.88) (0.70) (7.00)
GCN	NoWS	N/A	N/A	(0.24)	(2.29)	(1.11)	(5.80)	N/A	N/A	N/A	N/A		N/A	N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A (2.53)	N/A N/A N/A N/A N/A N/A (1.30)	N/A N/A N/A N/A N/A N/A (1.30) (8.44)	N/A N/A N/A N/A N/A N/A (1.30) (1.30) (7.15)	N/A N/A N/A N/A N/A (1.30) (1.30) (1.30) (1.30) (1.30) (1.30) (1.30)
FWA	WSP	N/A	(0.21)	(0.18)	(2.44)	(1.07)	(5.72)	N/A	N/A	N/A	N/A		(0.45)	(0.45) (2.80)	(0.45) (2.80) (1.53)	(0.45) (2.80) (1.53) (3.04)	(0.45) (2.80) (1.53) (1.53) (1.77)	(0.45) (2.80) (1.53) (3.04) (1.77) (2.63)	(0.45) (2.80) (1.53) (1.53) (1.53) (1.77) (1.77) (1.24)	(0.45) (2.80) (1.53) (1.53) (1.53) (1.77) (1.77) (2.63) (1.24) (1.24)	(0.45) (2.80) (1.53) (1.53) (1.53) (1.77) (1.77) (1.24) (1.24) (1.24) (1.24)	(0.45) (2.80) (1.53) (1.53) (1.53) (1.53) (2.63) (2.63) (2.63) (1.24) (1.24) (1.24) (1.24) (1.24) (1.24) (1.24) (1.24) (1.24) (1.24) (1.24) (1.24) (1.25) (1
FSM	LLWAS	N/A	N/A	(0.20)	(2.74)	(0.51)	(6.32)	N/A	A/A	N/A	N/A		N/A	N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A (2.86)	N/A N/A N/A N/A N/A N/A (2.86) (0.66)	N/A N/A N/A N/A N/A N/A (2.86) (2.86) (0.66)	N/A N/A N/A N/A N/A (2.86) (0.66) (8.97)	N/A N/A N/A N/A N/A (2.86) (0.66) (0.66) (8.97) N/A
FSD	LLWAS	N/A	N/A	0.26	(2.38)	(0.27)	(5.83)	N/A	V/N	V/N	N/A		N/A	N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A (2.35)	N/A N/A N/A N/A N/A (2.35) (0.18)	N/A N/A N/A N/A N/A (2.35) (0.18) (8.46)	N/A N/A N/A N/A N/A (2.35) (0.18) (8.46)	N/A N/A N/A N/A N/A (0.18) (8.46) (8.46) (6.42)
FNT	NoWS	N/A	N/A	0.04	(2.43)	(1.14)	(5.87)	N/A	A/N	A/A	A/A		N/A	N/A N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A (2.44)	N/A N/A N/A N/A N/A (2.44)	N/A N/A N/A N/A N/A (1.22) (2.44)	N/A N/A N/A N/A N/A (1.22) (8.52)	N/A N/A N/A N/A N/A (2.44) (2.24) (7.22) (7.22)
FLL	TDWR	17.95	15.84	18.82	3.10	9.68	13.46	17.93	16.73	15.42	16.82		16.10	16.10 13.66	16.10 13.66 14.76	16.10 13.66 14.76 13.68	16.10 13.66 14.76 13.68 13.68	16.10 13.66 14.76 13.68 13.68 14.94 16.81	16.10 13.66 14.76 13.68 14.94 14.94 16.81	16.10 13.66 14.76 14.76 14.94 14.94 16.81 16.81 11.03	16.10 13.66 14.76 14.94 18.16 18.16 11.03 12.52	16.10 13.66 14.76 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.93 15.33
FAY	LLWAS	N/A	N/A	(0.37)	(2.75)	(0.54)	(6.35)	N/A	N/A	N/A	N/A	Ì	N/A	N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A (2.99)	N/A N/A N/A N/A N/A (2.99)	N/A N/A N/A N/A N/A N/A (2.99) (0.77)	N/A N/A N/A N/A N/A N/A (2.99) (0.77) (9.01)	N/A N/A N/A N/A N/A (2.99) (2.99) (2.99) (2.99) (0.77) (0.77) (0.77)
FAR	NoWS	N/A	N/A	(0.24)	(2.54)	(1.26)	(6.12)	N/A	A/N	N/A	N/A		N/A	N/A N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A (2.78)	N/A N/A N/A N/A N/A (2.78)	N/A N/A N/A N/A N/A (2.78) (1.48) (1.48)	N/A N/A N/A N/A N/A (2.78) (1.48) (1.48)	N/A N/A N/A N/A N/A (1.48) (1.48) (7.48) N/A
EWR	TDWR	4.00	1.88	0.52	0.42	1.84	(0.37)	3.76	2.50	1.46	2.74		1.63	1.63 (0.13)	1.63 (0.13) 0.87	1.63 (0.13) 0.87 (0.37)	1.63 (0.13) 0.87 (0.37) 0.63	1.63 (0.13) 0.87 0.37) 0.63 0.18	1.63 1.63 (0.13) 0.87 0.87 0.63 0.63 0.63 1.95 1.95	1.63 (0.13) 0.87 0.87 0.63 0.63 0.63 1.95 (2.91)	1.63 1.63 (0.13) 0.87 0.87 0.18 0.18 1.95 1.95 (1.59)	1.63 1.63 0.87 0.87 0.87 0.18 0.18 1.95 1.95 1.95 1.95 1.21
EVV	NoWS	N/A	N/A	(0.24)	(2.55)	(1.24)	(6.08)	N/A	N/A	N/A	N/A		N/A	N/A N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A (2.79)	N/A N/A N/A N/A N/A (2.79)	N/A N/A N/A N/A N/A (2.79) (1.47) (8.73)	N/A N/A N/A N/A N/A N/A (2.79) (2.79) (8.73)	N/A N/A N/A N/A N/A N/A N/A N/A N/A
ERI	NoWS	N/A	N/A	(0.24)	(2.62)	(1.34)	(6.29)	N/A	N/A	N/A	N/A		N/A	N/A N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A (2.86)	N/A N/A N/A N/A N/A (2.86)	N/A N/A N/A N/A N/A (2.86) (1.57) (8.94)	N/A N/A N/A N/A N/A N/A (1.57) (8.94)	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Wind	Shear System	TDWR	WSP	NEXRAD	LIDAR	LLWAS	X-Band	TDWR & NEXRAD	TDWR, NEXRAD, LLWAS	TDWR & LIDAR	TDWR & LLWAS	WSP &		WSP &	WSP & ULIDAR WSP & LLWAS	WER & LIDAR WSP & LLLWAS WSP, NEXRAD, LIDAR	WSP & WSP & ULDAR WSP, WSP, NEXRAD, LLDAR WSP, NEXRAD, LLWAS	WEXTAND WSP & ULDAR WSP & ULLWAS WSP, NEXRAD, ULDAR NEXRAD, LLWAS NEXRAD & LIDAR	WERTAND WSP & LIDAR WSP & LLWAS WSP, WSP, NEXRAD, LLWAS NEXRAD, & LIDAR & LIDAR & LLWAS	WSP & LIDAR WSP & WSP & LLWAS WSP, WSP, NEXRAD, LLWAS NEXRAD, LLWAS & LLWAS & LLWAS X-Band & LIDAR	WSP & UIDAR WSP & WSP & ULLWAS WSP, WSP, WSP, WSP, WSP, WSP, WSP, WSP	WSP & LIDAR WSP & WSP & ULLWAS WSP, WSP, WSP, WSP, WSP, WSP, WSP, WSP

A A 7 7 05 NI/A		DO: 1 11:1	5.76 1.54 (5.76 1.54 (0.66) 3.58	5.76 1.54 (0.66) 3.58 1 85 4 95	5.76 1.54 5.76 1.54 0 (0.66) 3.58 1 1.85 4.95 0 (0.38) 5.23	5.76 1.54 5.76 1.54 0 (0.66) 3.58 1 1.85 4.95 0 (0.38) 5.23 N/A 9.47	5.76 1.54 5.76 1.54 0 (0.66) 3.58 1.85 4.95 0 (0.38) 5.23 0 (0.38) 5.23 0 0.38 9.47	5.76 1.54 5.76 1.54 0 (0.66) 3.58 1.85 4.95 0 (0.38) 5.23 N/A 9.47 N/A 8.25	5.76 1.54 5.76 1.54 0 (0.66) 3.58 1 1.85 4.95 1 1.85 4.95 1 0.38) 5.23 N/A 9.47 N/A 8.25 N/A 7.14	5.76 1.53 5.76 1.54 0 (0.66) 3.58 1 1.85 4.95 1 1.85 4.95 N/A 9.47 9.47 N/A 8.25 N/A N/A 7.14 N/A 8.49 N/A 8.49	5.76 1.54 5.76 1.54 1.85 3.58 1.85 3.58 1.85 4.95 N/A 9.47 N/A 8.25 N/A 8.25 N/A 8.25 N/A 8.49 1.49 6.80	5.76 1.54 5.76 1.54 1.85 3.58 1.85 3.58 1.185 4.95 N/A 9.47 N/A 8.25 N/A 8.25 N/A 8.25 N/A 8.49 1.44 1.45 1.47 1.47 1.48 1.49 1.49 1.49 1.49 1.44 1.44 1.43 1.49 1.49 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.14	5.76 1.54 5.76 1.54 0 (0.66) 3.58 1.85 4.95 1.85 4.95 N/A 9.47 N/A 9.47 N/A 7.14 N/A 7.14 N/A 8.49 N/A 8.49 1.49 6.80 4.99 6.80 3.47 6.30	5.76 1.54 5.76 1.54 1.85 3.58 1.85 3.58 1.85 3.58 1.85 3.58 N/A 9.47 N/A 8.25 N/A 8.25 N/A 7.14 N/A 7.14 N/A 7.14 1.47 7.14 N/A 7.14 2.12 5.47 3.47 6.80 3.47 6.30 3.47 6.30 2.12 5.47 2.12 5.47 2.12 5.47 2.12 5.47 2.13 5.23	5.76 1.54 5.76 1.54 1.85 3.58 1.85 3.58 1.85 3.58 1.85 3.58 N/A 9.47 N/A 8.25 N/A 8.25 N/A 8.49 N/A 7.14 N/A 7.14 N/A 7.14 N/A 7.14 3.49 6.80 2.12 5.47 3.47 6.30 3.47 6.30 3.55 5.23 3.69 6.06	5.76 1.44 5.76 1.45 1.85 4.95 1.85 4.95 1.85 4.95 1.85 4.95 N/A 9.47 N/A 9.47 N/A 8.25 N/A 8.49 N/A 8.49 N/A 8.49 N/A 7.14 N/A 8.49 A.999 6.80 3.47 6.30 3.47 6.30 3.47 6.30 3.69 6.06 3.12 3.34	5.76 1.43 5.76 1.44 6.66) 3.58 1.85 4.95 1.85 4.95 1.85 4.95 N/A 9.47 N/A 8.25 N/A 7.14 N/A 7.14 N/A 7.14 N/A 7.14 N/A 7.14 N/A 8.49 Sat 6.80 2.12 5.47 3.47 6.30 3.47 6.30 3.47 6.30 3.47 6.30 3.47 6.30 3.48 5.23 3.59 6.06 3.12 3.34 3.12 3.34 4.46 5.43	5.76 1.43 5.76 1.44 6.66) 3.58 1.85 4.95 1.85 4.95 N/A 9.47 N/A 9.47 N/A 8.25 N/A 7.14 N/A 8.25 N/A 7.14 N/A 7.14 N/A 7.14 N/A 8.49 6.80 6.80 3.47 6.30 3.47 6.30 3.59 6.06 3.69 6.06 3.12 3.34 3.12 3.34 3.12 3.34 3.12 3.34 3.12 3.34 3.02) 2.77	5.76 1.43 5.76 1.44 5.76 1.58 (0.66) 3.58 1.85 4.95 1.85 4.95 N/A 9.47 N/A 9.47 N/A 9.47 N/A 8.25 N/A 8.49 N/A 7.14 N/A 8.49 N/A 8.49 Sat 5.47 2.12 5.47 3.47 6.30 2.35 5.23 3.47 6.30 3.47 6.06 3.47 6.06 3.47 5.43 3.48 5.43 3.53 5.23 3.69 6.06 3.12 3.34 3.12 3.34 3.12 3.34 3.12 3.34 3.12 3.34 3.12 3.34 3.12 3.34 3.02) 2.77 3.02) 2.77 3.03 2.77 3.04 4.09	5.76 1.43 5.76 1.43 5.76 1.85 1.85 4.95 1.85 4.95 1.85 4.95 N/A 9.47 N/A 9.47 N/A 8.25 N/A 7.14 N/A 7.14 N/A 7.14 N/A 7.14 N/A 7.14 N/A 8.49 Siss 6.80 2.12 5.47 3.47 6.30 3.47 6.30 3.46 5.43 3.59 6.06 3.12 3.34 3.12 3.34 3.12 3.34 3.12 3.34 1.66) 5.43 (1.66) 4.09 N/A 6.90 1.66 5.43 1.166 4.09 N/A 6.90 1.66) 4.09 1.66) 4.09
	(U.Z1) N/A		0.46 0.33	0.46 0.33 (2.25) (2.49)	0.46 0.33 (2.25) (2.49) (1.05) (0.17)	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (5.65) (5.87)	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (5.65) (5.82) N/A N/A	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (5.65) (5.82) N/A N/A	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (5.65) (5.82) N/A N/A N/A N/A	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (5.65) (5.82) N/A N/A N/A N/A N/A N/A	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (5.65) (5.82) N/A N/A N/A N/A N/A N/A	0.46 0.33 (2.25) (2.49) (1.05) (5.82) N/A N/A N/A N/A N/A N/A N/A N/A (0.33) N/A	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (5.65) (5.82) N/A N/A N/A N/A N/A N/A N/A N/A (0.33) N/A (2.72) N/A	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (5.65) (5.82) N/A N/A N/A N/A N/A N/A N/A N/A (0.33) N/A (0.33) N/A (1.50) N/A	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (5.65) (5.82) N/A N/A N/A N/A N/A N/A N/A N/A (0.33) N/A (0.33) N/A (0.33) N/A (1.50) N/A (2.95) N/A	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (5.65) (5.82) N/A N/A N/A N/A N/A N/A N/A N/A (0.33) N/A (0.33) N/A (1.50) N/A (1.50) N/A (1.57) N/A (1.67) N/A	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (5.65) (5.82) N/A N/A N/A N/A N/A N/A N/A N/A (0.33) N/A (0.33) N/A (1.50) N/A (1.50) N/A (1.67) N/A (2.95) N/A (2.95) N/A (2.95) N/A	0.46 0.33 (2.25) (2.49) (1.05) (5.82) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (1.05) (5.82) N/A N/A (0.33) N/A (1.50) N/A (1.50) N/A (1.50) N/A (1.50) N/A (1.50) N/A (1.67) N/A (1.67) N/A (1.67) N/A (1.67) N/A (1.67) N/A (1.67) N/A (0.12) (0.12) (0.89) (0.12) (0.12) (0.12)	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (1.05) (0.17) N/A N/A (0.33) N/A (1.50) N/A (1.50) N/A (1.57) N/A (1.67) N/A (1.67) N/A (2.95) N/A (1.67) N/A (2.99) (0.12) (0.89) (0.12) (0.89) (0.12) (7.00) (6.39)	0.46 0.33 (2.25) (2.49) (1.05) (0.17) (1.05) (0.17) N/A N/A (0.33) N/A N/A N/A (1.50) N/A (1.50) N/A (1.50) N/A (1.67) N/A (1.67) N/A (0.89) (0.12) (0.89) (0.12) (1.00) (6.39) N/A N/A
	4.10	7.78	0.00	00.0	0.00	0.00 3.02 1.71	5.93 5.93	5.93 5.93	6. 93 5.93 4.63		0.00 3.02 1.71 1.71 5.93 4.63 3.49 3.49 4.81 4.81	0.00 1.71 1.71 5.93 5.93 3.49 3.49 4.81 4.27	0.00 1.71 1.71 1.71 1.71 1.71 5.93 5.93 3.49 3.49 4.81 4.81 1.76 1.76	0.00 1.71 1.71 5.93 5.93 4.63 3.49 4.81 4.81 4.81 4.27 1.76 1.76 3.02	0.00 1.71 1.71 5.93 5.93 5.93 4.63 3.49 4.81 4.81 4.27 1.76 3.02 3.02 1.76 1.76 1.76	0.00 1.71 1.71 5.93 5.93 5.93 4.63 3.49 3.49 4.81 4.81 4.81 3.49 3.49 3.49 3.02 1.76 1.76 3.02 3.02 3.01	33 0.00 04) 1.71 1 1.71 1 1.71 1 1.71 1 5.93 1 3.02 1 4.63 1 3.49 1 4.81 1 4.81 1 4.81 1 1.76 1 1.76 1 1.76 1 1.66 1 3.02 1 3.02 1 5.18	3.000 1.71 1.71 1.71 1.71 5.93 5.93 3.49 4.63 3.49 1.76 1.76 1.76 1.76 3.01 5.18 6.56 6.56	3.000 1.71 1.71 1.71 1.71 5.93 5.93 3.49 4.63 3.49 4.61 4.81 4.81 4.81 4.81 3.49 3.49 3.49 3.01 5.18 5.18 6.56 6.56	3.000 1.71 1.71 1.71 5.93 5.93 5.93 3.49 4.63 3.49 4.63 3.49 4.63 3.49 4.63 3.49 4.63 3.49 4.63 3.49 4.63 3.49 4.81 4.81 4.81 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.27 4.28 3.01 5.18 6.56 6.56 0.47	3.000 1.71 1.71 1.71 1.71 1.71 5.93 5.93 3.49 4.63 3.49 1.76 1.76 1.76 1.76 1.76 3.01 5.18 5.18 6.56 (0.89) 0.47 0.47 3.27
0.08 0.07			(2.33) (2.59)																		
32.70	32 70		10.32	21.32	20.28		38.74	38.74	38.74 38.74 37.73	38.74 37.73 36.23	38.74 37.73 36.23 37.75	38.74 37.73 36.23 35.23 35.23 35.97	38.74 37.73 36.23 36.23 37.75 35.97 33.08	38.74 37.73 36.23 36.23 37.75 37.75 37.75 37.05 33.08 34.10	38.74 37.73 37.73 36.23 36.23 37.75 37.75 37.75 37.75 37.75 37.75 37.18 34.10	38.74 37.73 37.75 36.23 36.23 37.75 37.75 37.75 37.97 37.10 34.10 34.10 34.18 35.27	38.74 37.73 37.75 36.23 36.23 36.23 36.23 37.75 37.75 37.75 37.75 37.75 37.75 37.75 37.75 37.75 37.75 37.75 37.75 37.75 37.75 37.75 37.75 37.777 37.777 37.777 37.777 37.7777 37.7777 37.777777 37.77777777	38.74 37.73 37.73 36.23 36.23 36.23 37.75 37.75 37.75 37.75 37.75 37.10 34.10 34.18 34.18 34.18 34.18 34.18 35.27 35.27 35.27	38.74 37.73 37.73 36.23 36.23 37.75 37.75 37.75 37.97 34.10 34.10 34.10 34.10 34.10 34.10 34.18 31.18 35.69 31.18	38.74 37.73 36.23 36.23 36.23 36.23 37.75 37.75 37.75 37.75 37.16 34.10 34.10 34.10 34.10 34.10 34.18 37.17 37.17 37.18 31.18 32.69 32.69 32.69	38.74 37.73 37.73 36.23 36.23 36.19 37.75 35.27 37.75 37.75 37.75 37.75 37.75 37.75 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.17 37.73 37.73 37.73 37.73 37.73 37.73 37.73 37.73 37.73 37.73 37.73 37.73 37.73 37.75 37.777 37.777 37.777 37.777 37.777 37.777 37.7777 37.77777 37.77777777
0.27) 0.03	(0.27)		(2.57) 2.68	(116)	(5 88)	(00.0)		N/A 9.03				N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A (0.55)	N/A N/A N/A N/A (0.55) (2.94)	N/A N/A N/A N/A N/A (0.55) (0.55) (1.66) (1.66) (3.18)	N/A N/A N/A N/A N/A (0.55) (0.55) (1.66) (1.66) (1.66) (1.90)	N/A N/A N/A N/A N/A N/A (0.55) (0.55) (1.66) (1.66) (1.66) (1.90) (1.90) (2.81)	N/A N/A N/A N/A N/A N/A (0.55) (0.55) (0.55) (1.66) (1.66) (1.90) (1.90) (1.90) (1.37)	N/A N/A N/A N/A N/A N/A (0.55) (0.55) (1.66) (1.66) (1.66) (1.60) (1.90) (1.90) (2.81) (2.81) (1.37) (8.52)	N/A N/A N/A N/A N/A N/A N/A (0.55) (0.55) (1.66) (1.66) (1.60) (1.90) (1.90) (1.37) (1.37) (1.37) (1.37) (1.37) (1.37) (1.37)	N/A N/A N/A N/A N/A N/A N/A (0.55) (1.66) (1.90) (1.37) (1.37) (8.52) (1.37) N/A N/A
(++-0) 00.1		11.22 (0.29)	0.94 (2.51)					9.42 N/A													
	00.7	0.29	(1.63)	051	(3 08)	()))		N/A		N/A N/A N/A	N/A N/A N/A	N/A N/A N/A N/A 2.32	N/A N/A N/A N/A 2.32 (0.03)	N/A N/A N/A N/A 2.32 (0.03)	N/A N/A N/A N/A 2.32 (0.03) 1.26 1.26	N/A N/A N/A N/A N/A 1.26 1.26 1.26 1.02	N/A N/A N/A N/A N/A N/A 1.26 (0.03) 1.26 1.26 1.02 1.02 (0.27)	N/A N/A N/A N/A N/A 2.32 2.32 (0.03) 1.26 1.26 1.26 1.02 1.02 (1.87) 0.40	N/A N/A N/A N/A N/A 2.32 2.32 (0.03) 1.26 1.26 1.26 1.02 1.02 1.02 1.02 0.40 (5.71)	N/A N/A N/A N/A N/A N/A N/A 1.26 (0.03) (0.0	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
	0.32 N/A	(0.20) (0.13)	(2.29) (2.72)					N/A N/A													
					Y-Band /E					~*	0			AD,	_^	NEXRAD & LIDAR (2		4 &			

MEM	TDWR	14.30	10.63	15.86	4.37	7.59	9.27	14.12	12.90	11.70	13.09	12.42	9.41	10.24	9.92	11.25	13.42	14.79	7.09	8.45	11.48	14.30
MDW	TDWR	8.51	0.23	9.94	2.54	4.24	4.00	8.28	7.01	5.88	7.24	6.36	0.97	1.99	4.09	5.27	7.66	8.84	1.45	2.82	5.64	8.51
MDT	WSP	N/A	(0.74)	(0.35)	(2.71)	(1.39)	(6.30)	N/A	N/A	N/A	N/A	(0.98)	(3.36)	(2.08)	(3.60)	(2.32)	(2.95)	(1.63)	(8.95)	(7.65)	A/N	(0.74)
MCO	TDWR&L LWAS	48.04	45.11	9.87	13.26	41.86	43.56	47.82	48.36	45.58	48.58	44.95	43.56	45.28	43.38	45.14	13.56	43.62	41.21	43.42	45.34	48.58
MCI	TDWR	10.16	8.22	3.36	1.75	5.25	5.73	9.92	8.67	7.54	8.91	8.01	5.84	7.09	5.64	6.89	2.87	6.38	3.11	4.52	7.30	10.16
MBS	NoWS	N/A	N/A	(0.24)	(2.60)	(1.30)	(6.21)	N/A	A/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(2.84)	(1.53)	(8.86)	(7.57)	A/N	0.00
MAF	LLWAS	N/A	N/A	0.31	(2.57)	(0.22)	(5.80)	N/A	Y/N	A/N	N/A	N/A	N/A	N/A	N/A	A/N	(2.34)	(0.14)	(8.45)	(6:39)	A/N	(0.22)
LNK	LLWAS	N/A	N/A	(0.24)	(2.70)	(0.47)	(6.28)	N/A	Y/N	V/N	N/A	N/A	N/A	N/A	N/A	A/N	(2.86)	(0.67)	(8.93)	(6.88)	A/N	(0.47)
LIT	LLWAS	N/A	N/A	1.55	(1.97)	0.56	(4.64)	N/A	Y/N	V/N	N/A	N/A	N/A	N/A	N/A	A/N	(1.09)	1.12	(7.21)	(5.17)	A/N	0.56
LGB	NoWS	N/A	(2.67)	(0.24)	(2.30)	(0.73)	(5.11)	N/A	A/N	V/N	N/A	(2.91)	(4.95)	(3.66)	(5.19)	(3.90)	(2.54)	(06.0)	(7.68)	(6.37)	Υ/Ν	0.00
LGA	TDWR&L LWAS	1.29	(2.42)	0.02	(0.99)	1.44	(3.11)	1.05	0.63	(1.34)	0.87	(2.67)	(3.76)	(2.82)	(4.00)	(3.06)	(1.23)	0.90	(5.70)	(4.41)	(1.59)	0.87
LFT	NoWS	N/A	N/A	(0.24)	(2.54)	(1.10)	(5.77)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(2.78)	(1.30)	(8.41)	(7.12)	N/A	0.00
LEX	LLWAS	N/A	N/A	(0.35)	(2.71)	(0.48)	(6.24)	N/A	∀/N	V/N	N/A	N/A	N/A	N/A	N/A	N/A	(2.95)	(0.70)	(8.89)	(6.84)	V/N	(0.48)
LBB	WSP	N/A	0.17	0.76	(2.30)	(0.86)	(5.34)	N/A	N/A	N/A	N/A	(0.01)	(2.43)	(1.16)	(2.65)	(1.36)	(1.88)	(0.58)	(8.00)	(6.69)	N/A	0.17
LAX	WSP	N/A	2.88	0.31	(0.78)	0.85	(2.34)	N/A	A/N	∀/N	N/A	2.64	0.67	1.78	0.43	1.54	(1.02)	0.85	(4.80)	(3.55)	A/A	2.88
LAS	TDWR	22.63	17.71	3.77	17.83	13.75	13.11	22.39	22.75	24.22	22.99	17.46	22.91	19.73	22.67	19.49	17.58	15.04	17.33	16.48	22.48	22.63
Wind	Shear System	TDWR	WSP	NEXRAD	LIDAR	LLWAS	X-Band	TDWR & NEXRAD	TDWR, NEXRAD, LLWAS	tdwr & Lidar	TDWR & LLWAS	WSP & NEXRAD	WSP & LIDAR	WSP & LLWAS	WSP, NEXRAD, LIDAR	WSP, NEXRAD, LLWAS	NEXRAD & LIDAR	NEXRAD & LLWAS	X-Band & LIDAR	X-Band & LLLWAS	TDWR,NE XRAD,LID AR	Legacy Case (Upgrade d)

ONT	WSP	N/A	0.54	(0.07)	(2.02)	(0.62)	(4.97)	N/A	N/A	N/A	N/A	0.30	(2.01)	(0.76)	(2.25)	(1.00)	(2.26)	(0.79)	(7.59)	(6.29)	N/A	
OMA	LLWAS	N/A	N/A	1.58	(1.94)	0.43	(4.49)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(0.93)	1.20	(7.11)	(5.05)	N/A	
OKC	TDWR	(0.02)	(1.70)	1.73	(2.05)	(0.43)	(4.38)	(0.25)	(1.59)	(2.65)	(1.35)	(1.82)	(4.24)	(3.00)	(4.45)	(3.16)	(0.89)	0.41	(7.01)	(5.70)	(2.90)	
OAK	NoWS	N/A	(3.10)	(0.24)	(2.47)	(1.16)	(5.93)	N/A	V/N	N/A	N/A	(3.34)	(69.2)	(4.43)	(2:93)	(4.67)	(2.71)	(1.38)	(8.56)	(7.28)	V/N	
MYR	NoWS	N/A	N/A	0.12	(2.54)	(1.17)	(5.96)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(2.48)	(1.20)	(8.57)	(7.29)	N/A	
MSΥ	TDWR&L LWAS	5.67	3.70	4.92	(0.40)	2.94	1.16	5.51	5.12	3.07	5.30	3.75	1.36	2.61	1.28	2.61	2.84	5.39	(1.30)	(0.03)	2.88	
MSP	TDWR	9.21	6.99	10.76	2.18	4.75	4.72	8.98	7.72	6.61	7.96	7.25	4.92	5.98	4.80	6.07	8.35	9.62	2.18	3.54	6.36	
MSN	WSP	N/A	(0.31)	(0.26)	(2.50)	(1.13)	(5.82)	N/A	N/A	N/A	N/A	(0.54)	(2.89)	(1.63)	(3.13)	(1.87)	(2.73)	(1.33)	(8.46)	(7.17)	N/A	
MOB	LLWAS	N/A	N/A	0.08	(2.64)	(0.36)	(6.03)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(2.57)	(0.37)	(8.68)	(6.63)	N/A	
MLU	LLWAS	N/A	N/A	(0.35)	(2.71)	(0.44)	(6.21)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(2.95)	(0.68)	(8.86)	(6.80)	N/A	
MLI	LLWAS	N/A	N/A	(0.04)	(2.64)	(0.41)	(6.18)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	(2.69)	(0.50)	(8.82)	(6.77)	N/A	
MKE	TDWR	3.13	0.68	1.14	(0.06)	1.31	(1.45)	2.90	1.60	0.53	1.84	0.49	(1.12)	(0.25)	(1.35)	(0.43)	0.32	1.74	(3.85)	(2.62)	0.28	
MIA	TDWR	31.05	27.74	32.71	7.05	17.37	26.67	31.53	30.46	28.71	30.26	29.71	26.12	27.34	27.34	28.67	30.48	32.20	24.44	26.12	28.97	
МНТ	NoWS	N/A	(3.16)	(0.24)	(2.31)	(1.03)	(5.63)	N/A	N/A	N/A	N/A	(3.40)	(5.42)	(4.28)	(5.66)	(4.52)	(2.55)	(1.22)	(8.26)	(6.97)	N/A	
MGM	LLWAS	N/A	N/A	(0.35)	(2.69)	(0.49)	(6.23)	N/A	Y/N	N/A	N/A	N/A	N/A	N/A	A/N	N/A	(2.92)	(02.0)	(88.8)	(6.83)	N/A	
Wind	Shear System	TDWR	WSP	NEXRAD	LIDAR	LLWAS	X-Band	TDWR & NEXRAD	TDWR, NEXRAD, LLWAS	TDWR & LIDAR	TDWR & LLWAS	WSP & NEXRAD	WSP & LIDAR	WSP & LLWAS	WSP, NEXRAD, LIDAR	WSP, NEXRAD, LLWAS	NEXRAD & LIDAR	NEXRAD & LLWAS	X-Band & LIDAR	X-Band & LLLWAS	TDWR,NE XRAD,LID AR	Legacy Case (Upgrade

Wind	ORD	ORF	ORL	PBI	PDK	PDX	PHF	PHL	ХНЧ	PIA	PIE	PIT	PNS	PVD	PWM	RDU
Shear System	TDWR&L LWAS	WSP	NoWS	TDWR	NoWS	WSP	NoWS	TDWR	TDWR	LLWAS	NoWS	TDWR	LLWAS	LLWAS	NoWS	TDWR
TDWR	63.41	N/A	0.78	3.90	0.82	N/A	N/A	6.61	9.94	N/A	1.95	0.58	N/A	N/A	N/A	1.60
WSP	53.69	0.03	(3.15)	(2.79)	(3.53)	1.11	N/A	3.69	7.86	N/A	(2.55)	(1.27)	N/A	N/A	(3.56)	(0.37)
NEXRAD	54.05	(0.18)	(0.24)	0.54	0.32	0.01	0.12	1.00	12.17	(0.28)	1.42	2.37	(0.26)	0.42	(0.02)	3.16
LIDAR	32.20	(2.29)	(2.53)	(1.09)	(2.50)	(1.95)	(2.53)	1.64	1.60	(2.67)	(2.36)	(1.59)	(2.45)	(2.36)	(2.50)	(1.38)
LLWAS	51.04	(0.89)	(1.05)	1.82	(1.04)	(0:30)	(1.18)	3.37	5.38	(0.46)	(0.62)	(0.10)	(0.03)	(0.14)	(1.23)	0.45
X-Band	57.03	(5.45)	(5.68)	(0.39)	(5.65)	(4.70)	(5.99)	1.97	5.67	(6.22)	(4.74)	(5.69)	(5.33)	(5.65)	(6.05)	(3.08)
tdwr & Nexrad	63.52	N/A	0.54	3.66	0.58	N/A	N/A	6.38	10.39	N/A	1.75	0.36	N/A	N/A	N/A	1.37
TDWR, NEYPAD																
LLWAS	64.63	N/A	(0.81)	2.43	(0.78)	N/A	N/A	5.26	9.18	N/A	0.40	(0.98)	N/A	N/A	N/A	0.05
tdwr & Lidar	61.51	N/A	(1.87)	1.34	(1.84)	N/A	N/A	4.28	7.64	N/A	(0.69)	(2.05)	N/A	A/A	N/A	(1.03)
TDWR &	64.66	N/A	(0.57)	2.67	(0.54)	N/A	N/A	5 49	8 88	A/N	0.61	(0.75)	N/A	N/A	N/A	0.28
WSP &	56 38	(000)	(3 30)	(3 04)	(3 10)	0.87	AVA	3 47	8 70	Ψ/Ν	(1 73)	(1 20)	₩/N		(3 54)	(0.20)
WSP &	58.67	(2.48)	(5.66) (5.66)	(10:0)	(5.00)	(1 45)	N/A	2.51	5.80			(3 60)	N/A	Ψ/N	(6.03)	(2.67)
WSP & LLWAS	59.21	(1.25)	(4.30)	(1.75)	(4.50)	(0.18)	N/A	3.12	7.04	N/A	(3.43)	(2.48)	N/A	A/A	(4.75)	(1.54)
WSP, Nexrad, Lidar	59.34	(2.72)	(5.90)	(4.90)	(5.66)	(1.69)	N/A	2.29	6.29	N/A	(4.38)	(3.85)	N/A	N/A	(6.08)	(2.83)
WSP, NEXRAD, LLWAS	60.85	(1.49)	(4.54)	(1.99)	(4.38)	(0.42)	N/A	2.90	7.55	N/A	(3.08)	(2.54)	N/A	N/A	(4.85)	(1.57)
NEXRAD & LIDAR	60.23	(2.52)	(2.77)	(1.33)	(2.26)	(2.19)	(2.49)	1.43	9.82	(2.85)	(1.24)	(0.29)	(2.69)	(2.18)	(2.59)	0.65
NEXRAD & LLWAS	63.81	(1.07)	(1.25)	1.84	(96.0)	(0.49)	(1.22)	3.69	11.09	(0.66)	90.0	1.03	(0.18)	(0.01)	(1.35)	1.95
X-Band & LIDAR	56.94	(8.03)	(8.31)	(2.97)	(8.29)	(7.26)	(8.61)	(0.09)	3.34	(8.87)	(7.37)	(7.64)	(7.97)	(8.29)	(8.70)	(5.48)
X-Band & LLLWAS	59.01	(6.76)	(7.02)	(1.62)	(00'2)	(5.88)	(7.33)	1.07	4.75	(6.82)	(20.9)	(6.12)	(5.91)	(6.24)	(7.41)	(4.22)
TDWR,NE XRAD,LID AR	61.45	N/A	(2.11)	1.09	(2.08)	N/A	N/A	4.03	7.85	N/A	(0.91)	(2.30)	N/A	N/A	N/A	(1.28)
Legacy Case (Upgrade d)	64.66	0.03	0.00	3.90	0.00	1.11	0.00	6.61	9.94	(0.46)	0:00	0.58	(0.03)	(0.14)	0.00	1.60

Wind	RIC	RNO	ROA	ROC	RST	RSW	SAN	SAT	SAV	SBN	SDF	SEA	SFB	SFO	SGF	SHV
Shear System	WSP	NoWS	LLWAS	WSP	LLWAS	LLWAS	NoWS	WSP	LLWAS	NoWS	TDWR	WSP	NoWS	LLWAS	LLWAS	LLWAS
TDWR	N/A	2.35	N/A	2.78	N/A	N/A	N/A									
WSP	0.18	N/A	N/A	0.09	N/A	N/A	(3.41)	2.58	N/A	N/A	0.10	0.84	N/A	N/A	N/A	N/A
NEXRAD	0.31	(0.24)	(0.34)	(0.18)	(0.37)	(0.02)	(0.24)	3.12	(0.04)	(0.23)	4.04	(0.05)	(0.24)	(0.31)	0.18	0.16
LIDAR	(2.22)	(0.62)	(2.69)	(2.30)	(2.74)	(1.87)	(2.36)	(1.13)	(2.45)	(2.50)	(0.87)	(1.78)	(2.29)	(2.52)	(2.59)	(2.60)
LLWAS	(0.80)	0.10	(0.44)	(0.92)	(0.54)	1.31	(06.0)	0.55	0.05	(1.19)	0.88	(0.44)	(0.32)	(0.28)	(0.35)	(0.32)
X-Band	(5.31)	(4.34)	(6.24)	(5.43)	(6.35)	(2.73)	(5.44)	(2.80)	(5.34)	(5.98)	(2.35)	(4.60)	(4.11)	(6.02)	(5.93)	(5.95)
TDWR & NEXRAD	N/A	N/A	N/A	N/A	N/A	A/A	A/A	A/A	N/A	N/A	2.13	N/A	2.54	N/A	N/A	N/A
TDWR, NEXRAD,																
LLWAS	N/A	0.81	N/A	1.20	N/A	N/A	N/A									
TDWR & LIDAR	N/A	A/A	N/A	N/A	A/A	A/A	V/N	A/N	A/N	N/A	(0.28)	N/A	0.14	A/N	N/A	N/A
TDWR & LLWAS	N/A	1.03	N/A	1.44	N/A	N/A	N/A									
WSP & NEXRAD	(0.02)	N/A	N/A	(0.15)	N/A	N/A	(3.65)	2.43	N/A	N/A	0.48	0.60	N/A	N/A	N/A	N/A
WSP &								i								
	(2.31)	N/A	N/A	(19.2)	N/A	N/A	(69.C)	0.13	N/A	N/A	(1.98)	(1.64)	N/A	N/A	N/A	N/A
WSP & LLWAS	(1.09)	N/A	N/A	(1.24)	N/A	N/A	(4.26)	1.34	N/A	N/A	(0.95)	(0.42)	N/A	N/A	N/A	N/A
WSP, Nexrad, Lidar	(2.53)	N/A	N/A	(2.75)	N/A	N/A	(5.93)	(20.0)	N/A	N/A	(2.07)	(1.88)	N/A	N/A	N/A	N/A
WSP, NEXRAD,																
LLWAS	(1.31)	N/A	N/A	(1.48)	N/A	N/A	(4.50)	1.17	N/A	N/A	(0.80)	(0.66)	N/A	N/A	N/A	N/A
NEXRAD & LIDAR	(2.06)	(0.86)	(2.93)	(2.54)	(2.98)	(2.11)	(2.60)	0.71	(2.51)	(2.74)	1.49	(2.02)	(2.53)	(2.76)	(2.47)	(2.49)
NEXRAD & LLWAS	(0.74)	(0.0)	(0.68)	(1.10)	(0.77)	1.26	(1.10)	1.90	(0.05)	(1.41)	2.77	(0.58)	(0.45)	(0.53)	(0.28)	(0.29)
X-Band & LIDAR	(7.86)	(6.22)	(8.89)	(8.08)	(10.0)	(2.36)	(8.05)	(5.43)	(£6:7)	(8.62)	(4.70)	(7.20)	(6.73)	(8.62)	(8.58)	(8.60)
X-Band & LLLWAS	(6.60)	(5.17)	(6.82)	(6.79)	(96:9)	(3.26)	(6.75)	(4.11)	(5.89)	(7.34)	(3.47)	(5.91)	(5.41)	(6.57)	(6.53)	(6.55)
TDWR,NE XRAD,LID AR	N/A	N/A	A/N	N/A	N/A	N/A	A/N	A/N	A/N	N/A	(0.52)	N/A	(0.10)	A/N	N/A	N/A
Legacy Case (Upgrade d)	0.18	0.00	(0.44)	0.09	(0.54)	1.31	0.00	2.58	0.05	0.00	2.35	0.84	0.00	(0.28)	(0.35)	(0.32)