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The Traffic Alert and Collision Avoidance (TCAS) provides a display showing a pilot the range 
and bearing of nearby aircraft. TCAS obtains the bearing information by using an angle-of-arrival 
antenna. In the development of TCAS at Lincoln Laboratory, the first airborne tests were conducted using 
an Adcock antenna. It is a small square array of four elements. Figure 1 shows the outward appearance of 
an Adcock antenna consisting of four bare monopoles. Bare monopoles can be used on small aircraft that 
fly at relatively low speeds. For higher speed airliners, it is more appropriate to cover the four monopoles 
with a radome to reduce wind resistance and also to shorten the monopoles by top loading.  

 

Figure 1. Adcock antenna of four bare monopoles. 

The four receptions are fed to a phasing network, having two output ports. These outputs are fed 
to two receivers, which determine the phase between them. The resulting phase is used to estimate the 
angle-of-arrival of the signal being received (References 1 and 2).  

This report describes an alternative antenna for TCAS, using three elements in the shape of a 
triangle. Figure 2 illustrates the concept of the triangle antenna as compared with the Adcock antenna. 
The triangle antenna offers an advantage in angle-of-arrival accuracy as affected by receiver noise. The 
amount of improvement is estimated in this document.  
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Figure 2. Comparison between Adcock antenna and triangle antenna. 

λ = wavelength 

The main performance difference between an Adcock antenna and the triangle antenna is 
illustrated in Figure 3. For the Adcock configuration, the measured phase varies nearly linearly with 
azimuth, changing by 360 degrees as azimuth varies over 360 degrees. So the rate of change is 
approximately  

Slope = 1 radian of phase change per radian of azimuth (Adcock) . 

 
Figure 3. Measured phase as a function of azimuth for both the Adcock antenna and the triangle antenna. 
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For the triangle antenna, let A, B, and C refer to the three monopoles (beginning at the top going 
clockwise in Figure 3). Azimuth is defined as clockwise positive, beginning in the direction of A. 
Whereas the Adcock antenna has a single phase vs. azimuth characteristic, the triangle antenna has three, 
and in each curve the rate of change is substantially higher relative to the Adcock antenna. 

Maximum slope = π radians of phase change per radian of azimuth (triangle) 

This is the maximum value, but as shown below, when the three phases are used together, the 
effect is to get the benefit of the maximum slope in every azimuth direction. A higher slope is beneficial 
because an error in measured phase, which can be caused by receiver noise, translates into a smaller error 
in estimated azimuth.  

Based on the substantial improvement in slope (measured phase vs. azimuth), we might simply 
conclude that the triangle antenna has superior azimuth accuracy by a factor of π. The analysis that 
follows provides more specifics, including the fact that each of the three receivers contributes small errors 
to two of the measured phases, so the resulting measured phases are statistically correlated. The material 
that follows also shows more specifically how the three measurements of phase can be used together to 
determine the azimuth angle-of-arrival. 
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ANALYSIS 

The analysis in this document applies to receptions from a transmitter infinitely far away. Mutual 
coupling is not included in this analysis, so the different monopole receptions differ from each other only 
as a consequence of the different path lengths from the transmitter. Phase between two receptions is 
defined counterclockwise positive and negative when the second of the two monopoles is farther from the 
transmitter. For example, phase AB is negative when B is farther from the transmitter. 

The use of three phase measurements to make an estimate of azimuth is illustrated in Figure 4. 
The three phase measurements can be considered to describe a curve in the three-dimensional  
coordinate system, 

x = phase AB 
y = phase BC 
z = phase CA . 
 

As azimuth varies, the locus of points in the x,y,z coordinate system is seen in Figure 4 to be a 
closed figure like an ellipse or circle. After rotating coordinates, it is found that the locus is a perfect 
circle in the x''y'' plane. There are two rotations, as follows. The first rotation is in the xy plane, by an 
angle θ1 = π/4. Denoting the new coordinates as x',y',z', the second rotation is in the x'z' plane, by an angle 
θ2 = arctan(–√2). Putting the two rotation formulas together, the combined formulas for calculating x''  
and y'' from the measurements x,y,z are as follows: 

x'' = x cos θ1 cos θ2 + y sin θ1 cos θ2 + z sin θ2 

y'' = –x sin θ1 + y cos θ1  
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Figure 4. Use of three phase measurements to estimate azimuth. 

The xyz coordinates on the left apply to the direct phase measurements. 
The x''y''z'' coordinates on the right apply after two rotations. 

 
The locus in the x''y'' plane is a circle of radius π * √(3/2), which equals 3.848 radians. The 

discrete points in this figure are samples of azimuth over 360° evenly spaced by 10°. The even spacing 
that appears in the x''y'' plane suggests that the polar angle in the x''y'' plane can be taken as an estimate of 
azimuth, which in fact is true. Specifically, in the absence of noise, 

polar angle = arctan(x'',y'') = azimuth – π/6  , 

where polar angle is take to be zero in the plus x'' direction, counterclockwise positive. In other words, 
azimuth can be estimated by taking the polar angle in the x''y'' plane and adding  
30 degrees. 

Receiver Noise. Each of the receivers illustrated in Figure 2 will contribute noise, which will 
cause errors in the azimuth estimate. Analysis of the resulting azimuth accuracy begins by characterizing 
each receiver as adding a noise of power N to the reception. The receiver noises in different receivers are 
considered to be independent. The received signal power is denoted S, and therefore the signal-to-noise 
ratio in one receiver is S/N. 
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The analysis of receiver noise effects on azimuth accuracy is given in the Appendix. Mutual 
coupling between the monopoles is not included in the analysis. For cases of high S/N, the results are: 

mean square azimuth error = 1/(π2 S/N) triangle antenna 
  1/(S/N) Adcock antenna (linear model) . 
 

This result for the Adcock antenna applies to the perfectly linear model illustrated in Figure 3, 
which is an idealization as described below. These results show that the triangle antenna improves 
azimuth accuracy by a factor of π2 in mean square values. Expressed in dB, the improvement is 10 log(π2) 
= 9.9 dB. Expressed in root-mean-square (rms) values, the improvement is a factor of π.  

If for example S/N were 20 dB at each receiver, the rms errors attributable to receiver noise 
would be 

rms error = 0.03 radian  = 1.8°  triangle antenna 
 0.1 radian    = 5.7° Adcock antenna (linear model) . 
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ADCOCK RIPPLES 

The perfectly linear model for the Adcock antenna is serviceable for a first-order calculation, but 
it is somewhat more accurate to calculate the angle transfer function from the formulas for combining the 
four monopole receptions into two channels. The combining network is illustrated in Figure 5 (from 
Reference 1, page 85).  

 

Figure 5. Adcock antenna combining network. 

Apart from a constant phase offset associated with the interconnecting cables, the combining 
formulas are as follows:  

Σ = (A + B + C + D)/2 
∆ = [(A – C) + j(B – D)]/2 
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When these formulas are evaluated for azimuth values over a full cycle, the transfer function 
appears as shown in Figure 6.  

 

Figure 6. Transfer function of the Adcock antenna. 

The transfer function is seen to be approximately linear over a full cycle, with an offset related to 
the interconnecting cables. Superimposed on the overall linear behavior are ripples having four cycles. If 
the TCAS uses a simple linear formula to estimate azimuth, these ripples will contribute errors of about 
±8 degrees. Also, because the slope of the transfer function is not constant, the sensitivity to receiver 
noise will be degraded in the directions where slope is less. The amount of slope change caused by the 
ripples is shown in Figure 7. Although the average slope is 1, as in the linear model, the ripples cause the 
slope to depart considerably from the average. The result is that accuracy as affected by receiver noise is 
degraded by about a factor of 2 in certain directions. 
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Figure 7. Slope of the Adcock transfer function. 
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DIMENSIONS OF THE TRIANGLE ANTENNA 

As described previously, the spacing of the three monopoles is λ/2 on each side, where λ  is the 
wavelength. That size is a natural choice because the cosine functions illustrated in Figure 3 vary 
regularly between plus and minus π. But the behavior is nearly the same if the spacing is somewhat less 
than λ/2. The only difference is that the cosine functions do not quite reach plus and minus π, and so the 
slope values are somewhat less and the accuracy is somewhat less. The possibility of having the physical 
size different from λ/2 makes it possible to use the triangle antenna over a band of frequencies, provided 
that a calibration is performed at each frequency. It is also possible to make the size somewhat larger than 
λ/2. When that’s true, what was a circle in the x''y'' plane becomes distorted by folding back instead of 
expanding. That too is a possible implementation, provided that the antenna is calibrated at each 
frequency.  



 

 

11 

DIRECTIVITY AND POWER GAIN 

After the angle-of-arrival of a signal has been determined, it is then possible to combine the three 
receptions with phase adjustments to boost the total received power. Doing that provides a modest 
amount of antenna directivity in the direction of the desired signal and power gain. The resulting half-
power beamwidth is about 70 degrees, and the amount of power gain is about 4 dB.  
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SUMMARY 

Comparing the four-element Adcock antenna, which was used in the original TCAS tests, with a 
three-element triangle antenna, there is a significant performance advantage for the triangle antenna. The 
advantage calculated in this document, which applies only to the effects of receiver noise, is an 
improvement by about 10 dB. Ripples in the transfer function of the Adcock antenna contribute an 
additional error of about ±8° and also degrade the sensitivity to receiver noise in certain directions. In 
other words, the Adcock antenna is significantly more susceptible to receiver noise.  

On the other hand, the Adcock antenna has an advantage in requiring two receivers instead of 
three. The analysis given here does not include element to element coupling, and it does not include the 
effects of nearby antennas installed on the same aircraft or the tail or other parts of the aircraft that may 
degrade angle-of-arrival estimation.  

It would also be possible to use the triangle antenna configuration in a ground based installation. 
If the antenna were mounted on a modest tower or platform well above the ground, and free of nearby 
obstructions, then the main limitation to azimuth accuracy would be receiver noise, and there would be a 
very significant advantage in using a triangle antenna instead of an Adcock antenna.  
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APPENDIX 
ANALYSIS OF AZIMUTH ACCURACY 

The following analysis applies to receptions from a transmitter infinitely far away. Mutual 
coupling is not included in this analysis, so the different monopole receptions differ from each other only 
as a consequence of the different path lengths from the transmitter. Phase between two receptions is 
defined counterclockwise positive, and negative when the second of the two monopoles is farther from 
the transmitter. For example, phase AB is negative when B is farther from the transmitter. 

The use of three phase measurements to make an estimate of azimuth is illustrated in Figure 4. 
The three phase measurements can be considered to describe a curve in the three-dimensional coordinate 
system, 

x = phase AB 
y = phase BC 
z = phase CA . 

 
As azimuth varies, the locus of points in the x,y,z coordinate system is seen in Figure 4 to be a 

closed figure like an ellipse or circle. After rotating the coordinate system, it is found that the locus is a 
perfect circle in the x''y'' plane. There are two rotations, as follows. The first rotation is in the xy plane, 

x' = x cos θ1 + y sin θ1 
y' = –x sin θ1 + y cos θ1  
z' = z , 

 

where θ1 = π/4. The second rotation is in the x'z' plane, 

x'' = x' cos θ2 + z' sin θ2 
y'' = y' 
z'' = –x' sin θ2 + z' cos θ2  , 
 

where θ2 = arctan(–√2) = –0.9553 radian radian. Putting the two rotation formulas together, the combined 
formulas for calculating x'' and y'' from the measurements x,y,z are as follows: 

x'' = x cos θ1 cos θ2  + y sin θ1 cos θ2 + z sin θ2 

y'' = –x sin θ1 + y cos θ1   
 

The locus in the x'',y'' plane is a circle of radius π * √(3/2), which equals 3.848 radians. The 
discrete points in this figure are samples of azimuth over 360° evenly spaced by 10°. The even spacing 
that appears in the x''y'' plane suggests that the polar angle in the x''y'' plane can be taken as an estimate of 
azimuth, which in fact is true. Specifically, in the absence of noise, 

polar angle = arctan(x'',y'') = azimuth – π/6 , 
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where polar angle is take to be zero in the plus x direction, counterclockwise positive. In other words, 
azimuth can be estimated by taking the polar angle in the x''y'' plane and adding 30 degrees. 

Receiver Noise. Each of the receivers illustrated in Figure 2 will contribute noise, which will 
introduce errors to the azimuth estimate. Analysis of the resulting azimuth accuracy begins by 
characterizing each receiver as adding a noise of power N to the reception. The receiver noises in 
different receivers are considered to be independent. The received signal power is denoted S, and 
therefore the signal-to-noise ratio is S/N. The total reception for one receiver including both signal and 
noise is denoted r(t), 

r(t) = s(t) + n(t) , 

where s(t) is the signal, n(t) is the noise, and t is time. For simplicity, the signal is considered to be a 
simple sinewave, 

s(t) = a cos(ωt) , 

where a is the amplitude and ω is the radian frequency. Signal power S is related to amplitude a by 

signal power = S = average[s(t)]2 = a2/2 . 

The receiver noise has two components, in-phase and quadrature.  

n(t) = n1 cos(ωt) + n2  sin(ωt) , 

and these two components of noise are independent and have equal variances, σ2, 

σ2 = variance of n1 = variance of n2 . 

Noise power N is related to variance σ2 by 

noise power = N = average[n(t)]2 = σ2  . 

Therefore, the signal-to-noise ratio is related to amplitude a and noise variance σ2 by  

S/N = a2/(2 σ2) . 

Cases of high signal-to-noise ratio are interesting because they are relatively simple. When S/N is 
high, only the component of noise in quadrature with the signal causes a phase error. The resulting phase 
of r(t) will have an error of  

phase error = arctan(n2/a) ~ n2/a (radians) . 

It follows that the mean-square phase error equals 
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mean-square phase error = mean(φ2) = 1/(2 S/N) (radians2) . 

This applies to a single receiver. When a phase measurement is made between two receivers, they 
both contribute errors. 

For a triangle antenna, the azimuth estimation process begins by making three relative phase 
measurements (as shown above). 

x = phase AB 
y = phase BC 
z = phase CA 

 
These three values are rotated into x'',y'',z'' values, for which the azimuth estimate is simply  

the arctangent of (x'',y''). If the phase errors in receivers A, B, and C are denoted φA, φB, φC, then the x,y,z 
errors are 

φx = φA – φB 
φy = φB – φC 
φz = φC – φA . 

 
Note that the phase error contributed by each receiver affects two of the x,y,z values. Given that 

the three receiver phase errors are independent, their effects can be combined by summing the mean-
square contributions to each of x'' and y''. It can be shown that the sum is the same for both x'' and y''. 

mean square error of x'' = mean square error of y'' = 3 * mean(φ2) , 

where mean(φ2) is the mean square phase error in one receiver in radians. Furthermore, it can be shown 
that the errors in x'' and y'' are uncorrelated, and therefore that the total error to the point x'',y'' is an 
isotropic noise independent of azimuth. Azimuth accuracy is the same in every direction.  

If S/N is high, the errors in x'' and y'' are small relative to the radius (π √(3/2) radians). So only 
the quadrature component of x'',y'' error affects azimuth accuracy. The mean square azimuth error is 

mean square azimuth error = 3 * mean(φ2) / (radius)2 . 

It was shown above that for one receiver,  

mean(φ2) = 1/(2 S/N) . 

Therefore, the mean square azimuth error of the triangle antenna is 

mean square azimuth error = [3/(2 S/N)] / (radius)2 = 1/(π2 S/N) . 
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Adcock Accuracy. This result will be compared with the accuracy of an Adcock antenna in two 
ways. The first comparison applies to an idealized Adcock antenna, having a perfectly linear phase 
characteristic, as illustrated in Figure 3. The actual Adcock phase characteristic has some ripples, as 
shown below, which degrade accuracy somewhat relative to this simpler linear model. 

For the linear Adcock model, there are two contributions to phase error, one from each of the two 
receivers.  

mean(φ2) = 1/(2 S/N) each 

Therefore, the relative phase error is larger by a factor of 2 in mean square value. 

mean square relative phase error = 1/(S/N)  

The slope of the phase characteristic is a constant 1 (radians of azimuth per radian of phase), so 
the mean square azimuth error is 

mean square azimuth error = 1/(S/N) . 

These results show that the triangle antenna improves azimuth accuracy by a factor of π2 in mean 
square values. Expressed in dB, the improvement is 10 log(π2) = 9.9 dB. Expressed in root-mean-square 
values, the improvement is a factor of π. 
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