

Project Report
ATC-283

 CSKETCH Image Processing Library

J. Morgan

S. Troxel

21 August 2002

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Federal Aviation Administration,
Washington, D.C. 20591

This document is available to the public through

the National Technical Information Service,
Springfield, VA 22161

This document is disseminated under the sponsorship of the Department
of Transportation in the interest of information exchange. The United
States Government assumes no liability for its contents or use thereof.

Abstract

The CSKETCH image processing library is a collection of C++ classes and global functions which com-
prise a development environment for meteorological algorithms. The library is best thought of as a ‘tool-
kit’ which contains many standard mathematical and signal processing functions often employed in the
analysis of weather radar data. A tutorial-style introduction to the library is given, complete with many
examples of class and global function usage. Included is an in-depth look at the main class of the library,
the SKArray class, which is a templatized and encapsulated class for storing numerical data arrays of one,
two, or three dimensions. Following the tutorial is a complete reference for the library which describes all
publicly-available class data members and class member functions, as well as all global functions included
in the library.

...
111

1

TABLE OF CONTENTS

Abstract ...
111

1.

2.

3.

4.

5 .

6.

7.

INTRODUCTION

CSKETCH IMAGE PROCESSING LIBRARY TUTORIAL
2.1 Introduction
2.2 Class Usage Examples
2.3 Additional CSKETCH Function Packages
2.4 A Detailed Look at the SKArray Class

CLASS DESCRIPTIONS
- Class SKArray
- Class SKArrayPad
- Class SKChain
- Class SKFuncTemplate
- Class SKFuzzyFunc
- Class SKRegionInfo
- Class SKResamp
- Class SKStmResamp

ANALYTIC GEOMETRY
4.1 Summary
4.2 Conventions
4.3 Functions

ARRAY AFUTHMETIC
5.1 Summary
5.2 Functions

FUZZY SETS
6.1 Summary
6.2 Functions

IMAGE PROCESSING
7.1 Summary
7.2 Functions

1

3
3
3

11
14

25
27
43
45
49
55
57
60
63

65
65
65
65

85
85
85

99
99
99

109
109
109

V

8.

9.

10.

11.

12.

13.

TABLE OF CONTENTS i
I 1

(Continued)

GENERAL MATHEMATICAL FUNCTIONS

8.2 Functions
8.1 summary

MATHEMATICAL MORPHOLOGY

9.2 Functions
9.1 summary

MATRE OPERATIONS

10.2 Functions
10.1 summary

MISCELLANEOUS FUNCTIONS

1 1.2 Functions
11.1 summary

REGION ANALYSIS

12.2 Conventions
12.3 Functions

12.1 summary

WEATHER RADAR TOOLS
13.1 Summary
13.2 Functions

vi

I

~ I

i

I
I
!

i
I
I
I

I
i

i
I
!

I
I

I
!

i
i

!

I

I

~

i
~

j
i
i
~

i
!
i

1
I

I

i
1
i
~

i
~

I
1

I

I

~

I

I

i

i

I
I

I

!

,
I

I

117
117
117

133
133
133

143
143
143

151
151
151

159
159
159
159

169
169
169

,

1. Introduction

The CSKETCH Image Processing Library is a library consisting of C++ classes and functions which
together constitute a development environment for signal processing and weather data analysis algorithms.
The core class of the library is the SKArray class, an encapsulated array class for storing numerical data in
rectangular arrays. The data may be one, two, or three dimensional; details are handled internally and are
transparent to the user, so for example, calls to global functions have the same syntax regardless of array
dimension number and size. In addition, the class has been templatized, using C++ ‘template’ methods, to
minimize the lines of code needed for the implementation. For example, when writing a new global func-
tion, only one ‘templatized’ version need be written; the user then need only include prototypes for the ver-
sions of the function (short, double, etc.) that are explicitly needed. Also, C++ class methods have been
widely used in the SKArray class to make manipulation of SKArrays almost as easy as manipulation of
standard numerical data types (float, short, etc.) As an example, SKArrays A and B can be added and
stored in SKArruy C simply by coding C = A + B.

In addition to the SKArray class, the core of the CSKETCH library consists of a set of global functions for
operating on SKArrays. The most widely-used functionality is that of functional template correlation
(FTC), which is the main method used by various weather algorithms (MIGFA, AMDA, etc.) to identify
likely gust fronts, microbursts, etc. Besides FTC, the core functions include mathematical morphology
functions (Erosion, Dilation, Closure, and Opening, for both gray-scale and binary images). A set of stan-
dard matrix operations (singular value decomposition, LU decomposition, matrix inversion, etc.) is
included, as well as many more general-purpose signal processing operations. They are all described in
this document.

Besides the SKArruy class, a number of other helper classes are included in the library. One of the most
useful is the SKResump class which can be used to resample polar format data into Cartesian format.
There is an SKArruyPud class which can be used to create margined images, to minimize edge effects in
various signal-processing operations. The SKRegionZnfo class can be used to compile statistics (area,
approximate length, center of gravity, etc.) of various subregions within an SKArruys data buffer. All
component classes of the CSKETCH library are also described in this document.

The document begins with a tutorial-style introduction to the CSKETCH image processing library. The
tutorial begins with some simple usage examples for the major CSKETCH library classes, namely the
array class, the functional template class, the resampler class, and the region analysis class. These exam-
ples are meant to show the ease with which multidimensional numerical arrays of data can be created,
manipulated, and analyzed within the CSKETCH framework. Moreover, these examples provide quick
reference points for programmers just starting out in the CSKETCH environment. Following the class
usage examples are some examples of global function packages for the CSKETCH library. Finally, since
the SKArray class is so widely used, the tutorial concludes with an in-depth look at the inner working of
the SKArray class. This information will prove useful to the experienced CSKETCH user who is looking
to optimize algorithm performance through the most efficient manipulation of SKArruys.

The remainder of the document is a reference-style compendium of all classes and global functions in the
CSKETCH library. For small classes, any relevant global functions are described inside the class docu-
mentation. An example of such a class would be the SKChuin class which is used for encoding gust front
chains for MIGFA and the zero-crossing line for AMDA. For large classes, such as the SKArruy class, the
global functions are described later in a separate section. In addition, the global function section contains
many useful functions which don’t have an association to any of the component classes. Examples of this
type of function would be the analytic geometry functions for finding the distance between two points, and
for converting a vector from (u,v) to (range, theta) format (and vice-versa). The global functions have been

1

converting a vector from (u,v) to (range, theta) format (and vice-versa:
grouped according to general purpose, e.g. mathematical morphology,

I
i The global functions have been

nalytic geometry, fuzzy logic, etc.
I

2. CSKETCH Image Processing Library Tutorial

2.1 Introduction
The CSKETCH Image Processing Library is a collection of C++ classes and functions which together

comprise an object-oriented development environment for image-based algorithms. CSKETCH classes
include an encapulated array type useful for storing rectangular arrays (up to 3-dimensional) of numerical
data of any data type (short, float, double, etc); a functional template class for performing functional template
correlation operations; a resampler class for converting data from polar to Cartesian format, or converting
Cartesian data at one resolution to a different resolution; a ‘region’ class for computing statistics about distinct
regions of data lying inside a rectangular array of data; and more. Global functions in the library exist for
many frequently-performed image and matrix operations, such as image dilation and erosion; median filter-
ing; numerical differentiation; image statistics such as mean and standard deviation; matrix inversion; sin-
gular value decomposition and ‘LU’ decomposition for matrices; and more. Additionally the library contains
many simple functions for standard operations of analytic geometry, fuzzy set theory, basic array arithmetic,
etc.

The CSKETCH Library serves as a ‘toolkit’ for development of meteorological algorithms. A number
of Lincoln algorithms have been built in C++ atop this toolkit, in particular the Machine Intelligent Gust
Front Algorithm (MIGFA) and the Automated Microburst Detection Algorithm (AMDA). Typically an
application relies heavily on calls to the CSKETCH Library and uses class objects from the library, while
defining new classes of objects and new functions specific to that particular application. However, the same
coding style conventions have been used for application-specific software, which allows for very clean,
uniform code appearance.

2.2 Class Usage Examples
We will introduce the library via a set of code samples which illustrate the more common usages of

CSKETCH library classes and global functions. We begin by demonstrating the ease with which images
may be processed and manipulated within the CSKETCH environment, using the SKArray class.

2.2.1 SKArray Class Usage

a short program which illustrates many of the most frequently used SKArray class member functions.
The major definitions needed for using the SKArray class are found in the file skarray. h. Following is

#include cskarrayh>
void main(void)

// Create a 3-by-3 array to hold$oating-point data and set all its values to 5.0
SKArray<$oat> A(3, 3);
A. SetAllSl ice Vals To(5.0);

3

SKArray<Jloat> C = A + B;

// Create an array D which stores the same numerical data as C,
SKArray<double> D = SKToDouble(C);

//Now do a median filter of E, replacing each pixel by the 50th percentile! value
//of all pixels within the kernel centered at each pixel.
SKArray<JEoat> F = SKArrayMedianFilter(E, kernel, 0.5);

//Since E is unchanged by the median j l ter (the output array F is new and was
//created in the call to SIGlrrayMedianFilterf), we can repeat this process on
//the original data in array E. This time use the 90th percentile bf data:
SKArray<JEoat> G = SKArrayMedianFilter(E, kernel, 0.9); 1

i

//Now do gray-scale erosion and dilation of E. Again E is unchdnged by
//these operations as new output arrays are returned each time: I

i
I

I

I

SKArray< float> H = GrayScaleDilate(E, kernel); I
i
I

I

SKArray<float> I = GrayScaleErode(E, kernel);

// The operations of Closure (Dilation followed by Erosion) and ‘Opening (Erosion foldowed by
//Dilation) can be performed directly.
SKArray<JEoat> J = GrayScaleClose(E, kernel); I

SKArray<JEoat> K = Grayscaleopen(E, kernel);

// Compute the mean value and standard deviation of the data values in SKArray K:
float mean = SKArrayComputeMean(J);
float stdDev = SKArrayComputeStdDev(J);
1

I
I

I

I but in double precision:

2.2.2 SKFuncTemplate Class Usage
For users familiar with the image-processing operation known as functional template correlation

(hereafter referred to as FTC), here’s a simple example of creating anh using both single-kernel and two-
kernel (tandem) functional template objects: I

I
!

4

r

c

//First specify the kernel, function table, and orientation angles for the template:
static char *kernel[] =
{

0 0 0 0 0 0 ot:
“ 0 1 1 1 1 1 0’:
It 0 0 0 0 0 0 or:
0,

I ;

Note that a value of ‘9’ in any kernel will be replaced by ‘NIL,‘ in the call to the SKFuncTemplate
constructor. This is exactly as was done in the original SKETCH system. Note also the terminating ‘0’ in
the last row of kernel data. This ‘0’ is needed so the constructor knows where the end of data for the kernel
OCCUTS.

static char *funcTabEe[] =
{

“(0 144) (33 111) (255 l l l) “ ,
“(0 0) (26 0) (27 2) (60 200) (72 128) (255 128)‘;
0,

I ;

Again note the terminating ‘0’ above, after the last row of data in the function table.

static char *angles = “0 45 90 135” :

~ N O W create the functional template. Use the point (3,l) as the center point (rotation point) for the
//kernel.
SKFuncTemplate newTemplate(kernel, 3, 1, funelable, angles);

// Given an input image (SKArray) called inputlmage, create mask, score, and orient arrays the
//same size as inputlmage. The call to SKArray class member function ‘DupEmpty() ’ returns a
//new array, the same size as inputlmage, but with an uninitialized data block.
SKArray<short> mask = inputlmage.DupEmpty();
SKArray<short> score = inputImage.DupEmpty();
SKArray<short> orient = inputImage.DupEmpty();

//Setting mask to 1 at all pixels insures processing over every possible input pixel.
maskSetAllSliceValsTo(1):

//Perform functional template processing at every pixel (processing is not pegormed where
//the mask has value NIL, or at locations where the rotated kernel would fall off the input image
//boundary; in both cases the score and orient arrays have value NIL at that pixel).
SKFuncTemplateMatch(inputlmage, new Template, mask, score, orient):

// The array score now holds the pixel-by-pixel scores of the FTC match process, while orient holds
// the corresponding pixel-by-pixel orientation of the best match.

//Now a quick example of creating and applying a tandem (2-kernel) template.

5

static char *kernell[] =
{

9 9 9 9 9 9 9 9':
" 9 9 9 9 9 9 9 9':

9 0 0 0 0 0 0 9':
" 9 0 1 I I 109 ' :

9 0 0 0 0 0 0 9':
It 9 9 9 9 9 9 9 9':
l'9 9 9 9 9 9 9 9':
0,

I ;

static char *kernel211 =
{

I' 9 9 9 9 9 9 9 9':
'I 9 9 9 9 9 9 9 9':
" 9 9 9 9 9 9 9 9':
" 9 9 9 9 2 2 9 9':

9 9 9 9 9 9 9 9':
9 9 9 9 9 9 9 9':

,I9 9 9 9 9 9 9 9':
0,

I ;

static char *funcTable[] =
{

"(0 192) (20 112) (255 112)",
"(0 0) (48 0) (64 255) (80 255) (88 128) (255 128)':
"(0 255) (40 255) (60 0) (230 0) (240 255) (255 255)':
0,

I ;

static char *angles = "0 20 40 60 80 100 120 140 160" ;

// Create the tandem template. Use pixel (3,3) as center of rotati
SKFuncTemplate tandemTemplate(kemell, kemel2, 3, 3, funcli

// Given (equally-sized) input images inputlmagel and inputlma
//mask arrays of the same size.
SKArray<short> mask = inputImagel.DupEmpty();
SKArray<short> score= inputlmagel. DupEmpty();
SKArray<short> orient= inputlmagel .DupEmpty();

n for kemels.
!de, angles);

e2, create score, orient, and

I

//Again set the mask to I everywhere for processing at all input pixels in range.
mask SetAl IS1 ice Vals To(I); I

//Apply the tandem template. i
SKFuncTemplateMatch(imagel, image2, tmpl, mask, score, oridnt);

/ /As before, the score and orient arrays store the pixelwise match scores and orientations from the
I

I
~

6

// (tandem) FTC match process.

2.2.3 SKResamp Class Usage
One of the most frequently used processes in working with weather radar data is the conversion of

data from Polar format to Cartesian format. We now give examples of this so-called ‘resampling’ process
using the SKResamp class.

The full documentation for the SKResamp class can be found later in this document. Since our goal
in this section is to provide simple examples of CSKETCH library functionality, we will jump right in with
an example of creating a resampler and then using it to convert polar data to Cartesian data.

//Build a resampler (essentially a lookup table) for converting polar data to Cartesian.
//Assume 256 radials of data per 360 degree scan, 400 gates of data in a full polar image,
/ / a polar gate size of 250 meters, Cartesian output sizes of 100 by 100 pixels, and finally an
//xsize and ysize of 500 meters for the Cartesian output data.
SKResamp resamp(256,400, 250, IOO, IOO, 500,500);

The above resampler will be able to completely fill 100-by-100 Cartesian output arrays given the
specified polar and Cartesian data ranges (i.e. the resampler assumes 400 gates * 250 meters / gate = 100 km
of raw polar data, while the Cartesian image has extent of 100 pixels * 500 meters / pixel = 50 km in both
the x and y-dimensions). The full SKResamp class description later in this document discusses e.g. what
happens when Cartesian data is requested for locations out of range of the supplied polar data.

Now that we have the resampler built, we show how easy it is to build Cartesian data from polar input.
For this we use the member function SKResamp::Run(). Two overloaded versions of this function exist.

void SKResamp::Run(short *in[], int naz, int ngates, SKArray<short>& out)
void SKResamp::Run(SKArray<$oat>& in, SKArray<$oat>& out)

The first version of SKResamp::Run() takes the input data in a very simple form, namely an array of
pointers to (radials of) data. The radials are assumed to be laid out in order, e.g. in[O] represents the first
radial of data (0 azimuth), in[I] represents the next radial of data, etc. This is intended to make it as simple
as possible for other applications to take raw input data and resample it to Cartesian format. The output
Cartesian array out is filled using the lookup table which was generated by the SKResamp constructor call.

//Example of usage ofJirst fonn of ‘Run() ’ with the resampler object created above.
SKArray<short> cartesianImage(100,100);
short *radials{ 256 I ; //pointers for the input radials of polar data

//After the ‘radials’ pointers have beenJilled e.g. by realtime read of radar data.
resamp. Run(radials, 256, 400, cartesianlmage);

The second form of ‘Run’ is provided as a convenience to applications programmers and is generally
intended for applications other than raw input (although it can also be used for that purpose). This version

7

takes an SKArray object representing a fully initialized polar input array! and resamples to an output SKArray
object representing an output Cartesian array. This version is very usehl, for example, when one performs
a functional template correlation process over a polar image and then widhes to convert the results to Cartesian
format. It would be inconvenient in this case to store the polar data /as an array of radial pointers, as is
required for the first version of ‘Run()’. I

I

//Example of usage of second form of ‘Run()’ with the resampleb object created above.
SKArray<short> polarImage(256,400);
SKArray<short> cartesianImage(100, IO0);

//After the ‘polarlmage’has been filled:

i
j
I

resamp. Run(polarlmage, cartesianlmage); I

Of course, for the second version of ‘Run()’ to work con-ectly, the parameters (e.g. number of azimuths,
number of gates, gate size, etc.) of the polarlmage must be consistent; with the values which were used in

I
I creating the SkXesamp object, resamp.

2.2.4 SKRegion Class Usage I

I

i

Our final section of CSKETCH class usage examples focusse
related SKRegion structure. These structures are useful for analyzing
dimensional) SKArray. A ‘region’ inside an SKArray is defined to b
inside that array. For example, the set of all pixels with value 1 fom
pixels with value 2 form region 2 of the image, etc. The region need not

char *arrayData[] =
{
“ 0 I 0 0 0’;
” 0 0 0 0 I It,

,IO 0 0 0 0’:
’’ 0 2 2 2 ot:
I’ 0 2 2 0 2‘:
0.
I ;

then the set of all pixels with value 1 form a valid region even t
The pixels with value 2 form a (connected) region. The pixels with va
‘dataless’ pixels and region statistics will not be computed for those pix
will store various attributes (length, area, etc.) of a distinct region insi

For most applications the regions of interest will be be ‘8-connc
region touches the region on at least one of its 8 pixel neighbors. The c
clear after a few simple examples.

Consider a 2-dimensional SKArray whose data buffer has the Vi

8

on the SKRegionInjb class and the
various regions of data within a (2-
a collection of samevalued pixels

region 1 of the image, the set of all
le connected, e.g. if the image data is

ough the pixels are riot all adjacent.
ue 0 are considered ‘background’ or
Is. In general the SKRegion structure
e of an %Array.

:ted’, that is, each pixel in a distinct
:finition of 8-connected will become

lues:

char *arrayDatal[] =

” I 0 1 0 0 0 0 2 r :
” I I I I 1002 ‘ :
“ 0 1 oooIo2’ :
” I IO001 02’:
‘ I O 0 0 0 0 0 02’:
, IO 0 0 0 0 2 2 2’:
“ 0 0 0 0 0 2 2 2‘:
“ 0 0 0 2 2 2 2 2’:
0,

I ;

SKArray<short> A(arrayData1);

The set of all pixels with value ‘1’ in the above array A consitute a distinct %connected region in this
array (as any pixel with value 1 touches at least one other pixel with value 1 among its 8 horizontal, vertical,
and diagonal neighbors). Similarly, the set of all pixels with value ‘2’ consitute a distinct 8-connected region.
The set of all pixels with value 0 is not considered a valid region; the CSKETCH region analysis code
reserves the value 0 for ‘background’ pixels which are not of general interest.

Given this simple input array, we illustrate several of the region analysis utilities for studying the
various regions in the array. There are a number of interesting parameters of a region which one may wish
to study (e.g. area, approximate length, centroid, coordinates of a ‘bounding box’ of a region, etc.) All of
the region statistics contained in the SKRegion structure are computed simultaneously for all regions in an
SKArray by function SKRegionSummary():

// Compute statistics for all regions in an SKArray A. The call to SKRegionSummary() returns a
//pointer to an SKRegionlnfo object which in turn contains an array of SKRegion structures
//(one for each distinct region in the (short integer) input array A).
SKRegionlnfo *regionInfo = SKRegionSummary(A);

Note that the input array to SKRegionSummary() must be of type short integer. Since there were 2
distinct regions inside array A, the returned SKRegionlnfo object will contain an array of 2 SKRegion struc-
tures. The various region attributes for regions 1 and 2 can then be directly read from the SKRegionlnfo array:

//Get the area of region 1 (number of pixels in the array with value I) :
int area=regionlnfo->region[l]. area;

// Get the x-coordinate of the center of gravity of region 2:
float x=regionInfo- > region[2].xCenterGravity;

// Get the ‘length’ of region I (the length is taken to be the length of an approximating rectangle).
// The approximating rectangle is found by a least-squares process.
float 1 ength = reg ionlnfo- > region[I]. length:

// The coordinates of a ‘bounding box’for a region can be accessedfrom:

9

I

int xmin=regionInfo->region[l].xmin; int xmax=regionInfo->region[l].icmax;
int ymin= region~nfo-> region[I 1.ymin; int ymax= region~nfo- > regionr~ I. ymax;

For a full list of the statistics computed and stored by the call to SkRegionSummary(), see $e descrip-
tion for the SKRegionInfo class later in this document.

I
1
I

As a second example, consider a 2-dimensional SKArray whose data buffer has the vallues:

char *arrayData2[] =

"I 0 I 0 1':
"I 0 I 0 I I;

"I 0 I 0 I If,

"I 0 I 0 I I ;

"I 0 I 0 I I;

0,
I ;

SKArray<short> B(arrayData2);

In this array, the set of all pixels with value '1' does not constiti
example, all the pixels in the 3rd column are isolated from all the
applications, we may not care whether a region is connected or not. 0
to be separate if they are not connected. For this reason, the function
a short integer input SKArray B, SKLabelRegions() returns a 'labelled'
which has distinct connected regions identified by a distinct integer. T
For instance, using the array B from above, if we create a new short in

SKArray<short> labelled = SKLubelRegions(B);

then the output array labeEled will look like:

re a distinct 8-connected region; for
>ixels in the 1st colnmn. For some
her applications do consider regions
KLabelRegions() is provided. Given
version of the array, ie. a new array
ie original input array is unchanged.
.eger SK4rray called labelled via:

10203
I0203
I0203
10203
10203

That is, the 3 distinct connected regions of array B are actually given unique tags in the output array
labelled. Again the original input array B is unchanged. If we now call SKRegion,Summary() with the labelled
array as input, we will get back an SKRegionZnfo object containing an array of 3 SKRegion structures, cee
for each region labelled 1 through 3. By contrast, if we call SKRegion!!ummary() with the original array B
as input, we will only have 1 SKRegion structure contained in the outpbt SKRe2:ionZnfo object (for the non-
connected region consisting of all pixels with value 1). Again, recall fhat the :set of pixels with value 0 is
considered 'background' or uninteresting values, so statistics for the set of)pixels with value 0 are not
computed by SKRegionSummary().

I

I
1
I

I
I

I

10

It’s worth pointing out here that SKLubeZRegions() takes an input array and returns a new array where
distinct, 8-connected regions are given their own labels. Two pixels belonging to the same region will have
the same label in the output array even if they had different values in the input array. For example, consider
the array C with data array:

char *arrayData3[] =
{

”I 0 6 0 5‘:
‘I2 0 7 0 4’:
“3 0 8 0 3’:
“4 0 9 0 2 If,
“5 0 1 0 I If,
0,

I:

SKArray<short> C(arrayData3);

Again, the first, third, and fifth columns of this array correspond to distinct, 8-connected regions of
nonzero data. Thus, the labelled output resulting from a call to SKLabeZRegions() will again look like:

I 0 2 0 3
I 0 2 0 3
1 0 2 0 3
I 0 2 0 3
I 0 2 0 3

The CSJCETCH library tutorial now continues with descriptions and examples of some of the library’s
more commonly used global functions.

2.3 Additional CSKETCH Function Packages
CSKETCH library and class member functions are largely grouped into ‘packages’ of related func-

tions. Such packages include, but are not limited to, analytic geometry functions; image processing functions;
‘fuzzy’ weighting functions; 2-dimensional matrix functions; and basic mathematical functions. Example
usage for a number of the image processing functions (e.g. GrayScaZeErode(), GrayScaZeDiZate(), SKMedi-
anFiZterf), etc.) was shown in the first code sample in this document. In order to give a bit more more of the
flavor of the CSJCETCH library as a development environment for C++ applications, we will give some
examples of the analytic geometry and basic array arithmetic ‘packages’. The full set of all CSKETCH
class member and global functions are described later in this document.

11

2.3.1 Analytic Geometry Functions

i.e. if we take an angle and measure it both in the mathematical &d metelorological conventions, and
then add the results, the sum will always come out to 90 degrees (modulo 360, of course).

I
I

As mentioned earlier, the CSKETCH library provides support for both of these measuring schemes
via the enumerated type I

i
enum SKAngle Convention { SK-MATH-CONVENTION, SK-METEO.-CONVENTION };

in cases where the angle measuring scheme makes a difference. In cases where the angle scheme
makes no difference (e.g. when computing the distance between 2 points, a lask performed by function
SKDistanceBetween()) the support is not needed and one need not specify an angle measurement scheme.
For example:

~

I
I

float distance = SKDistanceBetween(p l , p2);

1
I

12

needs no argument of type SKAngleConvention. Of course, the value of distance given the two points
p l and p 2 from above will be 1.0 regardless of the scheme we are using for measuring angles.

A very typical problem in meteorological applications is, given two angles, find the difference between
them in the vector sense. For example, a vector of 0 degrees (i.e. north) and a vector of 3 15 degrees (northwest)
have an angle of 45 degrees between them. The function SKAngleDifference() is provided to compute this
vector angle difference:

float difference = SKAngleDifference(315.0, 0.0);
// The value of ‘difference’ is rww 45.0.

diference = SKAngleDifference(185.0, 0.0);
// The value of ‘difference’ is now 175.0.

In some applications, two directions are known but one (or both) may be 180 degrees ambiguous. For
such cases, the function SKAnglel80Difference() is provided. This function considers both interpretations
of both angle measurements and returns the smallest possible difference between the angles. For instance,
if an angle measurement of 0 degrees is ambiguous, it could have value 0 or 180. Likewise a measurement
of 100 could be 100 or 280 degrees. If we know the measurements to be unambiguous, we would use function
SKAngleDifference() to compute their difference; if the measurements are ambiguous, we use
SKAnglel80Difference():

float difference = SKAngleDifference(180.0, 0.0);
// The value of ‘difference’ is now 180.0.

diference = SKAnglel80Difference(180.0, 0.0)
// The value of ‘difference’ is rww 0.0; the minimum difference occurs when the ambiguous 180.0
// is treated as 0 and the ambiguous 0 is treated as 0.

The full set of analytic geometry functions, including all overloaded versions of these functions, is
described later in this document.

2.3.2 Functions for Basic Array Arithmetic
There are many functions available in the CSKETCH library for performing basic array operations

on SKArrays. Most of these are encoded as global operators; some are SKArray class member operators.
Regardless of implementation, usage is straightforward and we illustrate some of these operators here.

//First create 2 3-by3 arrays A and B; set all values in A to 3.1 and all values in B to 5.9:
//(the concept of ‘slice’ of an SKArray will be discussed in the next section).
SKArray<fEoat> A(3,3);
SKArray<float> B(3 , 3);
A.SetAllSliceValsTo(3. I) ;
B.SetAllSliceValsTo(5.9);

13

// elementwise product of A and B:
SKArray<foat> C = A + B;

There are overloaded versions of operators +, -, and * to add, subtract, or multiply all elements of an
array by a single scalar. All elements can also be divided by a single s4alar using operator L

I

SKArray<.oat> F = A + @oat) 1.3; / /Al l elements in F have vilue 4.4.
SKArray<Jloat> G = A - (’oat) 1.3 / /A l l elements in G have value 1.8.
SkXrray<$oat> H = A * @at) 1.3; / /Al l elements in H have value 4.03.
SKArray<Jloat> I = A /@oat) 1.3; / /Al l elements in I have vahe 2.38461154.

There are also a full set of assignment operators for SKArrays (4, +=, -=, *=, and /=). The full list of
I

such operators and global functions for SKArray manipulation is given later in this document.
i
I

We now turn to the final section of this tutorial-style introduction ‘to the CSKETCH image processing
library -- an in-depth look at the SKArray class.

2.4 A Detailed look at the SKArray class

!

I
i

Since the SKArray class is by far the most widely-used class & the CSKETCH image processing
library, the tutorial section of this document continues with an in-dedth examination of this class. While
some of this information may not be strictly needed by the casual user, fhis section provides details on many
of the ‘inner workings’ of the class and can be useful e.g. in optimizing memory and computational perfor-
mance for the class. It also allows for a much better understanding of what occurs ‘behind the scenes’ when
manipulating SKArray objects. I

i
The in-depth look at the SKArray class begins with a few notes /on the layout of the associated data

array of an SKArray object. This is followed by a discussion of the concept of ‘nil’ or ‘missing’ data values.
With this background, we then delve into examples of the many types t$f constructors which can be used to
create SKArrays. Next, we give some examples of class member usage: Then we turn to the inner workings
of the class and discuss the topic of data block ownership for SKArray$, as well as the concept of ‘deep’ vs.
‘shallow’ copies, and how that concept applies to SKArrays. Given that background, we continue with a
discussion of the many types of ‘copy’ operations provided for SKArrays. Finally, we introduce the concept
of a ‘slice’ or ‘data view’ of an SKArray, and differentiate ‘parent’ vs. ‘burrent’ slice of an S1Urray. The in-
depth look at the SKArray class then concludes with a discussion of the cleation and manipulation of ‘padded’
SKArrays, which are made possible via manipulation of distinct pareni and current slices of an SKArray.

-

I

I I
14

2.4.1 SKArray Class Overview
The SKArray class is the most widely-used class in the CSKETCH image processing library. The

class is an ‘encapsulated’ array class for storing rectangular arrays of numerical data. The class has been
templatized using C++ template capabilities, so the associated data array of an SKArray object can store
any type of numerical data (short, int, float, double). Data arrays can be 1,2, or 3-dimensional. In addition
to the numeric data, the SKArray object contains information about the data, such as a time stamp, latitude
and longitude location of the data, orientation of the data relative to a radar, etc. See the SKArray class
description in the reference section of this document for a full listing of the class member variables and
member functions.

2.4.2 SKArray Data Layout
The numerical data array of an SKArray is considered to be stored in a ‘bottom-up’ format; that is,

the lower left comer of the array is considered to be the origin of the data. In image space this origin pixel
has coordinates (x, y) = (0, 0). Row indices increase in the positive ‘y’ direction, e.g. the first row has y-
coordinate 0, the second has y-coordinate 1, etc. This is in opposition to the LISP-based SKETCH system
which has a ‘top-down’ format (origin at upper left pixel, row indices increasing in the ‘downwards’ y-
direction). The ‘bottom-up’ format was chosen since it is the most common data format used in Lincoln
meteorological algorithms.

2.4.3 Concept of ‘nil’ or ‘missing’ data values
The CSKETCH image processing library (and hence the SKArray class) supports the concept of

‘missing’ or ‘bad’ values. Referred to as ‘nil’ values, these missing values are set equal to a special value.
Numerically, this key value is the most negative valid number for the type of the numerical data stored by
the SKArray object. For instance, ‘nil’ for an SKArray of type float is the most negative valid floating-point
number, ‘nil’ for an SKArray of type short is the most negative valid short integer, etc. Typically, ‘nil’ values
are ignored in computations, or the presence of a ‘nil’ term in a mathematical expression renders the whole
term ‘nil’ (for instance, the difference or sum or product of any valid number with a ‘nil’ is ‘nil’). In functional
template correlation (FTC) processes, ‘nil’ values of the input are ignored, i.e. they contribute nothing to the
output FTC results. Also, for FTC purposes, ‘nil’ values in the processing mask indicate that no FTC matching
should occur at that location.

For coding purposes, the value of nil for a given array type can be accessed either directly from the
class definition or from a particular instance of the class:

//Access value of joating-point ‘nil’ via the class dejinition:
jloat floatNil = SKArray<jloat>::SK-NIL;

//Access value ofjloating-point ‘nil ’ via a particular joa t SKArray:
SKArray <$oat> jloatA rray;
jloat joatNil = JloatArray. SK-NIL;

Either of these methods should be used whenever the numerical value of ‘nil’ is needed, rather than
hardcoding the value. This allows for much easier porting to machines with different storage formats for
float, double, etc. data.

15

2.4.4 Constructor Examples

16

I
I

2.4.4.1 Constructing arrays using the default constructor.
I

//Construct a jbating-point SKArray of size 20 by 30 (and default z size of I)
SKArray<float>JEoatArrayl(20, 30);

// Construct anotherJEoat array, same size as ‘jIoatArray1’
SKArray<JEoat> JEoatArray2(JEoatArrayl);

2.4.4.4 Constructing arrays using character data.
For construction using character data, strings of ‘nil’ in the input char data will automatically be

converted to the correct numerical value of ‘nil’ for the desired type of data. Layout of the data array matches
the character representation; for example, if an array is created using the character data below, then after
initialization the pixel at (x, y) = (0,O) has value 2, the pixel at (x, y) = (0,l) has value 4, the pixel at (2,2)
has value ‘nil’, etc.

char *arrayData =
{
“3 nil nil”,
“4 -6 6’:
‘I2 -3 7’;

1;
0, //Terminator

//Create a 3-by-3 array with short data. Strings of ‘nil’ automatically replaced
//with SKArray<short>::SK-NIL+
SKArray<short> shortArray(arrayData);

// Create a 3-by-3 array, same values as ‘shortArray ’, but withjoat data.
//Strings of ‘nil’ automatically replaced with SKArray<Jloat>::SK-NIL
SKArray <.oat> $oatArray(arrayData);

2.4.5 Simple Member Function Examples
The tutorial continues with some simple examples of member function usage. These examples are

merely meant to demonstrate the syntax for C++ class member function calls. More complex examples will
require further description of the inner workings of the SKArray class, which follows later.

//First construct a 3-by-3 SKArray with short data, using the character data
// ‘arrayData’ used in previous examples.
SKArray<short> shortArray(arrayData);

//Absolute value member function replaces all data elements of shortArray with
//their absolute values. Nil values are unchanged by the absolute value member
//function. Note member function calling syntax is similar to the syntax used for
//accessing structure data variables in C structures.
shortA rray.Abs();

17

// ‘Binarize’ member function; values greater than or equal to ti
//threshold are set to I ; lesser values are set to 0. Nil elements
//also by this operation.
shortArray.Binarize((short) 3);

//Note in the above example that the literal constant ‘3 ’ must bc
//of the array for which ‘Binarize’ is being called. I f the value ’

//some variable of type short, the cast would not be needed:
short threshold = 3;
shortArray. Binarize(threshold);

2.4.6 Data Block Ownership
Before continuing with the next set of examples, it will be usej

block ownership within the SKArray class. This will make the example;
‘Copy’ operations more meaningful. It will also provide insight into C.

When a new SKArray object is created, it does not necessarily
of this is afforded by the assignment operator ‘=’:

// This array, built by a constructol; owns its own data block.
SKArray<int> intArrayl(IO, IO);

// This array, initialized by the assignment operatol; does not 01
SKArray<int> intArray2 = intArray1;

The SKArray assignment operator creates a new SKArray object
initialized to those of the right-hand side array (intArrayl in this case). H
is in fact set equal to that of intArray1; they both point to the same data b
operator is a ‘shallow’ copy operator. That is, only the basic structur
allocated memory within the right-hand side array.

Since both arrays point to the same block of data, we must be C~

only one (but not both) of the arrays which reference this block are de
accomplished via an internal counter for the data block structure; the d:
to it are being made, and the block will only actually be freed by the S,
ray() when this count hits zero (e.g. no SKArrays are currently refc
transparent to the user, who need not keep track of this information; hox
mechanism is useful in the examples that follow later.

One important effect of this ‘sharing’ of data blocks means tha
also change the corresponding entries in intArrayl (since these entries a
If one wishes to modify a copy of intArrayl without changing the da

I

i e supp1it.d
ill be ser to 0

cast to the type
I’ were stored in

11 to understand the c:oncept of data
of assignment operators and various
+ destructors for those new to C++.

wn its own data block. An example

rl its own block.

Nhose various member variables are
bwever, tlhe data pointer for intArray2
ick. In C++ parlance, the assignment
itself is copied, not any additional

reful not to destroy the data block if
royed (e:.g. go out of scope). This is
a block lrnows how nlany references
Array destructor, SK4rray::-SKAr-
-encing the block). This is entirely
Ever knowledge of the block-sharing

editing lintArray2’s data values will
?in fact the same memory locations).
L values of intArray2, a ‘deep’ copy

I
j

i
i I

18 I

I
I
I I

operation should be employed, rather than a ‘shallow’ copy operator. Deep copy methods are discussed in
the next section.

2.4.7 ‘Deep’ vs. ‘Shallow’ copies

a shallow copy means a structure copy only; no duplicate data block is created.
The concept of a ‘shallow’ copy was described in the preceding section. Again, for an SKArray object,

A copy operation in which not only the structure is copied, but also any additional allocated data, is
called a ‘deep’ copy operation. In the case of SKArray objects, this means a new SKArray object is created
and assigned to, and the copy array also gets its own data block. The data block of the copy array is initialized
from that of the source array in a deep copy operation. Examples of both types of copies follow in the next
section. For now, it’s worth repeating’that one should always create a ‘deep’ copy of an array when one
wishes to edit a copy of an array without modifying the original; since the deep copy has its own data block,
one can edit its data values without editing the data of the original ‘source’ array. However, if one does not
need to keep the original data array unedited, a shallow copy is better since it is more efficient (there is no
need to allocate a large block of memory for the new array, and there is also no need to copy a potentially
large amount of numerical data into the new array’s data buffer).

2.4.8 Copy Operations
This section describes some methods of making shallow and deep copies of an SKArray. Again, deep

copies can be edited without changing the data of the source array; however, deep copies require more system
overhead since a new data block must be allocated and the data values of the copy must be initialized from
the source array. For efficiency, use shallow copies when the copy’s data values need not be changed; however
use a deep copy when the data values must be modified.

We begin with some examples of shallow copies.

As mentioned earlier, the assignment operator = is a shallow copy operation:

//Both shortArray1 and shortArray2 share a common data block.
SKArraycshort> shortArray2 = shortArray1;

The copy constructor is also a shallow copy operation:

//First declare a IO-by-I 0 integer array. This array owns its own data block.
SKArrayc int > intArrayl(IO, 10);

//Declare a new int array via the copy constructor; all of intArray2 ’s member
//variables are initialized using ffom the corresponding values of intArrayl.
//Both arrays share a common data block.
SKArrayc int > intArray2(intArrayl);

19

1
I
I

~

I
I

The DeepenShallowCopy() example was provided just to show Gow a shadlow copy can be made into
a deep copy. In general, however, a user will know up front when a copy array should own its own data, and
a deep copy should be created in one step using one of several available methods.

I
I

The most common way of creating a deep copy is to use the ‘DkepCopy’ member function.

//Create a new, IO-by-IO short array which owns its own data $lock:

I
I

SKArray<short:, shortArrayl(IO, IO); I
~

j

// Create another short array of the same size as shortArray1; tqe new array
//will own its own data block, and the new array’s data will be initialized using

SKArrayahort:, shortArray2;
shortArray2. Deepcopy(shortArray1);

// shortArray1 s data block:
I
I

I
\

~ Sometimes one wants a new array which is the same size as some existing array, but whose values
need not be initialized to those of the source array. The DupEmpty() member fuction creates a new may
such that: j

(1) All member variables of the new array are set equal to those of the source array, as in a shallow
I copy; and I I

I
I

(2) The new array owns its own data block, which is the same sin$ as that of the source array; however
the data values are not copied from the source array. I

I
I

20

! 1

I

! I

The DupEmpty() operation saves the overhead of initializing the data values using the source’s data-
values; this can be a useful speedup if the source array is large and if new arrays of the same size as the
original SKArray, but with different data values, are frequently needed. Use DupEmpty() if you need an
array, the same size as an existing array, but whose data values will be completely different from those of
the source array.

// Create a new IO-by-IO short array by performing a ‘DupEmpty ’, using
// ‘shortArray1’ as source array. The new array owns its own data, but the data
//buffer’s values are not copiedfrom the source array.
SKA rray<short> shortArray3;
shortArray3.DupEmpty(shortArray1);

A final deep copy example will be provided for the case of performing a deep copy with a pad. This
will be discussed in a later section.

2.4.9 Current vs. Parent Slice
In order to support the concepts of (1) ‘subimages’ within an image and (2) padded arrays, the SKArray

class includes structures for describing 2 different ‘slices’ or ‘views’ of an array. The ‘parent’ member
variable describes the actual, full block of memory allocated for an SKArray’s data buffer. The ‘slice-’
member variable describes the ‘current’ view of the array; this latter slice is the one used by all CSKETCH
library signal processing operations, member functions, etc. unless it is explicitly stated otherwise.

The current ‘slice’ of the array is specified by the origin, the size, and the steps of the slice. The origin
of the slice is simply the (x, y) coordinates of the lower left comer of the slice; the size specifies the size in
each dimension. The ‘steps’ of the slice allow for ‘subsampling’ of the parent image; for example, if the x-
step and y-step of the slice are equal to two, then the current slice effectively ‘subsamples’ the parent slice
by taking only every second pixel in both the x- and y-directions. In most applications, the steps will all
equal one, which corresponds to taking a full, contiguous piece of the parent image as a subimage.

This section continues with examples of manipulating SKArrays via various ‘Slice()’ functions; we
then move on to a typical application of parent vs. current slices, namely ‘padded’ arrays.

2.4.10 Manipulation of SKArrays via the ‘Slice’
//First create a j o a t SKArray, size I O by 10. At time of creation of this particular
//array, the parent slice and the current slice are in fact the same.
SKArray<float> joatArray(IO, 10);

We will manipulate various different slices of the array using different overloaded versions of the
SKArray member function ‘Slice()’. The first version of this function slices the array in a single specified
dimension only; it takes the dimension and the size, origin, and step in that dimension as arguments. The
other dimensions are left unaffected, e.g. the slice contains the full size and all data in the non-specified
dimensions.

21

//Set the current slice to be just the first column of data of the&
// This is a slice in the x-direction of size 1, origin 0, and step 1:
SKArray<Jloat>firstColumn = JloatArray.Slice(SK-X, 1, 0, 1)

Again, this slice contains the full data of the original array in thc

We can use this slice to set all the elements in the first column o

floatA rray. SetAllSlice ValsTo(3.0);

As mentioned above, the member function SetAllSliceValsTo()
array, not the full parent slice.

//Now set the current slice to be just the last row offiatArray.
//the y-dimension of size 1, origin 9, and step 1. The slice coni
//extent of data in the x-dimension.
SKArray<Jloat> 1astRow =JloatArray.Slice(SK-X I, 9, 1);

We could now set all values in the last row of floatArray to a fix
we did just above for the first column.

A few final examples of the first version of ‘Slice()’:

//First 2 columns of data:
SKArray<Jloat> subarrayl = jbatArray.Slice(SK-X, 2, 0, 1);

//4th, 5th, and 6th rows of data:
SKArray<Jloat) subarray2 =fiatArray.Slice(SK-I: 3, 4, 1);

//First row of data, but subsampled so only every 3rd pixel is st

SKArray<Jloat> subarray3 = JoatArray.Slice(SK-I: 1, 0, 3);

The second version of the ‘Slice()’ SKArray class member functic
and step in each of the x, y, and z dimensions. The size, origin, and step ’
additional arguments are the size, origin, and step for the y and z dime]
arguments default to values which will return the full extent of data iI
this means that if want to specify non-default values for the z dimension
for the y-dimension, even if we want to keep all of the data in the y di

22

!
! array. I

,
y dimension.

floatArray to the value 3.0:

)perates on the current slice of the

%is is a slice in
ins thejCull

i valu

n .*

,using SetAllSlicevalsTo() as

1 allows for selection of size, origin,
tr the x-dimension must be supplied;
ions and are optional. The optional
the y and z dimensions. Of course,
we must also first supply parameters
iension.

//Now set the current slice to be the lower left quadrant of the parent slice; the
//slice starts at (0, 0), extends to (4,4), and contains all pixels in the lower left
//quadrant since the steps are equal to I :
SKArray<Jloat> subarray4 =JloatArray.Slice(4, 0, 1, 4, 0, I);

//Take a subarray which is the first 4 columns of data.
SKArray-$oat> subarray5 =JloatArray.Slice(4. 0, I);

Note that the above slice is equivalent to

SKArray<float> subarray5 = $oatArray.Slice(SK-X, 4, 0, 1);

(using the first verison of the slice function).

2.4.11 Constructing ‘padded’ arrays
Sometimes it is desired to create an array which is really a ‘subarray’ of a larger array. The extra space

around the subarray is referred to as ‘padding’. The CSKETCH library supports this operation using the
SKArrayPad class. The SKArrayPad class allows for the specification of padding sizes (x, y, and z pad
dimensions, with default pad sizes of 0 for each dimension). The pad class also allows for a number of
different methods of initializing the padding around the subarray. One example of a filling operation is
‘PAD-MIRROR which fills the padding in via the ‘mirroring’ operation from the LISP-based SKETCH
system. Another filling operation, which is useful for padding polar arrays, is the
‘WRAP-AZ-MIRROR-R’ operation which wraps polar data in the azimuthal direction and mirrors polar
data in the radial direction. Yet another pad operation is ‘PADJILL‘ which simply fills in all pad pixels
with a supplied fill value. The fill value must be specified in the pad constructor regardless of the fill method
chosen, but the fill value will be ignored if a padding operation other than PAD-FILL is selected.

We now give some examples of constructing padded arrays. See documentation of the SKArrayPad
class for the full description of the padding class.

// Create a pad for afzoat SKArray. The pad is of size 3 by 5 (and default size 0 in the z-dimension).
// The pad is to be filled in via the PAD-MIRROR method (hence the padFill value of 0 is ignored).
SKArrayPad<Jloat> pad(PAD-MIRROR, 0,3, 5);

//Now create a padded array using the prescribed pad. The ‘slice’ of the array
//created will be of size 20 by 30. The parent slice will be of size 26 by 40 (20 by
// 30 plus a pad of 3 on each side, and a pad of 5 on the top and the bottom). The
//pad will be filled in via the ‘mirroring’ operation when “PadFill” is called.
SKArray<Jloat> paddedArray(pad, 20, 30);

//Initialize data in the subarray by other means, e.g ‘CopyFrom()’ member function.

//Now fill in the pad via the mirroring operation.

padde&rray. PadFill();

23

3. Class Descriptions

Description of the CSKETCH library classes begins on the following page.

,
L

25

3

class SKArray

Name

Synopsis

Hierarchy

Description

Example

Constants

Component
Structures

class SKArray

#include cskarray. h>

WxBase- > WxDisplayable- SKArray

The SKArray class is the most widely-used class in the CSKETCH image pro-
cessing library. The class is an 'encapsulated' array class for storing rectangular
arrays'of numerical data. The class has been templatized using C++ template
capabilities, so'the associated data array of an SKArray object can store any type
of character or numerical data (char, short, int, float, double). Data arrays can be
1,2, or 3-dimensional. In addition to the numeric data, the SKArray object con-
tains information about the data, such as a time stamp, latitude / longitude loca-
tion of the data, orientation of the data relative to a radar, etc.

The SKArray class inherits publicly from class WxDisplayable, which in turn
'inherits publicly from class WxBase.

See the SKArray Class Tutorial for extensive examples of member and global
functions, operators, constructors, etc.

const int SKARR-MAX-DIM = 3;
const int SKARR-MAX-NAME-LEN = 64; / /Max length of name.

/ /Maw number of dimensions.

struct SKA rrayLayout
{
int size[SKARR-MAX-DIM] ;
int origin[SKARR-MAX-DIM] ;
int step[SKA RR-MAX-DIM] ;
int stride[SKARR-MAX-DIM] ;

I ;

struct SKCoordI
{

I ;
int x, y, z;

// Aliases for the above 'point' structures.
typedef SKCoordI SKPointI ;
typedef SKCoordF SKPointF ;

27

Enumerations

struct SKImageInfo

char name[SKARRMAXNAMELEN];
char ~U~~C~~S~[SKARR-MAX-NAME-LEI~];

struct SKRefLoc
{
SKCoordI arrayPos;
SKCoordF worldPos;

1;

//Image Name (e.g. DBDZ)
//Image Data Class (DZ, V ...)

class SKArray I

Finally each SKArray contains as a member Gariable (an instance ofthe
SKArrayPad class to encode padding infondtion (if m y padding ,is desired) for
the given SKArray. Consult documentation f4r class !XXrrayPdwfor detailed
description of supported padding operations. '
enum SKType { SK-CHAR, SK-SHORT SK-INT SK-FLOAT, SK-.DOUBLE };
This enumeration is used for dynamic identifikation of' the templatized SKETCH
array types. I

I

enum S K P ~ ~ O ~ PAD-NOE PAD-FILL, PAD-MIRROR,
PAD-WRAP-AZ-MIRROR-R, PAD-WRAP-POLAR] ;
This enumeration is used to identify the me9ods used in filling in the padding
(or margin) for padded arrays. Padded arrays/are sometimes needed tq deal with
edge effects in the image processing code). S,ee documentation for the helper
class SKArrayPad for a full description.

enum SKCoordSys { SK-CARTESLAN, S K - P h R };
This enumeration is used to indicate whether an array is storing Cartesian or
Polar data.

1
I

I

I
I
~

28

class SKArray

enum SKDim { SK-X, SK-I: SK-Z) ;
Simple type to indicate x, y, or z-dimension. For example, the function call
‘array.Size(SK-2)’ returns the z-size of array.

Constructors SKArray<T> SKArray();
Default constructor. Array will have x,y,z sizes = (l , l , 1). Data array (of only one
element) is not initialized.

SKArray<T> SKArray(int xSize, int ySize = I , int zSize = I);
Create an SKArray with supplied x, y, and z sizes. Default sizes are 1 in each
dimension. Associated data array will store numerical data of type T Data array
is not initialized.

SKArray<T> SKArray(const SKArray& sourceArray);
Copy constructor. All member variables (size, number of dimensions, numerical
data type (float, short, etc.)) are copied from sourceArray. The new array’s data
buffer has the same size as the sourceArrq. Data values are also copied from
SourceArray’s data buffer.

SKArray<T> SKArray(SKArrayPad<T>& pad, int xSize, int ySize = I ,

Create an SKArray with padding as specified in the pad argument. See class
SKArrayPd. Parent array is the ‘big’ array (size = specified x, y, z size plus the
pad size). Constructor returns the ‘slice’ array which is the ‘internal’ array with
size = specified x, y, z size.

int zSize = 1);

SKArraycD SKArray(char *initData[]);
Create an array with numerical data of type T, using character data.

Destructors -sKAn-ayo
The SKArray destructor deallocates the block of memory used to hold the data.
The destructor checks this block of memory to see if there are any other refer-
ences to it. Only if there are no other references is the block truly deleted. The
array ‘header’ structure is deallocated in all cases.

Type template< class T >
conversion SKArray<short> SKToShort(SKArray<T>& input);

templatec class T >
SKArray<int> SKToInt(SK;Array<T>& input);

templatec class T >
SKArray<float> SKToFloat(SKArray<T>& input);

template< class T >

29

class { W r r a y
I

Assignment
operators

I ndexin g
operators

I
I

SKArray<double> SKToDouble(SKArray<T!a3 input);

These 4 templatized functions allow for the conversion of an SKArray bf any
numeric type (short, int, float, double) to any ather type. NIL values ofithe input
array are converted to the NIL value of the ouput type.

Data conversion is accomplished by pixelwisd casting to the output type. Thus,
for example, calling SKToZnt with a float ana- gives an output array where all
data values have been truncated. Note that the input array itself is not modified.

SKArray<T>& SKArray<T>::operator = (cbnst SKA,rray<T> &rhs)
The array assigment operator performs a shallow copy. All of the right-hand-side
array's member variables are copied to the left-hand-silde operand, dong with the
data pointer (but not the data itself). Increase(the reference count of the (shared)
data block to prevent freeing of data from underneath <an array which has not yet
gone out of scope. Returns the left-hand-sidelarray whose members have been
assigned the values of the right-hand-side array.

SKArray<T>& SKArray<T>::operator += (IT Val)
Add a scalar value of the same type as the array to each1 data element in the array.
If an input pixel value is nil the output is also nil at the: same pixel. Returns the
left-hand-side array whose data elements havk been increased by val.

Smrray<T>& SKArray<T>::operator -= (f Val
Subtract a scalar value of the same type as the b a y from each data element in the
array. If an input pixel value is nil the outpud is also nil at the same pixel.
Returns the left-hand-side array whose data elements have been decreased by Val.

SKArray<T>& SKArray<T>::operator *= (j o a t Val)
Multiply an array by a floating-point scalar value. If an input pixel value is nil
the output is also nil at the same pixel. Returns the left-hand-side ;may whose
data elements have been multiplied by Val.

sarray<T>& SKArray<T>::operator/= (T val)
Divide each element of the array by a scalar qalue of tlhe same type. If an input
pixel value is nil the output is also nil at the same pixel. Returns the left-hand-
side array whose data elements have been divided by val.

T& SKArray<T>::operator () (int i, int j , int k
Array indexing operator. The operator returnsia reference (of type T) to the value
at location (x, y, z) = (i, j, k) in the array. Thisimeans it can be used as a left hand
value or a right hand value.

I

I

I

I

I
I

I
I

I

I

I)
I
I
I

30

class SKArray

t

Logical
operators

int SKArray<T>::operator == (SKArray<T> & rhs)
Function to determine array equality (e.g. arrays have same number of
dimensions, same slice sizes, and same slice values). Returns 1 if the arrays are
equal, 0 if they differ.

int SKArray<T>::operator == (T Val)
Function to determine if the array data members are equal to a specified value.
Returns 1 if the array data members are equal to val, 0 if they differ.

Other
operators

SKArray<T> operator + (SKArray<T> &lhs, SKArray<T> &rhs);
Add two SKArrays and return the result in a new SKArray. The lhs array may be
smaller than rhs as the output array is sized the same as the lhs. The two
SKArrays passed into this routine are unchanged. When adding, if either element
or both elements are NIL then the result for that element is NIL.

SKArraycl, operator + (SKArray<T> &lhs, T rhs)
Add the scalar value rhs to all array elements. The SKArray passed into this rou-
tine is unchanged. A new array containing the input data values with the scalar
added to each data element is returned. When adding, if the lhs pixel is NIL then
the result for that element is NIL.

SKArray<T> operator - (SKArray<T> &lhs, SKArray<T> & rhs)
Subtract two SKArrays and return the result in a new SKArray. Looping is driven
by lhs size(s). The lhs array may be smaller than rhs as the output array is sized
the same as the Zhs. The two SKArrays passed into this routine are unchanged.
When subtracting, if either element or both elements are NIL then the result for
that element is NIL.

SKArray<T> operator - (SKArray<T> &lhs, T rhs)
Subtract the scalar value rhs from all array elements. The SKArray passed into
th is routine is unchanged. A new array containing the input data values with the
scalar subtracted from each data element is returned. When subtracting, if the lhs
pixel is NIL then the result for that element is NIL.

SKArray<T> operator * (SKArraycD &lhs, SKArraycD &rhs)
Multiply two SKArrays and return the result in a new SKArray. The two
SKArrays passed into this routine are unchanged. When multiplying, if either
element or both elements are NIL then the result for that element is NIL. The lhs
array may be smaller than rhs as the output array is sized the same as the lhs.

SKArray<T> operator * (SKArray<T> 6, float rhs)
Multiply all array elements by a floating point scalar value. If the array value is
NIL, simply store a NIL in the output array. The SKArray passed into this rou-
tine is unchanged. A new array containing the input data values multiplied by the
scalar rhs is returned.

31

Public
member
functions

class {SKArray I

SKArray<T> operator/(SKArray<T> &lhs! T rhs)
Divide all array elements by a non zero scalg value. If the array value) is NIL,
simply store a NIL in the output array. The SKArray passed into this routine is
unchanged. A new array containing the inpuj data values divided by thk scalar is
returned. I

SKArray<T> operator & (SKArray<T> &lhs, T rhs)
Performs a bitwise comparison of each pixel $ an SK4rray against a supplied
bitmask, returning a copy of the input SKArrhy with original pixel values set to
NIL wherever the pixel value does not match kin a bitwise AND sense) the bit-
mask. Otherwise, the original input pixel value is copied to the output. The input
SKArray passed into this routine is unchanged. When ANDing, if the lhs pixel is
NIL then the result for that element in the ou+ut is NIL. Only supports short and
int arrays.

ostream& operator << (ostream&lhs, SKAr:ay<T>&rhs)
Overloaded left shift ostream operator to output SKArray elements. Outputs data
from top down, so that ASCII representation bill match up with graphical repre-
sentation. Returns a reference to the ostream that was passed into this function.

void Abs();
Replace all pixel values in the current array (bxcept NIL values) with their abso-
lute values.

void AdvectImge(SKArray<$oat> & xvec, SKArray.:float> &yvec);
Advect the current array using two supplied SKArruys. The xvec array indicates
(in a pixelwise sense) the amount to advect $ the x direction, and the yvec array
indicates (in a pixelwise sense) the amount to advect in the y direction. The value
at each pixel in the advected image is computed as follows. Given the coordi-
nates (x, y) of a pixel in the output image, the! amounts to advect in the x and y
directions are, respectively, xvec(x, y) and yvec(x, y). Compute new coordi-
nates xadv = x - xvec(x, y) and yadv = y - yvdc(x, y) . The value of the advected
image at pixel (x, y) is set equal to the value of the original image at (xadv, yadv).
This method of advection (‘backwards’ advection, e.g. given a pixel in, the cur-
rent time, find which pixel it most likely came from in the prior time) insures that
the advected image is completely filled in. Sbcalled ‘forward’ advection (mov-
ing pixels in the ‘prior’ image forward by am&unts indicated in the xvec and yvec
arrays) can produce ‘holes’ in the output image as not necessarily every pixel in
the output will be advected to by some prior pixel. Thus the ‘backwards’ advec-
tion is preferable in most cases.

Note that no new SKArrays are returned by this function. Rather, the current
array’s (unadvected) data buffer is replaced dith a buffer of advected data values.

SKArray Apply(T (*function)(SKArray<T>&, T *dPt< void *arg),

,

I

I

I

I
I

I

I

I

I

i
~

,
32

class SKArray

void *arg) ;

void *arg);
SKArray Apply(T (*~nction)(SKArraycT~&, T *dPtr; int x, int y, void *a&,

Functions to apply the user-specified function to all elements in the current array
slice, returning a new array of the same size. The Apply functions are very useful
for window-filtering type operations, such as median filtering, which loop over a
kernel for every pixel in an input image. With the Apply functions, the user need
only write the function which does the processing over a single window (e.g.
finding the median of a window of data in the case of median filtering). The
Apply functions automate looping over all pixels of an input image, sequentially
applying the user-defined window function for every pixel in the input.

A word about the supplied input function is in order. In the first version of
AppZy the user-supplied function takes as arguments an SKArray, a data pointer
dPtr, and a void * pointer. When Apply calls the supplied function at a location
(x, y), the dPtr will point to the pixel at (x, y) in the original input image. The
user-supplied function must be written with this scheme in mind. For example,
in the case of median filtering, dPtr would likely point to the center pixel of the
window over which the median is to be taken (unless, of course, the user wanted
to position the window somewhat differently and wrote the code accordingly).
Thus the user-supplied median function would have to be written from the point
of view that it takes the median over a window centered at the input location
handed to it via the dPtr. The void* arg input is intended to point to additional
arguments (possibly supplied in a C++ structure) to the user-supplied function.

Two versions are supplied in case the user-supplied function depends on the (x,
y) location of the pixel currently being processed (e.g. the function may contain
branching or conditional logic based on the (x, y) location). The second version
of Apply allows for (x, y) pixel location arguments in the user-defined function;
Apply will call the user’s supplied function with the appropriate (x, y) values for
each pixel automatically.

void Binarize(T threshold) ;
Convert array to binary. Data values less than threshold are set to zero; values
greater than or equal to threshold are set to 1. NIL pixels are also set to 0.

void ClipMax(T mar);
Values in the array which are greater than max are set to m a .

void ClipMin(T min);
Values in the array which are less than min are set to min.

void ClipMinMax(T min, T max);

33

class :Sthrray I

Values in the array which are less than min &e
which are greater than max are set to max.

i
set to min. Values in $e array

I

34

class SKArray

The input argument skType is passed by reference and its value is set to the
SKType of the SKArray object.

void InitImgData(void);
Member function to initialize the image data (member variable
SKArray<T>.-.-imgZnfo) to default values. Used by all of the constructors. See
documentation for the SKImageZnfo class for a full description if the image info
class.

void Load(T *data[], int nrows, int ncols);
Load array with data from an array of pointers to strings. Each array element can
be thought of as a pointer to a row of data values.

void Mirror(void) ;
The padded region of the array is initialized using a ‘mirroring’ scheme. The
mirroring is performed first over rows, then over columns, as follows.

Mirroring scheme for the padded rows is done first. The left most and right most
pad members that will be intialized during the column mirroring below are
ignored at this point.

Mirroring scheme for columns to the left and right is
accomplished last. Note: The pad elements ignored in the
row mirroring will now be initialized by using the value
contained in their mirror which happens to be an initialized
pad element. (This happens in the comers of the array).

i i-i I
I I

35

class SKArray

void PadFill(TPllVal);
Fill the padded region with the specified value. The padded region is the region
between the parent and the current slice.

SKArray<T> Parentslice() ;
Return the ‘parent’ slice of the array (the slice corresponding to the full original
dimensions of the current slice plus the pad (if there is a pad).

void RampFill(T Val);
Fill the array slice with a ramp of values. Useful for diagnostics. The array is
filled over x, then y, then z dimensions. The first pixel is given value Val, the sec-
ond 2*val, the third 3*val, etc.

SKArray Reverse(SKDim dim);
Function to reverse the order of the elements of the array in a specified dimen-
sion. This is accomplished by simply changing strides and steps for the specified
dimension. Useful in debugging ‘top-down’ vs. ‘bottom-up’ implementations.

SKArray Rotate($oat deg, int cx, int cy) ;
Rotate the current (2-D) array by deg degrees in the clockwise direction around
the center point (cx,cy), producing an output array of the same size. Values of the
input array that end up outside the new array boundaries are omitted. Values of
the output array that have no corresponding input value are filled with SK-NIL.
Currently, this routine has not been extensively optimized, as it’s only used when
constructing functional templates.

template void SetAllSliceValsTo(T scalar) ;
Function to set all values in an array’s current slice to the supplied scalar.

void SetElementsInInterval(T markVal, T low, Thigh,

Function to set all elements of the array which lie within some interval to a mark
value, possibly setting outliers to a different mark value. Specifically, pixels with
a value between low and high (inclusive) are set equal to markVal. If outlier-
MarkVal is not NIL, then pixels which lie outside the interval from low to high
are set to outlierMarkVaZ. If the outlier mark is NIL, then pixels outside the inter-
val are left unchanged. The default value of optional argument outlierMarkVa1 is
NIL.

T outlierMarkVa1 = SKArray<T>::SK-NIL);

Note that the current array object’s data buffer is written over with the new Val-
ues. To create a new output array while leaving the source array intact, use the
global version of this function (same name).

36

void SetSliceVals (char *initData[]) ;

int size2 = 0, int offset2 = C
Functions for altering the current slice (or ‘vi
allows for altering only a single specified din
altered. The second version allows full 3D SF
x-parameters (size, offset, and step in the x-dj
ified; the slice parameters for the other dimer
values which will not change the slice in the
ray Class Tutorial for usage examples.

float Sum();
Return the sum of all (non-NIL) pixels in the

void WrapAzMirrorR(void) ;
Fills the pad of a padded array by mirroring i
the Ydimension. This is a useful operation m
arrays, where range is X, and azimuth is Y. ‘
sion allows processing to proceed normally ii
(the north-mark in radar image processing ap
the SKArrayPad class for description of SKA

void Wrappolar(TJillVal) ;
Pad-fill the array in the X-dimension and wra
ding in the X-dimension is filled in with valu
when performing operations on polar arrays,
‘Wrapping’ the data in the Y-dimension allom
the region of azimuth wraparound (the north-
applications). See documentation for the SK
SKArray pads.

See descriptions of classes from which this c1
for additional virtual member functions that i

Access
functions

froat GetBinSize(int dimension);
Return the bin size of the specified array dimc
is also known as the resolution (e.g. 231.5 me
stants (actually enum type SKDim) SK-X, SK
dimension.

37

int step.2 = 0);
w’) of an array. First version
mion; other dimens ions are not
cificaticin of the desired slice. The
iension for the slice) must be spec-
ions are optional and default to
and z dimensions. See the SKAr-

may, returning the result as a float.

the Xdimension and wrapping in
en perfcmning operations on polar
{rapping’ the data in the Y-dimen-
the region of azimuth wraparound
Lications;). See documentation for
.ay pads.

it in the: Ydimension. The pad-
fillVal. This is a useful operation
here range is X, and (azimuth is Y.
processing to proceed normally in
lark in radar image processing
rrayPad class for description of

ss inherits (see Hierarchy, above)
e defined by this class.

ision in ineters/pixel. The bin size
:rs/pixel). Use the predefined con-

and S K Z to indicate the desired

class SKArray

void SetBinSize(int dimension, float value);
Set the bin size of the specified array dimension in metedpixel to the supplied
value. The bin size is also known as the resolution (e.g. 231.5 meterdpixel). Use
the predefined constants (actually enum type SKDim) SK-X, SKJ and SK-2 to
indicate the desired dimension.

float GetConJimzingFactorf):
Returns the value of the confimzingFactor member variable. This variable is only
meaningful for SKArrays which are interest images used in feature detection.

void SetConJnningFactor(&at factor);
Set the value of the conJimingFactor member variable. This variable is only
meaningful for SKArrays which are interest images used in feature detection.

void GetCoordSys(SKCoordSysCe coordSys);
Get the current coordinate system for the array. Allowed values are
SK-CARTESIAN and SK-POLAR (enumerated type SKCoordSys). Input
coordSys is passed by reference and assigned the current value of the coordinate
system for the array.

void SetCoordSys(SKCoordSys coordSys):
Set the current coordinate system for the array. Allowed values are
SK-CARTESIAN and SK-POLAR (enumerated type SKCoordSys).

void GetDataClass(char *s);
Get the data ‘class’. The data class is a qualitative name tag for the type of array
data (e.g DZ, V, SN). The CSketch display mechanism uses the data class to
lookup the color table in the color map.

void SetDataClass(char *s);
Set the data ‘class’. The data class is a qualitative name tag for the type of array
data (e.g DZ, V, SN). The CSketch display mechanism uses the data class to
lookup the color table in the color map.

short DataReady(void);
Return the dataReadyFlag of the current array (1 = data ready, 0 = not ready).
The term ‘data ready’ is used to qualify the state of the data contained in the
array. A system might initialize many SKArrays at one time, but each might be
filled at a different time. The member variable dataReadyFlag can be used to
determine whether or not an array has been loaded with timely data or not.

void SetDataReady(short f i g);
Set the dataReadyFlag of the current array (1 = data ready, 0 = not ready). The
term ‘data ready’ is used to qualify the state of the data contained in the array. A

38

class SqArray
I

I
I

system might initialize many SKArrays at on/ time, but each might bel filled at a
different time. The member variable dataRe4yFlag can be used to determine
whether or not an array has been loaded with timely data or not.

T * GetDataPtr(void);
Return the pointer to the current slice of data. Note thiit the current slice need not
equal the full parent slice, e.g. for padded arrays, so the slice data pointer need
not equal the parent data pointer.

float GetDisconJinningFactor();
Returns the value of the disconfimingFactorlmember variable. This variable is
only meaningful for SKArrays which are indrest images used in feature detec-
tion.

void SetDiscon.nningFactor(float factor 4;
Set the value of the disconJinningFactor member variable. This variable is only
meaningful for SKArrays which are interest images used in feature detection.

I
I

i
1
I
I

I
I

I

int GetElementSize(); 1

in bytes. I

Return the element size of the array (i.e. the Aize of each data pixel of the array)

void GetGlobalPos(float& latitude, float4 longitude, float& ah’itude);
Get the global position. For now, this routine assumes that the global position
corresponds to the position for world coord system (O,O,O). For ASR-9 applica-
tions this is sufficient. Mosaic’ed ITWS images may need something more com-
plex. All 3 variables are passed by reference1 and their values set to those of the
current array.

void
Set the global position. For now, this routind assumes that the global position
corresponds to the position for world coord s’ystem (O,O,O). For ASR-9 applica-
tions this is sufficient. Mosaic’ed ITWS images may need something more com-
plex.

Get the ID number of the array. Input a rgdent id is passed by reference and its
value is set to the id of the current array.

void SetID(short id) ;

I

I

I
SetGlobalPos(float latitude, f i a t longitude, float altitude ,I;

I
I

void GetID(short& id); ~

I

1
I

I

I
void GetImageInfo(SKImageInfo &info);I
Get the values of the SKImugeInfo member variable of the current array. The
member variable’s fields are copied to the supplied info structure. The

~

Set an ID number for the array.
~

i

class SKArray

SKZmageZnfo structure contains all of the information necessary to display the
array.

void SetZmageInfo(SKZmageZnfo &info);
Set the values of the SKZmageZnfo member variable of the current array. The
member variable's fields are copied from the supplied info structure. The
SKZmageZnfo structure contains all of the information necessary to display the
array.

void GetName(char *currName);
Get the name of the array. A name can be associated to an array for convenience
when creating displays, etc. It is assumed that currName points to a char buffer
which is large enough to hold the name.

void SetName(char *currName);
Set the name of the array. A name can be associated to an array for convenience
when creating displays, etc.

int GetNumDim(void);
Return the total number of dimensions of the SKArray.

void GetOrientation(float& orientation);
Get the current a m y orientation. The orientation is the angular offset from true
north in degrees. The input argument orientation is passed by reference and its
value set to the orientation of the current array.

void SetOrientation(float neworientation);
Set the current array orientation to neworientation. The orientation is the angu-
lar offset from true north in degrees.

void GetRefLocation(int& x, int& y, int& z,

Get the reference location of the array. The reference location is used to establish,
a relationship between pixel space and world space. The x, y, z arguments corre-
spond to the reference point of the array in the x, y, & z dimensions. The wx, wy,
wz arguments correspond to the reference point of the world coordinate system.
All 6 variables are passed by reference and their values set to those of the current
array.

float& wx, float& wy, float& wz);

void
Set the reference location of the array. The reference location is used to establish
a relationship between pixel space and world space. In WSP applications, where
the center of the array most often corresponds to world location (0.0,O.O) (the
radar location), the set routine will be called as:

SetRefLocation(int x, int y, int z, float wx, float wy, float wz);

40

I

I class SVArray
I -.

I I
I

1
i

SetRejZocation(xsizeL2, ysizen, 0, 0.0, 0.0, 0.0);
I

i
i 41 j I

I ,
i I

I r

The x, y, z arguments give the reference point of the amay in the x, y, & z dimen-
sions. The wx, wy, wz arguments give the refdrence point of the world coordinate
system.

void GetScaling(float& scaleFactol; float& scaleofset);
Get the current scaling values for the data in #e array The scaling factor and
scale offset allow for the conversion of data s*d values to 'real-world' values
via the equations: I

I

I

real value = @oat) (((data stored)/scaleF&tor) - scaleoffset);
stored Value = NINT(sca1eFactor * (real 4alue + scaleoffset));

I

void SetScaling(float scaleFactol; float scdleoffset);
Set the current scaling values for the data in t + ~ array. The scaling factor and
scale offset allow for the conversion of data stored values to 'real-world' values
via the equations: I

I
int Getstep(int); I

1
real value = float) (((data stored)/scaleFactor) - s,caleO$set);
stored Value = NINT(sca1eFactor * (real value + scaleoffset));

Return the step of the requested array dimension. Use: the predefined constants
(actually they are the enum type SKDim) SKiX, SKJ and SK-2 to specify the

I

I
dimension. I

void GetEme(LLl'ime & t); I

Get the time of the array. See documentation ;or the Ll,l'ime class fix specifics on
I manipulating time. I

void
Set the time of the array. See documentation for the LLl'ime class for specifics on

SetEme(LLEme & t);

I manipulating time. ~

1
l int Size(int dimension);

dimension. I

int Stride(int dimension); I
Return the stride of the requested array dimension. U!je the predefined constants
(actually they are the enum type SKDim) SKJX, SKJ and SK-2 to specify the
dimension. I

i

Return the size of the requested array dimensjon. Use the predefined constants
(actually they are the enum type SKDim) SKiX, SK-X, and SK-2 to specify the

I

I

"

class SKArray

Public data
members

static const T SK-NIL;
Special value indicating a ‘bad’ or ‘missing’ pixel. Value corresponds to the
most negative number of a given type, e.g. SK-NIL for a short SKArray is typi-
cally -32767.

static const T SK-MAXIMUM;
Value corresponds to the maximum positive number of a given type, e.g.
SK-MAXIMUM for a short SKArray is typically +32768.

static const T SK-MINIMUM;
Value corresponds to the most negative number of a given type, e.g.
SK-MINIMUM for a short SKArray is typically -32767.

Related global
functions

Documented in Zibskama library documentation.

See Also Library s k m .

Document 17 July, 2002
Revision Date

42

Name

Synopsis

Description

Example

Enumerations

class SKArrayPad
I

#include <skurray.h> I
i

processing routines). I
i

Helper class used to pad SKArrays (e.g. to h+dle edge effects in certain image

SKArrayPad objects are not actual data buffers which pad existing data buffers;
rather they are objects which encode informatlion about the padding which is
desired for a particular array. SKArrayPads y e specified by (1) their x, y, and z
sizes’which indicate the amount of padding in each dimension, (2) an optional
‘fill’ value and (3) an enumerated type which !specifies how the padlding should
be filled in, if at all. Creation of an actual padded array requires calling an
SKArray constructor with a pre-constructed SKArrayPad object as an argument.
When this is done, the SKArray constructor builds an SKArray whose ‘parent’
slice is large enough to hold the desired data $ay plus the padding margins. The
SKArray’s ‘slice’ member variable is set to the area inside the padding.

Once the ‘internal’ array (the slice) data has bken initiailized, the correct ‘padFill’
operation can be called, filling in the pad area according to the methods described

See the CSKETCH Image Processing Libdry Tutorial for examples of creat-
ing, filling, and manipulating padded SKAn-a$ objects using the Slr3rrayPad
class. i

I

later in this section. I
I

enum S K P ~ ~ O ~ PAD- NO^ PAD-FILL, PAD-MIRROR,
PAD-WRAP-AZ-MIRROR-R, PALLWRAP-POLAR I ;

This enumeration is used to identify the meqods used in filling in the padding
(or margin) for padded arrays. The supported methods of pad filling are:

PAD-NOP: No filling operation is performed. The pad values in the padded
array are left uninitialized. This operation mdy be used, for instance, if a kernel
of an image processing function extends beydnd an image’s valid data buffer, but
the function never needs to actually read kernkl data outside the ornginal image
border. I

I
PAD-FZLL: The pad pixels of the padded a!rray will be filled with a single
value (supplied to the pad at the time of its constructicn).

I
PAD-MIRROR: via the ,SKArray ‘Mirror’ member
function. See documentation for the SKArray class for description of this SKAr-
ray class member function.

I

The pad pixels are filled

i
I
I

43

class SKArrayPad

Constructors

PAD-WRAP-AZ- IIRROR-R: The pad pixels are filled in via the SKArray
‘ WrapAulMirrorR’ member function. See documentation for the SKArray class
for description of this SKArray class member function. This pad operation is
only intended to be used for polar data arrays, where the first radial (first row of
data in a 2D array) is in fact a neighbor of the last radial (last row of data).

PAD-WRAP-POLAR: The pad pixels are filled in via the SKArray ‘WrapPo-
lar’ member function. See documentation for the SKArray class for description
of this SKArray class member function. This pad operation is only intended to be
used for polar data arrays, where the first radial (first row of data in a 2D array) is
in fact a neighbor of the last radial (last row of data).

template <class 1,
SKArrayPad<T>::SKArrayPad(SKPadOp padOpIn, TjillVal, int pado/* = 0 */,

Templatized function to create an SKArrayPad object. Padded arrays of type ‘T’
(e.g. float, double, etc.) require a pad of the same type. The padOpIn variable
must be set to one of the values of enumerated type SKPadOp, which are defined
above. ThejillVal is the value that will be used to fill the padding if the padding
operation (PadOpIn) is ‘PAD-FILL ’. The remaining 3 (optional) arguments
specify the padding in the x, y, and z-dimensions; they default to zero. These
arguments specify the pad on each side of the array in a particular dimension, e.g.
a pad size of 3 in the x dimension means a margin of width 3 on the left and right
hand sides of an array will be created using this pad.

int pad1 /* = 0 */, int pad2 /* = 0 */)

Destructors template <class 1,
SKA rrayPad< T>::-SKA rrayPad()
SKArrayPad class destructor. Currently a no-op as SKArrayPad contains no
dynamically-allocated memory.

See Also

Document
Revision Date

SKArray class member functions WrapAzMirrorR(), WrapPolar(), RampFill(),
PadFill(), which are employed to perform the various pad-filling options
described above.

19 August, 1998

44

Name

Synopsis

Description

Component
Structures

c b s SKChain
Class to store /represent ‘generic’ thin4
generic version to store a zero-crossing 1,
chains for gustfront detections and predi
chains (class GFChain) and prediction c,
from this class.

#include <skchain.h>

Class to store / represent ‘generic’ thin-line I

generic version to store a zero-crossing line.
chains for gust front detections and predictic
chains (class GFChain) and prediction chain
this class.

class SKChainPoint
i
LLBListLink link;

public:
s h o r t x , y ;

//Local orientation of chain (orientation ai
short orient;

1;

Extremely simple ‘helper’ class for the SKCi
data elements x, y, and orient. The elements
point. The orient gives the local orientation
‘compass’ sense) of the chain at the current c
class instance is an LWList of SKChainPoii

Enumerations enum SKChainSense [SK-CHAIN-FOR WA
Enumerated type for indicating whether a pa
chain points in the ‘forward’ (start with first
point) orientation. Useful in MIGFA in som
the chain nodes. Note that some operations

Constructors

class SMChaiin

ie chain!;. AMDA uses this more
le. MIGFA uses mone specialized
tions. Note that MIGFA ‘detection
ains (claw GFPredChain) inherit

nains. AMDA uses this more
MIGFA uses more specialized
is. Note that MIGFA detection
(class GFPredChain) inherit from

this pixel).

zin class. The class contains public
’x, y) give the location of a chain
measured in the meteorological or
lain point. The heart of an SKChain
.” a.

!D, SK-CHAIN-RE VERSE 1;
ticular fiunction should traverse the
,oint) or ‘reverse’ (start with last
cases to1 avoid physically reversing
io require physical chain reversal,

hence the member function SKChain::Reverie() described below.

SKChainPoint::SKChainPoint()
Default constructor for the simple chain point class. Typically points are created
one at a time as needed and placed on the list of points of an SKChain class

I
I

~

instance. 1 .
i
!
I

SKChain::SKChain()

45

class SKChain

Destructors

0 perators

Default constructor for the SKChain class. Creates a new chain with an empty
point list, and the chain score initialized to 0.0.

-SKChain()
Destructor for the SKChain class. Note that each SKChain contains an LLDList
of SKChainPoints. The list header only will be automatically deleted by the
LLDList destructor. It is up to the application to delete all the individual points in
the UDList of SKChainPoints. This should occur prior to when the SKChain
instance goes out of scope and is destructed.

ostream& operator << (ostream &os, SKChain &chain);
Overloaded ostream operator cc for the SKChain class. Writes the chain to the
supplied ostream. Starts by writing out the (x,y) coordinates of the first and last
points of the chain, as well as the chain's score. Then the (x,y) coordinates of all
points in the chain are written out, in the sequence they appear in the chain.

Public SKChain: : Reverse()
member
functions

Function to reverse the order of the points in an SKChain's point list; also the
start and end member variables (which seperately store the coordinates of the
chain start and end points) are swapped.

Public data froat score;
members Interest score for the chain. Often this is the sum of interest scores for all points

in the chain, but some applications (e.g. MIGFA) may then modify this score
based on other properties of the chain.

SKPointI start;
Structure which houses a pair of integers; for SKChain this stores the coordinates
of the first point of the chain.

SKPointI end;
Structure which houses a pair of integers; for SKChain this stores the coordinates
of the last point of the chain.

-List ptList;
The actual list of points in the chain (comprised of SKChainPoint objects). See
also documentation for the LLDList class.

Related global
functions SKArray<short> dibaselnterest,

SKArray<short> ExtendChains(SKArray<short> &thinned,

SKArray<short> &baseOrient,
short extendllresh, short interestnresh,
short anglellresh);

46

class SNChain
I -.

1

I

Function to extend the chain features within the input may thinned. The thinned
array is assumed to have had all shapes withid the image reduced to chpns which
are only a single pixel wide, e.g by using SK+-ray class member function S u r -
ray<T>::Thin(). The baselnterest and b a s e v n t images are the same size as
thinned and are assumed to give pixelwise in\erest sccres and orientations for
points which could possibly be part of chain features (e.g. gust fronts for MIGFA
and the zero-crossing line for AMDA).

The process is performed roughly as follows.! First the endpoints of the chain
features are identified. The chains are extended one pixel at a time, extending
outwards from the endpoints. At the endpoint currently being processed, we fist
build a list of candidate points to append ontd the end of the chain, using the
helper function BuiEdfitendSearch Window().; A point will be appended onto the
end of the chain only if one of the candidate points has an interest score (from
baselnterest) greater than interestmresh and an onenlation which lies within
angEel72resh of the orientation of the originallendpoint. In the case of multiple
acceptable candidates, the one with the highest interest score is chlxen. In case
of ‘ties’, the fist acceptable candidate point found will1 be used.

At the end of each round of processing, the nLw endpoints (all new points which
were appended to some chain in the input hdge) are used as the endpoints for
the next round of chain extension. In this way a chain can potentially grow by 1
pixel on each of its ends in each round of processing. The extend2”hresh parmie-
ter sets the maximum number of extensions which may be perfornied; thus each
chain can be extended by no longer than 2 * kctendl72resh points.

For further details on the processing performJd by this function, see the d i n e
source documentation in file chainfitend. C.

The other functions contained in file chainEJend. C are helper functions
BuildExtendSearch Window() and ZnitEndPointOrienttrtions(). These functions
are not intended to be used by general-purpose users of the CSKETCH library, so
they are not documented here. Detailed documentation of these functions can be
found in the source file. Consult this documeltation if detailed knowledge of the
workings of these functions is desired.

void MarkChainEndAdunctionPoints(SKA~ray<slu,rt> &thin,

Function to take an SKArray thin which con+is ‘thirmed’ (e.g single-pixel
wide) chain features, and mark those chain pixels which are endpoints and junc-
tion points of the overall chain ‘graph’. The bput array is binary, with values of
0 for non chain points and 1 for chain points.1 On output, non chain points will
remain zero, chain junction points will have ?alue 2, chain endpoints will have
value 3, and chain ‘interior’ points will remah at 1.

i

I

i

I
~

LLDList &endpoints, LLDList &.junctionPoiizts);

I

~

47

Y

class SKChain

See Also

Document
Revision Date

The input to this array is in binary form, and is assumed to have a 1-pixel pad
(zero-filled) around the edge, so no special edge processing is necessary.

In addition to marking the chain end points and junction points in the thin array,
the input LLDLists endpoints and junctionpoints will be filled with lists of
SKChainPoint structures; one such point for each end and junction point.

void SKChainDeletePoints(SKChain *chain)
Deletes, one by one, the SKChainPoint objects which comprise the ptList of the
current chain. This is a useful cleanup function which should be called before an
SKChain object goes out of scope, since the SKChuin destructor does not delete
the individual points in the ptList member variable.

void SKFillChainlmage(SKArray<short>& chainlmage, LLDList& chainList);
Function to take a (previously-allocated) SKArray (the chainlmage) and 'fill' the
image with data obtained from a list of SKChains (ChainList). Specifically, if the
point (x,y) is in any of the SKChains in chainlist, then the pixel (x,y) in the
chainlmage is set to 1.

void SKFillChainlmage(SKArray<short>& chainlmage, SKChain*chuin)
Overloaded version of the above function. In this case the chainlmage is filled
using the points from only a single SKChain (the chain argument).

class LLDList, class GFChain, class GFPredChain.

22 September, 1998

48

Name class SKFuncTemplute

Synopsis #include <skjknctemp.h>

Description CSKETCH Library Functional Template Class @TC) Definition. Functional
template correlation is the main engine by wlhch feature detection is accom-
plished for MIGFA, AMDA, and other meterdlogical algorithms.

I
Example

I

See the CSKETCH Image Processing Library Tutoiial for examples of declar-
ing and using functional template correlation objects.

I
Constants #define SKFUNCTEW-MAX-ORIENT ~ 25

This is the maximum number of kernel rotations for a single template.

#define SKFUNCTEMP-MAX-FUNC 10
This is the maximum number of scoring functions allowed for a single template.

I
I

I
Component struct SKFuncTemplatePoint I
Structures I I

int yoffset ; i

short *funcLookupO ; I

short *fincLookupl; I

int xOffset ;

int ptrOffset0 ; // Combinatibn of above for speed
int

int
int finclndexl ; // in tandem kernplate.

funclndexO ;

ptrOffsetl ;

//For diagystics - ptr below is used for speed.

// Second set of info is for second kernel

I ;

The most basic element of a functional template object is a functional template
point. This structure encodes information about a single point of a single rotation
for the kernel(s) of the functional template object.

The component fields of the SKFuncTemplatePoint are:

xOffset: Stores the x-coordinate of the templite point as an offset relative to the
pixel currently being processed by FK. Thus, if xOff5et for the current template
point is -1, the template point is located one pixel to the left of the current pro-

yOffset: Stores the y-coordinate of the templjte point as an offset relative to the
pixel currently being processed by FTC. Thus, if y0fi;et for the current template
point is 1, the template point is located one pike1 to the ‘north’ of the current pro-
cessing pixel in the y direction.

I

I

I

I

I cessing pixel in the x direction. I

I
I

I
i

class SKFuncTemplate

ptrOffset0 The above x- and y-offsets for a template point specify an (x, y) pixel
location for a template point, relative to the current processing pixel in an FTC
operation. For speed, ptrOfset0 stores a single offset for this pixel relative to the
current processing pixel. That is, given a pointer to the current processing pixel,
simply adding ptrOffset0 to that pointer gives the address of the corresponding
template pixel within the image being probed. Thus the template pixel can be
found in the input image using a single addition rather than 2 adds and 2 multi-
plies. Note that the pointer offset depends on the x and y sizes of the image being
probed (since the x and y strides of the image will differ), so these offsets cannot
be computed at construction time. Rather they are computed via a call to
SKFuncTempZate::GenPtrOfsets() as the first step to the FTC matching process.

See documentation of the Sklrray class for an explanation of 2-dimensional
image strides.

funclndexo Any particular functional template can employ multiple scoring
functions for different regions within the functional template’s kernel. The
funclndex0 member variable gives the number of the scoring function to be used
for this particular functional template point. This is mainly a diagnostic tool use-
ful in determining whether a particular functional template was specified and
built correctly; for efficiency, the funcLookup0 pointer, described next, is used to
do the actual lookup task when scoring the input image pixel associated with the
current template point.

f inchokup0 Points to the correct scoring function to be used for this template
point. Recall that for FTC, input image values are expected to be scaled to the
range 0 to 255. Each scoring function within the kernel is thus implemented as a
1 by 255 array of score values. The input image pixel is used to index into the
scoring function, and the value of the scoring function at the corresponding index
is the score for that input value. If there are n scoring functions for the template,
the lookup table is an n by 255 table, with row j corresponding to the J’th scoring
function. For a particular functional template point, the scoring function never
changes; thus e.g. if the current template point uses scoring function 4, then
fUncLookup0 will be a pointer to the 4th row of the lookup table.

ptrOffsetl, finclndexl, andfuncLookup1: These 3 member variables serve
exactly the same purpose as ptrOffset0, funcIndex0, andfincbokupo in the case
of a tandem template where 2 different images are probed simultaneously by 2
different kernels. In case the 2nd kernel also has a template point at the same x
and y offsets as the first kernel, these member variables will be filled in with the
corresponding information for the 2nd kernel and associated scoring function. If
the 2nd kernel does not have a point at the same relative offsets, these variables
will be set to NULL.

struct SKFuncTemp lateorient

50

Constructors

int angle ; //In degrees.
int nPoints ;
short nPointsForFunc[SKFUNCTEMP-MAX-FUNC
SKFuncTemplatePoint *points ;

1

1;

This structure encodes all information for a skgle orientation (angle of rotation)
of a functional template object. By angle of dotation for a template, we really
mean an angle of rotation for the kernel(s) of a functicinal template. When build-
ing a functional template ‘orientation’, the k e e l is rotated, the new x,y offsets of
the rotated kernel(s) are computed and scored, and furiction lookup information
for each template point is filled in. In the cas4 of tandem (dual-kernel) functional
template objects, a single SKFuncTemplateOqient object contains the points for
both kernels of the template at that orientation. This is easily done since each
SKFuncTempPoint contains lookup informatipn for up to 2 kernels.

The component fields of an SKFuncTemplatebrient are:

angle: The angle of rotation of this particularlorientation of the template (Le. the
angle through which the kernel(s) of the template were rotated when this particu-

I

I
I

I
I

lar orientation was built). I
I

nPoints: The number of SKFuncTemplatePoihts associated with this particular
rotation of the template. This number need not be the same as the number of
points in unrotated kernel(s), due to rounding!/ truncation of pixel Icoordinates
performed during the process of ‘rotating’ the kernel(:;) through angle degrees.

nPointsForFunc: An array indicating, for each scoring function used by the tem-
plate, how many points within the kernel use that scoring function. This is
needed for the highly-optimized version of fdnctional template matching
encoded here.

points: An array of SKFuncTemplatePoints, *e set of all functional template
points for the current orientation of the template. The SKFuncTemplatePoint
structure is described earlier in this section. I

I
(Note that the default constructor and copy constructor have been disabled as
they are really not relevant for functional temblate objects).

SKFuncTemplate(char *kemelData[], int cx,! int cy, c ,hr *funcs[],

The kemelData input is a 2D character array of scoring function indices for the
functional template. An SKArray representidg the kernel will be constructed

I
I

I
I

I

~

i char *angles);
I

1

I

51

c

class SKFu ncTem plate

using the SKArray(char **) constructor (see documentation for the SKArray
class for further elaboration). See also the CSketch Image Processing Library
Tutorial for a description of the format of the ‘kernelData’ argument.

cx is the X-coordinate of the center of rotation for the kernel, relative to the lower
left comer of the kernel. Need not coincide with the actual X-center of the ker-
nel.

cy is the Y-coordinate of the center of rotation for the kernel, relative to the lower
left comer of the kernel. Need not coincide with the actual Y-center of the ker-
nel.

funcs is an array of character strings encoding each of the scoring functions
indexed by the kernel. See the CSketch Image Processing Library Tutorial for a
description of the format of the ‘funcs’ argument.

angles is a character string ‘list’ of discrete orientation angles for template rota-
tion. Once again, see the CSKETCH Image Processing Library Tutorial for a
description of the format of the ‘angles’ argument.

SKFuncTemplate(char *kernelDataO[], char *kemelDatal [I, int cx, int cy,
char *funcs[I , char *angles);

Two-kernel version of the constructor described immediately above. All vari-
ables are as for that constructor, except an additional argument (the character data
for constructing the 2nd kernel) must be supplied. Also, it is worth noting that
thefuncs input encodes information for the scoring functions for both kernels.
See the CSKETCH Image Processing Library Tutorial for an example of creating
a 2-kernel or so-called ‘tandem’ functional template object using this constructor.

SKFuncTemplate(SKArray<int> *kernel, int a, int cy, char **funcs,
char *angles) ;

Another version of the 1-kernel constructor. This version takes a pointer to an
integer SKArray which actually stores the kernel for the ftc object. The kernel is
assumed to have been filled in with the appropriate scoring function indices.
This version is very useful e.g. in the case where the kernel indices are not known
at compile time. With this version, the kernel can be created and filled in at run
time, then the ftc object can be created with the dynamically-filled kernel.

The other arguments are exactly as in the other 1-kernel constructor (the first con-
structor described in this section).

52

Destructors

Operators

mers, they are not documented here. See the
detailed function descriptions.

Public
member
functions in-line source documentation for

I
c I abs I S K F u n cTe m 1 p I at e

53

Related
Global
Functions

class SKFuncTemplate

static void FillFuncLookup(char *&nc, short *fincLookup) ;
static char *GetFuncPoint(char *s, short *x, short
SKArraydnt> *CreateWorkKernel(SKArray<int>& kernel, int cx, int cy,

static int OrientAnglesFromString(char *angStl; int *angles) ;

) ;

int& workCenterX, inth workCenterY) ;

friend void SKFuncTemplateMatch(SKArray<short>& image,
SKFuncTemplate& tmpl, SKArray<short>& mask,
SKArraycshort>& scoreArr; SKArray<short>& orientArr) ;

Functional template match procedure for single-kernel templates. Inputs arrays
image, mask, scoreArr, and orientArr must all have the same size. Functional
template correlation is performed for every pixel in the input image which corre-
sponds to a non-nil pixel in the mask (with the possible exception of pixels near
the edge of image, where processing would cause the functional template kernel
to probe out of bounds of image). The output scoreArr stores the maximum
match score of the correlation process for each pixel processed; the output
orientArr stores the orientation which produced the maximum match score for
each pixel. S e e the in-line source documentation for more detailed description of
the functional template match process.

friend void SKFuncTemplateMatch(SKArray <short>& image0,
SKA rray <short> & imagel, SKFuncTempEate& tmpl,
SKArraycshort> & mask, SKArray<short> & scoreA rl;
SKArray<short>& orientArr) ;

Functional template match procedure for two-kernel (‘tandem’) templates.
Inputs arrays image0, imagel, mask, scoreArr, and orientArr must all have the
same size. Functional template correlation is performed for every pixel in the
input images which correspond to non-nil pixels in the mask (with the possible
exception of pixels near the edge of the images, where processing would cause
the functional template kernel(s) to probe out of bounds of the images). The out-
put scoreArr stores the maximum match score of the correlation process for each
pixel processed; the output orientArr stores the orientation which produced the
maximum match score for each pixel. See the in-line source documentation for
more detailed description of the tandem functional template match process.

Document 3 December, 1998
Revision Date

54

Name

Synopsis

Description

Constants

Constructors

Destructors

class SKFuzzyFunc

#include <skjkzyfunc.h> I
I

Class for representing a 'fuzzy function' as used in functional template correla-
tion, averaging of interest images in M A , etc. While the SKFuncTemplate
class has its own simple representation of a wy function, this class aillows for
more general fuzzy functions. In the future this class may be used internally by

i
I

I

I
the SKFuncTemplate class. I

There are no defined constants for this class. i However, by convention for
AMDA, the number of 'bins' (the number of Allowed x-values for the fuzzy func-
tion) defaults to 512. When the fuzzy functidn does in fact have less than, or
equal to, 5 12 distinct x-bins, the fuzzy function lookugi is implemented efficiently
by a lookup table. If there are more than 5 12 :bins, the fuzzy function value must
be computed directly as each input pixel is encountered. Obviously this is a
much less efficient process.

template cclass XType, class YType>
SKFuzzyFunc<XType, YType>::SKFuzzyFunc$ char Y;hncStr);

Doubly-templatized constructor function. Tde XType is the data type of input
values for the fuzzy function. The YType is tfie data type of output values for the
fuzzy function. For example, the function could take short inputs and return float
values. ThefuncStr specifies the inflection p w and is in the foranat "(xl y l)
(x2 y2) ... (xn yn)". For example, for a fuzzytfunctioni which takes short argu-
ments and returns floats, the string could 1004 like "(3 10.0) (15 1.0) (255 0.0)".

Note that the constructor will build automatically an efficient lookup table for
evaluating the fuzzy function if the supplied +-values infuncStr range between
-255 and +255. Otherwise the function will be directly evaluated for given input
values, which is a much slower process.

I

I

I

I
~

template cclass XType, class YType> i
SKFuuy Func <XType, Wype > : : -SKFuuyFunc();

Deletes the SKFuUyFunc object and any assdciated memory.
I

Operators f i end ostream & operator << (ostreamdl, ~KFuzZyPunccXType. YType>&);

Output operator for the SKFuzzyFunc class. Just prints out the 'inflection points'
of the fuzzy function.

I

i
I

I I

55

class SKFuzzyFunc

Public

functions

SKArray<YType> Apply(SKArray<XType> &imgIn);

Function to apply the fuzzy function to every pixel in an input array. The
returned output array is the same size as the input array. Pixels in the output
array are computed by plugging each corresponding pixel from the input array
into the fuzzy function.

member

Document 2 December, 1998
Revision Date

56

Name

Synopsis

Description

Example

Constants

Component
Structures

class SKRegwnInfo

#include <skregion.h>

Simple container class for storing informatic
SKArray. The information about each partic
structure, described under Component Stru
class contains as member variables an array
ber of such structures in the array. The class
destructor.

A ‘region’ inside an SKArray is defined to bl
inside that array. For example, the set of all
the image, the set of all pixels with value 2 f
region need not be connected, Le. if the imai

0 1 0 0 0
0 0 0 0 1
0 0 0 0 0
0 2 2 2 0
0 2 2 0 2

then the set of all pixels with value 1 form a
are not all adjacent. The pixels with value 2
els with value 0 are considered ‘background
tistics will not be computed for those pixels.
will store various attributes (length, area, etc
inside of an SKArray.

See the CSKETCH Image Processing Lib1
puting statistics for regions of data within an

#dejine SKA RR-MAX-REGIONS 7000
The maximum number of regions expected t
definition is given in the MIGFA description

struct SKRegion

// The region numbe,:
short regionNumber;

class SKRegibnlnfo
!

1 about all the ‘regions’ within an
lar region is stored in an SKRegion
tures below. The SKRegionlnfo
f SKRegion structures and the num-
dso contains a consbructor and a

a collection of same-valued pixels
lixels with value 1 form region 1 of
rm region 2 of the image, etc. The
: data is

ralid region even though the pixels
orm a (connected) region. The pix-
or ‘datalless’ pixels and region sta-
In general the SKRegion structure
I of a distinct (i.e. lat,elled) region

wy Tutcwial for examples of com-
SKArrUJ?

be seen inside an SI;IArr;ay. This
iocument.

I
i
I
I I
I
I
I
i

// regionNumber). i
//Area of the region (num,zr of pixels in array having va,Je =

int area; I

i

I
i

I I
~ 57

I 1

1 i
I

class SKRegionlnfo

Constructors

//Approximate length of region (length is taken to be the length of an
// approximating rectangle).
float length;

// Center of gravity (in pixels) of the region.
float xCenterGravity;
float y CenterGravity;

//Sums of x and y (pixel coordinates) for the region. Also sums of their
// squares.
float sumX, sumz sumXSquared, sumYSquared;

//Additional intermediate statistics used in various computations.
float xDev, xDevSquared, crosssum;

// Coordinates of upper left hand comer and lower right hand comer
//of a bounding box for the region.
int xmin, ymin;
int xmax, ymax;

// Variance in horizontal and vertical directions.
float varianceAboutXAxis, varianceAboutYAxis;

//Properties of the rectangle used to approximate the region.
float majorvariance, majorSlope, majorlntercept, majorCos;
float minorvariance, minorSlope, minorlntercept, minorCos;
float rectlength, rectwidth;
1;

SKReg ionInfo : : SKRegionInfo(int nReg ions);
Constructor which takes as an argument the number of regions inside an SKArray
object. Thus the returned SKRegionClass object will have an array of SKRegion
structures of size nRegions.

Note that there is no default constructor for the SKRegionlnfo class.

Destructors -SKRegionlnfo()
The SKRegionlnfo class destructor frees all memory associated with an SKRe-
gionlnfo object; in particular the array of SKRegion structures is freed.

Operators friend ostream& operator << (ostreamb, SKRegionInfodi);
Print operator for dumping SKRegionlnfo information to an output stream.
First the total number of regions is printed out. Then, for each region in the
SKRegion array, the region number, followed by an abbreviated list of statistics

58

Public data
members

for that region, are printed out. Currently theifull set of statistics i:j not printed
out, as it is a rather long list. If desired, this list can ble added to in the! future.

int nRegions: The number of SKRegion strudtures contained in the q a y of such
~

structures within the SKRegiohZnfo object.
I
I
~

SKRegion "region: The actual array of SKRegion structures.

/class SKReg ibnl I nfo
1 1

Related global
functions

The SKRegionZnfo class is really a helper class for studying various distinct
regions of data within an SKArray object. Thus most of the related functions are
included in documentation for the CSKETCH Library. In particular, consult the
'Region Analysis' section of this document. '

I Revision Date i

1
Document 19 August, 1998 i

59

Y

class SKResamp

Name

Synopsis

Description

Example

Constants

Component
Structures

Constructors

class SKResamp

#include cskresamp. h>

CSKETCH Library array resampler routines to handle conversion of polar
radar data to Cartesian. Resampling is effected via a lookup table; each (x, y)
coordinate in a Cartesian image is assigned a single range, azimuth cell in a polar
image.
This is a 'full image' resampler, i.e. one must have a completely filled array of
polar data before using the resampler. The resampler builds a full Cartesian array
given the full polar array.

See the CSJCETCH Image Processing Library 'htorial for examples of resam-
pling polar SKArrays to Cartesian SKArrays via the SKResamp class.

#deJine SK-MAX-RESAMP-A2 512
The maximum number of azimuths supported by this resampler class; i.e. a polar
array of data must contain no more than 5 12 azimuths if it is to be resampled to a
Cartesian grid using this resampler class.

struct SKResampMapCell

short az;
short gate;

I ;

Simple structure which specifies a pixel in a polar h a g - (e.g. range, thet
nates in a 2D array of polar data).

Note that there is no default constructor for the SKResamp class.

coordi-

SKResamp(int nazPer360, int ngates, float gatesize, int xbins, int ybins,
float xsize, float ysize, float inscale = 1.0, f i a t inofset = 0.0,
float outscale = 1.0, float outOIffset = 0.0);

Construct an SKResamp resampler. The following assumptions about the polar
and Cartesian data arrays are encoded in the arguments to the constructor:

nAzPer360 specifies the number of azimuths in a full polar array. Thus e.g. for
WSP this argument is nominally 256 as there are 256 azimuths per full scan of
radar (polar) data.

ngates specifies the total number of range gates in a full polar image.

gatesize specifies the size, in meters, of a single gate of polar data.

60

I
I
i

class SKRL~~ I -. I 1

I
I

xbins specifies the maximum number of bins in the x-(dimension of a Cartesian

Destructors

Public
member
functions

array, which is to be built by resampling pol& data.

ybins specifies the maximum number of bins in the y-(dimension of a Cartesian
array, which is to be built by resampling pol4 data.

xsize specifies the x-size, in meters of a singlk pixel of Cartesian data.

ysize specifies the y-size, in meters of a single pixel of Cartesian daita.

inscale, inofset, omcale, and outofset handle the case where a rescaling of the
data is desired as the resampling is done. In This case, the input (polar) data is
assumed to be scaled and offset via inscale and inoffset. The output (Cartesian)
data will be scaled and offset via outscale and outOffset. All 4 of these argu-
ments are optional; the default value is scale=l, offsets for both input and out-
put, e.g. no rescaling of the data will take place.

I

I

i

I
I

I
I

-SKResamp() j
An SKResamp object is destroyed, freeing up1 all dynamically-allocated memory
associated with the object.

The only public member functions associated’ with this class are various ‘Run’
functions for actually performing the polar-topartesian resampling. In all cases,
‘Run’ fills the output Cartesian array by finding, for each (x, y) coordinate in the
Cartesian array, the corresponding (range, az+uth) cell in the polar data. This is
done efficiently via the lookup table built in the SKRe.ramp constnictor. The cor-
responding value in the polar array is then cobied over to the corresponding slot
in the Cartesian output array.

The Cartesian image to be filled by ‘Run’ must have sizes smaller than the xbins
and ybins arguments which were provided to the call to the SKRestzmp construc-
tor. Cartesian pixels which are out of the range covered by the polar data will be
set to nil (the lookup table provides for this when it is built).

void SKResamp::Run(short *in[], int naz, in(ngates, SKArray<sbzrt>& out)
The first version of Run for this class takes the input data in a very simple form,
namely an array of pointers to (radials of) dag. This is intended to make it as
simple as possible for other applications to take raw input data and resample it to
Cartesian format. The output Cartesian array but is filled using the lookup table
which was generated by the SKResamp conshctor call.

I

i
I

I

void SKResamp::Run(SKArray<short>& in, i SKArray<short>& out)
The second form of ‘Run’ is provided as a convenience to applications program-
mers and is generally intended for applications other than raw input (although it

I

61

class SKResamp

can also be used for that purpose). This version takes a SKArray object repre-
senting a polar input array, and resamples to an output SKArray object represent-
ing an output Cartesian array. This version is very useful, for example, when one
performs a functional template correlation process over a polar image and then
wishes to convert the results to Cartesian format. It would be inconvenient in this
case to store the polar data as an array of radial pointers, as is required for the first
version of ‘Run’.

void SKResamp::Run(SKArray<Jloat>& in, SKArray<Jloat>& out)
This is an overloaded version of the second form of ‘Run’, used when the input
(and hence output) are float, not short, arrays.

See Also Library skarr.

Document 19 August, 1998
Revision Date

62

Name

Synopsis

Description

Constants

Component
Structures

Constructors

I class SKStmResamp

#include cskstmresamp. h>

Resampler object for resampling data from one Cartesian data array to another.
The 2 arrays may have different sizes and I or data resolutions. It ILS assumed,
however, that the center pixel of each array cbrresponds to the radar location
(hence the center pixels of each array correspond to the same location in real
world space). The class is named SKStmResamp as it was first wrj tten to allow
for the resampling of storm motion u,v images to the liner resolution used by
AMDA.

I
I

I

i
I
I

#define SK-MAX-VECTORS 51 2 I
I

This constant gives the maximum (one-dimensional) size of the output image
which is to be filled in by resampling the input image. Thus, with a nominal
value of 5 12, the output image can be no larder than 51 12 by 5 12.

struct SKVecMapCell
i
short col;
short row;

I ;

Simple structure which stores the coordinates of a pixlel in the input image which
correspond to a pixel in the output image, foi the resampling process. For each
pixel (x,y) in the output image, the SKStmRetamp object stores a corresponding
SKVecMapCell object that indicates which pifrel in the input corresponds to (x,y)
in the output image. I

SKStmResamp::SKStmResamp(SKArray<P4at> &in, SKArraycf oat> &out)

Constructor to set up an SKStmResamp objedt which can be used to resample
from Cartesian input in to Cartesian output 041 . The binsize memtker variable for
each array must be set prior to calling the constructor. The arrays may be of dif-
ferent (x,y) sizes or bin sizes, but again it is ~Ssurned that the center pixel of each
array corresponds to the radar location. Also both Cartesian images are assumed
to have origin at the lower left comer.

The SKStmResamp object is essentially a lookup table; for each pixel in out, the
resampler object stores the location of a pixel from in which maps to the pixel in
out using the given resolutions. No averaging or combining of pixels is done;
this is a simple, single-pixel resampler. For example, if a 100 by 100 array with
resolution 750 m is to be resampled to a 300 by 300 array with resolution 250 m,
the resultant output array will consist of a series of 3-by-3 blocks with duplicate

I
I

I
I

~

63

I i I

Destructors

Public
member
functions

See Also

Document
Revision Date

class SKStmResamp

data. That is, each pixel from the input image will map to exactly 9 pixels in the
output, and no averaging with adjacent pixels from the input is done.

-SKStmResamp()
The destructor destroys the lookup table as well as any other memory allocated
by the SKStmResamp constructor.

void Resample(SKArray<Jloat> &in, SKArray<Jloat>& out);

Function for performing the actual resampling from Cartesian image in to Carte-
sian image out. Again, the resampler must have been built using images with the
the same sizes, and the same bin sizes, as in and out, respectively.

class SKResamp, which resamples polar data to Cartesian data. Class SKStmRe-
samp resamples Cartesian data to Cartesian data of possibly different image size
and resolution.

30 November, 1998

64

4. Analytic Geometry

4.1 Summary

// Meteorological sense:

SKComponentsToVectorf I .O, 90.0, direction, speed, SK-METEO-CO

// Mathematical sense:

SKComponentsToVectorf 1 .O, 0.0, direction, speed, SK-MATH-CONC

4.3 Functions

Analytic Geometry functions begin on the following page.

65

iJENTI(3N);

VTION);

a

Name

Synopsis

Description

Returns

Example

ngle

SKAngle180Difference()
Compute the difference between two ang
are assumed to be I80 degrees ambiguoc
preted as IO degrees or I90 degrees (this
MlGFA). The minimum difference amon,
retuned.

#include ~skunulyt.h>

Joat SKAnglel80Difference(Joat angl, J 8

Function to compute the difference between
vector sense. The angles are assumed to be 1
of 10 can be interpreted as 10 degrees or 19(
quently e.g. in MIGFA). This routine consic
plied angle and returns the minimum (vectoi
For example, if the first angle is 10 degrees (
ond angle is 160 (interpreted as 160 or 340),
ference is 30 (interpreting the first angle as 1
angle difference is 30 degrees).

The difference in degrees between the suppli
the vector sense. The difference is returned

#include cskanalyt.h>

int main(int argc, char *argv[])
{

Joat angl, ang2, angDifference;
angl = 10.0;
ang2 = 195.0;

// 180-degree-ambiguous angle diffe
//degrees.
angDifference = SKAngleDifferencc

1

Document 3 August, 1998
Revision Date

67

! skarr

IS, in the vector sense. The angles
e, e.g. an angle of 10 can be inter-
rituatiofi! occursffeqigently e.g. in
all angle interpretations is

at ang2);

wo angles, angl and ang2, in the
30 degrees ambiguous, e.g. an angle
degrees (this situation occurs fre-
xs both interpretations of each sup-
angle difference between them.

iterpreted as 10 or 190) and the sec-
he 180 degree ambiguous angle dif-
1 and the second as 340, the vector

d, 180-d.egree ambiguous angles, in
s a float.

ance, in vector sense, will be 5.0

angl, ang2):

I

skarr

Name SKAngleDifference()
Compute the diTerence between two angles, in the vector sense.

Synopsis #include akanalyt. h>

float SKAngleDifference($oat angl , float ang2);

Description Function to compute the difference between two angles, angl and ang2, in the
vector sense. For example, if the two angles are 10 and 340 degrees, the angle
difference is 30 (i.e. the angle between two vectors, one at 10 degrees and the
other at 340 degrees, both based at the origin, is 30 degrees.).

Returns The difference in degrees between the supplied angles, in the vector sense. The
difference is returned as a float.

Example #include <skanulyt.h>

int main(int argc, char *argv[])

$oat angl, ang2, angDifference;
angl = 35.5;
ang2 = 235.5;

//Angle difference, in vector sense, will be I60 degrees.
angDifference = SKAngleDifference(angl, ang2);

I

See Also

Document
Revision Date

SKAnglel80Difference()

3 August, 1998

68

Name

Synopsis

Description

Returns

Example

See Also

I skarr

I I

onents
I
I

SKComponentsTo Vector()
Convert a vector specified by its x- and y-componemts to a magnitude and
direction. I

I #include <skanalyt.h>

void SKComponentsToVector(float xComp, j o a t yCo,mp, float& direction,
float& speed, SKAngkConvPntion aiagleConvention);

I
Function to take a vector specified by its x- and y-components, xComp and
yComp, and compute the direction and speed! of the vector. The inputs direction
and speed are passed by reference and their contents iue updated tvith'the direc-
tion and speed of the vector. The desired angZeConvention for measuring the
direction must be specified, e.g. the vector (lL0) has direction 90.0 in the meteo-
rological sense but direction 0.0 in the mathematical sense. See the CSketch
Image Processing Library 'Moria1 description for details about the SKAngle-
Convention enumerated type.

Input variables speed and direction, which w
with the speed and direction of the supplied
y Comp.

#include <skanalyt.h>

int main(int argc, char *argv[])

float xComp, yComp;
float direction, speed;

xComp = 5.0;
yComp = 0.0;

// Update direction and speed of vec
//sense.
SKComponentsToVectorf xComp, y(

SK-METE1
1

SKVectorTo Components()

69

re passed by reference, are updated
ector with components xComp and

31; measured in meteorological

Pmp, direction, speecl!,
ICONVENTION);

1

skarr

Document
Revision Date

3 August, 1998

70

Name

Synopsis

Description

Returns

Example

SKDirectionFrom()
Return the direction from one speciJied pc
the angle of the vectorffom point1 to poi]

#include <skanalyt.h>

float SKDirectionFrom(SKCoordI p l , SKC
SKAngleConvention angleCc

float SKDirectionFrom(m a t xl , float y l , j i
SKAngleConvention angEeCc

Functions to return the direction from the fir:
plied point. The first overloaded version oft
as two SKCoordI structures. The second ovc
via two float arguments (i.e. the first point is
Y.2)).

The SKCoordI structure is a simple structur
the first version of this function considers on
point and computes the direction from pl to
second version of this function computes the
the point (x2, y2) in the x-y plane.

For each version, the final argument is the de
ing the direction. This setting is important, e
direction 90.0 in the meteorological sense bc
sense. See the CSKETCH Image Processh
details about the SKAngleConvention enume

In all cases, the direction (in degrees) from p

#include cskanalyt.h>

int main(int argc, char *argv[])

SKCoordI ptl , pt2;
float x l , y l , x2, y2;
float dirl, dir2;

// First overloaded version; directioi
pt1.x = 0; pt1.y = 0;
pt2.x = 0; pt2.y = 5;

71

I
1 skarr

I

nt to another specified doint, e.g.
t2.

,ordl p2,
wention);
tat x2, float y2,
wention);

supplied point to the second sup-
is function supplies the two points
loaded version supplies each point
x l , y l) and the second point is (x2,

storing an x, y, and z-coordinate;
y the x and y coordinates of each
2 in the x-y plane. Likewise, the
iirectiori from the point (x l , y l) to

ired angleConvention for measur-
5. the vector from (O.,O) to (1,O) has
direction 0.0 in the inathematical
g Library lbtorial description for
ited type.

intl to point2 is returned as a float.

in mathematical sense.

Document
Revision Date

skarr

dirl = SKDirectionFrom(p t l , pt2, SK_MATH-CONVENTION);
// Second overloaded version; direction in meteorologial sense.
X I = 0.0; y l = 0.0;
x2 = 0.0; y2 = 5.0;
dir2 = SKDirectionFrom(XI, y l , x2, y2, SK_METEO-COWENTION);

I

3 August, I998

72

Name

etails ablout the SKArigleConven-

lskarr
1

n degrees) is returned as a float.

SKDirection Moved() I
Disambiguate a 180-degree ambiguous andle measirrement basad on the
direction of the vectorfrom one point to a deecond point.

in mathematical sense.
t of 130 degrees (in math sense)

! Synopsis #include cskanalyt.h>

float SKDirectionMoved(SKCoordI p l , SK4oordI p2, float dir;

float SKDirectionMoved($oat x l , float y l , $bat x2, float y2, float dir;
SKAngleConvention angle Convention);

SKAngleConvention angleCoj2vention 1;
I

Description Functions to disambiguate a 180-degree ambiguous angle measurement (the
input dir) based on the direction of the vector from one point to a second point.
Specifically, given two points p l and p2 in thelx-y plane, we compute the angle
of the vector frompl to p2. If this vector lies pithin 90 degrees (in the vector
sense) of the vector with angle dir, then we r e t p the value of dir unchanged. If
the two vectors differ by more than 90 degrees’, we return (dir + 180) (mod 360),

Returns

Example

as (dir + 180) mod 360will lie within 9Odeg
this case.

The first overloaded version of this function s
SKCoordI structures. The second overloaded
float arguments (i.e. the first point is (XI, y l) i

Note that at the time this function is called, ai
correct convention in which dir was initially 5

CSKETCH top-level library description for (
tion enumerated type.

In all cases, the disambiguated direction dir (

#include cskam1yt.b

int main(int argc, char *a&])

SKCoordI pt l , pt2;
float x l , y l , x2, y2;
float dirl, dir2;

// First overloaded version; direction
// 180 degree ambiguous measuremei
17 will be disambiguated to 310 degre

73

bes of the vector froni pI to p2 in

fpplies the two point.; < as two
rersion supplies each point via two
nd the second point is (x2, y2)).

skarr

pt1.x = 0; pt1.y = 0;
pt2.x = 0; pt2.y = 5;
dirl = SKDirectionMoved(pt l , pt2, SK-MATH-COWEATION);

//Second overloaded version; direction in meteorologial sense.
// 180 degree ambiguous measurement of 130 degrees (in meteo sense)
//will be disambiguated to 130 degrees (i.e. unchanged) in this case.
x l = 0.0; y l = 0.0;
x2 = 0.0; y2 = 5.0;
dir2 = SKDirectionMoved(x l , y l , x2, y2,

SK-METEO-COWENTION):
1

Document 3 August, 1998
Revision Date

74

Name

Synopsis

SKCoordl p t l , pt2;
froat X I , y I , x2, y2, distance;

Description

Returns

Example

Document
Revision Date

I I

I
i
i
~ skarr
1

I ,

//First overloaded version.
pt1.x = 3; pt1.y = 0;
pt2.x = 0; pt2.y = 4;
distance = SKDistanceBetween(ptl

//Second overloaded version.
X I = 3.0; y l = 0.0;
x2 = O.'O; y2 = 4.0;
distance = SKDistanceBetween(XI,

1

3 August, 1998

Pt2);

I , x2, y;?);

skarr

Name

Synopsis

Description

Returns

Example

SKDistanceMoved()
Functions to take 2 points p l andp2, and a direction dir; and compute the
distance travelled along direction dir in travelling from pI to p2.

#include <skanalyt.h>

float SKDistanceMoved(SKCoordI p l , SKCoordI p2, float dir;
SKAngleConvention angleconvention);

float SKDistanceMoved(float XI, float y l , float x2, float y2, float dir;
SKAngle Convention angleConvention);

Functions to take 2 points p l and p2 and compute the distance travelled along
direction dir in travelling from pl to p2. This is the length of the projection of
the vector from ptl to pt2 onto the line through ptl with direction "dir". This is
equivalent to computing the distance from p2 to the line thru pl with direction
pemendicular to the supplied direction dir. We must supply an angleConvention
parameter as this distance is different for different angle conventions (for
example, a mathematical dir of 150 will generally yield a different result than a
meteorological dir of 150).

Note the required distance is more easily computed as the length of the projection
of the vector from pl to p2 onto a unit vector of direction dil: The equivalent
computation described above was the method used in the original SKETCH sys-
tem and is the method described in the SKE Library description document, so
was used here. The 2 methods lead to equivalent formulas.

The first overloaded version of this function takes the two point arguments as
SKCoordI structures; the second overloaded version takes the two points speci-
fied by their (x, y) coordinates (i.e. the first point has coordinates (XI, y l) and the
second point has coordinates (x2, y2)). Both versions simply compute the dis-
tance described in the paragraph above and return this distance as a float.

The distance travelled along direction dir, when moving from the first supplied
point to the second supplied point. This distance is returned as a float.

#include <skanalyt.h>

int main(int argc, char *argv[])

SKCoordI p t l , pt2;
$oat X I , y l , x2, y2;
float dirl, dir2, distl, dist2;

76

I I skarr
I

I

1 // First overloaded version; direction in mathematical senipe.
pt1.x = 0; pt1.y = 0;
pt2.x = 0; pt2.y = 5;
dirl = 40.0;
dirl = SKDistanceMoved(pt l , pt2, dirl, SK-MATH-CONVENTION 1;

// Second overloaded version; direction in meteorological sense.
X I = 0.0; y l = 0.0;
x2 = 0.0; y2 = 5.0; I
dir2 = 50.0;
dist2 = SKDistanceMoved(x l , y l , x2, y2,

~

I
I

i
SK-METEO-COWEhTION);

I

Document 17 July, 2002
Revision Date

skarr

Name

Synopsis

Description

Returns

Example

Document
Revision Date

SKExternalAngle()
Function to compute the external angle (in degrees) of two intersecting line
segments determined by three points. The second of the three points is consid-
ered the intersection point of the 2 line segments.

#include <skanalyt. h>

float SKExtemalAngEe(SKCoordl pt0, SKCoordl ptl , SKCoordl pt2)

Function to compute the external angle (in degrees) of two intersecting line seg-
ments determined by three points, PO, p l , and p2. The point p l is considered the
middle point, i.e. we take the line segments from p0 to p l and p2 to p l and com-
pute the external angle determined by these. Angle convention is not applicable
here (e.g. a vector at 45 degrees in any system, intersecting a vector at 150
degrees in any system, will always have an external angle of 255 degrees).

The external angle determined by the three points; this angle (expressed in
degrees) is returned as a float.

#include <skanalyt. h>

int main(int argc, char *argv[])
{

SKCoordl p0, p l , p2;
$oat extemalAngle;

p0.x = 0; p0.y = 0;
p1.x = 0; p1.y = 1;
p2.x = 1; p2.y = 0;

// The three points determine an external angle of 315 degrees.
extemalAngle = SKExtemalAngle(PO, p l , p2);

I

3 August, 1998

78

Name

Synopsis

Description

Returns

Example

SKFlipDirection()
Function to flip an input direction by 180
direction lies between 0 and 360.

#include cskanalyt.h>

float SKFlipDirection(float dir)

Function to flip an input direction by 180 deg
tion lies between 0 and 360.

The flipped direction, returned as a float.

#include <skanalyt.h>

int main(int argc, char *argv[])
{

float JlippedDir;

/ /30 degreesflips to 210; 210 to 30 {
JEippedDir = SKFlipDirection(30.0
JEippedDir = SKFlipDirection(210.L

1

Document 3 August, 1998
Revision Date

I

I
1
I

I I
I

I
I

i
I
I
!

I

I skarr

legrees. Makes sure the returned

ees. Makes sure the returned direc-

lot 490).

79

skarr

Name

Synopsis

Description

Returns

Note

Example

SKlntersectionOfVectors()
Function to take two rays (each specijied by a base point point and a direc-
tion) and determine whether the two rays are converging.

#include cskanalyt. h>

short SKIntersectionOfVectors(SKCoordI p0, float direction0,
SKCoordI p l , float directionl,
SKAngleConvention angleConv);

Function to take two rays (each specified by a base point point and a direction)
and detennine whether the two rays are converging (i.e. determine whether the
rays determined by propagating the base points forward only along the appropri-
ate directions will intersect). Since this function calls several other analytic
geometry functions which require an SKAngleConvention indicator, one must be
supplied to this function. It is assumed that direction0 and direction1 were both
measured with the corresponding angle convention.

A short with value 1 if the rays are converging, 0 if they are not.

This routine attempts to handle "ill-conditioned" problems, e.g. when the rays are
very nearly parallel, when two rays are "chasing" each other, etc. Consult the in-
line documentation for details of these degenerate cases.

#include <skanulyt.h>

int main(int argc, char *a&])
{

SKCoordI p0, p l ;
float d id , dirl;
short intersecting;

//First ray based at (0,O). 30 degrees (math convention).
p0.x = 0; PO. y = 0; dir0 = 30.0;

//Second ray at (l ,O) , 340 degrees (math convention).
p1.x = 1; p1.y = 0; dirl = 340.0;

//Are the rays converging?
intersecting = SKIntersectionOjXectors(PO, dir0, p l , dirl,

80

I

1 skarr

SK-MATH-CONVENTION ,

Document
Revision Date

I

17 July, 2002

81

skarr

.

Name SKPointApproachingLocation ()
Function to determine whether the point at locl, travelling with the specijied
direction, is approaching or receding from the point at loc2.

Synopsis #include <skanalyt.h>

bool SKPointApproachingLocation(SKCoordI locl. SKCoordI loc2, jloat dil;
SKAngleConvention angleConvention);

Description This function determines whether the point at Zocl, travelling with direction
direction, is approaching or receding from the point at loc2. It is approaching if
the angle of the vector from locl to loc2 is within 90 degrees of direction, other-
wise it is receding. This function needs the angleConvention variable as it calls
SKDirectionFrom(), which returns different results according to the angle mea-
suring scheme. It is assumed that direction was initially measured with the
scheme indicated by angEeConvention.

Returns

Example

Returns boolean TRUE if the first point is approaching the second point, other-
wise FALSE.

#include <sbnalyt.h>

int main(int argc, char *argv[])

SKCoordI locl, loc2;
$oat dir;
bool approaching;

//First point at (I , I) moving with direction 35 degrees (mathematical
//sense). Second point at (2, I) .
1ocl.x = I ; loc1,y = I ; dir = 35.0;
loc2.x = 2; loc2.y = 1;

/ / I s first point approaching second location?
approaching = SKPointApproachingLocation(locl, loc2, dil;

SK-MATH-CONVENTION);
I

Document 4 August, 1998
Revision Date

82

I ~ skarr
I I

Name

Synopsis

Description

Returns

Example

Document
Revision Date

SKTransla

SKTranslateX YPosition()
Function to take an input point (pixel), a
direction by a supplied distance.

#include cskanalyt. h>
SKCoordI SKTranslateXYPosition(SKCoorc

SKAn

Function to take an input point (pixel), and 1
tion by a supplied distance. Returns the tra
an SKCoordI structure.

Returns the translated pixel (integer coordin

#include cskanalyt. h>

int main(int argc, char *argv[])
{

SKCoordI point, translatedpoint;
float direction, distance;

// Firstpoint at (I , 1) moving with A

//sense).
p0int.x = 1; p0int.y = I ; direction

// Translate the point thru a distanc,
//truncated to integer values to givt
distance = 11.4;
translatedPoint = SKTranslateXYPc

distance, SK
1

4 August, 1998

83

I translate the point ,in a ,supplied

point, $!oat dic float dist,
Convention angleConvention);

nslate the point in a supplied direc-
ated pixel (integer c~oordinates) in

:s) in an SKCoordI structure.

:ction 35 degrees (meteorological

35.0;

If 1 I .4 pixels. Output will be
true pixel coordinaife.

!ion(paint, direction,
IETEO,-CONVENT,ION);

skarr

Name

Synopsis

S

SKVectorTo Components()
Convert a vector specijed by its magnitude and direction to its x- and y-com-
ponents.

#include <skanalyt.h>

SKCoordF SKKectorToComponents(float theta, float range,
SKAngleConvention angleConvention);

Description Given a vector in (range, theta) format, convert it to its (x, y) components. Must
account for whether theta was measured in the mathematical sense or the meteo-
rological sense (as indicated by the angleConvention argument).

Returns The equivalent vector expressed as (floating-point) x- and y-components. The
result is returned as an SKCoordF structure.

Example #include <skanalyt.h>

int main(int argc, char *argv[])

float theta, range;
SKCoordF components;
theta = 30.0;
range = 5.0;

// Given a vector with magnitude 5.0 and direction 30.0 degrees (in the
//meteorological sense), Jind the x- and y-components of the vectol:
components = SKVectorToComponents(thetu, range,

SK-METEO-CONVENTION);
I

See Also SKComponentsTo Vector()

Document 4 August, 1998
Revision Date

84

5. Array Arithmetic I
I

5.1 Summary

CSKETCH array mu,,,metic functions. Some common array arithmei
and Magnitude() of the elements of an SKArray. Also includes more
anFilter() and SkLsqDerivFiEter(). Note that other common arithmeti
C++ operators are discussed in the SKArray class description., elsewl
metic operators include +, +=, -, -=,etc.

5.2 Functions

Array Arithmetic functions begin on the following page.

85

.nct,ais such as in(), i , .~~(),
plex fiunctions sucln as j ~ m e d i -
iction,s which are encdded as
in this document. Such arith-

t

Name

Synopsis

Description

Returns

Magnitu

Magnitude()
Function to return a new SKArray contai
vectors stored in input SKArrays xVec an

#include Cskarrayarith. h>

SKA rraycJloat> Magnitude(SKArray<Jloal

Function to return a new SKArray containin,
vectors stored in input SKArrays xVec and y’
are considered to be holding x and y compoi
vector at pixel (12, 15) has x-component = x
yVec(l2, 15). The magnitude at each pixel is
squared plus the y-component squared. Thi:
input arrays xVec and yVec are equal in dime

An SKArraycJloat> which stores the pixelw
with x-components stored in xVec and y-con

Document 5 August, 1998
Revision Date

87

1 skarr

ng the pixelwise ma,pnitizdes of the
yVec.

h xVec, SKArraycfloat>& yVec);

Ae pixelwise magnitudes of the
c. The input arrays xVec and yVec
nts of an array of vectors; e.g. the
~312, 15) and y-component =
he square root of the x-component
unction first checks to see if the
,ion, size, and stride.

2 magnitudes of all the vectors
onents ,stored in ykc.

skarr

Name M a 0
Functions to return one of more new or edited SKArrays containing the pixel-
wise maximum values of a pair of SKArrays. See documentation below for
further elaboration on this overloadedfunction.

Synopsis #include <skarrayarith.h>

templatecclass T>
SKArray<T> Max(SKArray<T>& inl, SKArray<T>& in2, int anyNILIsNIL);
templatedass T>
void Max(SKArrayClb * i d , SKArray<T>& in2,

SKArray<T> *in3, SKArray<T>& in4,int anyNILIsNIL);

Description The 2-array version of Max() works as follows. A new SKArray of the same type
as the 2 input arrays is created. That array will contain the pixelwise maximum
values of the 2 input mays. The anyNILZsNIL flag controls how NIL values in
either input is handled. If anyNILIsNIL == I (TRUE), then if either of the pixels
is NIL, the result is NIL. If anyNlLIsNlL == 0 (FALSE), and the pixel from the
first input is NIL, then the value of the corresponding comparison pixel is copied
to the output SKArray (this pixel value may itself be NIL). If neither comparison
pixel in NIL, then the output pixel is simply the maximum of the 2 compared pix-
els.

The 4-array version of Max() returns two modified arrays whose contents are
adjusted as follows. Refer to the documentation of the 2-array version of Max()
described above. The 4-array version of Max() handles its first 2 input arrays
exactly as the 2-array version of Max() handles its 2 input arrays, with the excep-
tion that in the 4-array version the first input (inl) is overwritten with
maximum values (or nil's, which may occur at some pixels). In the 2-array ver-
sion, a new output array was created so none of the inputs are edited. The any-
NILISNIL flag serves exactly the same purpose for this comparison as it served in
the 2-array version.

In addition to the editing of inl, the "companion" array in3 may also be edited
according to the values of in4. However, any editing of in3 is controlled by the
results of comparing- inl- pixels to in2 pixels. The bottom line of the editing pro-
cess is:

(1) If the pixel at in1 is unchanged, then the corresponding pixel in in3 is also

(2) If the pixel in in1 is set directly to NIL (because of the anyNILIsNZL flag),
unchanged.

then the corresponding pixel in in3 is also set directly to NIL.

88

Returns

Warn i ng

I I
(3) If the pixel in in1 is overwritten with the cbnresponding pixel of' in2, then the

corresponding pixel in in3 is also overwritden with the corresponding pixel in
in4. Note in this case, the result pixel coulld be NIL in none, one:, od both of
in1 and in3; this depends solely on the valdes of in;! and in4 which were used
for the overwriting process. I

I

The input arrays in1 and in3 are edited as desiribed above.

The 4-array version of Max0 edits the input +ays in1 and in3; thi,; is different
from the behavior of the 2-array version of Mlur(), which does not edit any of its

1

inputs. I

Document 6 August, 1998
Revision Date

~ skarr
I

skarr

Name Mino
Function to return a new SKArray containing the pixelwise minimum values
of a pair of input SKArrays.

Synopsis #include <skarrayarith. h>

c templateeclass T>
SKArray<T> Min(SKArray<T>& inl, SKArray<T>& in2, int anyNZLZsNZL);

Function to return a new SKArray containing the pixelwise minimum values of a
pair of input SKArrays. This global function assumes that arrays in1 and in2 are
the same size arrays. That is, the number of dimensions is equal, and each
dimension's sizes and steps are equal. This stipulation must hold since the pur-
pose of the function is to compare each element in array in1 to each element in
array in2 and h d the minimum at each pixel.

Description

Returns An SKArray which stores the pixelwise minimum values of the two input SKAr-
rays in1 and in2. The returned SKArray has the same data type as the two input
arrays (which must have the same type themselves, e.g. both inputs are float
SKArrays, or both are integer SKArrays, etc.)

The Boolean input anyNZLZsNZL controls how NIL values are handled. If
anyNZLZsNL == 1 (TRUE), then if either of the pixels is NIL, the result is NIL. If
anyNZLZsNZL = 0 (FALSE), and the value at a particular pixel in the first input
in1 is NIL, then the value of the corresponding comparison pixel from in2 is
stored in the output array (this value may itself be NIL).

Document 5 August, 1998
Revision Date

90

Name

Synopsis

Description

Returns

Document
Revision Date

SKCopyMaskzdElernents()
Copy valuesfrom one SKArray to anothei
third ‘mask’ array has value equal to son

#include cskarrayarith. h>

template <class i3
void SKCopyMaskedElements(SKArray < T=

SKArray<short>& mask, sl

This function loops simultaneously over the
pixels where the value in the mask array is eq
pixel value in input is copied to the correspo
maskvalue is an optional argument -- if no v
SKCopyMaskedElements(), it defaults to 1.

The modified output array. Pixels in the out;
sponding pixel values in the input array, at 1
value equal to the maskvalue.

5 August, 1998

91

KArray, atpixel loctztions where a
prescribed value.

output, SKArray<l”>& input,
rt maskValue /* = 1 */);

vut, ouzput, and mask arrays. At
1 to maskValue, the corresponding
ing location in output. The
Le is supplied for it in the call to

1 array iue set equal to the corre-
ations where the mask array has

skarr

,

Name SKDerivative Filter()
Compute a one-dimensional numerical derivative over a specijied window
length at all pixels in an input SkXrray.

Synopsis #include <skarrayarithh>

template <class T>
SKArray<Jloat> SKDerivativeFilter(SKArray<T>& input, short dimension,

short window Width);

Description CSKETCH Derivative Filter function. For each applicable pixel in input, com-
putes a numerical derivative of the data in the array, using a window of width
windowwidth in dimension specified by dimension. Output array is shortened by
(windowwidth - 1) in the dimension of the filtering. This function is no longer
frequently used since the writing of SKLsqDerivFilter(), because the least-
squares filter can handle missing data values in the input; SKDerivativeFilterf)
cannot handle missing values, i.e. there must be no nil pixels in the input array to
this function. See the in-line source documentation for further discussion of this
function.

Returns A float SKArray which stores the pixelwise derivatives of the input data array.

Warning This function cannot handle nil values in its input array; thus if the function is to
be used, the developer must make sure that the supplied input does not have any
nil values.

See Also SKLsqDerivFilterf)

Document 5 August, 1998
Revision Date

92

1 skarr

Name

Synopsis

Description

Returns

See Also

Document
Revision Date

I
I Function to return an array that has each element set to the quotieot of the

corresponding numerator array element dbided by the denominator array
element. I

I

SKDivideByElements()

i
i #include <skurrayarith.h>
I template <class T> I

SArray<T> SKDivideByElements(SKArra

Global function to return an array that has ea
corresponding numerator array element divic
ment. If either of the numerator or denomina
pixel is 0, then the corresponding output pixe

An SKArruy which is the same type (float, in
SKArrays, which must themselves be of the s

SKArray<T>& SKArray<T>::operator /= (
SKArrays; divides each element of the array

6 August, I998

93

<T>& num, SKArray<lb& den);

h element set to the quotient of the
:d by the denominator array ele-
ir pixel is nil, or if the denominator
is also nil.

, etc.) as the input num apd den
m e type:.

") (scalar division operator for
~y the right-hand side: scalar).

skarr

Name

Synopsis

SKFirstDerivah'veSum ()
Function which calls SKDerivativeFilter and then SKSumFilter so that a
given pixel in the output image stores the sum of the$rst derivatives of points
within a small window of the corresponding pixel in the input image.

#include <skarrayarith. h>

SKArray<float> SKFirstDerivativeSum(SKArray <short>& input,
short dimension, short window Width);

Description CSKETCH First Derivative Sum Filter function. Calls SKDerivativeFiZter()
and then SKSumFiZter() so that a given pixel in the output image stores the sum of
the derivatives of points within a small window of the corresponding pixel in the
input image.

Since both the derivative filter and the s u m filter produce a "shorter" output
image in the direction of the filtering, this routine first creates an expanded image
(expanded by 2 * (windowwidth - 1) in the direction of the filtering). The
expanded array has its margin filled in via the SKArray class member function
SKArray<T>::Mirror(). Since each filter operation shortens the output by
windowwidth - 1 in the filter direction, the output image of the full SKFirstDeriv-
ativeSum() operation is sized the same as the original input.

Returns A float SKArray which stores the pixelwise first derivative sums of the input data
array.

Warning This function cannot handle niZ values in its input array, as it calls SKDen'vative-
Filter() and SKSumFilteH), which both cannot handle nil values. Thus if the
function is to be used, the developer must make sure that the supplied input does
not have any nil values.

See Also SKDerivative Filte r(), SKSum Filte H), SKA rray < T> : :Mirror(),
SKLsqDerivFilter()

Document 7 August, 1998
Revision Date

94 1

Name

obtained using the least-squares method.

Synopsis

Description

Returns

! skarr

See Also SKDerivativeFilter()

Document 6 August, 1998
Revision Date

95

skarr

Name

Synopsis

Description

Returns

Document
Revision Date

SKMedianFilter()
SKArray median filter function.

#include <skarrayarith. h>

template <class T>
SKArray<T> SKMedianFilter(SKArray<T>& input, short winX, short winl:

Joat fraction, SKPadOp padOp)

CSKETCH median filter function. A 2-D window (window half sizes are winX
and winu) is centered on each pixel of the input image. All values that fall within
this window are added to an array. The array is then sorted. The "middle" element
of the array is used to determine the median value that is placed in the corre-
sponding element of the output array. Nil pixels are ignored, but a specified frac-
tion of the pixels within the window must be non-nil in order for the output image
to have a non-nil value at the corresponding pixel. The input SKArray is
expected to be NON-PADDED. Padding is done internally via the specified
padOp. See documentation for the helper class SKArrayPad for a full description
of supported padding options.

A new SKArray of the same type as the input array; each element of the output
array is the median of a 2D window of data centered at the corresponding pixel in
the input array.

6 August, 1998

96

Name

Synopsis

Description

Returns

Document
Revision Date

SKScaleArrayToSounds()

SKScaleArray ToBounds()
Function to take an input array and seal,
range.

#include cskarrayarith h>

template <class T class V>
SKArray<T> SKScaleArrayToBounds(SKA

V

Function to take an input array in1 and scale
range. Specifically, the number of (integer)
is passed in, as are high and low bounds for
which are less than the low bound are set to i
are greater than the high bound are set to (ni
low bound and high bound are ramped linea
converted to the correct output type a>). 1
platized; the output array of type SKArray<
type (T) as the input inl , while the high and
a different data type (V). For example, one
and high boundaries even when scaling an 5

The scaled SKArray, which has the same dai

6 August, 1998

97

! skarr

copy qf the array to a speciJied

zycT>,B inl, short num-bins,
:h, Vlow)

copy of the array tci a specified
ns, numi-bins, for the output array
: scaling. Original input pixels
o in the output; input pixels which
- bins - 1); input pixels between
r from 0 to (num-bins - 1) (and
te that this function is doubly-tem-
8 is an !KArray of the same data
Y bounds for the scaling may be of
ild specify float values for the low
bray of type short.

type as the in1 input SKArray.

skarr

Synopsis

Name SKSumFilterO
For each pixel in an input SKArray, compute a one-dimensional sum of pixel-
values over a specified window length; results stored in an output SKArray.

#include eskarrayarith. h>

templateeclass T>
SKArrayelb SKSumFilter(SKArrayeT>& input, short dimension,

short window Width);

Description CSKETCH Sum Filter function. For each applicable pixel in input, computes a
sum of the data in the array, over a window of width windowWdth in dimension
specified by dimension. Output array is shortened by (windowWidth - 1) in the
dimension of the filtering. This function cannot handle missing data values in the
input, i.e. there must be no nil pixels in the input array. See the in-line source
documentation for further discussion of t h i s function.

Returns An SKArray of the same type as the input SKArruy, which stores the pixelwise
window sums of the input data array.

Warning This function cannot handle nil values in its input array; thus if the function is to
be used, the developer must make sure that the supplied input does not have any
nil values.

Document 6 August, I998
Revision Date

98

6. FuzzySets

6.1 Summary

This section includes various CSKETCL Jtilities for fuzzy log,,: apF i
this section are simple functions whose graph lies in the range from 0.1
gRamp() and SKFuZZingRamp(), which rise (respectively fall) from 0.0
fied x range. The functions are typically used to generate weights witl
used in computing various weighted averages used by the algorithms.
SKFuuy WeightedAverageO, which is used to compute a fuzzy weighte
tation for class SKFuz~yFunc for further elaboration.

6.2 Functions

Fuzzy logic functions begin on the following page.

99

ations. Most of the functions in
to 1.0. Examples are SKRisin-
o 1 .O (rlesp 1 .O to 0.0) over a speci-
value between 0.0 and 1.0, to be
n addition, this function contains
1 average of images. See documen-

3

I

Name

IlingRamp

SKFallingRamp()
Compute a particular value of a function
Given a single input x-value, the corresp
puted and returned.

Synopsis #include <skfuuysets.h>

float SKFalEingRamp(float xvalue, float *inj

Description Function whose graph is a ‘falling ramp’. 7
fies two points on the x-axis, namely x0 and
responding y-value is 1 .O. When x > xl the ,
the graph is an decreasing straight line, goin€
Given the input x = xvalue, the correspondir
tion is computed and returned.

Returns

Example

Document
Revision Date

Given the input x = xvalue, the correspondir
tion is computed and returned.

#include cskfuzzysets. h>

int main(int argc, char *argv[])

float infpts[2], y;

//Falling ramp falls from y=I at x=
infpts[O] = 0; inJTts[l] = 5;

// Compute y-values at x = -I, 0.5, L

y = SKFaEEingRamp(-1.0, inJTts);
y = SKFaElingRamp(0.5, infpts);
y = SKFaEEingRamp(10.0, infpts);

1

6 August, I998

101

Those graph is a ‘falling ramp’.
iding y-value on the graph is com-

ctionPo,ints);

5 inflectionPoints argument speci-
I. For points x with :c c x0, the cor-
value is 0.0. From x = x0 to x = xl
romthe point (x0,l.O) to,(xl, 0.0).
yvalue on the graph of this func-

yvalue on the graph of this func-

to y=o llt x=5.

rt 10

skarr

Name SKFdlingSO
Compute a particular value of a function whose graph is a ffalling S’. Given
a single input x-value, the corresponding y-value on the graph is computed
and returned.

Synopsis #include <skfuzzysets. h>

float SKFallingS(float xvalue, float *inJectionPoints);

Description Function whose graph is a ‘falling S’. The inflectionPoints argument specifies
three points on the x-axis, namely x0, xl, and x2. For points x with x < x0, the
corresponding y-value is 1.0. When x > x2 the y-value is 0.0. From x = x0
to x = xl the graph is a downwards parabola; the value at x = xl is 0.5. From x =
xl to x = x2 the graph is an upwards parabola; the value at x = xl is again 0.5 for
continuity, while the value at x = x2 is 0.0. Thus from x = x0 to x = x2 the graph
resembles a reverse letter ‘s’.Given the input x = xvalue, the corresponding
yvalue on the graph of this function is computed and returned.

This function is computed simply as 1.0 - SKRisingS(xvalue, inflectionpoints);

Returns

Example

See Also

Given the input x = xvalue, the corresponding yvalue on the graph of this func-
tion is computed and returned.

#include eskfuzzysets. h>

int main(int argc, char *a&])

float infpts[3], y;
{

//Falling s falls from y=I at x=O to y=O at x=5. The graph changes
//from a downwards parabola to an upwards parabola at x = 2.
infpts[O] = 0.0; injPts[l] = 2.0; in.ts[2] = 5.0;

//Compute y-values at x = - I , 0.5, and I O
y = SKFallingS(-1.0, infpts);
y = SKFallingS(0.5, inflts);
y = SKFallingS(10.0, infpts);

1

SKRisingS()

Document 17 July, 2002
Revision Date

103

skarr

Name SKFuzzy WeightedAverageO
Function to return the f i z zy weighted average of an array of interest images.

Synopsis #include <skfuzzyavg.h>

SKA rray <short> SKFuzzy We ightedve rage(SKA rray < short> *images[],
int numlmgs, SKFuzzyFunc<short,$oat> %eightFunc[]);

Description Function to return the fuzzy weighted average of an array of interest images.
There should be a corresponding fuzzy weight function in the weightFunc array
for each of the input images in images. Each pixel in each input image is
weighted by the corresponding weight function prior to averaging to find the out-
put value at that pixel. By using SKFuzzyFunc objects as the weighting func-
tions, we can in theory have a different weight at every pixel of the input image.
This differs e.g. from the averaging process in MIGFA which has only a choice of
2 weights at each pixel.

Returns The weighted average of all the input SKArrays. This is returned as an SKAr-
ray<short>; values are converted to short after averaging by truncation.

See Also SKAverageInterestlmages(), SKAveragelnterestImagesExceptMin().

Document 2 Decembel; 1998
Revision Date

104 I

Name SKRamp Plateau()
Compute a particular value of a function
Given a single input x-value, the correspo
puted and returned.

Synopsis #include <skfuzzysets. h>

float SKRampPlateau(float xvalue, float *in$

Description Function whose graph is a ‘ramp plateau’. T
fies four points on the x-axis, namely x0, xl ,
when x <= x0; y increases linearly from 0.0 t
then plateaus, i.e. y is always = 1.0 for x l <=
linearly to 0.0 for x2 c= x < x3; and finally thr
the input x = xvalue, the corresponding yvalu
computed and returned.

Returns

Example

Document
Revision Date

Given the input x = xvalue, the correspondinj
tion is computed and returned.

#include cskfuzzysets.h>

int main(int argc, char *a&])

float infpts[4], y;

//Ramp plateau rises from y=O at x=
//(i.e. y =I)from x=5 to x=7; thenj
injPts[O] = 0; injPts[l] = 5; injPt

//Compute y-values a t x = -I, 0.5, ai
y = SKRampPlateau(-1.0, infpts);
y = SKRampPlateau(0.5, infpts);
y = SKRampPlateau(10.0, infpts);

1

17 July, 2002

105

I skarr

those graph is a ‘ramp plateau ’.
ding y-value on the graph is com-

ctionPoints),

e inJEectionPoints arguments speci-
.2, and x3. The y-value is zero
1.0 for x0 <= x < X I ; the graph

L c x2; the graph then ramps down
graph is zero when x >= x3. Given
on the graph of this function is

yvalue on the graph of &s func-

1 to y = l at x=5; it p1,ateaus
11s linearly to y=O at x=IO.
121 = 7; injPts[3] =: IO;

z 10

skarr

Name SKRisingRamp()
Compute a particular value of a function whose graph is a ‘rising ramp ’.
Given a single input x-value, the corresponding y-value on the graph is com-
puted and returned.

Synopsis #include cskfuqysets.h>

float SKRisingRamp(float xvalue, float *inflectionPoints);

Description Function whose graph is a ‘rising ramp’. The inflectionPoints argument specifies
two points on the x-axis, namely x0 and xl. For points x with x < x0, the corre-
sponding y-value is 0. When x > xl the y-value is 1.0. From x = x0 to x = xl the
graph is an increasing straight line, going from the point (x0,O.O) to (xl, 1.0).
Given the input x = xvalue, the corresponding yvalue on the graph of this func-
tion is computed and returned.

Returns

Example

Given the input x = xvalue, the corresponding yvalue on the graph of this func-
tion is computed and returned.

#include cskfuqysets.h>

int main(int argc, char *argv[])

float injPts[2], y;

//Rising ramp rises from y=O at x=O to y=l at x=5.
injPts[OJ = 0; injPts[l J = 5;

// Compute y-values at x = -1, 0.5, and 10
y = SKRisingRamp(-1.0, in$&);
y = SKRisingRamp(0.5, injPts);
y = SKRisingRamp(10.0, in$%);

1

Document 6 August, 1998
Revision Date

106

Name SKRisingS()
Compute a particular value of a finction
single input x-value, the corresponding y
returned.

Synopsis #include <skfuuysets.h>

float SKRisingS(float xvalue, float *in.ectio,

Description Function whose graph is a ‘rising S’. The iq
three points on the x-axis, namely x0, xl , an
corresponding y-value is 0. When x > x2 thc
to x = x l the graph is an upwards parabola; t
xl to x = x2 the graph is a downwards p m b
for continuity, while the value at x = x2 is 1.1
graph resembles a letter ‘s’. Given the input
yvalue on the graph of this function is compi

Returns

Example

Given the input x = xvalue, the correspondin
tion is computed and returned.

#include <skfuzzysets. h>

int main(int argc, char *argv[])

float infpts[3], y;

//Rising s risesfrom y=O at x=O to J

//from an upwards parabola to a do
in.ts[O] = 0.0; infpts[l] = 2.0; i

// Compute y-values at x = -1, 0.5, a
y = SKRisingS(-1.0, inflts);
y = SKRisingS(0.5, infpts);
y = SKRisingS(10.0, infpts);

1

Document
Revision Date

6 August, 1998

107

! skarr

phose grtiph is a ‘rising S’. Given a
ialue on the graph is computed and .-

Points);

‘ectionPoints argument specifies
x2. For points x with x < x0, the
y-value is 1.0. From x = x0
e value ist x = xl is 0.5. From x =
la; the v,alue at x = x 1 is again O S
. Thus from x = x0 to x = x2 the
c = xwalue, the corresponding
ted and returned.

yvalue Ion the graph of this func-

=I at x=5. The graph changes
inwards parabola at .x = 2.
T ts[2] := 5.0;

d 10

skarr

Name SKSPluteauO
Compute a particular value of afunction whose graph is an ‘s plateau’.
Given a single input x-value, the corresponding y-value on the graph is com-
puted and returned.

Synopsis #include cskfuuysets.h>

float SKSPlateau(float xvalue, float *inflectionPoints);

Description Function whose graph is an ‘s plateau’. The inJEectionPoints argument specifies
six points are specified on the x-axis, namely x0, xl , x2, x3, x4, and x5. When
x < x2 the graph is the ‘rising s’ described by SKRisingS(xvalue, x0, XI, x2). At
x = x2 the graph plateaus, i.e. y = 1.0 for x2 <= x < x3. When x >= x3 the graph
is the ‘falling s’ described by SKFallingS(xvalue, x3, x4, x5). Given the input x =
xvalue, the corresponding yvalue on the graph of this function is computed and
returned.

Returns

Example

Given the input x = xvalue, the corresponding yvalue on the graph of this func-
tion is computed and returned.

#include < s e w s e t s . h>

int main(int argc, char *argv[])

float in~Tts[6], y;

// Graph is a ‘rising s ’for 0 <=x <= 4; plateaus at y=I from x=4 to
//x=5; and is a ‘falling s’ from x=5 to x=9.
injl”t[O] = 0; inJTts[l] = I ; inJTts[2/ = 4;
in.ts[3] = 5; infpts[4] = 8; inJTts[5] = 9.

// Compute y-values at x = -I, 0.5, and 10
y = SKSPlateau(-1.0, in$&);
y = SKSPlateau(0.5, inJTts);
y = SKSPlateau(10.0, inJTts);

I

See Also SKRisingS(), SKFallingS()

Document 6 August, 1998
Revision Date

108

7.1 Summary

General image processing functions.

7.2 Functions

Image Processing functions begin on the following page.

109

Name

Synopsis

Description

~ I skarr

SKConvolutionOf)
Routine to compute the ‘convolution’ of a i input image and a kernel. In actu-
a&, what is computed is the convolutionlof the input image with the matrix
whose (i,j) entry is the (-i, -j) entry of the kernel. 13y dejinition the true convo-
lution of an image with a kernel at pixel (i,j) is Sum(k) Sum(1) ((image(i+k,
j+l)) * kernel(-k, -1)). So what is compuied here is really the dot product of
the kernel with an equally-sized patch of the input image.

i
#include <skimageproc. h>

SKA rray < T> SKConvolution Of(SIC4 rray < $> & inph!t,
SKArrayk&at> &kernel);

I
I

Routine to compute the ‘convolution’ of an input image and a kernel. In actual-
ity, what is computed is the convolution of d e the image with the matrix whose
(ij) entry is the (-i, -j) entry of the kernel. By definition the true convolution of
an image with a kernel at pixel (ij) is I

1 .
i

Sum(k) Sum(1) ((image(i+k, j+l)) * kernel(-k, -1)).

So what is computed here is really the dot prjoduct of the kernel with an equally-
sized patch of the input image. I

I

Returns A new SKArray, the output convolved array.

Warning The sizes of the kernel are assumed to be od

Document I 8 Novembel; I998
Revision Date

111

; an ‘ass#ert’ will fail otherwise.

skarr

Name SKGaussianKernel()
Function to compute a (2-dimensional) Gaussian kemel.

Synopsis #include cskimageproc. h>

SKArray<joat> SKGaussianKemel(float xPeak Width, float yPeakWidth,
float xO)_ffset, j oa t yO)_ffset);

Description Function to compute a Gaussian kernel, with the peak widths specified by xPeak-
Width and yPeakWidth, and the peak location at xOffset and yOffset relative to the
center of the returned image.

Returns A new SKArray, the 2D gaussian kernel.

Note Note that the x- and y-sizes of the returned kernel are not known at the time of the
call to this function. Rather, we first compute a cutoff value below which we
consider the kernel to have value 0. This is based on the constant
SK-GAUSS-INTEGRAL-OUTSIDE-KERNEL (nominally defined to be 0.01).
The ‘extent’ of the kernel can be computed based on this cutoff vale and the peak
widths. The idea is that the contribution to the infinite integral of the gaussian
surface over the region of the x-y plane outside the kernel extent should be less
than SK-GAUSS-INTEGRAL-OUTSIDE-KERNEL. Then we must add x08-
set and yOfset to the kernel sizes to account for the shift of the peak away from
(090).

Document 18 Novembec 1998
Revision Date

112

Name

Synopsis

Description

Returns

Note

skarr

SKMarkMissingOf() i

I

Function to mark pixels as missing (i.e. s,t them to NIL) if too j k w pixels in a
window surrounding the current pixel do not have values within a specified
range of the current pixel.

#include <skimageproc.h>

template<class T> I

I
T SKMarkMissingOfl SZGlrraydb& input, T *xPt7; void *args);

Function to mark pixels as missing (i.e. set th&m to NIL) if too few pixels in a
window surrounding the current pixel do not have values within a specified range
of the current pixel. Processing at a given oulput pixel is as follows:

~

I

A window of data is centered at the corresponding input pixel (which is pointed
to by xPtr). The args argument is a pointer to a strucbure of type SKMurkMissin-
gOfArgs which houses the 4 remaining arguments: a kernel (type SKAr-
ray<short> *) which represents the data window; two floats, the 1oiwerRange and
upperRange for comparison to the center pix41 of the window of dilta; and the
minValidCount (a short). A count is made of pixels within the window which lie
in the range centerPixelValue + EowerRange up to centerPixelValue + upper-
Range (inclusive). Thus ZowerRange must be iless than, or equal to, upperRange.
If this count exceeds the supplied minValidCohnt, then the corresponding pixel in
the output image is set to the original center phel value of the input image. If the
count is too small, the corresponding output pixel is set to NIL.

The result of applying the ‘mark missing of’ operation at the current pixel; e.g. if
xPtr corresponds to pixel (xl, yl) in the input image, h e n OutputPixel will
be the value at (xl, yl) in the final output imige. The outputPixel will be NIL if
the input pixel was an outlier, otherwise it will be the original value of the input
pixel.

Note that this function only returns the outpul pixel for the pixel of the input
which is currently being processed. To perfor@ the SKMarkMissin,pOfl) function
at all locations inside an array, use the SKArr@<T>::,4pply() member function.

Note that the center pixel of the window is N b allowed to count towards the
number of pixels within range. For example, if the window is 3 by 3 and the min-
ValidCount is 4, then 4 of the eight non-centr$ pixels must be within range.
Rather than adding an inefficient check to see jf the pixel currently being tested is
the center pixel, this routine simply incremenp the minValidCount by 1; thus the

I
I

I

i
I

i
113

skarr

center pixel’s contribution is effectively thrown out (the center pixel value will
always be in range).

This function requires three additional args beyond the standard ‘Apply’ args;
namely the lowerRange, upperRange, and minValidCount. The kernel for the
function and the 3 additional args will be packed into a structure defined in skim-
agepr0c.h. A pointer to the struct will then be cast to void* before the call to this
function, so that the ‘Apply’ function will work with this function.

See Also SKArray < T> ::Apply()

Document 18 Novembel; I998
Revision Date

114

Name

Synopsis

Description

Returns

Warning

Document
Revision Date

1 skarr

SKShrinkArray () I
Function to produce a shrunk version of aigiven input array.

I

#include <skimageproc.h> I
~

templatedass T> I
SKArray<T> SKShrinkArray(SKArray<T>& input,

short newXSize, short newYSize)-
I

Function to produce a shrunk version of a gii
output image replaces all pixels contained in
input image. The output pixel is the median
window. Note that this function copies scalh
to the output array as the input’s data may ha

A new SKArray, the shrunk array.

The specified newXSize and newYSize must a
(respectively) of the original input image, e.g
a 5-by-5 or 5-by-2 but not a 3-by-3 or 3-by-5
divide the original sizes, an ‘assert’ statemen

18 November; 1998

115

:n input array. Each pixel in the
L rectangular subwindow of the
alue of the input pixels in the sub-
; informlation from the input array
e been scaled.

vide exactly the X and Y sizes
a 10-by10 array may be shrunk to
If the new sizes do not exactly

will fail.

,
I
I
I
I
i

I
I

i I

8. General Mathematical Functions

8.1 Summary

General-purpose mathematical functions defined in CSKETCH, such as A h () , Min(), Max(), etc. Also
includes some standard array mathematical functions such as SKArrayCornputeMedian().

8.2 Functions

General purpose mathematical function descriptions begin on the following page.

117

skarr

Name

Synopsis

Description

Returns

Document
Revision Date

ABS0
Inline templatizedfunction to return the absolute value of a single scalar
argument

#include <skmath.h>

template <class T>
inline TABS(T a);

Inline templatized function to return the absolute value of a single scalar argu-
ment.

The absolute value of the supplied numerical argument. The returned value has
the same numerical type (float, int, etc.) as the supplied input.

7 August, 1998

119

I 1 skarr

MAX0 Name

Synopsis

float a = 1.0;

Description

I

Returns

#include <skmath.h> I

I
template <class T>
inline T MAX(T a, T b);

Inline templatized function to return the madmum of two supplied scalar argu-
ments. The two arguments must have the s d e data type; if they do not, cast one
(or both) so the types agree. For example: I

1

float b = MAX(a, 0);

/I Will compile because of casting:
float a = 1.0;
float b = MAX(a, Moat) 0);

The maximum of the two supplied argument
same type (T) as the two input arguments.

Document 10 August, 1998
Revision Date

120

. The maximum is returned as the

€

I

skarr

Name

Synopsis

Description

Returns

Document
Revision Date

MINO
Inline templatizedfunction to return the minimum of two supplied scalar
arguments. The two arguments must have the same data type; if they do not,
cast one (or both) so the types agree.

#include <skmath. h>

template <class T>
inline T MIN(T a, T b);

Inline templatized function to return the minimum of two supplied scalar argu-
ments. The two arguments must have the same data type; if they do not, cast one
(or both) so the types agree. For example:

// Won’t compile, due to conflicting types:
f i a t a = 1.0;
float b = MIN(a, 0);

// Will compile because of casting:
float a = 1.0;
float b = MIN(a, &at) 0);

The minimum of the two supplied arguments. The minimum is returned as the
same type (T) as the two input arguments.

10 August, 1998

121

I
I

I

Name

Synopsis

Description

Returns

Document
Revision Date

I

0

I
I

I

MODO
Function to return a mod b, e.g. 8 mod 6 = 2.

#include <skmath.h>

float MOD(float a, JEoat b);

Function to return ‘a’ mod ‘b’, e.g 8 mod 6 =
bers as well, e.g. -9 mod 4 = 3. The returned
even when b is negative (e.g. 7 mod -4 = -1).

The value of a mod b, returned as a float.

10 August, 1998

122

1 skarr

!. Correctly handles negative nurn-
ialue lies in the rangefrom 0 to b,

skarr

Name SGNO
Inline templatizedfunction to return the sign of a single supplied scale,:
Returns 1 ifargument is >= 0.0, otherwise returns -1.

Synopsis #include <skmath.h>

template <class D
inline short SGN(T a)

Description

Returns

Document
Revision Date

Inline templatized function to return the sign of a single supplied scaler. Returns
1 if argument a is >= 0.0, otherwise returns -1.

The sign of the supplied argument. The value 1 or -1 is returned as the same type
(float, short, etc.) as the input argument.

10 August, 1998

123

1

I
1 skarr

Name

Synopsis

Description

Returns

Warning

Document
Revision Date

I I

I I
1

SKA rraycompute
I
I SKArray ComputeMeanO I

Function to obtain the mean value of an atray. MeIan value is returned as a
float in all cases.

~

I
#include <skmath. h> I

templatecclass T>
float SKArrayComputeMean(SKArray<T>d

Function to obtain the mean value of the inph
the s u m of all non-NIL pixels in the array di\
els. The mean is returned as a floating-point
returned mean is (float) NIL.

The function handles 1’2, and 3D SKArrays.

The mean value of the array is returned as a :

In cases where all input values are NIL, the f
value of NIL, not the value of NIL corresponc
This is bacause the mean of a set of numbers
should always be returned as a float.

10 August, 1998

124

input);

SKArray. The mean of the array is
ded by the number of non-NIL pix-
iumber. If all pixels ,are NIL, the

oat.

nction returns the floating-point
ing to the input array’s data type.
s in general not a perfect integer so

skarr

Synopsis

Name

Description

Returns

Document
Revision Date

SKA way ComputeMedian ()
Function to obtain the median value of an array. Median value is returned as
the same type (int, $oat, etc.) as the input SK4rray.

#include <skmath.h>

templatedass i5
$oat SKArrayComputeMedian(SKArray<T>& input);

Templatized function to take an input SKArray and return the median of the non-
nil values in the current "slice" of the SKArray. If all pixels are NIL, the returned
median is the correct value of NIL for the type of data in the input array.

Currently only handles 1D and 2D arrays.

The median value of the input array is returned, as the same type (int, float) etc.
as the input array.

I 7 August, I998

125

Name

Synopsis

Description

Returns

Warning

Document
Revision Date

skarr

S

SKArray ComputeStdDev() I
I

Overloadedfinctions to compute and retum the stczndard deviation of the
non-nil values of an SKArray. The standard deviation is returned as aJIoat in
all cases.

i
I #include <skmath. h>

template<class T>
float SKArrayComputeStdDev(SKArray<D& input):

templatecclass T> I
float SKArrayComputeStdDev(SKArray<T>& input, ,float mean):

Function to compute and return the standard deviation of the non-nil values of an
SKArray. The first version is not supplied the! mean vdue so it must be com-
puted; the second overloaded version takes the mean as an additiorial argument.
If all (or all but one) pixel is NIL, the returned standard deviation i:; (float) NIL.

The function handles 1’2, and 3D SKArrays. I

The standard deviation of the array’s data valdes is returned as a float .

In cases where all input values are NIL, the fdnction rc:turns the floating-point
value of NIL, not the value of NIL corresponding to the input array’s data type.
This is because the standard deviation of a sei of numbers is in general not a per-
fect integer so should always be returned as a float.

I O August, 1998

I

I

skarr

Name SKArrayDecode()
Function to undo the encoding done in SKArrayEncode. That is, convert the
array valuesfrom scaled values to actual ‘real world’ values. The formula is:

actual Value = sealedvalue I scaleFactor - scaleoffset

Synopsis

Description

Returns

Document
Revision Date

#include <skmath.h>

templatedass T>
void SKArrayDecode(SKArray<T>& array);

Function to undo the encoding done in SKArrayEncode(). That is, convert the
array values from scaled values to actual ‘real world’ values. The formula is:

actual Value = sealedvalue I scaleFactor - scaleoffset

The scaleFactor and scaleOffset are obtained from the array object itself (mem-
ber variables ‘scale’ and ‘offset’). Hence these variables must already have been
set. NIL values are left unchanged. The array’s data buffer is overwritten with
the unscaled data, and the array’s ‘scale’ and ‘offset’ are set to 1 and 0, respec-
tively.

Currently only handles 1D and 2D SKArrays.

The input array values are overwritten with the ‘decoded’ (e.g. real-world) val-
ues, and the scale and offset member variables of array are set to 1 and 0, respec-
tively.

I 7 August, 1998

127

Name

Synopsis

Description

Returns

Document
Revision Date

I
I

! skarr

SKA rrayDecode

SKArrayDecodePixel() I
Function to return the decoded value of al(possib1.y) scaled inputp#ixel of the
input array.

~

templatedass T> j I
#include <skmath.h>

float SKArrayDecodePixeE(SKArray<T>& abay);

Function to return the decoded value of a (possibly) scaled input pixel of the
input array. The pixel value at location (x, y)/in the input array is decoded
according to the ‘scale’ and ‘ofset’ member variables of the input array. The
decoded value is returned as a floating-point number. If the input value is NIL,
(floating-point) NIL is returned. If the array id unsealed, the actual pixel value is
returned, but as a float. The equation for the decoding is:

actualvalue = sealedvalue I scaleFactor - dcaleO_ffset

I

I

I
Currently only handles 1D and 2D SKArrays.!

I

The decoded (e.g. unscaled) value of the pixei at location (x, y) in array is
returned as a float. I

I7 August, I998

128

skarr

Name SKArrayEncode()
Function to encode an array of ‘true ’ (unsealed) values into scaled values,
via the fomula

scaledvalue = (actualvalue + scaleoffset) * scaleFacto,:

Note that the desired scaling factors for the array must have been previously
set (e. g. via function SKA rray e T> : :SetScaling()).

Synopsis

Description

Returns

#include cskmath.h>

templatedass T>
void SKArrayEncode(SKArrayeT>& array);

Function to encode an array of ‘true’ (unscaled) values into scaled values,
via the formula

sealedvalue = (actualvalue + scaleoffset) * scaleFactor.

The scaleFactor and scaleofset are obtained from the array’s scale and offset
member variables. This function treats the input as if it were unscaled (member
variables scale = 1 and offset = 0). To rescale an array which has already been
scaled by a different scale and offset, use function SKArrayRescale().

Currently only handles 1D and 2D SKArrays.

The input array values are overwritten with the ‘encoded’ values computed as
described above.

Document
Revision Date

17 August, 1998

129

i I
I skarr

i
I -- I

I 1

I
S

I
Name

Synopsis

Description

Returns

Document
Revision Date

SKArrayEncode() I

Function to encode a single ‘real-world’ &el value into the scaled value
stored inside an SKArray via the formula

scaledvalue = (actualvalue + scaleOfset) * scaleiractol:

Note that the desitred scaling factors for the array must have been previously
set (e. g. via finction SKA rray < T>::SetSceling()).

i
I

I #include <skmath.h> I
~

I
templatedass S, class T> j
S SKArrayEncodePixel(SKArray<S>& arra$, Tpixer‘Value)

Doubly-templatized function to take an input iar ray arid a scalar pixelvalue (con-
sidered to be an unscaled or ‘real-world’ value) and scale the pixelvalue accord-
ing to the scale and ofset of the input array. Input pixelValue is of type T; the
returned scaled value is of type S, as is the input array from which the scale fac-
tors are taken. For instance, if we scale a floit pixelKzlue according to scale fac-
tors from an SKArray<short> array, the result is retunned as a short. The
decoding formula is I

I

scaledvalue = (pixelvalue + scaleOfset) scaleFactor.

The scaleFactor and scaleofset are obtainedIfrom I the array’s scale and ofset
member variables. This function will work fok lD, 2D1, and 3D arrays as we only
need reference the array’s ‘scaleOfiet’ and ‘JcaleFactor’ member variables; no
values are read from the data buffer.

The encoded value of the supplied pixelValue, returned with the same data type

I
I

as the input array. I

I
24 August, I998

r

skarr

Name

Synopsis

Description

Returns

SKArrayRescale()
Function to rescale (and reoffset) an SKArray which may or may not have
already been scaled and offset. (The ‘scale * and ‘offset ’ of the array will be I
and 0, respectively, if the array has not previously been scaled.)

#include <skmath.h>

template<class T>
void SKArrayRescale(SKArray<T>& array, $oat newScaleFactoc

$oat newScaleOffset)

Function to rescale (and reoffset) an SKArray which may or may not have already
been scaled and offset. (The ‘scale’ and ‘offset7 of the array will be 1 and 0,
respectively, if the array has not previously been scaled.)

The unscaling / rescaling pixel operations are performed as floats to preserve dig-
its; only when the newly-rescaled value is stored back in the array do we cast it to
type T (the type of data in the original input array). The rescaling is NOT done
via a call to SKArrayDecode() followed by a call to SKArrayEncode(), as that
method could lose digits.

The original input array’s data buffer is overwritten with the newly-rescaled data,
and the array’s ‘scale’ and ‘offset’ member variables are updated accordingly.

Currently only handles 1 and 2D arrays, not 3D.

The input array values are overwritten with the rescaled values, and the scale and
offset member variables of array are set to newScaleFactor and newScaleOffset,
respectively.

Document 24 August, 1998
Revision Date

131

Name

fail to match within tolerance are
le coordinates, the vrtlues of each

Synopsis

Description

Returns

Document
Revision Date

SKArraysDifferA

SKArray sDifferA tPixels()
Function to take two SKArrays (presumal

print (to the standard output) all coordina,
more than the supplied tolerance.

#include <skmath. h>

void SKArraysDi@erAtPixels(SKArray<T> &
double ti

Function to take two SKArrays, inputl and in,
type data) and print (to the standard output) a:
differ by more than the supplied tolerance. I
values of each array at the conflicting pixels w
equality of, say, int or short arrays, simply ch(

Note that the current slice values of each array
the full parent slices of each array.

Handles 1,2, and 3D SKArrays.

The pixel locations at which inputl and input.
printed to the standard output. In addition to
array at the conflicting pixels are printed.

17 August, 1998

132

! skarr

y with the same type data) and
!s at which the arrays differ by

inputl, :iKArray<T>& input2,
'erance);

ut2 (presumably with the same
coordinates at which the arrays
addition to the coordinates, the

11 be printed. If checlcing for exact
ose a tolerance of less than 1.0.

ire compared, thus not necessarily

9. Mathematical Morphology

9.1 Summary

Standard mathematical morphology functions for image processing. Dilation, Erosion, Open, and Close
for both Grayscale and Binary images.

9.2 Functions

Mathematical morphology functions begin on the following page.

133

skarr

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

Binary Close()
Function to perform a binary ‘closure ’ (binary ‘dilate ’ followed by binary
‘erode’ operation) on a supplied input image.

#include cskarrayh>

template <class T>
SKArray<T> BinaryClose(SKArray<T> &in, SKArray<T> &kernel,

T threshold);

The binary close operation finds, for each location in the input array, the binary
dilation by the structuring element (kernel), followed by the binary erosion with
the structuring element. A symmetrical kernel is assumed.

The input array in is first binarized according to the supplied threshold (values
>= the threshold are set to 1, values
Note that this modifies the input array in which is passed by reference.

threshold (and nil values) are set to zero).

A new SKArray of the same size and type of the input array is returned. The new
SKArray holds the closed (i.e. Dilated and Eroded) array.

Note that the sizes of the kernel must be odd in each dimension, e.g. 3-by-3,3-
by-5, etc. This function is implemented to handle 1,2, or 3D mays but has not
been tested on 3-dimensional data.

A new SKArray of the same size and type of the input array in is returned. The
new SKArray holds the closed (Le. Dilated and Eroded) array.

The input array in will be binarized according to the supplied threshold. Pass a
copy of an input array to this function, rather than the m a y itself, if you wish to
keep the input data unchanged.

The supplied kernel is expected to have symmetrical data about its center. i.e. in
coordinates (x, y) relative to the center of the kernel, if kernel(x, y) = Val, then
kernel(-x, -y) must = Val.

BinaryDilateO, BinaryErodeO, BinaryOpenO

I9 August, 1998

135

Name

Synopsis

Description

Returns

Warn i ng

See Also

Document
Revision Date

BinaryDilate()

BinaryDilateO
Function to p e g o m a binary dilation on 4

#include <skarray.h>

template <class T>
SKArray<T> BinaryDilate(SKArray<T> &I

T threshold);

The binary dilation operation finds, for each 1
maximum value of binary image values withi
nel. The input array in is first binarized accoi
ues >= the threshold are set to 1, values < thi
zero). Note that this modifies the input array

A new SKArray of the same size and type of
new SKArray holds the binary dilated array.

The input array in will be binarized accordin!
copy of an input array to this function, rather
keep the input data unchanged.

The supplied kernel is expected to have s y m
coordinates (x, y) relative to the center of the
kernel(-x, -y) must = Val.

BinaryCloseO, BinaryErodeO, BinaryOpenO

I
skarr

supplied input image

, SKArray<T> &kernel,

cation i n the input m a y in, the
the reg:ion of suppoirt of the ker-
ing to tihe supplied threshold (val-
shold (and nil values) are set to
rhich is passed by reference.

e input array in is returned. The

to the supplied threshold. Pass a
ian the array itself, if you wish to

:trical data about its center. i.e. in
ernel, if kemel(x, y) = Val, then

skarr

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

BinaryErodeO
Function to perform a binary erosion on a supplied input image.

#include <skarray.h>

tempiate <class T>
SKArray<T> BinaryErode(SKArray<T> &in, SKArray<T> &kernel,

T threshold);

The binary erosion operation finds, for each location in the input array in, the
minimum value of binary image values within the region of support of the kernel.
The input array in is first binarized according to the supplied threshold (values
>= the threshold are set to 1, values e threshold (and nil values) are set to zero).
Note that this modifies the input array which is passed by reference.

A new SKArray of the same size and type of the input array in is returned. The
new SKArray holds the binary eroded array.

The input array in will be binarized according to the supplied threshold. Pass a
copy of an input array to this function, rather than the array itself, if you wish to
keep the input data unchanged.

The supplied kernel is expected to have symmetrical data about its center. i.e. in
coordinates (x, y) relative to the center of the kernel, if kernel(x, y) = Val, then
kernel(-x, -y) must = Val.

BinaryCloseO, BinaryDilateO, BinaryOpenO

I9 August, 1998

137

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

I
I

I
,
I
I

~ skarr

I
BinaryOpenO i

I
Function to pegorm a binary ‘open’ (b i d r y ‘erod(e’fol1owed by binary
‘dilate ’ operation) on a supplied input imhge.

i
template <class T> I

#include <skarray.hh>
~

SKArray<T> BinaryOpen(SKArray<T> &id, SKArrtzy<T> &kernel,
T threshold):

The binary open operation finds, for each locition in the input array, the binary
erosion by the structuring element (kernel), fbllowed by the binary dilation with
the structuring element. A symmetrical kernel is assumed.

The input array in is first binarized according! to the supplied threshold (values
>= the threshold are set to 1, values e threshold (and nil values) are set to zero).
Note that this modifies the input array in whikh is passed by reference.

A new SKArray of the same size and type of +e input array is returned. The new
SKArray holds the opened (Le. Eroded and Dilated) anay.

Note that the sizes of the kernel must be odd each dlimension, e.g. 3-by-3,3-
by-5, etc. This function is implemented to handle 1,2!, or 3D arrays but has not
been tested on 3-dimensional data.

A new SKArray of the same size and type of the input array in is returned. The
new SKArray holds the opened (i.e. Eroded ahd Dilated) array.

The input array in will be binarized according to the supplied threshold. Pass a
copy of an input array to this function, rather than the array itself, id you wish to
keep the input data unchanged.

The supplied kernel is expected to have syyetr ical data about its center. i.e. in
coordinates (x, y) relative to the center of thelkernel, if kernel(x, y:, = Val, then

I

I

I
I

I

!
kernel(-x, -y) must = Val. I

i

I
BinaryClose(), BinaryDilate(), BinaryErode(1

I9 August, I998

skarr

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

Gray Scale Close()
Function to peqomz a gray scale ‘closure’ (gray scale ‘dilate ’ followed by
gray scale ‘erode’ operation) on a supplied input image.

#include <skarrayh>

template <class lb
SKArray<T> GrayScaleClose(SKArray<T> &in, SKArraycD &kernel);

The gray scale close operation finds, for each location in the input array, the gray
scale dilation by the structuring element (kernel), followed by the gray scale ero-
sion with the structuring element. A symmetrical kernel is assumed.

A new SKArray of the same size and type of the input array is returned. The new
SKArray holds the (gray scale) closed (i.e. Dilated and Eroded) array.

Note that the sizes of the kernel must be odd in each dimension, e.g. 3-by-3,3-
by-5, etc. This function is implemented to handle 1,2, or 3D arrays but has not
been tested on 3-dimensional data.

A new SKArray of the same size and type of the input array in is returned. The
new SKArray holds the (gray scale) closed (i.e. Dilated and Eroded) array.

The supplied kernel is expected to have symmetrical data about its center. i.e. in
coordinates (x, y) relative to the center of the kernel, if kernel(x, y) = Val, then
kernel(-x, -y) must = Val.

GrayScaleDilate(), GrayScaleErodeO, GrayScaleOpen()

I9 August, I998

139

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

GrayScaleDilQte()
Function to perform a gray scale dilation

#include cskurrayh>

template <class T>
SKA rray < T> Gray Seal eDilate(SKA rray < T:

The gray scale dilation operation finds, for ea
maximum of each sum of a kernel value and
the region of support of the kernel. This max
ing location in the output image. The newly-
array, is returned.

A new SKArray of the same size and type of
new SKArray holds the gray-scale dilated arr

The supplied kernel is expected to have s y m
coordinates (x, y) relative to the center of the
kernel(-x, -y) must = val.

GrayScaleClose(), GrayScaleErode(), Grays

19 August, 1998

140

1 I skarr

in a supplied input image.

&in, SkArray<T> &kernel);

h location in the input array in, the
uperimposed image value within
num is assigned to the correspond-
reated array, the gray-scale dilated

ie input array in is returned. The
Y.

etrical data about its center. i.e. in
rernel, if kernel(x, y) = Val, then

aleOpen()

skarr

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

GrayScaleErode()
Function to perjorm a gray scale erosion on a supplied input image.

#include <&array. h>

template <class D
SKArray<T> GrayScaleErode(SKArray<T> &in, SKArray<T> &kernel),

The gray scale erosion operation finds, for each location in the input array in, the
minimum of each sum of a kernel value and superimposed image value within
the region of support of the kernel. This minimum is assigned to the correspond-
ing location in the output image. The newly-created array, the gray-scale eroded
array, is returned.

A new SKArray of the same size and type of the input array in is returned. The
new SKArray holds the gray-scale eroded array.

The supplied kernel is expected to have symmetrical data about its center. i.e. in
coordinates (x, y) relative to the center of the kernel, if kemel(x, y) = Val, then
kernel(-x, -y) must = Val.

GrayScaleClose(), GrayScaleDilate(), GrayScaEeOpen()

I9 August, I998

14 1 ,

j skarr
I

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

I I

I

G
I
I Grayscaleopen() I

Function to p e g o m a gray scale ‘open’ (hray scale ‘erode’ folr!owed by gray
scale ‘open ’ operation) on a supplied inpui image.

I
I
I #include <skarray.h>
i
I

template <class r> 1
SKArray<T> GrayScaEeOpen(SKArray<r>]&in, SK4rray<T> &kernel);

I
The gray scale open operation finds, for each !location in the input ;may, the gray
scale erosion by the structuring element (kernel), follciwed by the gray scale dila-
tion with the structuring element. A symmebkal kernel is assumed.

j
A new SKArray of the same size and type of +e input array is returned. The new
SKArray holds the (gray scale) opened (i.e. Eroded and Dilated) array.

I

Note that the sizes of the kernel must be odd k each dimension, e.g. 3-by-3,3-
by-5, etc. This function is implemented to h+dle 1, i!, or 3D arrays but has not
been tested on 3-dimensional data. I

A new SKArray of the same size and type of
new SKArray holds the (gray scale) opened (

The supplied kernel is expected to have sym
coordinates (x, y) relative to the center of the
kernel(-x, -y) must = Val.

GrayScaleClose, GrayScaleDiEate(), GraySc

I9 August, I998

142

he input array in is returned. The
.e. Eroded and Di1ate:d) array.

etrical data about its center. Le. in
kernel, if kernel(x, y:, = Val, then

1 eErodel()

10. Matrix Operations

10.1 Summary

Standard matrix operations, where a 2-D SKArray is considered a ‘matrix’ in the mathematical sense.
Operations include matrix inversion, ‘LU’ decomposition and back substitution, and singular value decom-
position.

10.2 Functions

Matrix operation descriptions begin on the following page.

143

skarr

Name

Synopsis

SKArrayInvert()
Function to invert a matrix (2 0 SKArray).

#include <skmatrix.h>

SKArray<JEoat> SKArrayInvert(SKArray<JEoat>& input);

Description

Returns

Note

Warning

Ac knowledg-
ment

Document
Revision Date

Function to invert a matrix. This method first computes the LU decomposition of
a matrix and then solves for the inverse column-by-column by solving Ax = e(i),
where e(i) is the i’th column of the identity matrix.

The inverse matrix, as an SKArray<$oat>.

The first step of the inversion process is to compute the LU decomposition of the
input array. This will overwrite input with the LU decomposition. If this is not
desired, a deep copy (e.g. as returned by SKArray<T>::DeepCopy()) should be
made of the input and the copy passed in to this routine.

The inversion function may be numerically unstable for arrays which are nearly
singular. If the potential for a badlyconditioned matrix exists, then a singular
value decomposition / perturbation method should be applied to the input to pro-
duce a better conditioned matrix. See function CreateOeCovarianceMatrix() (in
the MIGFA code repository) for an example.

Since all of the CSKETCH ‘matrix’ functions (SKArrayInvert, SKArrayLUBack-
sub, SKArrayLUDecomp, and SKArraySVDecomp) are taken from ‘Numerical
Recipes in C’, the 0th row and column of all returned arrays is to be ignored, e.g.
if the inverse of an n-by-n array is desired, that array must first be copied to an
(n+l) by (n+l) array with zeroes in the 0th row and column. A new (n+l by n+l)
array will be returned; the n-by-n inverse will be returned in the n-by-n subarray
with subscripts 1 through n of the larger array.

As mentioned above in the Note section, the input array must be prepadded with
a row and column of zeroes to account for ‘Numerical Recipes in C’ idiosyncra-
cies.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Reci-
pes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press,
Cambridgeshire, U.K., 1992).

17 July, 2002

145

Name

rrayLUBa

SKArrayLUBacksub()
Function to pe$orm the the back-substitut,
ear equations afer LU decomposition.

Synopsis #include cskmatrix. h>

void SKA rrayL UBacksub(SKA rray <$oat> &
SkX rray<short> di

Description Function to perform the the back-substitution
equations after LU decomposition. E.g. to sol
form7 via SxArrayLUDecomp(). The results (
passed to this function to solve systems of lint
vector or the right hand side of the set of linea
solution vector x. Specifically, the returned L1
returned by SKArrayLUDecomp() are needed

Returns

Note

)n needed to solve a system of lin-

LJArray,
index, SKArray<$oart>& vec-Jr);

ieeded to solve a system of linear
re Ax = b we first reduce A to LU
F that function call urn then be
u equations. Input vector (the ‘b’
equations) is overwritten by the
matrix as well as tht: index vector
by SKAirayLUBack~mb().

The ‘right hand side’ vector (the vector ‘b’ in Ax = b) :is overwrittein with the
solution vector x. I

I

Since all of the CSKETCH ‘matrix’ function!
sub, SKArrayLUDecomp, and SKArraySVDe,
Recipes in C’, the 0th row and column of inp
this function, the 0th row of the column input
desired right-had side is (1 , 1 , l), then the act
(0, 1, 1, 1).

Warning As mentioned above in the Note section, the i~
a row of zeroes to account for ‘Numerical Re

W.H. Press, S.A. Teukolsky, W.T. Vetterling,
pes in C: The Art of Scientific Computing, 2n
Cambridgeshire, U.K., 1992).

Acknowledge-
ment

Document I8 November; I998
Revision Date

146

(SKA rra’ylnvert, SKA, rrayLUBack-
ymp) are: taken from ‘Numerical
t arrays is to be ignored, e.g. for
vector must be zero (e.g. if the
al input vector shoulid be

put vector must be prepadded with
ipes in C’ idiosyncracies.

nd B.P. IFlannery, Numerical Reci-
I ed. (Cambridge University Press,

skarr

Name SKArrayLUDecompO
Routine to take a matrix A and compute the ‘LU’ decomposition of the matrix.

Synopsis #include <skmatrix.h>

void SKArrayLUDecomp(SKArray<$oat>& array, SKArray<short>& index,
SKArray<$oat>& scales, int *numlnterchunges);

Description Routine to take a matrix A and compute the ‘LU’ decomposition of the matrix A
(i.e. A = L * U where L is lower diagonal and U is upper diagonal). This decom-
position can then be used to efficiently solve linear equations of the type Ax = b.

Returns All 4 input arguments are updated. The input array is overwritten with the LU
decomposition of A (‘L‘ is stored in the lower triangular half and ‘U’ is stored in
the upper triangular half). The index array records the row permutations effected
on the input array in the process of computing the LU decomposition (this rou-
tine uses partial pivoting for numerical stability). The scales array stores the fac-
tors by which each row is scaled during the LU decomposition process. Finally,
numlnterchanges is set to the parity of the number of row intechanges needed in
the LU process -- +1 for an even number and -1 for an odd number of inter-
changes.

Note

Warning

The input array will be overwritten with its LU decomposition. If this is not
desired, a deep copy (e.g. as returned by SKArray<T>::DeepCopy()) should be
made of the input and the copy passed in to this routine.

The returned index variable will be needed by any subsequent calls made to
SKArrayLUBacksubO. This is the routine which uses the LU decomposition of
an array A to efficiently solve the matrix equation Ax = b.

Since all of the CSKETCH ‘matrix’ functions (SKArrayInvert, SKArrayLUBack-
sub, SKArrayLUDecomp, and SKArraySVDecomp) are taken from ‘Numerical
Recipes in C’, the 0th row and column of all returned arrays is to be ignored, e.g.
if the inverse of an n-by-n array is desired, that array must first be copied to an
(n+l) by (n+l) array with zeroes in the 0th row and column. A new (n+l by n+l)
array will be returned; the n-by-n inverse will be returned in the n-by-n subarray
with subscripts 1 through n of the larger array.

As mentioned above in the Note section, the input array must be prepadded with
a row and column of zeroes to account for ‘Numerical Recipes in C’ idiosyncra-
cies.

147

~ i I

W.H. Press, S.A. Teukolsky, W.T. Vetterling, $nd B.P. Flannery, Numerical Reci-
pes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, I

Acknowledge-
ment I

I
Cambridgeshire, U.K., 1992). I

Document 17 July, 2002
Revision Date

148

skarr

Name SKA rraySVDecomp()
Routine to take a matrix A and compute the singular value decomposition of
the matrix.

Synopsis #include <skmatrix.h>

.

void SKArraySVDecomp(SKArray<double>& array,
SKA rray <double > & wmatrix,
SKA rray <double > & vmatrix,
SKArray<double>& scales);

Description Routine to compute the singular value decomposition of a matrix. The SVD of a
matrix A is a way of ‘factoring’ the matrix into the form
A = U * W * hennitian(V), where the matrices U, W, and V have significant
mathematical properties. This routine overwrites the input matrix A to be the
output matrix U. he-allocated matrices for W and V are filled in by this routine.
Also, a pre-allocated array ‘scales’, for holding various scale factors employed
by the routine, is filled in by this routine.

Returns

Note

All 4 inputs are edited by the call to this function. The input array is overwritten
with the U matrix of the SVD of A (so if A will be needed later, pass in a deep
copy of A rather than A itself). The pre-allocated wmatrix and vmatrjx arrays are
filled in with the W and V matrices of the SVD. Finally, ‘scales’ is filled in with
various scale factors used in computing the SVD..

The input array will be overwritten with the ‘U’ matrix of the SV decomposition.
If this is not desired, a deep copy (e.g. as returned by SKArray<T>::DeepCopy())
should be made of array and the copy passed in to this routine.

Since all of the CSKETCH ‘matrix’ functions (SKArrayZnvert, SKArrayLUBuck-
sub, SKArrayLUDecomp, and SKArruySVDecomp) are taken from ‘Numerical
Recipes in C’, the 0th row and column of all input and returned arrays is to be
ignored, e.g. if the inverse of an n-by-n array is desired, that array must first be
copied to an (n+l) by (n+l) array with zeroes in the 0th row and column. A new
(n+l by n+l) array will be returned; the n-by-n inverse will be returned in the n-
by-n subarray with subscripts 1 through n of the larger array. Likewise the 0th
row and column of all input arrays must be initialized to 0 and the true data of an
n-by-n array moved to an n-by-n subarray with indices 1 through n rather than 0
through n- 1.

149

lskarr
I i I

Warning As mentioned above in the Note section, the input array must be prepadded with
a row and column of zeroes to account for ‘Ndmerical Recipes in C’ idpyncra-
ties.

Acknowledge-
ment

W.H. Press, S.A. Teukolsky, W.T. Vetterling, i
pes in C: The Art of Scientific Computing, 2n
Cambridgeshire, U.K., 1992).

Document 17 July, 2002
Revision Date

150

id B .P. Ilannery, Nu:mencal Reci-
ed. (Cambridge University Press,

11. Miscellaneous Functions

11.1 Summary

Some miscellaneous useful functions for operating on SKArrays.

11.2 Functions

Miscellaneous function description begins on the following page.

15 1

I I

skarr

Name

Synopsis

Description

SetElementsZnZnterval()
Function to set all elements of the array which lie within some interval to a
mark value, possibly setting outliers to a different mark value.

#include <skarrq.h>

templatedass T class V>
void SetElementsInIntervul(SxArrayc T> & input,

const SKArray<V> & mask,
T markVal, V low, V high,
T outlierMarkVa1 = SKArray<T>::SK-NIL);

The SetElemenrsInInterval functions are used to reset some (possibly all) ele-
ments of the input array to 'mark' and / or 'outlierMark' values, based on the
pixel values of the mask array. Specifically, if the pixel with coordinates (x, y) in
the m k image has a value between low and high (inclusive), then the pixel at
(x, y) in the input image is set equal to markVal. If outlierMarkVa1 is not NIL,
and the pixel at (x, y) in the mask image lies outside the interval from low to high,
then the pixel at (x, y) in the input image is set to outlierMarkVa1. If the outlier
mark is NIL, then pixels in the input image will not be changed at locations (x, y)
where the mask pixel value is not in the interval from low to high. The default
value of optional argument outlierMarkVa1 is NIL. See the CSKETCH Zmage
Processing Library Tutorial for usage examples.

Returns The input array, which is passed in by reference, may have some of its data val-
ues modified as described above.

See Also Member function SKArray<T>::SetElementsInInterval().

Document 21 September; 1998
Revision Date

153

Name

ares

SetMksing ToNearest()
Function which attempts toJill a missing (
value based on the values of the nearest ne
one pixel; it may be used to attempt toJill ~

tion SKArraycT>::Apply().

Synopsis #include <skarray.h>

T SetMissingToNearest(SKArraycT>& inpui
void *grayscale);

Description This function is called to attempt to find a mi:
value based on its nearest neighbors. This f u ~
value for every NIL value. It only will return a
the limits of the search. If no replacement ciil
returns the appropriate value of NIL for the ty
wise, the function returns the replacement val
pixel to this replacement value).

The x and y inputs give the (x, y) coordinates
array; the pointer in-xp points to the NIL data
mentioned above, only this one NIL value wil
function SKArraycT>::Apply() can be used \i
all NIL values. In the event that multiple nea
(i.e. the choice for a replacement value is am1
value or a rounded average value will replace
argument is not NULL, the average is used; 01

Returns The candidate replacement value for the NIL
will not automatically overwrite the missing 7

replacement value.

See Also Member function SKArray<T>::Apply().

Document 21 Septembel; 1998
Revision Date

154

jskarr

!l) array value by computing a
rhbors. This function does this for
all misxing array values viafunc-

T* in-xp, int x, int y,

ing arra,y value by computing a
:tion does not necessarily find a
ralue if one has been found within
lidates are found, the function
: of data of the input array. Other-
e (but does not acually set the

1 the missing value in the input
:lement in the input may. As
attempt to be filled; the member
th this function to attempt to fill
st non-NIL neighbors are found
guous) then either the average
le missing value. If the grayscale
erwise ai rounded average is used.

due. Again, this function itself
lue in thie input array with the

skar r

Name

Synopsis

SKA rray NearEqualO
This function determines whether all pixels in the data buffers of two arrays
are numerically equal within a supplied tolerance.

#include <skarrayh>

int SKArrayNearEqual(SKArray<T>& inputl, SKArray<T>& input2,
double tolerance);

Description This function determines whether all pixels in the data buffers of two arrays are
numerically equal within the supplied tolerance.

Returns Returns 0 if the SKArrays are not nearly equal (pixelwise), 1 if the SKArrays are
pixelwise equal within the supplied tolerance.

Document 22 Septembel; 1998
Revision Date

155

Name SKThinO
CSKETCH image thinning implementatiol;
within the input image are reduced to c h i

Synopsis #include <skarrayh>

SKArray<short> SKThin(SKArray<short>&

Functional Template Implementation of Levii
additional post thinning step. All of the shapc
ked, reducing them to chains a single pixel w

A new SKArray<short>, the thinned array.

Description

Returns

Document 22 September; I998
Revision Date

156

All distinct, connected shapes
s a single pixel wide.

input);

di's homotopic thinning, with an
; in an input image are skeleton-
de.

skarr

Name Slicesize Equal()
This function determines if two arrays have equal slice sizes (i.e. have the
same number of array dimensions and the same size in each dimension).

Synopsis #include <skarray.h>

int sliceSizeEqual (const SKArray<T> &, const SKArray<T> &);

Description This function determines if two arrays have equal slice sizes (Le. have the same
number of array dimensions and the same size in each dimension).

Returns Returns 0 if the SKArrays are not equal in slice size, 1 if the SKArrays are equal
in slice size.

Document 22 Septembel; 1998
Revision Date

157

12. Region Analysis

12.1 Summary

A set of functions for generating statistics on various ‘regions’ within the data array of a (1D or 2D only)
integer SKArray. The data must be short, or integer, because of the way regions are identified within S u r -
rays. A region inside an SKArray is defined as the set of all pixels within the data buffer which have the
same value. Thus all pixels with value 1 comprise region 1, all pixels with value 2 comprise region 2, etc.
Note that individual regions need not be connected (by connected we mean that all pixels of the region
touch at least one other pixel of the region, whether horizontally, vertically, or diagonally). However,
region analysis can be constrained to connected regions only by use of the SKLabeZRegions() function,
which takes an input SKArray and returns a new array with all distinct, connected regions assigned a dis-
tinct label (Le. all pixels in each region have a common value, and that value is unique to that region).
Function SKLabeZRegions() is described in this section. The main driver function for region analysis,
SKRegionSumrnary(), does not assume that all regions are connected; rather it assumes all pixels with the
same value belong to the same region. If region analysis is desired to take place only on connected
regions, first create a new array via a call to SKLabeZRegions() and then pass the new array into function
SKReg ionSummaly().

12.2 Conventions

The region analysis functions work closely with the SKRegionZnfo class and the associated SKRegion
structure. Specifically, function SKRegionSummary() returns a pointer to an SKRegionInfo object. The
returned SKRegionInfo object contains an array of SKRegion objects, one for each region in the input
SKArruy. This array of SKRegion objects is the member variable known as ‘region’ in the SKRegionZnfo
object. Statistics for the i’th region of data within an SKArray will be stored in the i’th element of the array
of SKRegion objects. Again, the i’th region of an SKArray is the (connected or disconnected) set of all
points with value i . Thus, if we set

SKRegionInfo *regionInfo = SKRegionSummary(inputArray);

we would access the length of region 7 of inputArray as

(regionlnfo- >region)[7]. length;

Simliarly, the area of region 2 would be accessed as

(regionInfo->region)[2].area;

12.3 Functions

159

Region analysis functions begin on the following page.

Name

Synopsis

skarr

ate

EliminatePoorShapes()
Function to eliminate all connected regions inside the input array which fail a
minimum length criterion.

#include <skregion.h>

SKA rray < short> Eliminate PoorShapes(SKA rray c short> & input,
short inputThresh, float ZengthThresh, short fillopt),

Description Function to eliminate all regions inside the input array which fail a length crite-
rion. Specifically, a copy of the input array is fist thresholded to eliminate back-
ground noise (values strictly less than inputnresh are set to 0, values greater
than or equal to inputThresh are set to 1). The thresholded image is then labelled
into distinct, connected regions by function SKLabelRegions(). Region analysis
is then performed via a call to SKRegionSummary(). Regions which fail a mini-
mum length criterion (length < threshlength) are deleted by setting all their pix-
els to zero. The argumentfillOpt indicates whether some additional image
preprocessing should be done prior to the region length thresholding. IffillOpt is
true the binarized, thresholded interest image will be dilated using a 3 by 3 ellip-
tical kernel, then closed with a 5 by 5 elliptical kernel.

Returns The final thresholded and length thresholded image. Distinct regions which
passed the length threshold will all be marked in the output image (e.g. all pixels
in the acceptable regions will have the same value). All other pixels (e.g. those
belonging to regions which are too short) will be set to 0.

Document 3 December; I998
Revision Date

161

I lskarr
I

Name

Synopsis

Description

Returns

Document
Revision Date

I I

I

I
SKLubelRegwns() I

Routine to take a (short) input SKArray a d mark all distinct, connected, non-
zero regions of data in the input data with distinct abort integer labels.

I

#include <skregion.h> I
I

SKArray<short> SKLabelRegions(SKArray<shon>& input)

This routine takes a (short) input array and mdks all distinct, connected, nonzero
regions of data in the input array with distinct labels. The input array values are
not changed -- rather the routine creates a new kIUrra-y<short> out,put array (the
same size as the input array), copies the input pata to tlie output arrZiy, and then
performs the marking on the output array. Va1,ues of zcxo in the input image are
considered ‘background’ values and are ignored; there is no region 0.

I
A newly-created SKArray, the same size as the input amy. In effect, all distinct,
connected, nonzero regions of input are copied to the corresponding pixels in
output, and assigned a unique label (e.g. a COI$IIIOII pixel value for each pixel in
the region).

I
I
I

j 24 August, 1998

162

skarr

Name

Synopsis

Description

SKRegw nArea()
Function to compute the area of each region in the input array. Area of a
region is dejned to be the number of pixels belonging to that region.

#include <skregion.h>

void SKRegionArea(SKArray <short>& array, SKRegionInfo *regionInfo);

Function to compute the area of each region in the input array. Area of a region,
is defined to be the number of pixels belonging to that region. Note that the
regions need not be connected. If statistics are desired for connected regions
within an SKArray<short>, be sure to first call SKLabelRegions() to get a new
SKArray in which all pixels within connected regions share the same pixel value.

The input SKRegionZnfo object must have been constructed with a sufficient
number of SKRegion objects prior to the call to this image. For this reason, it is
preferable to simply call function SKRegionSummary() rather than SKRegion-
Area(). SKRegionSummary() will compute many additional statistics about
regions, and thus executes slightly more slowly, but SKregionSummary() is more
robust in that it dynamically determines how many SKRegion objects will be
needed inside the SKRegionZnfo object to store statistics about all regions.

Implementation For efficiency, this function and all related SKRegion functions compute region
statistics ‘in parallel’ for all regions within an SKArray. This is necessary as
there may be several hundred regions of interest within, e.g. a MIGFA interest
image. Without the parallel implementation, algorithm latency requirements
might not be met.

Returns

Document
Revision Date

The i ’th object in the array of SKRegion structures (stored inside the SKRegion-
Znfo object) is filled in with the area (number of pixels) of region i. Region i of
the input array is defined to be the set of all pixels with value i.

3 Decembel; 1998

163

Name

Synopsis

Description

Implementation

Returns

Document
Revision Date

lskarr

SKRegw n BoundingRect() I
Function to compute, for each region in the labelled input array, the coordi-
nates of a bounding box for the region. SpqciJically, the lower left and upper
right comers of the box are computed and {tored in corresponding SKRegion-
Info objects.

#include <skregion.h>

void SKRegionBoundingRect(SKArray <short
SKRegionInfo

Function to compute, for each region in the lat
of a bounding box for the region. Specifically,
ners of the box are computed and stored. Note
nected. If bounding boxes are desired for conr
SKArray<short>, be sure to first call SKLabeli
which all pixels within connected regions shan

The input SKRegionZnfo object must have beer
number of SKRegion objects prior to the call tc
preferable to simply call function SKRegionSui
Boundingrect(). SKRegionSummary() will con
about regions, and thus executes slightly more
more robust in that it dynamically determines 1
be needed inside the SKRegionInfo object to stm

For efficiency, this function and all related SKI
statistics 'in parallel' for all regions within an I

there may be several hundred regions of intere:
image. Without the parallel implementation, a
might not be met.

The i'th object in the array of SKRegion structi
Info object) is filled in with the bounding box (
upper right comers of the box) for region i . Re
to be the set of all pixels with value i .

3 Decembel; 1998

164

>& array,
'regionIr$o)

:lied input array, the coordinates
the lower left and upper right cor-
that the regions need not be con-
xted regions within an
'egions(1) to get a new SKArray in
the same pixel value.

constructed with a sufficient
this image. For this reason, it is
imary() rather than SKRegion-
pute many additional statistics
lowly, but SKregion!hmmary() is
ow many SKRegion (objects will
Ire statistics about all regions.

egion functions comipute region
a r r a y . This is necessary as
t within. e.g. a MLGFA interest
gorithm latency requirements

res (stored inside the. SKRegion-
:ncoded as the lower left and
$on i of the input array is defined

skarr

Name

Synopsis

Description

SKRegion CenterOf Gra vity()

SKRegwnCenterOfGravityO
Function to compute, for each region in the labelled input array, the coordi-
nates of the center of gravity of the region.

#include cskregion. h>

void SKRegionCenterOfGravity(SKArray <short>& array,
SKRegionInfo "regionlnfo);

Function to compute the center of gravity of each region in the input array. Note
that the regions need not be connected. If statistics are desired for connected
regions within an SKArraycshort>, be sure to first call SKLabeZRegions() to get a
new SKArray in which all pixels within connected regions share the same pixel
value.

The input SKRegionInfo object must have been constructed with a sufficient
number of SKRegion objects prior to the call to this image. For this reason, it is
preferable to simply call function SKRegionSummaryO rather than SKRegion-
CenterOfGravity(). SKRegionSummary() will compute many additional statistics
about regions, and thus executes slightly more slowly, but SKregionSummary() is
more robust in that it dynamically determines how many SKRegion objects will
be needed inside the SKRegionZnfo object to store statistics about all regions.

lmpkmetltation For efficiency, this function and all related SKRegion functions compute region
statistics 'in parallel' for all regions within an SKArray. This is necessary as
there may be several hundred regions of interest within, e.g. a MIGFA interest
image. Without the parallel implementation, algorithm latency requirements
might not be met.

Returns

Document
Revision Date

The i'th object in the array of SKRegion structures (stored inside the SKRegion-
Info object) is filled in with the center of gravity of region i . Region i of the input
array is defined to be the set of all pixels with value i.

3 December; 1998

165

Name

Synopsis

Description

I
1 i
i
j skarr
!

I
I

SKXegionSummary()
Top-level routine for computing region statistics. Calls all SKRegion func-
tions in the proper sequence (e.g. center of kravity, (area, and other region sta-
tistics must be known prior to computing lkngth, et(:.) See documentation for
the SKRegion class for a description of reg!ons within an SKArmy’s data
bu#er as well as a list of all the statistics computed / saved by this routine.

1 #include cskregion. h>

SKRegionInfo *SKRegionSummary(SKArraykshor?> CB input)

Top-level routine for computing region statistics. Regions within an
SKArray<short> are defined to be the set of all pixels with a common value; thus
the set of all pixels with value 1 is region 1, d e set of d l pixels with value 2 is
region 2, etc. Note that regions need not be cobected; e.g. if the only pixels with
value 1 are at the four comers of an input image, then region 1 is still a valid
region made up of 4 non-contiguous points. See documentation for the SKRegion
class for a list of all the statistics computed / saved by this routine.

I
Implementation For efficiency, this function and all related SKRegion functions compute region

statistics ‘in parallel’ for all regions within anlsmrray. his is necessary as
there may be several hundred regions of interest within, e.g. a MIGFA interest

Returns

Note

image. Without the parallel implementation, hgorithni latency requirements

A pointer to a newly-allocated SKRegionInfo bbject. Internal to the SKRegion-
Info object is an array of SKRegion structures! One such structure will be allo-
cated for each distinct region in the input ana). Each structure will be filled in
with statistical information about a correspon$ng region. The correspondence
between regions and SKRegion structures can/be obtained from the index of the
SKRegion structure in the array: the statistics for the ith region are stored in the
ith SKRegion structure.

SKRegionSummary() is in a sense the ‘master’l routine for region analysis. It calls
all other major region analysis functions, SKRegionLength(), SKRc*gionArea(),
etc. For efficiency purposes, these ‘slave’ functions make certain assumptions
a b u t the array of SKRegion structures inside lthe SKRegionZnfo object that they
are supplied as an argument (i.e. results that a$ pre-computed in S’KRegwnSum-
mary() prior to the call to a slave function). For this reason, one stiouId not call
the ‘slave’ functions directly; this might invohe using uninitialized fields of the
SKRegion structures and garbage output could result. Only a few of the simpler
region analysis functions should be called dirkctly by a user. These include

I

I
might not be met. I

i

I

I

166

..

E Document
Revision Date

skarr

SKLabelRegions(), SKRegionArea(), SKRegionBoundingRect(), and SKRegion-
CenterOfGravity(). Additionally, EliminatePoorShapes() may be called directly
since it performs its own region analysis (via calls to SKLabelRegions() and
SKRegionSummary()). Other than these functions, none of the region analysis
functions should be called directly by a user, so only these functions are
described in the ‘Region Analysis’ section of this document. Consult the in-line
source code documentation for further elaboration on the details of the ‘in-paral-
lel’ region analysis computations.

13 Octobec 1998

167

13. Weather Radar Tools

13.1 Summary

A set of functions for operating on SKArrays which are especially useful in the context of weather radar
data analysis.

13.2 Functions

Weather radar data function description begins on the following page.

169

Name

c

Synopsis

Description

Returns

Warning

Document
Revision Date

skarr

SKArray SimpleHistogram()
A simple (i.e. not particularly genera1)finction to compute a histogram of
(the current slice of) an input array. Currently only supported for SKAr-
?-ayeshort>.

#include <skwrt.h>

SKA ?-ray< int> SKA rraySimpleHistogram(SKA rray <short> &input);

A simple (i.e. not particularly general) function to compute a histogram of (the
current slice of) an input array. For now only supported for SKArray<short>.
The function will allocate and return an integer SKArray which represents the
histogram. The size of the histogram's data buffer will be equal to the maximum
value of the (short) input array, plus 1; the histogram will be filled so that

histogram(0) = number of occurrences of "0" in input array,
histogram(1) = number of occurrences of "1" in input array,
etc., up to the maximum value of the input array.

An SKArray of type int which represents the histogram, computed as above.

This routine is not well-optimized since it is not anticipated to be used very fre-
quently. Currently handles only ID and 2D SKArrays.

30 September; 1998

Name

Synopsis #include <skwrt.h>

Description

Returns

See Also

Document
Revision Date

I iskarr

Function to compute the pixelwise average of 4 list of input images. For MIGFA
these images are ‘interest’images, i.e. images returned by the various gust front

The interest77zreshold (nominally 128 for MIGFA) is used to delineate ‘confirm-
ing’ (positive) evidence of the existence of a phrticular feature, vs. “disconfirm-
ing’ (negative) evidence of the existence of thit feature. If a particular pixel
value of an image is greater than, or equal to, pe intere!stZ%reshold., the,n that
pixel value will be multiplied by the image’s conjnningWeight member variable
in computing the weighted average at that pixil. Similarly, if the pixel value is
below the interestfireshold it will be multiplied by the image’s disconjrming-
Factor. Note that each different image in the +age list has its own confirming
and disconfirming factors which should have 6een set]xior to this function call.

I

I
detectors. I

Pixelwise averages are converted to type short i for output by rounding. Values of
the input images which are nil, e.g. missing, arb ignored in the averaging process.
If at a particular location all input images are Liz, then he corresponding pixel in
the averaged image will also be nil.

This function assumes all input images are of fype short int, as interest images
have short int data. The function can be templatized if averages for images with

I

i

j different data types are needed.
I

A 2D SKArray<short> which stores the pixelwise averages of the input images.
I

I
Function SKAverageInterestImagesExceptMin().

J

skarr

Name

SKA verageln terestlmagesExcep tMin()

SKAverageInterestImages ExceptMinO
Function to compute the pixelwise average of a list of input images, exclud-
ing the minimum pixel value across all images.

Synopsis #include <skwrt.h>

SKArray<short> SKAverageInterestImagesExceptMin(LLNIDList &images,
short interestThreshold);

Description Function to compute the pixelwise average of a list of input images, excluding
the minimum pixel value across all images. For example, if at location (x, y) =
(5, 10) of the output image, the input images have values 10,7, and 6, then only
the 10 and 7 value will be used in computing the weighted average for the output
pixel at (5, 10).

The interestThreshoZd (nominally 128 for MIGFA) is used to delineate ‘confirm-
ing’ (positive) evidence of the existence of a particular feature, vs. ‘disconfirm-
ing’ (negative) evidence of the existence of that feature. If a particular pixel
value of an image is greater than, or equal to, the interestThreshold, then that
pixel value will be multiplied by the image’s conjimingWeight member variable
in computing the weighted average at that pixel. Similarly, if the pixel value is
below the interestThreshold it will be multiplied by the image’s disconjrming-
Factor. Note that each different image in the image list has its own confirming
and disconfkning factors which should have been set prior to this function call.

Pixelwise averages are converted to type short for output by rounding. Values of
the input images which are nil, e.g. missing, are ignored in the averaging process.
If at a particular location all input images are nil, then the corresponding pixel in
the averaged image will also be nil.

This function assumes all input images are of type short int, as interest images
have short int data. The function can be templatized if averages for images with
different data types are needed.

Returns

See Also

Document
Revision Date

A 2D SKArray<short> which stores the pixelwise averages of the input images.

Function SKAverageInterestImages().

30 Septembel; I998

173

Name

Synopsis

SKCreateCircularMask()
Function to build circular masks for MIG

tered at the true center of the output carte!

#include <skwrt.h>

void SKCreateCircularMask(SKArray<short
float maskRadKM, int nAzimu
float gateSizeMeters, short nu

Description Function to build circular masks for MIGFA,
at the true center of the output Cartesian imagc
samp object must be passed in to this routine.
size, in KM, of the circle to be drawn in mask.
maskvalue. The nAzimuths and nGates speci
being used by the current application (e.g. MI
is the size of a gate of polar data, in meters. 1
ating a polar image, size nAzimuths by nGate,
for distances within maskRadKM of the origii
After this is performed, the resampler is run c
output to mask.

Returns The mask array's data buffer is filled in with tl
the mask array itself must have been allocatec

See Also Class SKResamp

Document 29 Septembel; I998
Revision Date

14, AMDA, etc. The circle is cen-
an image.

- *mask, SKResamp '*resamp,
bs, int nGates,
tkValue);

MDA, etc. The circle is centered
A pointer to a pre-created SKRe-

The maskRadKM is ithe desired
The circle will be filled with value
I the size of typical polar images
?FA). Finally the gateSizeMeters
ie circular mask is filled in by cre-
with all values set to maskvalue
All other values are set to NIL.

i the fabricated polar data, with

E desired circular mask. Note that
prior to calling this routine.

i 174

I
!

I

skarr

I .*

Name SKFillSector()
Function to take a (short) SkArray andJill in a sector of data with the sup-
pliedJillValue. The start and end angle of the sectoc as well as the sector’s
origin and radius are supplied as parameters. The start and end angles are
speciJied in the SKETCH sense ((image) north = 0 degrees, increasing in the
clockwise direction).

Synopsis #include <skwrt.h>

void SKFiElSector(SKArray<short>& input, double startAngle,
double e d n g l e , double xorigin, double yorigin,
shortjillValue, double radius);

Description Function to take a (short) SKArray and fill in a sector of data with the supplied
JillVulue. The start and end angle of the sector, as well as the sector’s origin and
radius are supplied as parameters. The start and end angles are specified in the
CSKETCH sense ((image) north = 0 degrees, increasing in the clockwise direc-
tion).

Returns

Warning

Pixels in the input array which are within the specified sector are set toJillValue.

Note that a radius value of 0.0 is equivalent to setting the radius to
SKArray<~oat>::SK-M~IMUM, i.e. all radius values are considered in
range of the sector.

.

All supplied angles are first modded to the range -180.0 to +180.0. This is neces-
sary for correct angle range checking. For example, if filling the entire 330
degree sector from 90 degrees all the way around to 60 degrees, an angle of 75
degrees is out of bounds. If this angle were given as 435 degrees, rather than 75,
the logic for determining which angles are in bounds would fail.

Document 22 Septembel; 1998
Revision Date

175

Name

Synopsis

I
I
i
lskarr

I

I
1

I

SKIntegraleZDimensw n()
Function to take a 3-dimensional input image and return a 2-dimensional
image obtained by summing along the z dirLction ojthe 3-d image.

#include <skwrt.h>

template <class T>
SKArray<T> SKIntegrateZDimension(SKArray<T>& input); i

Description Function to take a 3-dimensional input SKArruy and return a 2-dimensional
SKArray obtained by summing along the z dir+tion of the 3-D ima,ge. Templa-
tized over input image data type. NIL values in the input image are ignored; if
every input pixel in an entire ‘pillar’ is NIL, then the output at the (x,y) location
of that pillar is set to NIL. I

j
i
I Returns The 2-D integrated (i.e. surnmed) array.
I

Document 29 Septembel; 1998
Revision Date

I
I
I
I
I

I

I
I
i
I
I
I
I

~

skarr

Name

SKPercentOfMasslnZDimension()

SKPercentOjWassIn ZDimension()
Function to compute, for each '>illar" in a 3-0 SKArray, the z-coordinate at
which the requested percentile of "mass" is attained.

Synopsis #include <skwrt.h>

template <class i5
SKArray<short> SKPercentOfMassInU)imension(SKArray < T> & input,

float requestedpercent, float resolution);

Description Function to compute, for each 'pillar' in a 3-D SKArray, the z-coordinate at
which the requested percentile of 'mass' is attained. That is, at a given (x,y)
location, the 'pillar' is summed over z to find the total mass. Then a threshold is
computed as requestemercentile * totalMass. The column is resummed starting
at z = 0, continuing until the s u m exceeds the threshold. Roughly speaking, the
z-coordinate (denoted zthreshold) at which the sum exceeded the threshold is
stored at the corresponding (x,y) location in the output image. More accurately, a
resolution argument is supplied which can refine the simple pixel estimate given
above. What is actually stored in the output image is

SKROUND(resolution * (zthreshold + ((threshold - prev-sum) / curr)));

where prev-sum is the sum just prior to the point where the sum exceeded the
threshold, and curr is the pixel value which caused the s u m to exceed the thresh-
old.

For an example see the Example section for this function (below).

Returns

Example

A 2-dimensional (short) SKArray which stores, at each (x, y) location, the quan-
tity described above in the Description section (roughly the pixel at which the
sum exceeds the requested percentile).

As an example, consider a pillar whose entries are 1,1, and 0. Suppose the
desired percentile is 0.9. The total mass is 2 so the threshold is 0.9 * 2 = 1.8. The
sum exceeds the threshold at z = zthreshold = 1. In this case prevSum would be 1
and the curr value is 1. If the resolution were 1, a zcoord equal to 2 would be
stored. If the resolution were 100, however, a z-coordinate of
SKROUND(100 + ((1.8 - I) / I)) = 180 would be stored. Later dividing by
the resolution would indicate that the threshold was achieved at z = 1.8.

See also the appropriate test points in the SKE library description to see the effect
of changing the resolution.

177

Document 23 Septembel; 1998
Revision Date

178

V

I

skarr

Name

Synopsis

Description

Returns

SKPercentProbabilityDist()
Function to$nd the pixel value in the input SKArray corresponding to the
requested percentile of all the pixel values in input. For example, if the
requested percent is 90.0, this routine returns the minimum pixel value in the
input array which is greater than 90% of all other pixel values.

#include <skwrt.h>

$oat SKPercentProbabilityDist(SKArray<short>& input,
float requestedpercent);

Function to find the pixel value in input corresponding to the requestedpercent
percentile of all the pixel values in input.

A histogram of all the pixel values in input is created. Note that input is assumed
to have data of type short, and that the minimum value is expected to be zero (the
input array may first be scaled by the calling routine to ensure that this is so). The
bin size of the histogram is one, so each discrete value in the (short) input array
gets its own bin.

Since the histogram only counts non-nil pixels, a sum of the values of the histo-
gram gives the number of non-nil pixels. This number is multiplied by the
requestedpercentile to get a targetcount. We then sum over the values in the his-
togram array until we first exceed the targetcount. The current index in the his-
togram array when we first exceed the targetcount gives the index in the
histogram of the desired percentile value. Because the minimum value in the
input was zero,and because the histogram was constructed with bin size equal to
one, this index is also the actual value of the requested percentile in the (possibly
scaled) input array.

Since the input array may have been scaled and offset, this value is then
‘decoded’ based on the scale and offset of the input array to give the ‘real-world’
value of the desired percentile value.

The real-world (e.g. unscaled) value in the input array which corresponds to the
requestedpercent percentile in the input. For example, if requestedpercent is
90.0, this routine returns the minimum pixel value which is greater than 90% of
all other pixel values in the input array.

Document 29 Septembel; I998
Revision Date

I 179

Name

Synopsis

! skarr

SKRadiallyAlignedOrientation () I
Function to take an input 2 0 SKArray of 'orientations' (angles,) and deter-

mine how close each orientation is to the corresponding radial angle.
I

#include <skwrt.h>

SKArray <short> SKRadiaElyAlignedOrientation(SKAirray<short> & orient,
SKCoordI center);;

Description Function to take an input array of "orientation$" (angles) and detemGe how
close each orientation is to the corresponding {adial angle. For example, in a 9-
by-9 image the center pixel is (4,4). The pixel at (8,s:) has a radial angle of 45
degrees relative to the center. If the value (orientation) at pixel @,E\) is 50, then
this function will store "5" in the output imagejat pixel (8, 8).

This function is typically used in suppressing Jadially -aligned interest in feature
detectors, as such features are often caused by out-of-trip weather returns.

In this function the center is supplied as an a rgpen t so that these radial angle
differences can be computed relative to a point other than the array's true center
point, if desired.

The 2-D array of angle differences (pixelwise +put oritmtation differenced
against pixelwise radial angle).

All angles are assumed to be 180 degrees ambiguous, so angle differences are
computed by function SKAnglel8ODiflerence(?, not function SKAngZeDifler-
ence(). I

I

I

I

i
Returns

, I
I

Warning

See Also Functions SKAnglel80Diflerence() and SKAn$eDiffere!nce().
I

Document 30 Septembel; 1998
Revision Date

180

skarr

Name

SKReplaceMissing With Median()

SKReplaceMissing WdhMedian()
Function to perform the 'ReplaceMissing WithMedian 'function at a single

pixel within an input image. To replace all missing values in an image with a
median value this function should be used in conjunction with the SKArray
class member function "Apply()". See example below.

Synopsis #include <skwrt.h>

template <class T>
T SKReplaceMissingWithMedian(SKArray<T> &input, T *xPtr, void VcPtr);

Description Function to perform the 'ReplaceMissingWithMedian' function at a single pixel.
If the current input pixel is (pointed to by xPtr) is nil, then this pixel value is
replaced by the median of all non-nil input pixels within the supplied window
(kernel) pointed to by kPtr. If all the pixels in the window are nil, then the input
pixel remains nil. If the current input pixel is non-nil, it is unchanged. To replace
all missing values in an image with a median value this function should be used
in conjunction with the SKArray class member function "Apply()".

Returns

Example

The value to replace the pixel at xPtr with (if it is to be replaced, i.e. if it is m i s s -
ing).

I/ Tests for SKReplaceMissingWithMedian().

11 Input array. Nil values to be replaced with median of a window.
static char *medianlnputDatal [I =

"nil 2 3 4 5 6 7 8 9 10';
" 2 3 4 5 6 7 8 9 9 9':
" 1 I 2 4 4 6 6 8 8 Stt,
"nil I 3 5 7 9 7 9 7 9':
"nil 3 4 5 6 8 nil 7 7 7':
I t 2 3 4 5 6 6nilnilnil IO",
' I 3 4 5 6 7 6 nil nil nil nil",
It I I 3 3 5 5 nil nil nil 8",
" 1 3 1 3 5 7 5 7 7 3':
"nil nil 9 3 6 5 nil 6 8 niltt,
0,

I ;

// Create a kernel for the median operation (window will be 3 by 3).

181

I

I
i skarr

SKArraycshort> keme1(3,3);

I
i SKArray<short> output;

SKArrayPad<short> pad(PAD-MIRROR, 0, f, 1);

medianInput.SetSliceVals(medianlnputData1
medianInput.Mirror();

// Replace missing values.
output = medianInput.Apply(SKReplaceMiss

/I Output will look like this:
static char *medianTmthDatal[] =

" 2 2 3 4 5 6 7 8 910';
" 2 3 4 5 6 7 8 9 9 9':
" 1 1 2 4 4 6 6 8 8 8':
" I 1 3 5 7 9 7 9 7 9':
" 2 3 4 5 6 8 7 7 7 7':
" 2 3 4 5 6 6 6 7 710' :
" 3 4 5 6 7 6 6nil 8 8':
" 1 I 3 3 5 5 6 7 7 8",
" 1 3 1 3 5 7 5 7 7 3':
" 1 3 9 3 6 5 6 6 8 7':
0,

1;

I/ Note one pixel is still missing as all values
// missing, so no median replacement value c(

ng WithMedian, (voia'*)&kemel);

Document 29 Septembel; 1998
Revision Date

vithin the 3 by 3 kernel were
uld be found.

I

!
i
I

182 i i
~

I

skarr

Name

Synopsis

Description

Returns

Warning

Document
Revision Date

SKweightedMerge Tilts()
Function to merge two tilts (arrays, in polar (I; theta) format) into a single

tilt. Use data from higher tilt in close to the radar; (i.e. r < mergeBound-
NearKM), use data from low tilt awayfrom radar (i.e. r > mergeBound-
F a r m) and use linearly ramped average of data from both tilts in between.

#include <skwrt.h>

template <class T>
SKA rray < T> SKWeightedMerge Tilts(SKArray< T> & tiltlow, SKA rray < T> &

tiltHigh, float meqeBoundNearKM, $oat
mergeBoundFarKM);

Function to merge two tilts (arrays, in polar (r, theta) format) into a single tilt.
Use data from higher tilt in close to the radar, (i.e. r < mergeBoundNearKM), use
data from low tilt away from radar (i.e. r > mergeBoundFarKM) and use linearly
ramped average of data from both tilts in between.

The output (polar) SKArray of merged data.

In regions where the merged data is just the raw low or high tilt data, missing val-
ues in the raw data become missing values in the merged data. In regions where
there is weighted averaging, the tilt with the higher weight ‘wins’ in the case of
nil data. For example, if the low tilt weight is 0.2 and the high tilt weight
is 0.8, a missing value in the high tilt will translate to a nil value in the output
image regardless of the low tilt data. With the same weights and a nil Iow tilt
value and non-nil high tilt value, the unweighted non-nil high tilt value will
become the output value.

29 Septembel; 1998

	Abstract
	INTRODUCTION
	CSKETCH IMAGE PROCESSING LIBRARY TUTORIAL
	2.1 Introduction
	2.2 Class Usage Examples
	2.3 Additional CSKETCH Function Packages
	A Detailed Look at the SKArray Class
	Class
	Class SKArray
	Class

	Class SKArrayPad
	Class SKChain
	Class

	Class SKFuzzyFunc
	Class

	Class SKRegionInfo
	Class

	Class SKResamp
	Class

	Class SKStmResamp

	ARRAY AFUTHMETIC
	5.1 Summary
	5.2 Functions

	FUZZY SETS
	6.1 Summary
	6.2 Functions

	IMAGE PROCESSING
	7.1 Summary
	7.2 Functions

	GENERAL MATHEMATICAL FUNCTIONS
	8.2 Functions

	MATHEMATICAL MORPHOLOGY
	9.1 summary

	MATRE OPERATIONS
	10.1 summary
	10.2 Functions
	11.1 summary
	1 1.2 Functions
	12.1 summary
	12.2 Conventions

	WEATHER RADAR TOOLS
	13.1 Summary
	13.2 Functions

