Project Report
ATC-283

CSKETCH Image Processing Library

J. Morgan
S. Troxel

21 August 2002

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LEXINGTON, MASSACHUSETTS

Prepared for the Federal Aviation Administration,
Washington, D.C. 20591

This document is available to the public through
the National Technical Information Service,
Springfield, VA 22161

This document is disseminated under the sponsorship of the Department
of Transportation in the interest of information exchange. The United
States Government assumes no liability for its contents or use thereof.

v

Abstract

The CSKETCH image processing library is a collection of C++ classes and global functions which com-
prise a development environment for meteorological algorithms. The library is best thought of as a ‘tool-
kit’ which contains many standard mathematical and signal processing functions often employed in the
analysis of weather radar data. A tutorial-style introduction to the library is given, complete with many
examples of class and global function usage. Included is an in-depth look at the main class of the library,
the SKArray class, which is a templatized and encapsulated class for storing numerical data arrays of one,
two, or three dimensions. Following the tutorial is a complete reference for the library which describes all
publicly-available class data members and class member functions, as well as all global functions included
in the library.

iii

TABLE OF CONTENTS

Abstract
1. INTRODUCTION

2. CSKETCH IMAGE PROCESSING LIBRARY TUTORIAL
2.1 Introduction
2.2 Class Usage Examples
2.3 Additional CSKETCH Function Packages
24 A Detailed Look at the SKArray Class

3. CLASS DESCRIPTIONS
- Class SKArray
- Class SKArrayPad
- Class SKChain
- Class SKFuncTemplate
- Class SKFuzzyFunc
- Class SKRegionInfo
- Class SKResamp
- Class SKStmResamp

4. ANALYTIC GEOMETRY
4.1 Summary
4.2 Conventions
43 Functions

5. ARRAY ARITHMETIC
5.1 Summary
52 Functions

6. FUZZY SETS
6.1 Summary
6.2 Functions

7. IMAGE PROCESSING
7.1 Summary
7.2 Functions

109
109
109

10.

11.

12.

13.

TABLE OF CONTENTS
(Continued)

GENERAL MATHEMATICAL FUNCTIONS
8.1 Summary
8.2 Functions

MATHEMATICAL MORPHOLOGY
9.1 Summary
9.2 Functions

MATRIX OPERATIONS
10.1 Summary
10.2 Functions

MISCELLANEOUS FUNCTIONS
11.1 Summary
11.2 Functions

REGION ANALYSIS
12.1 Summary
12.2 Conventions
12.3 Functions

WEATHER RADAR TOOLS

13.1 Summary
13.2 Functions

vi

117
117
117

- 133
0133

133

143

. 143

143

151

- 151

151

159

159

159

159

169
169

169

L1

1. Introduction

The CSKETCH Image Processing Library is a library consisting of C++ classes and functions which
together constitute a development environment for signal processing and weather data analysis algorithms.
The core class of the library is the SKArray class, an encapsulated array class for storing numerical data in
rectangular arrays. The data may be one, two, or three dimensional; details are handled internally and are
transparent to the user, so for example, calls to global functions have the same syntax regardless of array
dimension number and size. In addition, the class has been templatized, using C++ ‘template’ methods, to
minimize the lines of code needed for the implementation. For example, when writing a new global func-
tion, only one ‘templatized’ version need be written; the user then need only include prototypes for the ver-
sions of the function (short, double, etc.) that are explicitly needed. Also, C++ class methods have been
widely used in the SKArray class to make manipulation of SKArrays almost as easy as manipulation of
standard numerical data types (float, short, etc.) As an example, SKArrays A and B can be added and
stored in SKArray C simply by coding C = A + B.

In addition to the SKArray class, the core of the CSKETCH library consists of a set of global functions for
operating on SKArrays. The most widely-used functionality is that of functional template correlation
(FTC), which is the main method used by various weather algorithms (MIGFA, AMDA, etc.) to identify
likely gust fronts, microbursts, etc. Besides FTC, the core functions include mathematical morphology
functions (Erosion, Dilation, Closure, and Opening, for both gray-scale and binary images). A set of stan-
dard matrix operations (singular value decomposition, LU decomposition, matrix inversion, etc.) is
included, as well as many more general-purpose signal processing operations. They are all described in
this document.

Besides the SKArray class, a number of other helper classes are included in the library. One of the most
useful is the SKResamp class which can be used to resample polar format data into Cartesian format.
There is an SKArrayPad class which can be used to create margined images, to minimize edge effects in
various signal-processing operations. The SKRegionlnfo class can be used to compile statistics (area,
approximate length, center of gravity, etc.) of various subregions within an SKArray’s data buffer. All
component classes of the CSKETCH library are also described in this document.

The document begins with a tutorial-style introduction to the CSKETCH image processing library. The
tutorial begins with some simple usage examples for the major CSKETCH library classes, namely the
array class, the functional template class, the resampler class, and the region analysis class. These exam-
ples are meant to show the ease with which multi-dimensional numerical arrays of data can be created,
manipulated, and analyzed within the CSKETCH framework. Moreover, these examples provide quick
reference points for programmers just starting out in the CSKETCH environment. Following the class
usage examples are some examples of global function packages for the CSKETCH library. Finally, since
the SKArray class is so widely used, the tutorial concludes with an in-depth look at the inner working of
the SKArray class. This information will prove useful to the experienced CSKETCH user who is looking
to optimize algorithm performance through the most efficient manipulation of SKArrays.

The remainder of the document is a reference-style compendium of all classes and global functions in the
CSKETCH library. For small classes, any relevant global functions are described inside the class docu-

mentation. An example of such a class would be the SKChain class which is used for encoding gust front
chains for MIGFA and the zero-crossing line for AMDA. For large classes, such as the SKArray class, the
global functions are described later in a separate section. In addition, the global function section contains
many useful functions which don’t have an association to any of the component classes. Examples of this
type of function would be the analytic geometry functions for finding the distance between two points, and
for converting a vector from (u,v) to (range, theta) format (and vice-versa). The global functions have been

converting a vector from (u,v) to (range, theta) format (and vice-versa)l The global functions have been
grouped according to general purpose, e.g. mathematical morphology, analytic geometry, fuzzy logic, etc.

|
!

i
|
|
|
|
|
|
|
;
|
|
|
|
i
|
|
|
|
|

2. CSKETCH Image Processing Library Tutorial

2.1 Introduction

The CSKETCH Image Processing Library is a collection of C++ classes and functions which together
comprise an object-oriented development environment for image-based algorithms. CSKETCH classes
include an encapulated array type useful for storing rectangular arrays (up to 3-dimensional) of numerical
data of any data type (short, float, double, etc); a functional template class for performing functional template
correlation operations; a resampler class for converting data from polar to cartesian format, or converting
cartesian data at one resolution to a different resolution; a ‘region’ class for computing statistics about distinct
regions of data lying inside a rectangular array of data; and more. Global functions in the library exist for
many frequently-performed image and matrix operations, such as image dilation and erosion; median filter-
ing; numerical differentiation; image statistics such as mean and standard deviation; matrix inversion; sin-
gular value decomposition and ‘LU’ decomposition for matrices; and more. Additionally the library contains
many simple functions for standard operations of analytic geometry, fuzzy set theory, basic array arithmetic,
etc.

The CSKETCH Library serves as a ‘toolkit’ for development of meteorological algorithms. A number
of Lincoln algorithms have been built in C++ atop this toolkit, in particular the Machine Intelligent Gust
Front Algorithm (MIGFA) and the Automated Microburst Detection Algorithm (AMDA). Typically an
application relies heavily on calls to the CSKETCH Library and uses class objects from the library, while
defining new classes of objects and new functions specific to that particular application. However, the same
coding style conventions have been used for application-specific software, which allows for very clean,
uniform code appearance.

2.2 Class Usage Examples

We will introduce the library via a set of code samples which illustrate the more common usages of
CSKETCH library classes and global functions. We begin by demonstrating the ease with which images
may be processed and manipulated within the CSKETCH environment, using the SKArray class.

2.2.1 SKArray Class Usage

The major definitions needed for using the SKArray class are found in the file skarray.h. Following is
a short program which illustrates many of the most frequently used SKArray class member functions.

#include <skarray.h>

void main(void)

{

// Create a 3-by-3 array to hold floating-point data and set all its values to 5.0
SKArray<floar> A(3, 3);

A.SetAllSliceValsTo(5.0);

// Create another array B and initialize its data buffer to be copy|of A’s data buffer
SKArray<float> B(3, 3); :
B.CopyFrom(A); |

// Compute the sum of arrays A and B and store the result in array C:
SKArray<float> C = A + B;

// Create an array D which stores the same numerical data as C,|but in double precision:
SKArray<double> D = SKToDouble(C);

// Create an array E whose data is read from file ‘fusr/data/array.dat’)
SKArray<float> E = SKArrayReadFromSketchFile(“/usr/data/array.dat’);

// Now we wish to perform various signal processing operations on array E.
// First create a 5-by-5 kernel to be used for window filtering opeirations.

SKArray<short> kernel(5, 5); |
kernel . SetAllSliceValsTo (0); !
// Now do a median filter of E, replacing each pixel by the 50th percentzle value
// of all pixels within the kernel centered at each pixel. |
SKArray<float> F = SKArrayMedianFilter(E, kernel, 0.5); |
// Since E is unchanged by the median filter (the output array F is new and was
// created in the call to SKArrayMedianFilter(), we can repeat thzs process on
// the original data in array E. This time use the 90th percentile of data:
SKArray<float> G = SKArrayMedianFilter(E, kernel, 0.9); i

g
// Now do gray-scale erosion and dilation of E. Again E is uncha:nged by
// these operations as new output arrays are returned each time: |
SKArray< float> H = GrayScaleDilate(E, kernel);]
SKArray<float> I = GrayScaleErode(E, kernel); |

|

// The operations of Closure (Dilation followed by Erosion) and Opening (Erosion followed by
// Dilation) can be performed directly. |
SKArray<float> J = GrayScaleClose(E, kernel); !
SKArray<float> K = GrayScaleOpen(E, kernel); ’

| |
// Compute the mean value and standard deviation of the data values in SKArray K:
float mean = SKArrayComputeMean(J);

|
float stdDev = SKArrayComputeStdDev(J); |
J |
I
|

2.2.2 SKFuncTemplate Class Usage

For users familiar with the image-processing operation known! as functional template correlation
(hereafter referred to as FTC), here’s a simple example of creating and using both single-kernel and two-
kernel (tandem) functional template objects: ‘

|

! |
4 ! !

|

j

|

// First specify the kernel, function table, and orientation angles for the template:
static char *kernel[] =

{
"0000000",
"0111110",
"0000000",
0,

]’.

Note that a value of ‘9’ in any kernel will be replaced by ‘NIL’ in the call to the SKFuncTemplate
constructor. This is exactly as was done in the original SKETCH system. Note also the terminating ‘0’ in
the last row of kernel data. This ‘0’ is needed so the constructor knows where the end of data for the kernel

occurs.

static char *funcTable[] =

{
"(0 144) (33 111) (255 111)",
"(00) (26 0) (27 2) (60 200) (72 128) (255 128)",
0,

} ,.

Again note the terminating ‘0’ above, after the last row of data in the function table.

static char *angles = "045 90 135" ;

// Now create the functional template. Use the point (3,1) as the center point (rotation point) for the
// kernel.
SKFuncTemplate newTemplate(kernel, 3, 1, funcTable, angles);

// Given an input image (SKArray) called inputlmage, create mask, score, and orient arrays the
// same size as inputlmage. The call to SKArray class member function ‘DupEmpty()’ returns a
// new array, the same size as inputlmage, but with an uninitialized data block.
SKArray<short> mask = inputlmage. DupEmpty();

SKArray<short> score = inputlmage. DupEmpty();

SKArray<short> orient = inputlmage. DupEmpty();

// Setting mask to 1 at all pixels insures processing over every possible input pixel.
mask.SetAllSliceValsTo(1);

// Perform functional template processing at every pixel (processing is not performed where

// the mask has value NIL, or at locations where the rotated kernel would fall off the input image
// boundary; in both cases the score and orient arrays have value NIL at that pixel).
SKFuncTemplateMatch(inputlmage, newTemplate, mask, score, orient);

// The array score now holds the pixel-by-pixel scores of the FTC match process, while orient holds
// the corresponding pixel-by-pixel orientation of the best match.

// Now a quick example of creating and applying a tandem (2-kernel) template.

static char *kernell[] = |

{ i
"99999999" f
"99999999" |
"90000009", |
“90111109"
"“90000009" ‘
"99999999" '
"99999999"
0,

} ’.

static char *kernel2[] =

{
"99999999"
"99999999"
"99999999"
"99992299"
"99999999" !
"99999999" !
"99999999"
0,

},.

static char *funcTable[] =

{
"(0192)(20112)(255112)",
"(00) (48 0) (64 255) (80 255) (88 128) (255 128)",
"(0 255) (40 255) (60 0) (230 0) (240 255) (255 255)",
07

/s

static char *angles = "0 2040 60 80 100 120 140 160" ;

// Create the tandem template. Use pixel (3,3) as center of rotatio!n for kernels.
SKFuncTemplate tandemTemplate(kernell, kernel2, 3, 3, funcTable angles);

// Given (equally-sized) input images inputlmagel and mputlmageZ create score, orient, and
// mask arrays of the same size. I
SKArray<short> mask = inputlmagel.DupEmpty(); |
SKArray<short> score= inputlmagel.DupEmpty(); {
SKArray<short> orient= inputlmagel . DupEmpty(); g
1
// Again set the mask to 1 everywhere for processing at all input Il)zxels in range.
mask.SetAllSliceValsTo(1); E
|

// Apply the tandem template. ’

SKFuncTemplateMatch(imagel, image2, tmpl, mask, score, orient);
|

|
// As before, the score and orient arrays store the pixelwise match scores and orientations from the

// (tandem) FTC match process.

2.2.3 SKResamp Class Usage

One of the most frequently used processes in working with weather radar data is the conversion of
data from Polar format to Cartesian format. We now give examples of this so-called ‘resampling’ process
using the SKResamp class.

The full documentation for the SKResamp class can be found later in this document. Since our goal
in this section is to provide simple examples of CSKETCH library functionality, we will jump right in with
an example of creating a resampler and then using it to convert polar data to cartesian data.

// Build a resampler (essentially a lookup table) for converting polar data to cartesian.

// Assume 256 radials of data per 360 degree scan, 400 gates of data in a full polar image,
// a polar gate size of 250 meters, cartesian output sizes of 100 by 100 pixels, and finally an
// xsize and ysize of 500 meters for the cartesian output data.

SKResamp resamp(256, 400, 250, 100, 100, 500, 500);

The above resampler will be able to completely fill 100-by-100 cartesian output arrays given the
specified polar and cartesian data ranges (i.e. the resampler assumes 400 gates * 250 meters / gate = 100 km
of raw polar data, while the cartesian image has extent of 100 pixels * 500 meters / pixel = 50 km in both
the x and y-dimensions). The full SKResamp class description later in this document discusses e.g. what
happens when cartesian data is requested for locations out of range of the supplied polar data.

Now that we have the resampler built, we show how easy it is to build cartesian data from polar input.
For this we use the member function SKResamp::Run(). Two overloaded versions of this function exist.

void SKResamp::Run(short *in[], int naz, int ngates, SKArray<short>& out)
void SKResamp::Run(SKArray<float>& in, SKArray<float>& out)

The first version of SKResamp::Run() takes the input data in a very simple form, namely an array of
pointers to (radials of) data. The radials are assumed to be laid out in order, e.g. in[0] represents the first
radial of data (0 azimuth), in[1] represents the next radial of data, etc. This is intended to make it as simple
as possible for other applications to take raw input data and resample it to Cartesian format. The output
cartesian array out is filled using the lookup table which was generated by the SKResamp constructor call.

// Example of usage of first form of ‘Run()’ with the resampler object created above.
SKArray<short> cartesianlmage(100, 100);
short *radials[256]; // pointers for the input radials of polar data

// After the ‘radials’ pointers have been filled e.g. by realtime read of radar data:
resamp.Run(radials, 256, 400, cartesianlmage);

The second form of ‘Run’ is provided as a convenience to applications programmers and is generally
intended for applications other than raw input (although it can also be used for that purpose). This version

|

takes an SKArray object representing a fully initialized polar input array, and resamples to an output SKArray
object representing an output cartesian array. This version is very useful, for example, when one performs
a functional template correlation process over a polar image and then wishes to convert the results to cartesian

format. It would be inconvenient in this case to store the polar data|as an array of radial poi}nters, as is
required for the first version of ‘Run()’.

// Example of usage of second form of ‘Run()’ with the resample'r object created above.
SKArray<short> polarlmage(256, 400);
SKArray<short> cartesianlmage(100, 100);

// After the ‘polarlmage’has been filled:
resamp.Run(polarlmage, cartesianlmage);

Of course, for the second version of ‘Run()’ to work correctly, the parameters (e.g. number of azimuths,
number of gates, gate size, etc.) of the polarImage must be consistent; with the values which were used in

creating the SKResamp object, resamp. i
|

2.2.4 SKRegion Class Usage

Our final section of CSKETCH class usage examples focusses on the SKRegionlnfo class and the
related SKRegion structure. These structures are useful for analyzing Evarious regions of data within a (2-
dimensional) SKArray. A ‘region’ inside an SKArray is defined to bé a collection of same-valued pixels
inside that array. For example, the set of all pixels with value 1 form’region 1 of the image, the set of all

pixels with value 2 form region 2 of the image, etc. The region need not be connected, e.g. if the image data is
I
|

char *arrayData[] =
{

"01000"
"00001",
"00000",
"02220"
"02202", |
0,
2 |

then the set of all pixels with value 1 form a valid region even tl!lough the pixels are not all adjacent.
The pixels with value 2 form a (connected) region. The pixels with val:ue 0 are considered ‘background’ or
‘dataless’ pixels and region statistics will not be computed for those pixefls. In general the SKRegion structure
will store various attributes (length, area, etc.) of a distinct region inside of an SKArray.

For most applications the regions of interest will be be ‘8-connected’, that is, each pixel in a distinct
region touches the region on at least one of its 8 pixel neighbors. The definition of 8-connected will become
clear after a few simple examples.

Consider a 2-dimensional SKArray whose data buffer has the values:

i

char *arrayDatal[] =

{
"10100002",
"11111002",
"01000102",
"11000102",
"00000002",
"00000222",
"00000222"
"00022222"
0,

};

SKArray<short> A(arrayDatal);

The set of all pixels with value ‘1’ in the above array A consitute a distinct 8-connected region in this
array (as any pixel with value 1 touches at least one other pixel with value 1 among its 8 horizontal, vertical,
and diagonal neighbors). Similarly, the set of all pixels with value ‘2’ consitute a distinct 8-connected region.
The set of all pixels with value O is not considered a valid region; the CSKETCH region analysis code
reserves the value O for ‘background’ pixels which are not of general interest.

Given this simple input array, we illustrate several of the region analysis utilities for studying the
various regions in the array. There are a number of interesting parameters of a region which one may wish
to study (e.g. area, approximate length, centroid, coordinates of a ‘bounding box’ of a region, etc.) All of
the region statistics contained in the SKRegion structure are computed simultaneously for all regions in an
SKArray by function SKRegionSummary():

// Compute statistics for all regions in an SKArray A. The call to SKRegionSummary() returns a
// pointer to an SKRegionInfo object which in turn contains an array of SKRegion structures

// (one for each distinct region in the (short integer) input array A).

SKRegionlnfo *regioninfo = SKRegionSummary(A);

Note that the input array to SKRegionSummary() must be of type short integer. Since there were 2
distinct regions inside array A, the returned SKRegionlnfo object will contain an array of 2 SKRegion struc-
tures. The various region attributes for regions 1 and 2 can then be directly read from the SKRegionlnfo array:

// Get the area of region 1 (number of pixels in the array with value 1):
int area=regionlnfo->region[1].area;

// Get the x-coordinate of the center of gravity of region 2:
float x=regioninfo->region[2].xCenterGravity;

// Get the ‘length’ of region 1 (the length is taken to be the length of an approximating rectangle).
// The approximating rectangle is found by a least-squares process.

float length=regionInfo->region(1].length;

// The coordinates of a ‘bounding box’ for a region can be accessed from:

1
J

int xmin=regioninfo->region(1].xmin; int xmax=regionInfo->region[1].xmax;
int ymin=regionInfo->region[1].ymin; int ymax=regionlnfo->region[1].ymax;

I
For a full list of the statistics computed and stored by the call to SKRegionSummary(), see the descrip-
tion for the SKRegionlInfo class later in this document. ;f

As a second example, consider a 2-dimensional SKArray whose data buffer has the values:

char *arrayData2[] = |

{

SKArray<short> B(arrayData2);

In this array, the set of all pixels with value ‘1’ does not constitute a distinct 8-connected region; for
example, all the pixels in the 3rd column are isolated from all the pixels in the 1st column. For some
applications, we may not care whether a region is connected or not. Ot:her applications do consider regions
to be separate if they are not connected. For this reason, the function SKLabelRegions() is provided. Given
a short integer input SKArray B, SKLabelRegions() returns a ‘labelled’ iversion of the array, i.e. a new array
which has distinct connected regions identified by a distinct integer. The original input array is unchanged.
For instance, using the array B from above, if we create a new short integer SKArray called labelled via:

SKArray<short> labelled = SKLabelRegions(B);

then the output array labelled will look like:

10203
10203
10203
10203
10203

|

That is, the 3 distinct connected regions of array B are actually |given unique tags in the output array
labelled. Again the original input array B is unchanged. If we now call S;KRegionSummary() with the labelled
array as input, we will get back an SKRegionInfo object containing an array of 3 SKRegion structures, one
for each region labelled 1 through 3. By contrast, if we call SKRegionSummary() with the original array B
as input, we will only have 1 SKRegion structure contained in the output SKRegionlnfo object (for the non-
connected region consisting of all pixels with value 1). Again, recall :that the set of pixels with value 0 is
considered ‘background’ or uninteresting values, so statistics for the:: set of pixels with value O are not

computed by SKRegionSummary(). '

|
!
|
|
10 |
i
i

It’s worth pointing out here that SKLabelRegions() takes an input array and returns a new array where
distinct, 8-connected regions are given their own labels. Two pixels belonging to the same region will have
the same label in the output array even if they had different values in the input array. For example, consider
the array C with data array:

char *arrayData3[] =

{
"10605"

20704,
"30803"
"40902"
501017
0,

}’.

SKArray<short> C(arrayData3);

Again, the first, third, and fifth columns of this array correspond to distinct, 8-connected regions of
nonzero data. Thus, the labelled output resulting from a call to SKLabelRegions() will again look like:

10203
10203
10203
10203
10203

The CSKETCH library tutorial now continues with descriptions and examples of some of the library’s
more commonly used global functions.

2.3 Additional CSKETCH Function Packages

CSKETCH library and class member functions are largely grouped into ‘packages’ of related func-
tions. Such packages include, but are not limited to, analytic geometry functions; image processing functions;
‘fuzzy’ weighting functions; 2-dimensional matrix functions; and basic mathematical functions. Example
usage for a number of the image processing functions (e.g. GrayScaleErode(), GrayScaleDilate(), SKMedi-
anFilter(), etc.) was shown in the first code sample in this document. In order to give a bit more more of the
flavor of the CSKETCH library as a development environment for C++ applications, we will give some
examples of the analytic geometry and basic array arithmetic ‘packages’. The full set of all CSKETCH
class member and global functions are described later in this document.

11

|
|
|

2.3.1 Analytic Geometry Functions

A number of very simple, but frequently used, functions of analytic geometry are encoded in the
CSKETCH library as C++ global functions. We give examples of a|few of them here; the full list and
description of functions can be found later in this document.

One of the simplest problems arising in analytic geometry is, gi\llen two points pI = (xI, f;y]) and p2
= (x2, y2) in the x-y plane, what is the direction of the vector from p/ to p2. While this question is easy
enough to answer, it can be slightly complicated by the choice of angle|measuring scheme. For instance, in
radar meteorology applications, north is usually taken to be 0 degrees, with angles increasing in the clockwise
sense (e.g. east = 90 degrees, south = 180 degrees). However, in the mathematlca.l’ convention of ‘measuring
angles, east is O degrees and angles increase in the counterclockwise selnse (north = 90 degrees, west = 180
degrees, etc.) For this reason, the CSKETCH analytic geometery package allows for the specification of
the angle measuring scheme for functions where the angle measurmg scheme makes a difference in the
computations. A simple example is function SKDirectionFrom() which takes as input 2 (2-dimensional)

points and an enumerated type indicating the scheme used to measure imgles

SKCoordl pt1, pt2; !

ptlx=0;ptly=0; pt2x=1; pt2.y = 0; |
// Compute the angle from (0,0) to (1,0), assuming the meteorological angle convention.:
float angle = SKDirectionFrom(ptl, pt2, SK_METEO_; CONVENTION);

// The value of ‘angle’ is now 90.0. :

// Now recompute the difference assuming the mathematical comlJentzon
float angle = SKDirectionFrom(ptl, pt2, SK_MATH_ CONVENTION);

// The value of ‘angle’ is now 0.0.

A useful mnemonic when dealing with ‘math’ vs. ‘meteo’ convention angle schemes is:
MATH + METEO = 90.0,

i.e. if we take an angle and measure it both in the mathematical and meteorological convéntions, and
then add the results, the sum will always come out to 90 degrees (modulo 360, of course).

| .
As mentioned earlier, the CSKETCH library provides support for both of these measuring schemes
via the enumerated type !
enum SKAngleConvention { SK_MATH_CONVENTION, SK_METEO_CONVENTION };

in cases where the angle measuring scheme makes a difference::. In cases where the angle scheme
makes no difference (e.g. when computing the distance between 2 points, a task performed by function
SKDistanceBetween()) the support is not needed and one need not specify an angle measurement scheme.
For example: ‘

float distance = SKDistanceBetween(p1, p2);

12 I

needs no argument of type SKAngleConvention. Of course, the value of distance given the two points
pl and p2 from above will be 1.0 regardless of the scheme we are using for measuring angles.

A very typical problem in meteorological applications is, given two angles, find the difference between
them in the vector sense. For example, a vector of 0 degrees (i.e. north) and a vector of 315 degrees (northwest)

have an angle of 45 degrees between them. The function SKAngleDifference() is provided to compute this
vector angle difference:

float difference = SKAngleDifference(315.0, 0.0);
// The value of ‘difference’ is now 45.0.

difference = SKAngleDifference(185.0, 0.0);
// The value of ‘difference’ is now 175.0.

In some applications, two directions are known but one (or both) may be 180 degrees ambiguous. For
such cases, the function SKAnglel80Difference() is provided. This function considers both interpretations
of both angle measurements and returns the smallest possible difference between the angles. For instance,
if an angle measurement of 0 degrees is ambiguous, it could have value O or 180. Likewise a measurement
of 100 could be 100 or 280 degrees. If we know the measurements to be unambiguous, we would use function

SKAngleDifference() to compute their difference; if the measurements are ambiguous, we use
SKAngle180Difference():

float difference = SKAngleDifference(180.0, 0.0);
// The value of ‘difference’ is now 180.0.

difference = SKAnglel80Difference(180.0, 0.0)

// The value of ‘difference’ is now 0.0; the minimum difference occurs when the ambiguous 180.0
// is treated as 0 and the ambiguous 0 is treated as 0.

The full set of analytic geometry functions, including all overloaded versions of these functions, is
described later in this document.

2.3.2 Functions for Basic Array Arithmetic

There are many functions available in the CSKETCH library for performing basic array operations
on SKArrays. Most of these are encoded as global operators; some are SKArray class member operators.
Regardless of implementation, usage is straightforward and we illustrate some of these operators here.

// First create 2 3-by3 arrays A and B; set all values in A to 3.1 and all values in B to 5.9:
// (the concept of ‘slice’ of an SKArray will be discussed in the next section).
SKArray<float> A(3, 3);

SKArray<float> B(3, 3);

A.SetAllSliceValsTo(3.1);

B.SetAllSliceValsTo(5.9);

13

// Now create new arrays C, D, and E to be respectively the sum| difference, and
// elementwise product of A and B:
SKArray<float> C=A + B;
SKArray<float> D = A - B;
SKArray<float> E = A *B;

1
i
i
1
i
1
1

//All elements in C have value 9.0; all elements of D have value -2.8; all elements of E have vialue 18.29.

There are overloaded versions of operators +, -, and * to add, subtract or multiply all elements of an
array by a single scalar. All elements can also be divided by a single scalar using operator /:

I

SKArray<float> F = A + (float) 1.3; // All elements in F have vz!zlue 4.4.
SKArray<float> G = A - (float) 1.3 // All elements in G have value 1.8.
SKArray<float> H = A * (float) 1.3; // All elements in H have value 4.03.

SKArray<float> 1 = A/ (float) 1.3; // All elements in I have value 2.3846154.
|

There are also a full set of assignment operators for SKArrays (=;, +=, -=, *=, and /=). The full list of
such operators and global functions for SKArray manipulation is given later in this document.

‘We now turn to the final section of this tutorial-style introduction |to the CSKETCH image processing
library -- an in-depth look at the SKArray class. !

2.4 A Detailed look at the SKArray class

Since the SKArray class is by far the most widely-used class i llll the CSKETCH image processing
library, the tutorial section of this document continues with an in-depth examination of this class. While
some of this information may not be strictly needed by the casual user, this section provides details on many
of the ‘inner workings’ of the class and can be useful e.g. in optlmlzmg memory and computational perfor-
mance for the class. It also allows for a much better understanding of what occurs ‘behind the scenes’ when
manipulating SKArray objects. |

The in-depth look at the SKArray class begins with a few notes|on the layout of the associated data
array of an SKArray object. This is followed by a discussion of the concept of ‘nil’ or ‘missing’ data values.
With this background, we then delve into examples of the many types of constructors which can be used to
create SKArrays. Next, we give some examples of class member usage; Then we turn to the inner workings
of the class and discuss the topic of data block ownership for SKArraysf, as well as the concept of ‘deep’ vs.
‘shallow’ copies, and how that concept applies to SKArrays. Given that background, we continue with a
discussion of the many types of ‘copy’ operations provided for SKArrays. Finally, we introduce the concept
of a slice’ or ‘data view" of an SKArray, and differentiate ‘parent’ vs. ‘current’ slice of an SKArray. The in-
depthlook at the SK Array class then concludes with a discussion of the creation and manipulation of ‘padded’

SKArrays, which are made possible via manipulation of distinct parent: and current slices of an SKArray.
|

14

v}

A

2.4.1 SKArray Class Overview

The SKArray class is the most widely-used class in the CSKETCH image processing library. The
class is an ‘encapsulated’ array class for storing rectangular arrays of numerical data. The class has been
templatized using C++ template capabilities, so the associated data array of an SKArray object can store
any type of numerical data (short, int, float, double). Data arrays can be 1, 2, or 3-dimensional. In addition
to the numeric data, the SKArray object contains information about the data, such as a time stamp, latitude
and longitude location of the data, orientation of the data relative to a radar, etc. See the SKArray class
description in the reference section of this document for a full listing of the class member variables and
member functions.

2.4.2 SKArray Data Layout

The numerical data array of an SKArray is considered to be stored in a ‘bottom-up’ format; that is,
the lower left comer of the array is considered to be the origin of the data. In image space this origin pixel
has coordinates (x, y) = (0, 0). Row indices increase in the positive ‘y’ direction, e.g. the first row has y-
coordinate 0, the second has y-coordinate 1, etc. This is in opposition to the LISP-based SKETCH system
which has a ‘top-down’ format (origin at upper left pixel, row indices increasing in the ‘downwards’ y-
direction). The ‘bottom-up’ format was chosen since it is the most common data format used in Lincoln
meteorological algorithms.

2.4.3 Concept of ‘nil’ or ‘missing’ data values

The CSKETCH image processing library (and hence the SKArray class) supports the concept of
‘missing’ or ‘bad’ values. Referred to as ‘nil’ values, these missing values are set equal to a special value.
Numerically, this key value is the most negative valid number for the type of the numerical data stored by
the SKArray object. For instance, ‘nil’ for an SKArray of type float is the most negative valid floating-point
number, ‘nil’ for an SKArray of type short is the most negative valid short integer, etc. Typically, ‘nil’ values
are ignored in computations, or the presence of a ‘nil’ term in a mathematical expression renders the whole
term ‘nil’ (for instance, the difference or sum or product of any valid number with a ‘nil’ is ‘nil’). In functional
template correlation (FTC) processes, ‘nil’ values of the input are ignored, i.e. they contribute nothing to the
output FTCresults. Also, for FTC purposes, ‘nil’ values in the processing mask indicate that noFTC matching
should occur at that location.

For coding purposes, the value of nil for a given array type can be accessed either directly from the
class definition or from a particular instance of the class:

// Access value of floating-point ‘nil’ via the class definition:
float floatNil = SKArray<float>::SK_NIL;

// Access value of floating-point ‘nil’ via a particular float SKArray:
SKArray<float> floatArray;
float floatNil = floatArray.SK_NIL;

Either of these methods should be used whenever the numerical value of ‘nil’ is needed, rather than

hardcoding the value. This allows for much easier porting to machines with different storage formats for
float, double, etc. data.

15

2.4.4 Constructor Examples

|
\
i

Before continuing with additional concepts and contents of the| SKArray class, it will bje useful to
illustrate some of the class constructors. This will aid in gaining familiarity with C++ constructor syntax for

those not experienced in C++ coding, and will quickly show some of the construction methods a\{ajlable for
C++ users who want to begin experimenting with the CSKETCH library immediately.

2.4.4.1 Constructing arrays using the default constructor.

1

Arrays created by the default constructor are of size 1 by 1 by 1, so will likely need to be re51zed (either
by the user or by some subsequent function call). The default constru ctor is useful for dec] lanng an array

whose size is not known at compile time:

|

// Create an SKArray which stores float data, using the default constructor.

SKArray<float> floatArray;

// Create a 1 by 1 by 1 SKArray which stores short data, using th!e default constructor.

SKArray<short> shortArray;

2.4.4.2 Constructing arrays of known size.

It is possible to create SKArray class objects with specified sizes! for the associated data buffer.

// Create a ‘3D’ SKArray of size 20 by 30 by 19 which stores float data.

SKArray<float> floatArray(20, 30, 19);

// Create a ‘2D’ array of size 20 by 30 with integer data. Array i zs really 2D with

// the default ‘7’ size of 1.
SKArray<int> intArray(20, 30);

// Create a ‘1D’ array of size 20, with double-precision data. Array is really 3D

// with the default 'y’ and ‘7’ sizes of 1.
SKArray<int> intArray(20);

Note that the arguments for this constructor need not be hardcoded numbers. For instance, if the

variables ‘xsize’ and ‘ysize’ have values 15 and 20, the code segment:

SKArray<floar> floatArray(xsize, ysize);

is valid code and will create a float SKArray of size 15 by 20.

2.4.4.3 Constructing arrays using the copy constructor.

Often it is desired to create an array of the same size and data type of a preexisting array. This is easily

done with the copy constructor:

16

// Construct a floating-point SKArray of size 20 by 30 (and default z size of 1)
SKArray<float> floatArrayl(20, 30);

// Construct another float array, same size as ‘floatArrayl’
SKArray<floatr> floatArray2(floatArrayl);

2.4.4.4 Constructing arrays using character data.

For construction using character data, strings of ‘nil’ in the input char data will automatically be
converted to the correct numerical value of ‘nil’ for the desired type of data. Layout of the data array matches
the character representation; for example, if an array is created using the character data below, then after
initialization the pixel at (x, y) = (0,0) has value 2, the pixel at (x, y) = (0,1) has value 4, the pixel at (2,2)
has value ‘nil’, etc.

char *arrayData =
{

"3 nil nil",

II4 _6 6"’

2 -3 7"

0, // Terminator

}’.

// Create a 3-by-3 array with short data. Strings of ‘nil’ automatically replaced
// with SKArray<short>::SK_NIL.
SKArray<short> shortArray(arrayData);

// Create a 3-by-3 array, same values as ‘shortArray’, but with float data.
// Strings of ‘nil’ automatically replaced with SKArray<float>::SK_NIL.
SKArray<float> floatArray(arrayData);

2.4.5 Simple Member Function Examples

The tutorial continues with some simple examples of member function usage. These examples are
merely meant to demonstrate the syntax for C++ class member function calls. More complex examples will
require further description of the inner workings of the SKArray class, which follows later.

// First construct a 3-by-3 SKArray with short data, using the character data
// ‘arrayData’ used in previous examples.
SKArray<short> shortArray(arrayData);

// Absolute value member function replaces all data elements of shortArray with
// their absolute values. Nil values are unchanged by the absolute value member
// function. Note member function calling syntax is similar to the syntax used for
// accessing structure data variables in C structures.

shortArray.Abs();

17

// ‘Binarize’ member function,; values greater than or equal to the supplied

// threshold are set to 1; lesser values are set to 0. Nil elements will be set to 0
// also by this operation.
shortArray.Binarize((short) 3);

// Note in the above example that the literal constant ‘3’ must be cast to the type
// of the array for which ‘Binarize’ is being called. If the value ‘3’ were stored in
// some variable of type short, the cast would not be needed: |
short threshold = 3;

shortArray.Binarize(threshold);

2.4.6 Data Block Ownership .

|
Before continuing with the next set of examples, it will be useful to understand the concept of data

block ownership within the SKArray class. This will make the examples| of assignment operators and various
‘Copy’ operations more meaningful. It will also provide insight into C++ destructors for those new to Ct++.

When a new SKArray object is created, it does not necessarily own its own data block. An example
of this is afforded by the assignment operator ‘=:

// This array, built by a constructor, owns its own data block.
SKArray<int> intArrayl(10, 10);

// This array, initialized by the assignment operator, does not own its own block.
SKArray<int> intArray2 = intArrayl; i

The SKArray assignment operator creates a new SKArray object whose various member variables are
initialized to those of the right-hand side array (intArrayl in this case). However, the data pointer for intArray2
is in fact set equal to that of intArray1; they both point to the same data block. In C++ parlance, the assignment
operator is a ‘shallow’ copy operator. That is, only the basic structure itself is copied, not any additional
allocated memory within the right-hand side array.

Since both arrays point to the same block of data, we must be careful not to destroy the data block if
only one (but not both) of the arrays which reference this block are destroyed (e.g. go out of scope). This is
accomplished via an internal counter for the data block structure; the data block knows how many references
to it are being made, and the block will only actually be freed by the SKAnay destructor, SKArray::~SKAr-
ray() when this count hits zero (e.g. no SKArrays are currently referencing the block). This is entirely
transparent to the user, who need not keep track of this information; however knowledge of the block-sharing
mechanism is useful in the examples that follow later. ! ‘

|

One important effect of this ‘sharing’ of data blocks means that editing intArray2’s data values will
also change the corresponding entries in intArray! (since these entries are in fact the same memory locations).
If one wishes to modify a copy of intArrayl without changing the data values of intArray2, a ‘deep’ copy

|
|
!
18 !
|
!
i

operation should be employed, rather than a ‘shallow’ copy operator. Deep copy methods are discussed in
the next section.

24.7 ‘Deep’ vs. ‘Shallow’ copies
The concept of a ‘shallow’ copy was described in the preceding section. Again, for an SKArray object,
a shallow copy means a structure copy only; no duplicate data block is created.

A copy operation in which not only the structure is copied, but also any additional allocated data, is
called a ‘deep’ copy operation. In the case of SKArray objects, this means a new SKArray object is created
and assigned to, and the copy array also gets its own data block. The data block of the copy array is initialized
from that of the source array in a deep copy operation. Examples of both types of copies follow in the next
section. For now, it’s worth repeating that one should always create a ‘deep’ copy of an array when one
wishes to edit a copy of an array without modifying the original; since the deep copy has its own data block,
one can edit its data values without editing the data of the original ‘source’ array. However, if one does not
need to keep the original data array unedited, a shallow copy is better since it is more efficient (there is no
need to allocate a large block of memory for the new array, and there is also no need to copy a potentially
large amount of numerical data into the new array’s data buffer). .

2.4.8 Copy Operations

This section describes some methods of making shallow and deep copies of an SKArray. Again, deep
copies can be edited without changing the data of the source array; however, deep copies require more system
overhead since a new data block must be allocated and the data values of the copy must be initialized from
the source array. For efficiency, use shallow copies when the copy’s data values need not be changed; however
use a deep copy when the data values must be modified.

We begin with some examples of shallow copies.
As mentioned earlier, the assignment operator = is a shallow copy operation:

// Both shortArrayl and shortArray2 share a common data block.
SKArray<short> shortArray2 = shortArrayl;

The copy constructor is also a shallow copy operation:

// First declare a 10-by-10 integer array. This array owns its own data block.
SKArray< int > intArrayl(10, 10);

// Declare a new int array via the copy constructor; all of intArray2’s member
// variables are initialized using from the corresponding values of intArrayl.
// Both arrays share a common data block.

SKArray< int > intArray2(intArrayl);

19

The assignment operator = and the copy constructor are the only shallow copy operations for the
SKArray class. The remaining examples show various different methods of creating deep copies.
| |
First, any shallow copy can be made into a deep copy using the DeepenShallowCopy() me;mber func- '
tion: .

// Declare a new, 10-by-10 float array, which owns its own data block
SKArray<float> floatArrayl(10, 10);

// Shallow copy shares floatArrayl’s data block:
SKArray<float> floatArray2 = floatArrayl;

|
// Now deepen the shallow copy. This member function creates z:’z new data block
// of the proper size for the calling array; thus it no longer shares a data block with
// any other array. The data from the old array’s data block wzl{ be copied to the
// dew data block as well. |
SfloatArray2.DeepenShallowCopy(); i
| ':

|
The DeepenShallowCopy() example was provided just to show hiow a shallow copy can be made into
adeep copy. In general, however, a user will know up front when a copy array should own its own data, and
a deep copy should be created in one step using one of several available methods.

| |
The most common way of creating a deep copy is to use the ‘De:epCopy’ member function.

I
// Create a new, 10-by-10 short array which owns its own data bflock.'
SKArray<short> shortArrayl(10, 10); i
|
// Create another short array of the same size as shortArrayl; the new array
// will own its own data block, and the new array’s data will be initialized using
// shortArrayl’s data block:
SKArray<short> shortArray2;

[
|
shortArray2.DeepCopy(shortArrayl); !
|

Sometimes one wants a new array which is the same size as some existing array, but whose values
need not be initialized to those of the source array. The DupEmpty() member function creates a new array

such that: I

(1) All member variables of the new array are set equal to those of the source array, as in a shallow
copy; and

the data values are not copied from the source array.

|
|
I
e
|
|
i
|
(2) The new array owns its own data block, which is the same size as that of the source array; however
{
l
I
|
20 i
l

The DupEmpty() operation saves the overhead of initializing the data values using the source’s data-
values; this can be a useful speedup if the source array is large and if new arrays of the same size as the
original SKArray, but with different data values, are frequently needed. Use DupEmpty() if you need an
array, the same size as an existing array, but whose data values will be completely different from those of
the source array.

// Create a new 10-by-10 short array by performing a ‘DupEmpty’, using

// ‘shortArrayl’ as source array. The new array owns its own data, but the data
// buffer’s values are not copied from the source array.

SKArray<short> shortArray3;

shortArray3.DupEmpty(shortArrayl);

A final deep copy example will be provided for the case of performing a deep copy with a pad. This
will be discussed in a later section.

2.4.9 Current vs. Parent Slice

In order to support the concepts of (1) ‘subimages’ within an image and (2) padded arrays, the SKArray
class includes structures for describing 2 different ‘slices’ or ‘views’ of an array. The ‘parent’ member
variable describes the actual, full block of memory allocated for an SKArray’s data buffer. The ‘slice_’
member variable describes the ‘current’ view of the array; this latter slice is the one used by all CSKETCH
library signal processing operations, member functions, etc. unless it is explicitly stated otherwise.

The current ‘slice’ of the array is specified by the origin, the size, and the steps of the slice. The origin
of the slice is simply the (X, y) coordinates of the lower left comer of the slice; the size specifies the size in
each dimension. The ‘steps’ of the slice allow for ‘subsampling’ of the parent image; for example, if the x-
step and y-step of the slice are equal to two, then the current slice effectively ‘subsamples’ the parent slice
by taking only every second pixel in both the x- and y-directions. In most applications, the steps will all
equal one, which corresponds to taking a full, contiguous piece of the parent image as a subimage.

This section continues with examples of manipulating SKArrays via various ‘Slice()’ functions; we
then move on to a typical application of parent vs. current slices, namely ‘padded’ arrays.

2.4.10 Manipulation of SKArrays via the ‘Slice’

// First create a float SKArray, size 10 by 10. At time of creation of this particular
// array, the parent slice and the current slice are in fact the same.
SKArray<float> floatArray(10, 10);

We will manipulate various different slices of the array using different overloaded versions of the
SKArray member function ‘Slice()’. The first version of this function slices the array in a single specified
dimension only; it takes the dimension and the size, origin, and step in that dimension as arguments. The
other dimensions are left unaffected, e.g. the slice contains the full size and all data in the non-specified
dimensions.

21

// Set the current slice to be just the first column of data of the full array.
// This is a slice in the x-direction of size 1, origin O, and step 1:
SKArray<float> firstColumn = floatArray.Slice(SK_X, 1, 0, 1);

Again, this slice contains the full data of the original array in the| y dimension.
We can use this slice to set all the elements in the first column of floatArray to the value 3.0:

floatArray.SetAllSliceValsTo(3.0);

As mentioned above, the member function SetAllSliceValsTo() operates on the current slice of the
array, not the full parent slice. , '
|
// Now set the current slice to be just the last row of floatArray. iThis is a slice in
// the y-dimension of size 1, origin 9, and step 1. The slice contains the full

// extent of data in the x-dimension.
SKArray<float> lastRow = floatArray.Slice(SK_Y, 1,9, 1);

|
|
|
We could now set all values in the last row of floatArray to a fixed value using SerAllSlicevalsTo() as
we did just above for the first column. !

|

1

A few final examples of the first version of ‘Slice()’:

// First 2 columns of data:
SKArray<float> subarrayl = floatArray.Slice(SK_X, 2,0, 1); |

// 4th, 5th, and 6th rows of data: !
SKArray<float) subarray2 = floatArray.Slice(SK_Y, 3,4, 1); |

// First row of data, but subsampled so only every 3rd pixel is seen:
SKArray<float> subarray3 = floatArray.Slice(SK_Y, 1,0, 3); |
[

The second version of the “Slice()’ SKArray class member function allows for selection of size, origin,
and step in each of the x, y, and z dimensions. The size, origin, and step for the x-dimension must be supplied;
additional arguments are the size, origin, and step for the y and z dimen:sions and are optional. The optional
arguments default to values which will return the full extent of data in the y and z dimensions. Of course,
this means that if want to specify non-default values for the z dimension, we must also first supply parameters
for the y-dimension, even if we want to keep all of the data in the y ditnension.

|
|
j
|
22 |
[

// Now set the current slice to be the lower left quadrant of the parent slice; the
// slice starts at (0, 0), extends to (4,4), and contains all pixels in the lower left

// quadrant since the steps are equal to 1:
SKArray<float> subarray4 = floatArray.Slice(4, 0, 1,4, 0, 1);

// Take a subarray which is the first 4 columns of data.
SKArray<float> subarray5 = floatArray.Slice(4. 0, 1);

Note that the above slice is equivalent to

SKArray<float> subarray5 = floatArray.Slice(SK_X, 4, 0, 1);

(using the first verison of the slice function).

2.4.11 Constructing ‘padded’ arrays

Sometimes it is desired to create an array whichis really a ‘subarray’ of a larger array. The extra space
around the subarray is referred to as ‘padding’. The CSKETCH library supports this operation using the
SKArrayPad class. The SKArrayPad class allows for the specification of padding sizes (X, y, and z pad
dimensions, with default pad sizes of O for each dimension). The pad class also allows for a number of
different methods of initializing the padding around the subarray. One example of a filling operation is
‘PAD_MIRROR’ which fills the padding in via the ‘mirroring’ operation from the LISP-based SKETCH
system. Another filling operation, which is wuseful for padding polar arrays, is the
‘WRAP_AZ_MIRROR_R’ operation which wraps polar data in the azimuthal direction and mirrors polar
data in the radial direction. Yet another pad operation is ‘PAD_FILL’ which simply fills in all pad pixels
with a supplied fill value. The fill value must be specified in the pad constructor regardless of the fill method
chosen, but the fill value will be ignored if a padding operation other than PAD_FILL is selected.

We now give some examples of constructing padded arrays. See documentation of the SKArrayPad
class for the full description of the padding class.

// Create a pad for a float SKArray. The pad is of size 3 by 5 (and default size 0 in the z-dimension).
// The pad is to be filled in via the PAD_MIRROR method (hence the padFill value of 0 is ignored).
SKArrayPad<float> pad(PAD_MIRROR, 0, 3, 5);

// Now create a padded array using the prescribed pad. The ‘slice’ of the array

// created will be of size 20 by 30. The parent slice will be of size 26 by 40 (20 by

// 30 plus a pad of 3 on each side, and a pad of 5 on the top and the bottom). The
// pad will be filled in via the ‘mirroring’ operation when "PadFill" is called.
SKArray<float> paddedArray(pad, 20, 30);

// Initialize data in the subarray by other means, e.g ‘CopyFrom()’ member function.

// Now fill in the pad via the mirroring operation.

paddedArray. PadFill();

23

Ahd

3. Class Descriptions

Description of the CSKETCH library classes begins on the following page.

25

Name
Synopsis
Hierarchy

. Description

Example

Constants

Component
Structures

class SKArray

class SKArray
#include <skarray.h>
WxBase->WxDisplayable->SKArray

The SKArray class is the most widely-used class in the CSKETCH image pro-
cessing library. The class is an ‘encapsulated’ array class for storing rectangular
arrays of numerical data. The class has been templatized using C++ template
capabilities, so the associated data array of an SKArray object can store any type
of character or numerical data (char, short, int, float, double). Data arrays can be
1, 2, or 3-dimensional. In addition to the numeric data, the SKArray object con-
tains information about the data, such as a time stamp, latitude / longitude loca-
tion of the data, orientation of the data relative to a radar, etc.

The SKArray class inherits publicly from class WxDisplayable, which in turn

‘inherits publicly from class WxBase.

See the SKArray Class Tutorial for extensive examples of member and global
functions, operators, constructors, etc.

const int SKARR_ MAX_DIM = 3; // Max number of dimensions.
const int SKARR_MAX_NAME_LEN = 64; // Max length of name.

struct SKArrayLayout

{

int size[SKARR_MAX_DIM] ;
int origin[SKARR_MAX_DIM] ;
int step[SKARR_MAX_DIM] ;
int stride[SKARR_MAX_DIM] ;
} ,.

struct SKCoordl

{
intx,y, z,

k

struct SKCoordF
{

float x, y, z;

A
// Aliases for the above ‘point’ structures.

typedef SKCoordl SKPointl ;
typedef SKCoordF SKPointF ;

27

Enumerations

|
|
I
class SKArray
e —;—-
|
|

struct SKRefLoc ‘

{ 1
SKCoordl arrayPos; :
SKCoordF worldPos;

5

struct SKImagelnfo

{ |
char name[SKARR_MAX_NAME_LEN]; l // Image Name (e.g. DBDZ)
char dataClass{SKARR _MAX_ NAME LEN] // Image Data Class (DZ, V, ...)
short id; ! // Image ID

// month/day/year/hr/min/secs
// Cartesian or Polar
// In meters (& deg. for Polar)
// Degrees from magnetic North
// Used to convert int to real
// Used to convert int to real
// Reference location
// Lat, Long, Alt for world(0,0,0)

LLTime time; i
SKCoordSys coordSys; ,
float binSize[SKARR_MAX_DIM]; 5
float orientation; i
float scaleFactor; ~
float scaleOffset; |
SKRefLoc refLoc; :
float latitude; |
floar longitude; l
float altitude; !
Ji |
Finally each SKArray contains as a member vanable an instance of the
SKArrayPad class to encode padding mformatzon (if any padding is desired) for
the given SKArray. Consult documentation fér class SKArrayPad for detailed

description of supported padding operations. i

enum SKType { SK_CHAR, SK_SHORT, SK_ INT SK_FLOAT, SK_DOUBLE };
This enumeration is used for dynamic 1dent1ﬁcat10n of the templatized SKETCH
array types. ;

enum SKPadOp { PAD_NOP, PAD_FILL, PAb_MIRROR,
PAD_WRAP_AZ_MIRROR_R, PAD_WRAP_POLAR } ;

This enumeration is used to identify the methods used in filling in the padding
(or margin) for padded arrays. Padded arrays’are sometimes needed to deal with
edge effects in the image processing code). See documnentation for the helper
class SKArrayPad for a full description. {i

enum SKCoordSys { SK_CARTESIAN, SK_POLAR };

This enumeration is used to indicate whether an array is storing Cartesian or
Polar data.

|
|

28 |
i :
| !
|

Constructors

Destructors

Type
conversion

class SKArray

enum SKDim { SK_X, SK_ Y, SK_Z };
Simple type to indicate x, y, or z-dimension. For example, the function call
‘array.Size(SK_Z)’ returns the z-size of array.

SKArray<T> SKArray(); ,
Default constructor. Array will have x,y,z sizes = (1,1,1). Data array (of only one
element) is not initialized.

SKArray<T> SKArray(int xSize, int ySize = 1, int zSize = 1);

Create an SKArray with supplied x, y, and z sizes. Default sizes are 1 in each
dimension. Associated data array will store numerical data of type T. Data array
is not initialized.

SKArray<T> SKArray(const SKArray& sourceArray);

Copy constructor. All member variables (size, number of dimensions, numerical
data type (float, short, etc.)) are copied from sourceArray. The new array’s data
buffer has the same size as the sourceArray. Data values are also copied from
sourceArray’s data buffer.

SKArray<T> SKArray(SKArrayPad<T>& pad, int xSize, int ySize = 1,

int zSize = 1);
Create an SKArray with padding as specified in the pad argument. See class
SKArrayPad. Parent array is the ‘big’ array (size = specified X, y, z size plus the
pad size). Constructor returns the ‘slice’ array which is the ‘internal’ array with
size = specified x, y, z size.

SKArray<T> SKArray(char *initDataf[]);
Create an array with numerical data of type T, using character data.

~SKArray()

The SKArray destructor deallocates the block of memory used to hold the data.
The destructor checks this block of memory to see if there are any other refer-
ences to it. Only if there are no other references is the block truly deleted. The
array ‘header’ structure is deallocated in all cases.

template< class T >
SKArray<short> SKToShort{ SKArray<T>& input);

template< class T >
SKArray<int> SKToInt(SKArray<T>& input);

template< class T >
SKArray<float> SKToFloat{ SKArray<T>& input);

template< class T >

29

Assignment
operators

Indexing
operators

|
|
|

class SKArray

i
|

!
i
{

SKArray<double> SKToDouble(SKArray<T>& input);

These 4 templatized functions allow for the conversron of an SKArray of any
numeric type (short, int, fioat, double) to any other type. NIL values ofithe input
array are converted to the NIL value of the output type.

I
Data conversion is accomplished by pixelwise casting to the output type. Thus,
for example, calling SKTolInt with a float array gives an output array where all
data values have been truncated. Note that the input array itself is not modified.

SKArray<T>& SKArray<T>::operator = (c!onst SKArray<T> &rhs)

The array assigment operator performs a shallow copy. All of the right-hand-side
array's member variables are copied to the left-hand-side operand, along with the
data pointer (but not the data itself). Increases the reference count of the (shared)
data block to prevent freeing of data from underneath an array which has not yet
gone out of scope. Returns the left-hand- srde| array whose members have been
assigned the values of the right-hand-side array. :

SKArray<T>& SKArray<T>::operator += (IT val)

Add a scalar value of the same type as the array to each data element in the array.
If an input pixel value is nil the output is also nil at the same pixel. Returns the
left-hand-side array whose data elements havT been increased by val.
SKArray<T>& SKArray<T>::operator -= (:Tval)

Subtract a scalar value of the same type as the :array from each data element in the
array. If an input pixel value is nil the output is also il at the same pixel.
Returns the left-hand-side array whose data ellements have been decreased by val.

SKArray<T>& SKArray<T>::operator *= (jl‘loat val)
Multiply an array by a floating-point scalar va:lue. If an input pixel value is nil
the output is also nil at the same pixel. Returns the left-hand-side array whose
data elements have been multiplied by val. ‘

|
SKArray<T>& SKArray<T>::operator /= (T val)
Divide each element of the array by a scalar value of the same type. If an input
pixel value is nil the output is also il at the same pixel. Returns the left-hand-
side array whose data elements have been divided by val.

|
T& SKArray<T>::operator () (inti, intj, inti k)
Array indexing operator. The operator returns,a reference (of type T) to the value
at location (%, y, z) = (i, j, k) in the array. Thisimeans it can be used as a left hand
value or a right hand value. ,
|
|

30

Logical
operators

Other
operators

class SKArray

int SKArray<T>::operator == (SKArray<T> & rhs)

Function to determine array equality (e.g. arrays have same number of
dimensions, same slice sizes, and same slice values). Returns 1 if the arrays are
equal, O if they differ.

int SKArray<T>::operator == (T val)
Function to determine if the array data members are equal to a specified value.
Returns 1 if the array data members are equal to val, O if they differ.

SKArray<T> operator + (SKArray<T> &lhs, SKArray<T> &rhs);

Add two SKArrays and return the result in a new SKArray. The lhs array may be
smaller than rhs as the output array is sized the same as the lhs. The two
SKArrays passed into this routine are unchanged. When adding, if either element
or both elements are NIL then the result for that element is NIL.

SKArray<T> operator + (SKArray<T> &lhs, T rhs)

Add the scalar value rhs to all array elements. The SKArray passed into this rou-
tine is unchanged. A new array containing the input data values with the scalar
added to each data element is returned. When adding, if the lhs pixel is NIL then
the result for that element is NIL.

SKArray<T> operator - (SKArray<T> &lhs, SKArray<T> & rhs)

Subtract two SKArrays and return the result in a new SKArray. Looping is driven
by lhs size(s). The lhs array may be smaller than rhs as the output array is sized
the same as the lhs. The two SKArrays passed into this routine are unchanged.
When subtracting, if either element or both elements are NIL then the result for
that element is NIL.

SKArray<T> operator - (SKArray<T> &lhs, T rhs)

Subtract the scalar value rhs from all array elements. The SKArray passed into
this routine is unchanged. A new array containing the input data values with the
scalar subtracted from each data element is returned. When subtracting, if the lhs
pixel is NIL then the result for that element is NIL.

SKArray<T> operator * (SKArray<T> &lhs, SKArray<T> &rhs)

Multiply two SKArrays and return the result in a new SKArray. The two
SKArrays passed into this routine are unchanged. When multiplying, if either
element or both elements are NIL then the result for that element is NIL. The lhs
array may be smaller than rhs as the output array is sized the same as the lhs.

SKArray<T> operator * (SKArray<T> &, float rhs)

Multiply all array elements by a floating point scalar value. If the array value is
NIL, simply store a NIL in the output array. The SKArray passed into this rou-
tine is unchanged. A new array containing the input data values multiplied by the
scalar rhs is returned.

31

Public
member
functions

class SKArray

|

|
1

SKArray<T> operator/ (SKArray<T> &lhs| T rhs) i
Divide all array elements by a non zero scalar value. If the array value‘ is NIL,
simply store a NIL in the output array. The SKArray passed into this routine is
unchanged. A new array containing the 1nput! data values divided by the scalar is
returned. |

I
SKArray<T> operator & (SKArray<T> &lhs, T rhs)
Performs a bitwise comparison of each pixel m an SKArray against a supplied
bitmask, returning a copy of the input SKArray with original pixel values set to
NIL wherever the pixel value does not match :(in a bitwise AND sense) the bit-
mask. Otherwise, the original input pixel value is copied to the output. The input
SKArray passed into this routine is unchanged When ANDing, if the lhs pixel is
NIL then the result for that element in the output is NIL. Only supports short and

int arrays. |
|

|
ostream& operator << (ostream&lhs, SKArTay<T>dzrhs)
Overloaded left shift ostream operator to output SKArray elements. Outputs data
from top down, so that ASCII representation will match up with graphical repre-

sentation. Returns a reference to the ostream!that was passed into this function.

|
|
l
|
|
|

void Abs(); |
Replace all pixel values in the current array ((Fxcept NIL values) with their abso-
lute values. i

void Advectlmage(SKArray<float>& xvec, S:KArray<:ﬂoat>&yvec)

Advect the current array using two supplied SKArrays. The xvec array indicates
(in a pixelwise sense) the amount to advect iﬂ the x direction, and the yvec array
indicates (in a pixelwise sense) the amount to advect in the y direction. The value

at each pixel in the advected image is computled as follows. Given the coordi-
nates (x, y) of a pixel in the output image, the amounts to advect in the x and y

directions are, respectively, xvec(x, y) and yvec(x, y). Compute new coordi-
nates xadv = x - xvec(x, y)and yadv = y - yve:c(x, y). The value of the advected
image at pixel (x, y) is set equal to the value of the original image at (xadv, yadv).

This method of advection (‘backwards’ advec::tion, e.g. given a pixel in the cur-

rent time, find which pixel it most likely came from in the prior time) insures that
the advected image is completely filled in. So-called “forward’ advection (mov-
ing pixels in the ‘prior’ image forward by amc!mnts indicated in the xvec and yvec

arrays) can produce ‘holes’ in the output imaige as not necessarily every pixel in
the output will be advected to by some prior pixel. Thus the ‘backwards’ advec-
tion is preferable in most cases. !

Note that no new SKArrays are returned by tl‘lliS function. Rather, the current
array’s (unadvected) data buffer is replaced with a buffer of advected data values.

SKArray Apply(T (*function)(SKArray<T>&, T *dPir, void *arg),
32 |

i
!
|
|

class SKArray

void *arg) ;
SKArray Apply(T (*function)(SKArray<T>&, T *dPtr, int x, inty, void *arg),
void *arg);

Functions to apply the user-specified function to all elements in the current array
slice, returning a new array of the same size. The Apply functions are very useful
for window-filtering type operations, such as median filtering, which loop over a
kernel for every pixel in an input image. With the Apply functions, the user need
only write the function which does the processing over a single window (e.g.
finding the median of a window of data in the case of median filtering). The
Apply functions automate looping over all pixels of an input image, sequentially
applying the user-defined window function for every pixel in the input.

A word about the supplied input function is in order. In the first version of
Apply the user-supplied function takes as arguments an SKArray, a data pointer
dPtr, and a void * pointer. When Apply calls the supplied function at a location
(X, ¥), the dPtr will point to the pixel at (x, y) in the original input image. The
user-supplied function must be written with this scheme in mind. For example,
in the case of median filtering, dPtr would likely point to the center pixel of the
window over which the median is to be taken (unless, of course, the user wanted
to position the window somewhat differently and wrote the code accordingly).
Thus the user-supplied median function would have to be written from the point
of view that it takes the median over a window centered at the input location
handed to it via the dPtr. The void* arg input is intended to point to additional
arguments (possibly supplied in a C++ structure) to the user-supplied function.

Two versions are supplied in case the user-supplied function depends on the (x,
y) location of the pixel currently being processed (e.g. the function may contain
branching or conditional logic based on the (X, y) location). The second version
of Apply allows for (x, y) pixel location arguments in the user-defined function;
Apply will call the user’s supplied function with the appropriate (x, y) values for
each pixel automatically.

void Binarize(T threshold) ;
Convert array to binary. Data values less than threshold are set to zero; values
greater than or equal to threshold are set to 1. NIL pixels are also set to 0.

void ClipMax(T max),
Values in the array which are greater than max are set to max.

void ClipMin(T min);
Values in the array which are less than min are set to min.

void ClipMinMax(T min, T max);

33

class SKArray

Values in the array which are less than min are set to rnin. Values in the array
which are greater than max are set to max.
void Copylmglnfo(SKImagelnfo &src); ‘
Member function to set the image data values to those: passed in. The current
array’s imgInfo member variable is initialized using values from the supplied
SKImagelnfo object.

|
void CopyFrom(SKArray<T>&src); I
Copy data values of the current array from those in the data buffer of src. The src
and destination arrays must have the same da’ta type. The slice sizes of the src
and destination arrays must be equal, but their respective parent arrays need not
be (e.g. one of the arrays could be padded). |

SKArray DeepCopy(); :

Return a ‘full’ copy of the array, e.g. an array of the same dimensions, data type,
etc. which also owns its own data block the same size as that of the current array.
The data buffer of the newly-created array is mxtlahzed using the data values in
the buffer of the current array. !,
|

SKArray DeepCopy(SKArrayPad<T> &pad|);

Returns a padded array with the padding as spemﬁed by pad. The slice (and the
parentSlice) of the returned array have the same number dimensions, data type,
etc. as the current array. The slice of the nevsll array has the same size as the slice
of the current array; the parent slice sizes of the returned array are equal to the
slice sizes plus the pad sizes. The slice values of the newly-created array are ini-
tialized using the data values in the slice of thé current array. Finally, the padding
is filled in via the method specified in the pad argument. See docmnentatlon for
the SKArrayPad class for a list of supported ;’)addmg options.

void DeepenShallowCopy(void); !

Function to ensure that the array object has its own private copy of the data block
it uses. If it doesn’t (e.g. it shares the block with other arrays), a new block is cre-
ated and the data of the common block is copled to the new block. Note that the
entire block (parent + slice) is copied, not Just the slice.

SKArray<T> DupEmpty(void); !
Return a duplicate copy of the current array obJect without actually copying the
data values. The new copy has its own private data block allocated, but its con-
tents are uninitialized.

I
void GetSKType(SKType &skType); i
Function to dynamically determine the 1nstant1ated SKArray object type The
recognized types are (enumerated type SK Type)

SK_CHAR, SK_SHORT, SK_INT, SK_FL|0AT and SK_DOUBLE.

|
|

class SKArray

The input argument skType is passed by reference and its value is set to the
SKType of the SKArray object.

void InitlmgData(void);

Member function to initialize the image data (member variable
SKArray<T>::imglnfo) to default values. Used by all of the constructors. See
documentation for the SKImagelnfo class for a full description if the image info
class.

void Load(T *dataf], int nrows, int ncols);
Load array with data from an array of pointers to strings. Each array element can
be thought of as a pointer to a row of data values.

void Mirror(void) ;
The padded region of the array is initialized using a ‘mirroring’ scheme. The
mirroring is performed first over rows, then over columns, as follows.

Mirroring scheme for the padded rows is done first. The left most and right most
pad members that will be intialized during the column mirroring below are
ignored at this point.

P = padded region

> ..|P|P]|... E = data element

l

|-->| ..|P|P]....

H <<<<< (image values ‘mirrored’ across this line)
{--l .|E|E]....

----- | |.]E|E]....

Mirroring scheme for columns to the left and right is
accomplished last. Note: The pad elements ignored in the
row mirroring will now be initialized by using the value
contained in their mirror which happens to be an initialized
pad element. (This happens in the corners of the array).

P = padded region
|P|P|E|E]... E = data element

,AA

35

class SKArray

void PadFill(T fillVal);
Fill the padded region with the specified value. The padded region is the region
between the parent and the current slice.

SKArray<T> ParentSlice() ;
Return the ‘parent’ slice of the array (the slice corresponding to the full original
dimensions of the current slice plus the pad (if there is a pad).

void RampFill(T val);

Fill the array slice with a ramp of values. Useful for diagnostics. The array is
filled over x, then y, then z dimensions. The first pixel is given value val, the sec-
ond 2*val, the third 3*val, etc.

SKArray Reverse(SKDim dim);

Function to reverse the order of the elements of the array in a specified dimen-
sion. This is accomplished by simply changing strides and steps for the specified
dimension. Useful in debugging ‘top-down’ vs. ‘bottom-up’ implementations.

SKArray Rotate(float deg, int cx, intcy) ;

" Rotate the current (2-D) array by deg degrees in the clockwise direction around
the center point (cx,cy), producing an output array of the same size. Values of the
input array that end up outside the new array boundaries are omitted. Values of
the output array that have no corresponding input value are filled with SK_NIL.
Currently, this routine has not been extensively optimized, as it’s only used when
constructing functional templates.

template void SetAllSliceValsTo(T scalar) ;
Function to set all values in an array’s current slice to the supplied scalar.

void SetElementsininterval(T markVal, T low, T high,

T outlierMarkVal = SKArray<T>::SK_NIL);
Function to set all elements of the array which lie within some interval to a mark
value, possibly setting outliers to a different mark value. Specifically, pixels with
a value between low and high (inclusive) are set equal to markVal. If outlier-
MarkVal is not NIL, then pixels which lie outside the interval from low to high
are set to outlierMarkVal. If the outlier mark is NIL, then pixels outside the inter-
val are left unchanged. The default value of optional argument outlierMarkVal is
NIL.

Note that the current array object’s data buffer is written over with the new val-

ues. To create a new output array while leaving the source array intact, use the
global version of this function (same name).

36

~Access
functions

|

1

|
class :SK‘Array

|
void SetSliceVals (char *initDataf]) ;
Allow the initialization of arrays via character arrays. Useful for initializing
everything in an array except the padding. Or, to reuse an array for other tests.
See the SKArray Class Tutorial for usage examples.

SKArray Slice(SKDim dim, int size, int origin, int step),
SKArray Slice(int size0, int offset0, int stepO

int sizel = 0, int offset] = 0 int stepl =0,

int size2 = 0, int offset2 = 0; int step2 =0);
Functions for altering the current slice (or ‘vielzw’) of an array. First version
allows for altering only a single specified dlmensmn other dimensions are not
altered. The second version allows full 3D spec1ﬁcat1c>n of the desired slice. The

X-parameters (size, offset, and step in the x-dimension for the slice) must be spec-

ified; the slice parameters for the other dimenlsions are optional and default to
values which will not change the slice in the y and z dimensions. See the SKAr-
ray Class Tutorial for usage examples. |

float Sum();
Return the sum of all (non-NIL) pixels in the array, returning the result as a float.

|

void WrapAzMirrorR(void) ; !

Fills the pad of a padded array by mirroring 1n the X-dimension and wrapping in
the Y-dimension. This is a useful operation when performing operations on polar
arrays, where range is X, and azimuth is Y. ‘Wrappmgr the data in the Y-dimen-
sion allows processing to proceed normally in' the region of azimuth wraparound
(the north-mark in radar image processing apphcatlonﬂ) See documentation for
the SKArrayPad class for description of SKAr’Imy pads.

' |
void WrapPolar(T filiVal) ; !
Pad-fill the array in the X-dimension and wrap it in the Y-dimension. The pad-
ding in the X-dimension is filled in with value fillVal. This is a useful operation
when performing operations on polar arrays, where range is X, and azimuth is Y.
‘Wrapping’ the data in the Y-dimension allows processing to proceed normally in
the region of azimuth wraparound (the north-mark in radar image processing
applications). See documentation for the SKArrayPad class for description of
SKArray pads. : |

|
See descriptions of classes from which this cle'gss inherits (see Hierarchy, above)
for additional virtual member functions that arée defined by this class.

|
float GetBinSize(int dimension); }
Return the bin size of the specified array dlmensmn in meters/pixel. The bin size
is also known as the resolution (e.g. 231.5 metcrs/plxel) Use the predefined con-
stants (actually enum type SKDim) SK_X, SK_'iY, and SK_Z to indicate the desired

dimension.

i

|

! 1
37 (!

|

i

class SKArray

void SetBinSize(int dimension, float value);

Set the bin size of the specified array dimension in meters/pixel to the supplied
value. The bin size is also known as the resolution (e.g. 231.5 meters/pixel). Use
the predefined constants (actually enum type SKDim) SK_X, SK_Y, and SK_Z to
indicate the desired dimension. v

float GetConfirmingFactor();
Returns the value of the confirmingFactor member variable. This variable is only
meaningful for SKArrays which are interest images used in feature detection.

void SetConfirmingFactor(float factor);
Set the value of the confirmingFactor member variable. This variable is only
meaningful for SKArrays which are interest images used in feature detection.

void GetCoordSys(SKCoordSys& coordSys);

Get the current coordinate system for the array. Allowed values are
SK_CARTESIAN and SK_POLAR (enumerated type SKCoordSys). Input
coordSys is passed by reference and assigned the current value of the coordinate
system for the array. '

void SetCoordSys(SKCoordSys coordSys);
Set the current coordinate system for the array. Allowed values are
SK_CARTESIAN and SK_POLAR (enumerated type SKCoordSys).

void GetDataClass(char *s);

Get the data 'class’. The data class is a qualitative name tag for the type of array
data (e.g DZ, V, SN). The CSketch display mechanism uses the data class to
lookup the color table in the color map.

void SetDataClass(char *s);

Set the data ‘class’. The data class is a qualitative name tag for the type of array
data (e.g DZ, V, SN). The CSketch display mechanism uses the data class to
lookup the color table in the color map.

short DataReady(void);

Return the dataReadyFlag of the current array (1 = data ready, O = not ready).
The term ‘data ready’ is used to qualify the state of the data contained in the
array. A system might initialize many SKArrays at one time, but each might be
filled at a different time. The member variable dataReadyFlag can be used to
determine whether or not an array has been loaded with timely data or not.

void SetDataReady(short flag);

Set the dataReadyFlag of the current array (1 = data ready, 0 = not ready). The
term ‘data ready’ is used to qualify the state of the data contained in the array. A

38

\
|
|
l

| class SI,I(Array

1

|
system might initialize many SKArrays at one time, but each might bel filled at a
different time. The member variable dataReadyFlag can be used to determine
whether or not an array has been loaded withitimely data or not. i

T* GetDataPtr(void);)
Return the pointer to the current slice of data.| Note that the current slice need not
equal the full parent slice, e.g. for padded arrays, so the slice data pointer need

not equal the parent data pointer. '

float GetDisconfirmingFactor();
Returns the value of the disconfirmingFactorjmember variable. This variable is
only meaningful for SKArrays which are interest images used in feature detec-

tion.

void SetDisconfirmingFactor(float factor ;
Set the value of the disconfirmingFactor member variable. This variable is only
meaningful for SKArrays which are interest images used in feature detection.

int GetElementSize();
Return the element size of the array (i.e. the Size of each data pixel of the array)

in bytes. !

void GetGlobalPos(float& latitude, ﬂoat& longitude, float& altitude);

Get the global position. For now, this routme assumes that the global position
corresponds to the position for world coord system (0,0,0). For ASR-9 applica-
tions this is sufficient. Mosaic'ed ITWS images may need something more com-

plex. All 3 variables are passed by referencel and their values set to those of the
current array.

void SetGlobalPos(float latitude, float longitude, float altitude);

Set the global position. For now, this routine assumes that the global position
corresponds to the position for world coord system (0,0,0). For ASR-9 applica-
tions this is sufficient. Mosaic'ed ITWS images may need something more com-
plex.

void GetlD(short& id);
Get the ID number of the array. Input argument id is passed by reference and its
value is set to the id of the current array.

void SetID(short id);
Set an ID number for the array.

void Getlmagelnfo(SKImagelnfo &info);|
Get the values of the SKImagelnfo member variable of the current array. The
member variable’s fields are copied to the supplied info structure. The

1
i
39 |
!

class SKArray

SKImagelnfo structure contains all of the information necessary to display the
array.

void Setlmagelnfo(SKImagelnfo &info);

Set the values of the SKImagelnfo member variable of the current array. The
member variable’s fields are copied from the supplied info structure. The
SKImagelnfo structure contains all of the information necessary to display the
array.

void GetName(char *currName);

Get the name of the array. A name can be associated to an array for convenience
when creating displays, etc. It is assumed that currName points to a char buffer
which is large enough to hold the name.

void SetName(char *currName);
Set the name of the array. A name can be associated to an array for convenience
when creating displays, etc.

int GetNumDim(void);
Return the total number of dimensions of the SKArray.

void GetOrientation(float& orientation);

Get the current array orientation. The orientation is the angular offset from true
north in degrees. The input argument orientation is passed by reference and its
value set to the orientation of the current array.

void SetOrientation(float newQrientation);
Set the current array orientation to newOrientation. The orientation is the angu-
lar offset from true north in degrees.

void GetRefLocation(int& x, int& y, int& z,

float& wx, float& wy, float& wz);
Get the reference location of the array. The reference location is used to establish
a relationship between pixel space and world space. The x, y, z arguments corre-
spond to the reference point of the array in the x, y, & z dimensions. The wx, wy,
wz arguments correspond to the reference point of the world coordinate system.
All 6 variables are passed by reference and their values set to those of the current
array.

void SetRefLocation(int x, int y, int z, float wx, float wy, float wz);

Set the reference location of the array. The reference location is used to establish
a relationship between pixel space and world space. In WSP applications, where
the center of the array most often corresponds to world location (0.0,0.0) (the
radar location), the set routine will be called as:

40

class SKArray

{
| |
SetRefLocation(xsize/2, ysize/2, 0, 0.0, 0.0, 0.0); !

The x, y, z arguments give the reference point of the array in the x, y, & z dimen-
sions. The wx, wy, wz arguments give the reference pcint of the werld coordinate
system. ,

void GetScaling(float& scaleFactor, ﬂoat& scaleOffset); ‘

Get the current scaling values for the data in the array. The scaling factor and

scale offset allow for the conversion of data sltored values to ‘real-world’ values

via the equations: :

|

real value = (float) (((data stored)/scaleFa!ctor) - scaleOffset);

stored Value = NINT(scaleFactor * (real v:alue + scaleOffset));
|

void SetScaling(float scaleFactor, float sca'leOﬁset);
Set the current scaling values for the data in the array. The scaling factor and
scale offset allow for the conversion of data stored values to ‘real- world’ values
via the equations: ~
|
real value = (float) (((data stored)/scaleFactor) - scaleOffset);
stored Value = NINT{(scaleFactor * (real vialue + scaleOffset));
|
int GetStep(int); | -
Return the step of the requested array dlmensmn Use the predefined constants
(actually they are the enum type SKDim) SK_: X SK_Y, and SK_Z to specify the
dimension. |

|
void GetTime(LLTime &t); |
Get the time of the array. See documentation flor the LLTime class for specifics on

manipulating time. |

|
void SetTime(LLTime & t); |
Set the time of the array. See documentation for the LLTime class for spec1ﬁcs on
manipulating time. !
int Size(int dimension); E
Return the size of the requested array dimension. Use the predefined constants
(actually they are the enum type SKDim) SK_X, SK_Y, and SK_Z to specify the
dimension.

int Stride(int dimension); .
Return the stride of the requested array dimension. Use the predefined constants
(actually they are the enum type SKDim) SK_X, SK_Y, and SK_Z to specify the
dimension. |

|
|
|
|
|
" |
|
|
|
|

Public data
members

Related global
functions

See Also

Document
Revision Date

class SKArray

static const T SK_NIL;

Special value indicating a ‘bad’ or ‘missing’ pixel. Value corresponds to the
most negative number of a given type, e.g. SK_NIL for a short SKArray is typi-
cally -32767.

static const T SK_MAXIMUM;

Value corresponds to the maximum positive number of a given type, e.g.
SK_MAXIMUM for a short SKArray is typically +32768.

static const T SK_MINIMUM;

Value corresponds to the most negative number of a given type, e.g.

SK_MINIMUM for a short SKArray is typically -32767.

Documented in libskarr.a library documentation.

Library skarr.

17 July, 2002

42

Name
Synopsis

Description

Example

Enumerations

class SKArrayPad

class SKArrayPad

#include <skarray.h> |

Helper class used to pad SKArrays (e. g to handle edge effects in certaijn image
processing routines).

SKArrayPad objects are not actual data buffers which pad existing data buffers;
rather they are objects which encode mfonnatllon about the padding which is
desired for a particular array. SKArrayPads are specified by (1) their X, y, and z
sizes which indicate the amount of padding in each dimension, (2) an optional
“fill’ value and (3) an enumerated type which :speciﬁes‘ how the padding should
be filled in, if at all. Creation of an actual padded array requires calling an
SKArray constructor with a pre-constructed SKArrayFad object as an argument.
When this is done, the SKArray constructor builds an SKArray whose ‘parent’
slice is large enough to hold the desired data a:rray plus the padding margins. The
SKArray’s ‘slice’ member variable is set to th'e area inside the padding.

Once the ‘internal’ array (the slice) data has been initialized, the correct ‘padFill’
operation can be called, filling in the pad area accordmg to the methods described
later in this section. I

See the CSKETCH Image Processing lerary Tutorial for examples of creat-
ing, filling, and manipulating padded SKArray objects using the SKArrayPad
class. !

I
enum SKPadOp { PAD_NOPF, PAD_FILL, PAD MIRROR,

PAD_WRAP_AZ MIRROR R, PAD_WRAP_POLAR } ;

This enumeration is used to identify the methods used in filling in the padding
(or margin) for padded arrays. The supported methods of pad filling are:

PAD_NQP: No filling operation is performed. The pad values in the padded
array are left uninitialized. This operation may be used, for instance, if a kernel
of an image processing function extends beyond an image’s valid data buffer, but
the function never needs to actually read kernel data outside the original image
border. . i |

t

, ‘
PAD_FILL: The pad pixels of the padded a}ray will be filled with a single
value (supplied to the pad at the time of its cdnstruction).

|
PAD_MIRROR: The pad pixels are filled mI via the SKArray ‘Mirror’ member
function. See documentation for the SKArray class for description of this SKAr-
ray class member function.

43 | |

Constructors

Destructors

See Also

Document
Revision Date

class SKArrayPad

PAD_WRAP_AZ_MIRROR_R: The pad pixels are filled in via the SKArray
‘WrapAzMirrorR’ member function. See documentation for the SKArray class
for description of this SKArray class member function. This pad operation is
only intended to be used for polar data arrays, where the first radial (first row of
data in a 2D array) is in fact a neighbor of the last radial (last row of data).

PAD_WRAP_POLAR: The pad pixels are filled in via the SKArray ‘WrapPo-
lar’ member function. See documentation for the SKArray class for description
of this SKArray class member function. This pad operation is only intended to be
used for polar data arrays, where the first radial (first row of data in a 2D array) is
in fact a neighbor of the last radial (last row of data).

template <class T>
SKArrayPad<T>::SKArrayPad(SKPadOp padOpln, T fillVal, int pad0/* =0 %,
intpadl /* =0 %/, intpad2 /* =0 */)
Templatized function to create an SKArrayPad object. Padded arrays of type ‘T’
(e.g. float, double, etc.) require a pad of the same type. The padOpIn variable
must be set to one of the values of enumerated type SKPadOp, which are defined
above. The fillVal is the value that will be used to fill the padding if the padding
operation (padOpln) is ‘PAD_FILL’. The remaining 3 (optional) arguments
specify the padding in the x, y, and z-dimensions; they default to zero. These
arguments specify the pad on each side of the array in a particular dimension, e.g.
a pad size of 3 in the x dimension means a margin of width 3 on the left and right
hand sides of an array will be created using this pad.

template <class T>

SKArrayPad<T>::~SKArrayPad() :

SKArrayPad class destructor. Currently a no-op as SKArrayPad contains no
dynamically-allocated memory.

SKArray class member functions WrapAzMirrorR(), WrapPolar(), RampFill(),
PadFill(), which are employed to perform the various pad-filling options
described above.

19 August, 1998

Name

Synopsis

Description

Component
Structures

Enumerations

Constructors

|
|
|
class SKChain
|

I

class SKChain ‘
Class to store / represent ‘generic’ thin-line chains. AMDA uses this more
generic version to store a zero-crossing line. MIGFA uses more specialized
chains for gust front detections and predictions. Note that MIGFA detection
chains (class GFChain) and predzctzon chains (class GFPredChain) inherit
from this class. :

#include <skchain.h>

Class to store / represent ‘generic’ thin-line chains. AMDA uses this more
generic version to store a zero-crossing line. MIGFA uses more specnahzed
chains for gust front detections and predictions. Note that MIGFA detection
chains (class GFChain) and prediction chains (class GFPredChain) inherit from
this class.

class SKChainPoint

{
LLDListLink link;

public:
shortx, y;

// Local orientation of chain (orientation atlthzs pixel).
short orient; |

K

Extremely simple ‘helper’ class for the SKCHain class. The class contains public
data elements x, y, and orient. The elements (x, y) give the location of a chain
point. The orient gives the local orientation (measured in the meteorological or
‘compass’ sense) of the chain at the current chain point. The heart of an SKChain
class instance is an LLDList of SKChainPoin:ts.

1

enum SKChainSense { SK_CHAIN_F\ ORWAI:%D, SK_CHAIN_REVERSE };
Enumerated type for indicating whether a pa#ticular function should traverse the
chain points in the ‘forward’ (start with first point) or ‘reverse’ (start with last
point) orientation. Useful in MIGFA in some cases to avoid physically reversing
the chain nodes. Note that some operations :do require physical chain reversal,
hence the member function SKChain: :Rever.?e() described below.

SKChainPoint::SKChainPoint()
Default constructor for the simple chain point class. Typically points are created
one at a time as needed and placed on the list of points of an SKChain class

instance. _ |
!

SKChain::SKChain()

45 1

Destructors

Operators

Public
member
functions

Public data
members

Related global
functions

class SKChain

Default constructor for the SKChain class. Creates a new chain with an empty
point list, and the chain score initialized to 0.0.

~SKChain()

Destructor for the SKChain class. Note that each SKChain contains an LLDList
of SKChainPoints. The list header only will be automatically deleted by the
LLDList destructor. It is up to the application to delete all the individual points in
the LLDList of SKChainPoints. This should occur prior to when the SKChain
instance goes out of scope and is destructed.

ostream& operator << (ostream &os, SKChain &chain);

Overloaded ostream operator << for the SKChain class. Writes the chain to the
supplied ostream. Starts by writing out the (x,y) coordinates of the first and last
points of the chain, as well as the chain’s score. Then the (x,y) coordinates of all
points in the chain are written out, in the sequence they appear in the chain.

SKChain::Reverse()

Function to reverse the order of the points in an SKChain's point list; also the
start and end member variables (which seperately store the coordinates of the
chain start and end points) are swapped.

float score;

Interest score for the chain. Often this is the sum of interest scores for all points
in the chain, but some applications (e.g. MIGFA) may then modify this score
based on other properties of the chain.

SKPointl start;
Structure which houses a pair of integers; for SKChain this stores the coordinates
of the first point of the chain.

SKPointl end;
Structure which houses a pair of integers; for SKChain this stores the coordinates
of the last point of the chain.

LLDList ptList;
The actual list of points in the chain (comprised of SKChainPoint objects). See
also documentation for the LLDList class.

SKArray<short> ExtendChains(SKArray<short> &thinned,
SKArray<short> &baselnterest,
SKArray<short> &baseOrient,
short extendThresh, short interestThresh,
short angleThresh);

46

‘ s
class SKChain

|
|

J
|

Function to extend the chain features within the input array thinned. The thinned
array is assumed to have had all shapes within the image reduced to chams which
are only a single pixel wide, e.g by using SKArray class member functlon SKAr-

ray<T>::Thin(). The baselnterest and baseOrzent images are the same size as
thinned and are assumed to give pixelwise mterest scores and orientations for
points which could possibly be part of chain features (e.g. gust fronts for MIGFA
and the zero-crossing line for AMDA). ' ‘
The process is performed roughly as follows.% First the endpoints of the chain
features are identified. The chains are extended one pixel at a time, extending
outwards from the endpoints. At the endpoint currently being processed, we first
build a list of candidate points to append onto the end of the chain, using the
helper function BuildExtendSearchWindow().i A point will be appended onto the
end of the chain only if one of the candidate points has an interest score (from
baselnterest) greater than interestThresh and an orientation which lies within
angleThresh of the orientation of the originaliendpoint. In the case of muitiple
acceptable candidates, the one with the highest interest score is chosen. In case
of ‘ties’, the first acceptable candidate point flound will be used.

|

At the end of each round of processing, the new endpoints (all new points which
were appended to some chain in the input image) are used as the endpoints for
the next round of chain extension. In this way a chain can potentially grow by 1
pixel on each of its ends in each round of prchessing. The extendThresh parame-
ter sets the maximum number of extensions which may be performed; thus each
chain can be extended by no longer than 2 * e::xtendThresh points.

For further details on the processing performe!:d by this function, see the inline
source documentation in file chainExtend.C. i !

The other functions contained in file chaanxItend C are helper functions
BuildExtendSearchWindow() and InztEndPomtOrzentatzons(). These functions
are not intended to be used by general-purpose users of the CSKETCH library, so
they are not documented here. Detailed documentation of these functions can be
found in the source file. Consult this docume:ntation if detailed knowledge of the
workings of these functions is desired. |

|
|
|

void MarkChainEndAndJunctionPoints(SKA!rray<sh0rt> &thin,

LLDList &endPoints, LLDLzst &junctionPoints);
Function to take an SKArray thin which contams ‘thinned’ (e.g single-pixel
wide) chain features, and mark those chain plxels which are endpoints and junc-
tion points of the overall chain ‘graph’. The fmput array is binary, with values of
0 for non chain points and 1 for chain points.| On output, non chain points will
remain zero, chain junction points will have value 2, chain endpoints will have
value 3, and chain ‘interior’ points will remain at 1.

|
|
!
|
47 !
I
|
|

See Also

Document
Revision Date

class SKChain

The input to this array is in binary form, and is assumed to have a 1-pixel pad
(zero-filled) around the edge, so no special edge processing is necessary.

In addition to marking the chain end points and junction points in the thin array,
the input LLDLists endPoints and junctionPoints will be filled with lists of
SKChainPoint structures; one such point for each end and junction point.

void SKChainDelete Points(SKChain *chain)

Deletes, one by one, the SKChainPoint objects which comprise the ptList of the

current chain. This is a useful cleanup function which should be called before an
SKChain object goes out of scope, since the SKChain destructor does not delete

the individual points in the pzList member variable.

void SKFillChainlmage(SKArray<short>& chainlmage, LLDList& chainList);
Function to take a (previously-allocated) SKArray (the chainlmage) and ‘fill’ the
image with data obtained from a list of SKChains (chainList). Specifically, if the
point (x,y) is in any of the SKChains in chainList, then the pixel (x,y) in the
chainlmage is set to 1.

void SKFillChainlmage(SKArray<short>& chainlmage, SKChain*chain)
Overloaded version of the above function. In this case the chainlmage is filled
using the points from only a single SKChain (the chain argument).

class LLDList, class GFChain, class GFPredChain.

22 September, 1998

48

Name

Synopsis

Description

Example

Constants

Component
Structures

class SKFuncTemplate
| |

E
class SKFuncTemplate

#include <skfunctemp.h>

CSKETCH Library Functional Template Class (FT'C) Definition.]?un¢tional
template correlation is the main engine by which feature detection is accom-
plished for MIGFA, AMDA, and other meterological algorithms.

See the CSKETCH Image Processing Library Tutorial for examples of declar-
ing and using functional template correlation objects.

#define SKFUNCTEMP_MAX_ORIENT |25 -
This is the maximum number of kernel rotati(%ns for a single template.
| :
#define SKFUNCTEMP_MAX_FUNC 10
This is the maximum number of scoring functions allowed for a single template.

struct SKFuncTemplatePoint

{
int xOffset ;
int yOffset ;
int ptrOffset0 ; // Combination of above for speed
int funcIndex0; // For diagnostics - ptr below is used for speed.
short *funcLookupO ; |
int ptrOffsetl ; // Second set of info is for second kernel
int funclndex] ; // in tandem Itemplate'.
short *funcLookupl ; !

/s |

The most basic element of a functional template object is a functional template
point. This structure encodes information about a single point of a single rotation
for the kernel(s) of the functional template object.

i

The component fields of the SKFi uncTemplate;Point are:

| .
xOffset: Stores the x-coordinate of the template point as an offset relative to the
pixel currently being processed by FTC. Thus if xOffset for the current template
point is -1, the template point is located one plxel to the left of the current pro-

cessing pixel in the x direction. !

yOffset: Stores the y-coordinate of the templa'te point as an offset relative to the

pixel currently being processed by FTC. Thus if yOffset for the current template
point is 1, the template point is located one pxxel to the ‘north’ of the current pro-
cessing pixel in the y direction.

49

class SKFuncTemplate

ptrOffset0: The above x- and y-offsets for a template point specify an (x, y) pixel
location for a template point, relative to the current processing pixel in an FTC
operation. For speed, ptrOffset0 stores a single offset for this pixel relative to the
current processing pixel. That is, given a pointer to the current processing pixel,
simply adding ptrOffsetO to that pointer gives the address of the corresponding
template pixel within the image being probed. Thus the template pixel can be
found in the input image using a single addition rather than 2 adds and 2 multi-
plies. Note that the pointer offset depends on the x and y sizes of the image being
probed (since the x and y strides of the image will differ), so these offsets cannot
be computed at construction time. Rather they are computed via a call to
SKFuncTemplate::GenPtrOffsets() as the first step to the FTC matching process.

See documentation of the SKArray class for an explanation of 2-dimensional
image strides.

funclndex0: Any particular functional template can employ multiple scoring
functions for different regions within the functional template’s kernel. The
funcIndex0O member variable gives the number of the scoring function to be used
for this particular functional template point. This is mainly a diagnostic tool use-
ful in determining whether a particular functional template was specified and
built correctly; for efficiency, the funcLookupO pointer, described next, is used to
do the actual lookup task when scoring the input image pixel associated with the
current template point.

funcLookupO: Points to the correct scoring function to be used for this template
point. Recall that for FTC, input image values are expected to be scaled to the
range 0 to 255. Each scoring function within the kernel is thus implemented as a
1 by 255 array of score values. The input image pixel is used to index into the
scoring function, and the value of the scoring function at the corresponding index
is the score for that input value. If there are n scoring functions for the template,
the lookup table is an n by 255 table, with row j corresponding to the j’th scoring
function. For a particular functional template point, the scoring function never
changes; thus e.g. if the current template point uses scoring function 4, then
funcLookupQ will be a pointer to the 4th row of the lookup table.

ptrOffsetl, funcIndex1, and funcLookupl: These 3 member variables serve
exactly the same purpose as ptrOffset0, funcindex0, and funcLookupO in the case
of a tandem template where 2 different images are probed simultaneously by 2
different kernels. In case the 2nd kernel also has a template point at the same x
and y offsets as the first kernel, these member variables will be filled in with the
corresponding information for the 2nd kernel and associated scoring function. If
the 2nd kernel does not have a point at the same relative offsets, these variables
will be set to NULL.

struct SKFuncTemplateOrient

50

Constructors

|
|
clae}s SKFuncTenl'\plate

|
| |

{

int angle ; // In degrees. 1
int nPoints ; '
short nPointsForFunc{ SKFUNCTEMP_MAX_FUNC];

SKFuncTemplatePoint *points ;

]’.

This structure encodes all information for a single orientation (angle of rotation)
of a functional template object. By angle of rotation for a template, we really
mean an angle of rotation for the kernel(s) of a functicnal template. When build-
ing a functional template ‘orientation’, the kernel is rotated, the new x,y offsets of
the rotated kernel(s) are computed and scored and function lookup information
for each template point is filled in. In the case of tandem (dual-kernel) functional
template objects, a single SKF uncTemplateOnent object contains the points for
both kernels of the template at that orientation. This is easily done since each
SKFuncTempPoint contains lookup mformatlon for up to 2 kemels.

The component fields of an SKF, uncTemplate|0rzent are:

| .
angle: The angle of rotation of this particular|orientation of the template (i.e. the
angle through which the kernel(s) of the template were rotated when this particu-
lar orientation was built). I

|
nPoints: The number of SKF; uncTemplatePoihts associated with this particular
rotation of the template. This number need not be the same as the number of
points in unrotated kernel(s), due to rounding!/ truncation of pixel coordinates
performed during the process of ‘rotating’ the kernel(s) through angle degrees.

| :

|
nPointsForFunc: An array indicating, for each scoring function used by the tem-
plate, how many points within the kernel use |that scoring function. This is
needed for the highly-optimized version of functional template matchmg
encoded here. ;

l .
points: An array of SKFuncTemplatePoints, the set of all functional template
points for the current orientation of the template. The SKFuncTemplatePoint
structure is described earlier in this section. |
|
(Note that the default constructor and copy constructor have been disabled as
they are really not relevant for functional template objects).

SKFuncTemplate(char *kernelData[], int cx,| int cy, char *funcs(],
char *angles);

The kernelData input is a 2D character array of scoring function indices for the
functional template. An SKArray representing the kernel will be constructed
{

i
51 :
|

class SKFuncTempIate

using the SKArray(char **) constructor (see documentation for the SKArray
class for further elaboration). See also the CSketch Image Processing Library
Tutorial for a description of the format of the ‘kernelData’ argument.

c¢x is the X-coordinate of the center of rotation for the kernel, relative to the lower
left corner of the kernel. Need not coincide with the actual X-center of the ker-
nel.

cy is the Y-coordinate of the center of rotation for the kernel, relative to the lower
left comer of the kernel. Need not coincide with the actual Y-center of the ker-
nel.

funcs is an array of character strings encoding each of the scoring functions
indexed by the kernel. See the CSketch Image Processing Library Tutorial for a
description of the format of the ‘funcs’ argument.

angles is a character string ‘list’ of discrete orientation angles for template rota-
tion. Once again, see the CSKETCH Image Processing Library Tutorial for a
description of the format of the ‘angles’ argument.

SKFuncTemplate(char *kernelDataOf], char *kernelDatal[], int cx, int cy,
char *funcs([], char *angles);

Two-kernel version of the constructor described immediately above. All vari-
ables are as for that constructor, except an additional argument (the character data
for constructing the 2nd kernel) must be supplied. Also, it is worth noting that
the funcs input encodes information for the scoring functions for both kemels.
See the CSKETCH Image Processing Library Tutorial for an example of creating
a 2-kernel or so-called ‘tandem’ functional template object using this constructor.

SKFuncTemplate(SKArray<int> *kernel, int cx, int cy, char ** funcs,
char *angles) ;

Another version of the 1-kernel constructor. This version takes a pointer to an
integer SKArray which actually stores the kernel for the ftc object. The kernel is
assumed to have been filled in with the appropriate scoring function indices.
This version is very useful e.g. in the case where the kernel indices are not known
at compile time. With this version, the kernel can be created and filled in at run
time, then the ftc object can be created with the dynamically-filled kernel.

The other arguments are exactly as in the other 1-kemel constructor (the first con-
structor described in this section).

52

Destructors

Operators

Public
member
functions

class SKFuncTemplate

!
1

SKFuncTemplate(SKArray<int> *kernelO, S|K4rray<:int> *kernell, int cx,

int ¢y, char **funcs, ichar *angles) ;

|

Two-kernel version of the constructor describ!ed immediately above. All vari-
ables are as for that constructor, except an additional argument (the pointer to an
integer SKArray which represents the 2nd kell'nel) must be supplied. Also, it is
worth noting that the ‘funcs’ input encodes information for the sccring functions
for both kernels. See the CSKETCH Image Processmg Library Tutorial for an
example of creating a 2-kernel or so-called ‘tandem’ functional template object
using this constructor. P

Again, this constructor is useful for building a tandem detector where the kernel
sizes and / or indices are not known at compile time.

SKFuncTemplate::~SKFuncTemplate()

|
Deallocates the template object and all associlated memory.

friend ostreamé& operator << (ostream& os,i SKFuncTemplate& t) ;

|

|
Print operator for dumping SKFuncTemplate information to an output stream.
The following are written to the output stream:

|

The kernel(s) of the template (via operator << as defined for the SKArray class).
|
|

The list of orientations (rotation angles) for t1‘1e template.

|
The individual orientations of each template 2:1re then written out. First the angle
of the current orientation is written. Then, for each point in the current orienta-
tion, the x-offset, y-offset, and scoring function index. In the case of a tandem
template, the second scoring function index (used with the second kernel) is also
written out. i
Finally, the scoring functions (in lookup table form) are printed. Recall each
scoring function is essentially a 1 by 255 array. To avoid screen wraparound,
only 8 of the 255 entries per scoring function; are printed per line.

|
These member functions, while public, are class ‘helper’ functions used in func-
tional template construction. Since they are not of use to application program-
mers, they are not documented here. See thel in-line source documentation for
detailed function descriptions.

static int BuildFunctions(char *funcs[], short *funcLookup(]) ;

53

Related
Global
Functions

Document
Revision Date

class SKFuncTemplate

static void FillFuncLookup(char *func, short *funcLookup) ;

static char *GetFuncPoint(char *s, short *x, short *y) ;

SKArray<int> *CreateWorkKernel(SKArray<int><& kernel, int cx, int cy,
int& workCenterX, int& workCenterY) ;

static int OrientAnglesFromString(char *angStr, int *angles) ;

friend void SKFuncTemplateMatch(SKArray<short>& image,
SKFuncTemplate& tmpl, SKArray<short>& mask,
SKArray<short>& scoreArr, SKArray<short>& orientArr) ;

Functional template match procedure for single-kernel templates. Inputs arrays
image, mask, scoreArr, and orientArr must all have the same size. Functional
template correlation is performed for every pixel in the input image which corre-
sponds to a non-nil pixel in the mask (with the possible exception of pixels near
the edge of image, where processing would cause the functional template kernel
to probe out of bounds of image). The output scoreArr stores the maximum
match score of the correlation process for each pixel processed; the output
orientArr stores the orientation which produced the maximum match score for
each pixel. See the in-line source documentation for more detailed description of
the functional template match process.

[friend void SKFuncTemplateMatch(SKArray<short>& image0,
SKArray<short>& imagel, SKFuncTemplate& tmpl,
SKArray<short>& mask, SKArray<short>& scoreArr,
SKArray<short>& orientArr) ;

Functional template match procedure for two-kernel (‘tandem’) templates.
Inputs arrays image0, imagel, mask, scoreArr, and orientArr must all have the
same size. Functional template correlation is performed for every pixel in the
input images which correspond to non-nil pixels in the mask (with the possible
exception of pixels near the edge of the images, where processing would cause
the functional template kernel(s) to probe out of bounds of the images). The out-
put scoreArr stores the maximum match score of the correlation process for each
pixel processed; the output orientArr stores the orientation which produced the
maximum match score for each pixel. See the in-line source documentation for
more detailed description of the tandem functional template match process.

3 December, 1998

54

Name
Synopsis

Description

Constants

Constructors

Destructors

Operators

|
1
|
\
i
|

class SKFuzzyFunc
|

——
]
\

class SKFuzzyFunc ' - ‘

|
L

#include <skfuzzyfunc.h>

!

Class for representing a ‘fuzzy function’ as erd in functional template correla-
tion, averaging of interest images in AMDA, etc While the SKFuncTemplate
class has its own simple representation of a fuzzy function, this class allows for
more general fuzzy functions. In the future tl'us class may be used internally by
the SKFuncTemplate class. !

There are no defined constants for this class. IHowever, by convention for
AMDA, the number of ‘bins’ (the number of allowed x-values for the fuzzy func-
tion) defaults to 512. When the fuzzy functloln does in fact have less than, or
equal to, 512 distinct x-bins, the fuzzy functlon lookup is implemented efficiently
by a lookup table. If there are more than 512 bins, the fuzzy function value must
be computed directly as each input pixel is encountered. Obviously this is a
much less efficient process. :
template <class XType, class YType>

SKFuzzyFunc<XType, YType>::SKFuzzyFunc(char *funcStr);

Doubly-templatized constructor function. Th!e XType is the data type of input
values for the fuzzy function. The YType is the data type of output values for the
fuzzy function. For example, the function could take short inputs and return float
values. The funcStr specifies the inflection pomts and is in the format "(x1 y1)
(x2y2) ... (xn yn)". For example, for a fuzzy;functlom which takes short argu-
ments and returns floats, the string could look like "(3 10.0) (15 1.0) (255 0.0)".

Note that the constructor will build automatically an efficient lookup table for
evaluating the fuzzy function if the supplied x-values in funcStr range between
-255 and +255. Otherwise the function will be directly evaluated for given input
values, which is a much slower process. | '

template <class XType, class YType>
SKFuzzyFunc<XType YType>::~SKFuzzyFi ur;zc();

Deletes the SKFuzzyFunc object and any assc|>ciated Memory.

friend ostream & operator << (ostream&, SKFuzzyFFunc<XType, YTy})e>&)
| :

Output operator for the SKFuzzyFunc class. J ust prints out the mflectlon points’

of the fuzzy function.

55

|
|
|
|
|
l

Public
member
functions

Document
Revision Date

class SKFuzzyFunc

SKArray<YType> Apply(SKArray<XType> &imgln);

Function to apply the fuzzy function to every pixel in an input array. The
returned output array is the same size as the input array. Pixels in the output
array are computed by plugging each corresponding pixel from the input array
into the fuzzy function. ‘

2 December, 1998

56

Name
Synopsis

Description

Example

Constants

Component
Structures

|

\

|
class SKRegl‘pnlnfo
| 1

|

class SKRegionInfo j
#include <skregion.h>

Simple container class for storing information about all the ‘regions’ within an
SKArray. The information about each particular region is stored int an ' SKRegion
structure, described under Component Structures below. The SKRegionlnfo
class contains as member variables an array of SKRegion structures and the num-
ber of such structures in the array. The class |also contains a constructor and a
destructor. i

A ‘region’ inside an SKArray is defined to be‘ a collection of same-valued pixels

inside that array. For example, the set of all plxels with value 1 form region 1 of
the image, the set of all pixels with value 2 fqrm region 2 of the image, etc. The
region need not be connected, i.e. if the imag:e data is

OO OO Co
NNOO -
NN O OO
SN OOO
N OO = O

then the set of all pixels with value I form a Valid region even though the pixels
are not all adjacent. The pixels with value 2 form a (connected) region. The pix-
els with value O are considered ‘background’lor ‘dataless’ pixels and region sta-
tistics will not be computed for those pixels. IIn general the SKRegion structure
will store various attributes (length, area, etc.) of a distinct (i.e. labelled) region
inside of an SKArray. |
1
See the CSKETCH Image Processing lerary Tutorial for examples of com-
puting statistics for regions of data within an lSKArray
|
#define SKARR_MAX_REGIONS 7000 |
The maximum number of regions expected to be seen inside an SKArray. This
definition is given in the MIGFA description :document.
|
struct SKRegion i
{
// The region number.
short regionNumber;

// Area of the region (number of pixels in array having value =
// regionNumber).
int area;

57

Ay

Constructors

Destructors

Operators

class SKRegionlinfo

// Approximate length of region (length is taken to be the length of an
// approximating rectangle).
float length;

// Center of gravity (in pixels) of the region.
float xCenterGravity;
float yCenterGravity;

// Sums of x and y (pixel coordinates) for the region. Also sums of their
// squares.
float sumX, sumY, sumXSquared, sumYSquared;

// Additional intermediate statistics used in various computations.
float xDev, xDevSquared, crossSum;

// Coordinates of upper left hand corner and lower right hand corner
// of a bounding box for the region.

int xmin, ymin;

int xmax, ymax;

// Variance in horizontal and vertical directions.
Sfloat varianceAboutXAxis, varianceAboutYAxis;

// Properties of the rectangle used to approximate the region.
float majorVariance, majorSlope, majorintercept, majorCos;
float minorVariance, minorSlope, minorintercept, minorCos;
float rectLength, rectWidth;

b

SKRegioninfo::SKRegionInfo(int nRegions);

Constructor which takes as an argument the number of regions inside an SKArray

object. Thus the returned SKRegionClass object will have an array of SKRegion

structures of size nRegions. .

Note that there is no default constructor for the SKRegionlInfo class.

~SKRegionlinfo()
The SKRegioninfo class destructor frees all memory associated with an SKRe-
gionInfo object; in particular the array of SKRegion structures is freed.

Jriend ostream& operator << (ostreamd&, SKRegioninfo&);

Print operator for dumping SKRegionInfo information to an output stream.
First the total number of regions is printed out. Then, for each region in the
SKRegion array, the region number, followed by an abbreviated list of statistics

58

!
|
1
!

|

class SKRegioninfo
|

——
|

for that region, are printed out. Currently the|full set of statistics is no:t printed
out, as it is a rather long list. If desired, this list can be added to in the future.
1
Public data int nRegions: The number of SKRegion structures contained in the array of such
members structures within the SKRegzonInfo object.

SKRegion *region: The actual array of SKRe!*gzon structures.
I
Related global The SKRegionlnfo class is really a helper class for studying various distinct
functions regions of data within an SKArray object. Th:us most of the related functions are
included in documentation for the CSKETCH Library. In particular, consult the
‘Region Analysis’ section of this document. |

Document 19 August, 1998
Revision Date

59

Name
Synopsis

Description

Example

Constants

Component
Structures

Constructors

class SKResamp

class SKResamp
#include <skresamp.h>

CSKETCH Library array resampler routines to handle conversion of polar
radar data to cartesian. Resampling is effected via a lookup table; each (x, y)
coordinate in a cartesian image is assigned a single range, azimuth cell in a polar
image.

This is a ‘full image’ resampler, i.e. one must have a completely filled array of
polar data before using the resampler. The resampler builds a full cartesian array
given the full polar array.

See the CSKETCH Image Processing Library Tutorial for examples of resam-
pling polar SKArrays to cartesian SKArrays via the SKResamp class.

#define SK_MAX_RESAMP_AZ 512

The maximurm number of azimuths supported by this resampler class; i.e. a polar
array of data must contain no more than 512 azimuths if it is to be resampled to a
cartesian grid using this resampler class.

struct SKResampMapCell
{

short az;
short gate;

pr

Simple structure which specifies a pixel in a polar image (e.g. range, theta coordi-
nates in a 2D array of polar data).

Note that there is no default constructor for the SKResamp class.

SKResamp(int nazPer360, int ngates, float gateSize, int xbins, int ybins,
float xsize, float ysize, float inScale = 1.0, float inOffset = 0.0,
float outScale = 1.0, float outOffset = 0.0);

Construct an SKResamp resampler. The following assumptions about the polar
and cartesian data arrays are encoded in the arguments to the constructor:

nAzPer360 specifies the number of azimuths in a full polar array. Thus e.g. for
WSP this argument is nominally 256 as there are 256 azimuths per full scan of
radar (polar) data.

ngates specifies the total number of range gates in a full polar imagé.

gateSize specifies the size, in meters, of a single gate of polar data.

60

Destructors

Public
member
functions

|

|

1
class SKResamp

I
\
1

xbins specifies the maximum number of bins in the x-dimension of a cartes1an
array, which is to be built by resampling polar data.

ybins specifies the maximum number of bins jn the y-dimension of a cartesian
array, which is to be built by resampling polar data. *
|

xsize specifies the x-size, in meters of a single pixel of cartesian data.
i

ysize specifies the y-size, in meters of a single pixel of cartesian data.

|
inScale, inOffset, offScale, and outOffset hand:le the case where a rt:scaling of the
data is desired as the resampling is done. In this case, the input (polar) data is
assumed to be scaled and offset via inScale and inOffset. The output (cartesian)
data will be scaled and offset via outScale and outOffset. All 4 of these argu-
ments are optional; the default value is scale:!l, offset=0 for both input and out-
put, e.g. no rescaling of the data will take placi:e.
~SKResamp() :
An SKResamp object is destroyed, freeing uplall dynamically-allocated memory
associated with the object.

The only public member functions associated: with this class are various ‘Run’
functions for actually performing the polar-to-cartesian resampling. In all cases,
‘Run’ fills the output cartesian array by finding, for each (x, y) cocrdinate in the
cartesian array, the corresponding (range, azir:nuth) cell in the polar data. This is
done efficiently via the lookup table built in the SKResamp constructor. The cor-
responding value in the polar array is then copled over to the correspondmg slot
in the cartesian output array. '

!
The cartesian image to be filled by ‘Run’ mus:t have sizes smaller than the xbins
and ybins arguments which were provided to the call to the SKResamp. construc-
tor. Cartesian pixels which are out of the rmée covered by the polar data will be
set to nil (the lookup table provides for this wihen it is built).

| .
void SKResamp::Run(short *in[], int naz, int ngates, SKArray<short>& out)
The first version of Run for this class takes the input data in a very simple form,
namely an array of pointers to (radials of) dat:a. This is intended to make it as
simple as possible for other applications to take raw input data and resample it to
Cartesian format. The output cartesian array out is filled using the lookup table
which was generated by the SKResamp constructor call.

void SKResamp::Run(SKArray<short>& in, SKArray<short>& out)
The second form of ‘Run’ is provided as a convenience to applications program-
mers and is generally intended for applications other than raw input (although it

61 |

See Also

Document
Revision Date

class SKResamp

can also be used for that purpose). This version takes a SKArray object repre-
senting a polar input array, and resamples to an output SKArray object represent-
ing an output cartesian array. This version is very useful, for example, when one
performs a functional template correlation process over a polar image and then
wishes to convert the results to cartesian format. It would be inconvenient in this
case to store the polar data as an array of radial pointers, as is required for the first
version of ‘Run’.

void SKResamp::Run(SKArray<float>& in, SKArray<float>& out)
This is an overloaded version of the second form of ‘Run’, used when the input
(and hence output) are float, not short, arrays.

Library skarr.

19 August, 1998

62

Name
Synopsis

Description

Constants

Component
Structures

Constructors

class SKStmResamp

|
|

|
i
|

class SKStmResamp

|
I

#include <skstmresamp.h>

Resampler object for resampling data from one Cartesian data array to another.
The 2 arrays may have different sizes and / or data resolutions. It is assumed,
however, that the center pixel of each array corresponds to the radar location
(hence the center pixels of each array correspond to the same location in real
world space). The class is named SKStmResc:zmp as it was first written to allow
for the resampling of storm motion u,v imagei:s to the finer resolution used by
AMDA. '

#define SK_MAX_VECTORS 512
This constant gives the maximum (one-dimerflsional) size of the output image
which is to be filled in by resampling the inpl;.lt image. Thus, with a nominal
value of 512, the output image can be no larger than 512 by 512.

struct SKVecMapCell
{

short col;
short row;

I i

Simple structure which stores the coordinates of a pixel in the input image which
correspond to a pixel in the output image, for the resampling process. For each
pixel (x,y) in the output image, the SKStmResamp object stores a corresponding
SKVecMapCell object that indicates which pixel in the input corresponds to (x.y)
in the output image. i

SKStmResamp::SKStmResamp(SKArray<ﬂo:at> &in, SKArray<float> &out)
! \

Constructor to set up an SKS#mResamp object which can be used to resample
from Cartesian input in to Cartesian output ozfd. The binSize member variable for
each array must be set prior to calling the constructor. The arrays may be of dif-
ferent (X,y) sizes or bin sizes, but again it is a}s.sumed that the center pixel of each
array corresponds to the radar location. Also both cartesian images are assumed
to have origin at the lower left corner. |

t
The SKStmResamp object is essentially a loo:kup table; for each pixel in out, the
resampler object stores the location of a pixel from in which maps to the pixel in
out using the given resolutions. No averaging or combining of pixels is done;
this is a simple, single-pixel resampler. For éxample, if a 100 by 100 array with
resolution 750 m is to be resampled to a 300 py 300 array with resolution 250 m,
the resultant output array will consist of a series of 3-by-3 blocks with duplicate

|
| 3
63 ! |

class SKStmResamp

data. That is, each pixel from the input image will map to exactly 9 pixels in the
output, and no averaging with adjacent pixels from the input is done.

Destructors ~SKStmResamp()
The destructor destroys the lookup table as well as any other memory allocated
by the SKStmResamp constructor.

Public void Resample(SKArray<float> &in, SKArray<float>& out);
member
functions Function for performing the actual resampling from Cartesian image in to Carte-

sian image out. Again, the resampler must have been built using images with the
the same sizes, and the same bin sizes, as in and out, respectively.

See Also class SKResamp, which resamples polar data to Cartesian data. Class SKStmRe-
samp resamples Cartesian data to cartesian data of possibly different image size
and resolution.

Document 30 November, 1998
Revision Date

64

4. Analytic Geometry

4.1 Summary

Global functions for performing various analytic geometry calculations (e.g. distance between 2 points,
vector difference between 2 angles, conversion of vector from u,v components to range, theta cofnponents,
etc.) Many of the functions are overloaded and can take 2 point arguments as either a pair of SKCoord
objects or as a set of 4 floats (xI, yI) and (x2, y2). Consult individual function descriptions to see which
functions are overloaded and which overloaded versions are available. ;

4.2 Conventions |

Throughout the CSKETCH analytic geometry functions, frequent use o;f an enumerated type, the SKAngle-
Convention type, is made. This enumerated type takes on one of two values, SK_MATH_CONVENTION
and SK_METEO_CONVENTION. The type is used to indicate whether supplied / returned values are con-
sidered specified in the mathematical convention (0 degrees = ‘east’, w]ith angles increasing in the clock-
wise sense) or in the metorological or ‘compass’ convention (0 degrees = ‘north’, with angles increasing in
the counterclockwise sense). Any function which depends on the systém of angle measurement will
always require an argument specifying the convention used for angle convention. As an exarple, consider
the function SKComponentsToVector(), with a u-component of 1.0 and a2 v-component of 0.0. Thus the
vector (u,v) represents a vector with direction due east and magnitude 15.0. In the meteorological sense, the
vector components are (1, theta) = (1.0, 90.0). In the mathematical sense, the vector comporients are (T,
theta) = (1.0, 0.0). The calling statements would appear as follows:

// Meteorological sense:

SKComponentsToVector(1.0, 90.0, direction, speed, SK_METEO_CO]\;/VENT 1ON);
[
|
|
|
// Mathematical sense: !

SKComponentsToVector(1.0, 0.0, direction, speed, SK_MATH_CONVENTION);

4.3 Functions

Analytic Geometry functions begin on the following page.

65

Name

Synopsis

Description

Returns

Example

See Also

Document
Revision Date

- SKAngle180Difference() = . |

SKAnglel80Difference()
Compute the difference between two angles, in the vector sense. The angles
are assumed to be 180 degrees ambiguous, e.g. an angle of 10 can be inter-
preted as 10 degrees or 190 degrees (this situatiorn. occurs frequently e.g. in
MIGFA). The minimum difference among all angle interpretations is
returned. i

#include <skanalyt.h> \

I

float SKAnglel80Difference(float angl, ﬂo:at ang2);

Function to compute the difference between 'two angles, angl and ang2, in the

vector sense. The angles are assumed to be 180 degrees ambiguous, e.g. an angle

of 10 can be interpreted as 10 degrees or 190 degrees (this situation occurs fre-
quently e.g. in MIGFA). This routine considers both interpretations of each sup-
plied angle and returns the minimum (vector) angle difference between them.

For example, if the first angle is 10 degrees (mterprete-d as 10 or 190) and the sec-

ond angle is 160 (interpreted as 160 or 340), the 180 degree ambiguous angle dif-

ference is 30 (interpreting the first angle as 10 and the second as 340, the vector

angle difference is 30 degrees). i

The difference in degrees between the supphéd, 180-degree ambiguous angles, in

the vector sense. The difference is returmed as a float.

#include <skanalyt.h>

i
int main(int argc, char *argv[]) i
{ |
float angl, ang?2, angDifference; i
angl = 10.0; ' i
ang?2 = 195.0; i
// 180-degree-ambiguous angle dzﬁerence in vector sense, will be 5.0
// degrees. |
angDifference = SKAngleDifference(angl, ang2);
/

SKAngleDifference()

3 August, 1998

67 j

Name

Synopsis

Description

Returns

Example

See Also

Document
Revision Date

skarr

':.:: SKAn (

SKAngleDifference()
Compute the difference between two angles, in the vector sense.

#include <skanalyt.h>

float SKAngleDifference(float angl, float ang?2);

Function to compute the difference between two angles, ang! and ang2, in the
vector sense. For example, if the two angles are 10 and 340 degrees, the angle
difference is 30 (i.e. the angle between two vectors, one at 10 degrees and the

other at 340 degrees, both based at the origin, is 30 degrees.).

The difference in degrees between the supplied angles, in the vector sense. The
difference is returned as a float.

#include <skanalyt.h>

int main(int argc, char *argv(])

{
float angl, ang2, angDifference;
angl = 35.5;
ang2 = 235.5;
// Angle difference, in vector sense, will be 160 degrees.
angDifference = SKAngleDifference(angl, ang2);
}
SKAnglel80Difference()

3 August, 1998

68

Name

Synopsis

Description

Returns

Example

See Also

SKComponentsToVector() \
Convert a vector specified by its x- and y- components toa magmtude and
direction. 4

#include <skanalyt.h> l

|
void SKComponentsToVector(float xComp, float yComp, float& direction,
Sfloat& speed, SKAngleConv;ention angleConvention);

Function to take a vector specified by its x- and y-cornponents, xComp and
yComp, and compute the direction and speed of the vector. The inputs direction
and speed are passed by reference and their contents are updated with'the direc-
tion and speed of the vector. The desired anéleConve'ntian for measuring the
direction must be specified, e.g. the vector (1 0) has direction 90.0 in the meteo-
rological sense but direction 0.0 in the mathematlcal sense. See the CSketch
Image Processing Library Tutorial descnptlon for details about the SKAngle-
Convention enumerated type. i

Input variables speed and direction, which were passed by reference, are updated
with the speed and direction of the supplied vector with components xComp and
yComp.

#include <skanalyt.h>

int main(int argc, char *argv(])

{
float xComp, yComp;

Jfloat direction, speed;

xComp = 5.0;
yComp = 0.0;

// Update direction and speed of vector, measured in meteorologzcal
// sense. l
SKComponentsToVector(xComp, yComp, direction, speed,

SK_. METEO CONVENTION);

/ |

SKVectorToComponents()

69 i

skarr

Document 3 August, 1998
Revision Date

70

Name

Synopsis

Description

Returns

Example

skarr

SKDirectionFrom() ‘
Return the direction from one specified point to another specified point, e.g.
the angle of the vector from pointl to point2. ‘

#include <skanalyt.h>

float SKDirectionFrom(SKCoordl pl, SKCoordl p2,
SKAngleConvention angleCo'nvention)

float SKDirectionFrom(float x1, float y1, ﬂloaz x2, float y2,
SKAngleConvention angleCcTnvention)

Functions to return the direction from the ﬁrs|‘t supplied point to the second sup-
plied point. The first overloaded version of this function supplies the two points
as two SKCoordl structures. The second ove'rloaded version supplies each point
via two float arguments (i.e. the first point is (x] yl) and the second point is (x2,

¥2)).

The SKCoordl structure is a simple structure: storing an X, y, and z-coordinate;
the first version of this function considers only the x and y coordinates of each
point and computes the direction from p1 to p2 in the x-y plane. Likewise, the
second version of this function computes the 'dlrectlon from the point (x1, yI) to
the point (x2, y2) in the x-y plane. I

For each version, the final argument is the desired angleConvention for measur-
ing the direction. This setting is important, e.g. the vector from (0.0) to (1,0) has
direction 90.0 in the meteorological sense but direction 0.0 in the mathematical
sense. See the CSKETCH Image Processing Library Tutorial description for
details about the SKAngleConvention enumerated type.

In all cases, the direction (in degrees) from pointl1 to point2 is returned as a float.
#include <skanalyt.h>

int main(int argc, char *argv([])
{
SKCoordl ptl, pt2;
float x1, yl1, x2, y2; l
float dirl, dir2;

// First overloaded version; direction in mathematical sense.

ptlx=0; ptly=0;
pi2.x=0; p2y=35;

71

skarr

dirl = SKDirectionFrom(ptl, pt2, SK_MATH_CONVENTION);

// Second overloaded version; direction in meteorologial sense.

x1 =0.0; yl=0.0;

x2=0.0; y2=50;

dir2 = SKDirectionFrom(x1, y1, x2, y2, SK_METEO_CONVENTION);

}

Document 3 August, 1998
Revision Date

72

Name

Synopsis

Description

Returns

Example

 SKDirectionMoved()

SKDirectionMoved()
Disambiguate a 180-degree ambiguous angle measurement based on the

direction of the vector from one point to a second point.

#include <skanalyt.h>

float SKDirectionMoved(SKCoordl p1, SKC'oordI P2, float dir,
SKAngleConvention angleConvention);
float SKDirectionMoved(float x1, float yl1, ﬂ'oat x2, float y2, float dir,

SKAngleConvention angleCo:nvention)

Functions to disambiguate a 180-degree mbiéuous angle measurement (the
input dir) based on the direction of the vector :from one point to a second point.
Specifically, given two points p/ and pZ2 in the|x-y plane, we compute the angle
of the vector from p! to p2. If this vector lies within 90 degrees (in the vector
sense) of the vector with angle dir, then we return the value of dir unchanged. If
the two vectors differ by more than 90 degree§, we return (dir + 180) (mod 360),
as (dir + 180) mod 360 will lie within 90 degrees of the vector from pI to p2 in
this case. ’

The first overloaded version of this function sxilpplies the two points as two
SKCoordl structures. The second overloaded version supplies each point via two
float arguments (i.e. the first point is (x1, yI) and the second point is (x2, y2)).
Note that at the time this function is called, an‘gleConventz'on should be set to the
correct convention in which dir was initially set or computed. See the
CSKETCH top-level library description for dlétails about the SKAngleConven-

tion enumerated type. ‘ '
In all cases, the disambiguated direction dir (i!n degrees) is returned as a float.
#include <skanalyt.h>

int main(int argc, char *argv[])
{

SKCoordl ptl, pt2;

float x1, y1, x2, y2;

float dirl, dir2; |

// First overloaded version; direction |in mathematical sense.
// 180 degree ambiguous measurement of 130 degrees (in math sense)

// will be disambiguated to 310 degrees in this case.

73

skarr

ptlx=0; ptly=0;
p2x=0; pt2y=35;
dirl = SKDirectionMoved(ptl, pt2, SK_MATH_ CONVENT TON),

// Second overloaded version; direction in meteorologial sense.
// 180 degree ambiguous measurement of 130 degrees (in meteo sense)
// will be disambiguated to 130 degrees (i.e. unchanged) in this case.
xI=0.0; yl=00;
x2=0.0; y2=250;
dir2 = SKDirectionMoved(x1, y1, x2, y2,
SK_METEO_CONVENTION);
}

Document 3 August, 1998
Revision Date

74

Name

Synopsis

Description

Returns

Example

Document
Revision Date

SKDlstanceBetween()

SKDistanceBetween() |
Functions to compute the distance between 2 points in the x-y plane.

#include <skanalyt.h>
|

float SKDistanceBetween(SKCoordl pl, SI;(CoordI p2);

float SKDistanceBetween(float x1, float y],' float x2, float y2);

Functions to compute the distance betweend two points p1 and p2 in the X-y
plane. The first overloaded version of this furiction takes the two point arguments
as SKCoordl structures; the second overloaded version takes the two points spec-
ified by their (%, y) coordinates (i.e. the first pomt has coordinates (x/, y/) and
the second point has coordinates (x2, y2)). Both versions simply compute the
distance in the x-y plane between the 2 supplied points and return this distance as
a float.

The distance between the 2 supplied points, as a float.

#include <skanalyt.h>

|

int main(int argc, char *argv[])
{
SKCoordl ptl, pt2;
float x1, y1, x2, y2, distance;

// First overloaded version. |
ptlx=3; ptly=0;
pt2x=0; p2y=4;
distance = SKDistanceBetween(ptl,|pt2);

// Second overloaded version.
xI1 =30, yl=0.0;
x2=0.0; y2=4.0;
distance = SKDistanceBetween(x1, y1, x2, y2);

3 August, 1998

Name

Synopsis

Description

Returns

Example

skarr

'SKDistanceMoved() =~

SKDistanceMoved()
Functions to take 2 points pl and p2, and a direction dir, and compute the
distance travelled along direction dir in travelling from p1 to p2.

#include <skanalyt.h>

float SKDistanceMoved(SKCoordl p1, SKCoordl p2, float dir,
SKAngleConvention angleConvention);

float SKDistanceMoved(float x1, float y1, float x2, float y2, float dir,
SKAngleConvention angleConvention);

Functions to take 2 points p1 and p2 and compute the distance travelled along
direction dir in travelling from p1 to p2. This is the length of the projection of
the vector from pt1 to pt2 onto the line through ptl with direction "dir". This is
equivalent to computing the distance from p2 to the line thru pl with direction
perpendicular to the supplied direction dir. We must supply an angleConvention
parameter as this distance is different for different angle conventions (for
example, a mathematical dir of 150 will generally yield a different result than a
meteorological dir of 150).

Note the required distance is more easily computed as the length of the projection
of the vector from p1 to p2 onto a unit vector of direction dir. The equivalent
computation described above was the method used in the original SKETCH sys-
tem and is the method described in the SKE Library description document, so
was used here. The 2 methods lead to equivalent formulas.

The first overloaded version of this function takes the two point arguments as
SKCoordl structures; the second overloaded version takes the two points speci-
fied by their (x, y) coordinates (i.e. the first point has coordinates (x/, yI) and the
second point has coordinates (x2, y2)). Both versions simply compute the dis-
tance described in the paragraph above and return this distance as a float.

The distance travelled along direction dir, when moving from the first supplied
point to the second supplied point. This distance is returned as a float.

#include <skanalyt.h>

int main(int argc, char *argv(])
{
SKCoordl ptl, pt2;
float x1, y1, x2, y2;
floar dirl, dir2, distl, dist2;

76

Document
Revision Date

J; i

// First overloaded version; direction in mathematical sense.

ptl.x=0; ptly=0;
p2.x=0; pt2y=>5;
dirl = 40.0;

1

dir]l = SKDistanceMoved(ptl, pt2, dirl, SK_MATH_CONVENTION);

.‘ 3 .
// Second overloaded version; direction in meteorological sense.
]

x1=00; y1=00;

x2=00;, y2=25.0;

dir2 = 50.0;

dist2 = SKDistanceMoved(x1, y1, x2|, y2,
SK_METEO_CONVENTION);

17 July, 2002

71

Name

Synopsis

Description

Returns

Example

Document
Revision Date

skarr

SKExternalAngle()
Function to compute the external angle (in degrees) of two intersecting line
segments determined by three points. The second of the three points is consid-
ered the intersection point of the 2 line segments.

#include <skanalyt.h>
Sfloat SKExternalAngle(SKCoordl pt0, SKCoordl ptl, SKCoordl pt2)

Function to compute the external angle (in degrees) of two intersecting line seg-
ments determined by three points, p0, p1, and p2. The point p! is considered the
middle point, i.e. we take the line segments from p0 to p! and p2 to pI and com-
pute the external angle determined by these. Angle convention is not applicable
bere (e.g. a vector at 45 degrees in any system, intersecting a vector at 150
degrees in any system, will always have an external angle of 255 degrees).

The external angle determined by the three points; this angle (expressed in
degrees) is returned as a float.

#include <skanalyt.h>

int main(int argc, char *argv[])

{
SKCoordl p0, pl, p2;
float externalAngle;
pO0.x=0; pOy=0;
plx=0; ply=1;
p2x=1;, p2y=0;

// The three points determine an external angle of 315 degrees.
externalAngle = SKExternalAngle(p0, pl, p2);

3 August, 1998

78

. ‘SKFlipDirection() = =

Name SKFlipDirection()
Function to flip an input direction by 180 degrees. Makes sure the returned
direction lies between 0 and 360.
Synopsis #include <skanalyt.h>
Sfloat SKFlipDirection(float dir)

Description Function to flip an input direction by 180 degrees. Makes sure the returned direc-
tion lies between 0 and 360.

Returns The flipped direction, returned as a float.

Example #include <skanalyt.h>

int main(int argc, char *argv[])

{ |
float flippedDir; l
|

// 30 degrees flips to 210; 210 to 30 (%wt 490).
SflippedDir = SKFlipDirection(30.0);
flippedDir = SKFlipDirection(210.0|);

Document 3 August, 1998
Revision Date

79

Name

Synopsis

Description

Returns

Note

Example

skarr

SKintersectionOfVectors()
Function to take two rays (each specified by a base point point and a direc-
tion) and determine whether the two rays are converging.

#include <skanalyt.h>

short SKIntersectionOfVectors(SKCoordl p0, float direction0,
SKCoordl pl, float directionl,
SKAngleConvention angleConv);

Function to take two rays (each specified by a base point point and a direction)
and determine whether the two rays are converging (i.e. determine whether the
rays determined by propagating the base points forward only along the appropri-
ate directions will intersect). Since this function calls several other analytic
geometry functions which require an SKAngleConvention indicator, one must be
supplied to this function. It is assumed that direction0 and directionl were both
measured with the corresponding angle convention.

A short with value 1 if the rays are converging, O if they are not.

This routine attempts to handle "ill-conditioned" problems, e.g. when the rays are
very nearly parallel, when two rays are "chasing" each other, etc. Consult the in-
line documentation for details of these degenerate cases.

#include <skanalyt.h>

int main(int argc, char *argv(])
{

SKCoordl p0, pl1;

float dir0, dirl;

short intersecting;

// First ray based at (0,0), 30 degrees (math convention).
pOx=0; pOy=0; dir0=30.0;

// Second ray at (1,0), 340 degrees (math convention).
plx=1; ply=0; dirl =340.0;

// Are the rays converging?
intersecting = SKintersectionOfVectors(p0, dir0, pl, dirl,

80

Document
Revision Date

17 July, 2002

SK_MATH_CONVENTION)

81

Name

Synopsis

Description

Returns

Example

Document
Revision Date

skarr

SKPointApproachingLocation()
Function to determine whether the point at locl, travelling with the specified
direction, is approaching or receding from the point at loc2.

#include <skanalyt.h>

bool SKPointApproachingLocation(SKCoordl locl, SKCoordlI loc2, float dir,
SKAngleConvention angleConvention);

This function determines whether the point at loc/, travelling with direction
direction, is approaching or receding from the point at loc2. It is approaching if
the angle of the vector from loc! to loc2 is within 90 degrees of direction, other-
wise it is receding. This function needs the angleConvention variable as it calls
SKDirectionFrom(), which returns different results according to the angle mea-
suring scheme. It is assumed that direction was initially measured with the
scheme indicated by angleConvention.

Returns boolean TRUE if the first point is approaching the second point, other-
wise FALSE.

#include <skanalyt.h>

int main(int argc, char *argv(])

{ .

SKCoordl locl, loc2;

float dir;

bool approaching;

// First point at (1, 1) moving with direction 35 degrees (mathematical

// sense). Second point at (2, 1).

loclx=1; locly=1; dir = 35.0;

loc2x=2; loc2y=1;

// Is first point approaching second location?

approaching = SKPointApproachingLocation(locl, loc2, dir,

SK_MATH_CONVENTION);

/

4 August, 1998

82

- skarr

Name SKTranslateXYPosition()
Function to take an input point (pixel), and translate the point in a supplied
direction by a supplied distance. :

Synopsis #indude <skanalyt.h>
SKCoordl SKTranslateXYPosition(SKCoordl point, float dir, float dist,
SKAngleConvention angleConvention);

Description Function to take an input point (pixel), and translate the point in a supplied direc-
tion by a supplied distance. Returns the translated pixel (integer coordinates) in
an SKCoordI structure. !

|
Returns Returns the translated pixel (integer coordina‘tes) in an SKCoordlI structure.
Example #include <skanalyt.h>

!

|

int main(int argc, char *argv([]) i
{ .

|

SKCoordl point, translatedPoint; |

. . . |

float direction, distance; q

‘ |

|

|

// First point at (1, 1) moving with direction 35 degrees (meteorological

// sense). ‘

|
point.x = I; point.y = I; direction = 35.0;

// Translate the point thru a distance!of 11.4 pixels. Qutput will be

// truncated to integer values to give a true pixel coordinate.

distance = 11.4; |

translatedPoint = SKTranslateXYPosition(point, direction,
distance, SK_METEO_CONVENTION);

Document 4 August, 1998
Revision Date

|
|
!
|
|
|
!
|
|
|
|
83 i
i
[

Name

Synopsis

Description

Returns

Example

.

See Also

Document
Revision Date

skarr

SKVectorToComponents()
Convert a vector specified by its magnitude and direction to its x- and y-com-
ponents.

#include <skanalyt.h>

SKCoordF SKVectorToComponents(float theta, float range,
SKAngleConvention angleConvention);

Given a vector in (range, theta) format, convert it to its (x, y) components. Must
account for whether theta was measured in the mathematical sense or the meteo-
rological sense (as indicated by the angleConvention argument).

The equivalent vector expressed as (floating-point) x- and y-components. The
result is returned as an SKCoordF structure.

#include <skanalyt.h>

int main(int argc, char *argv(])
{
float theta, range;
SKCoordF components;
theta = 30.0;
range = 5.0;

// Given a vector with magnitude 5.0 and direction 30.0 degrees (in the
// meteorological sense), find the x- and y-components of the vector.

components = SKVectorToComponents(theta, range,
SK_METEO_CONVENTION);

SKComponentsToVector()

4 August, 1998

84

5. Array Arithmetic

5.1 Summary

[
'

CSKETCH array arithmetic functions. Some common array arithmetic functions such as Min(), | Max(),
and Magnitude() of the elements of an SKArray. Also includes more complex functions such as ‘SKMedz-
anFilter() and SkLsgDerivFilter(). Note that other common arithmetic functlons which are encoded as
C++ operators are discussed in the SKArray class description., elsewhere in this document. Such arith-

metic operators include +, +=, -, -=,etc.
l

5.2 Functions

Array Arithmetic functions begin on the following page.

85

Name

Synopsis

Description

Returns

Document
Revision Date

 Magnitude()
Magnitude()
Function to return a new SKArray containing the pixelwise magnitudes of the
vectors stored in input SKArrays xVec and yVec.

#include <skarrayarith.h>

SKArray<float> Magnitude(SKArray<float>& xVec, SKArray<float>& yVec);

Function to return 2 new SKArray containing the pixelwise magnitudes of the
vectors stored in input SKArrays xVec and yVec. The input arrays xVec and yVec
are considered to be holding x and y components of an array of vectors; e.g. the
vector at pixel (12, 15) has x-component = xVec(12, 15) and y-component =
yVec(12, 15). The magnitude at each pixel is;the square root of the x-component
squared plus the y-component squared. This|function first checks to see if the
input arrays xVec and yVec are equal in dimension, size, and stride.

An SKArray<float> which stores the pixelwise magnitudes of all the vectors
with x-components stored in xVec and y-components stored in yVec.
|

5 August, 1998

87

Name

Synopsis

Description

skarr

Max() .

Max()
Functions to return one of more new or edited SKArrays containing the pixel-
wise maximum values of a pair of SKArrays. See documentation below for
further elaboration on this overloaded function.

#include <skarrayarith.h>

template<class T>
SKArray<T> Max(SKArray<T>& inl, SKArray<T>& in2, int anyNILIsNIL);
template<class T>
void Max(SKArray<T> *inl, SKArray<T>& in2,
SKArray<T> *in3, SKArray<T>& in4,int anyNILISNIL);

The 2-array version of Max() works as follows. A new SKArray of the same type
as the 2 input arrays is created. That array will contain the pixelwise maximum
values of the 2 input arrays. The anyNILIsNIL flag controls how NIL values in
either input is handled. If anyNILIsNIL == 1 (TRUE), then if either of the pixels
is NVIL, the result is NIL. If anyNILIsNIL == 0 (FALLSE), and the pixel from the
first input is NIL, then the value of the corresponding comparison pixel is copied
to the output SKArray (this pixel value may itself be NIL). If neither comparison
pixel in NIL, then the output pixel is simply the maximum of the 2 compared pix-
els.

The 4-array version of Max() returns two modified arrays whose contents are
adjusted as follows. Refer to the documentation of the 2-array version of Max()
described above. The 4-array version of Max() handles its first 2 input arrays
exactly as the 2-array version of Max() handles its 2 input arrays, with the excep-
tion that in the 4-array version the first input (inl) is overwritten with

maximum values (or nil’s, which may occur at some pixels). In the 2-array ver-
sion, 2 new output array was created so none of the inputs are edited. The any-
NILIsNIL flag serves exactly the same purpose for this comparison as it served in
the 2-array version.

In addition to the editing of in/, the "companion"” array in3 may also be edited
according to the values of in4. However, any editing of in3 is controlled by the
results of comparing-inl- pixels to in2 pixels. The bottom line of the editing pro-
cess is:

(1) If the pixel at inl is unchanged, then the corresponding pixel in in3 is also
unchanged.
(2) If the pixel in inl is set directly to NIL (because of the anyNILIsNIL flag).
then the corresponding pixel in in3 is also set directly to NIL.

88

Returns

Warning

Document
Revision Date

(3) If the pixel in inl is overwritten with the corresponding pixel of in2, then the
corresponding pixel in in3 is also overwritten with the corresponding pixel in
in4. Note in this case, the result pixel could be NIL in none, one, or both of
inl and in3; this depends solely on the values of in2 and in4 which \}vere used
for the overwriting process.

The input arrays inl and in3 are edited as desc-fribed above.

1
The 4-array version of Max() edits the input al:'rays inl and in3; this is different
from the behavior of the 2-array version of Max(), which does not edit any of its
inputs. '

|

6 August, 1998

&9 !

Name

Synopsis

Description

Returns

Document
Revision Date

CMinQ)

Min()
Function to return a new SKArray containing the pixelwise minimum values
of a pair of input SKArrays.

#include <skarrayarith.h>

template<class T>
SKArray<T> Min(SKArray<T>& inl, SKArray<T>& in2, int anyNILIsNIL);

Function to return a new SKArray containing the pixelwise minimum values of a
pair of input SKArrays. This global function assumes that arrays in/ and in2 are
the same size arrays. That is, the number of dimensions is equal, and each
dimension's sizes and steps are equal. This stipulation must hold since the pur-
pose of the function is to compare each element in array in! to each element in
array in2 and find the minimum at each pixel.

An SKArray which stores the pixelwise minimum values of the two input SKAr-
rays inl and in2. The returned SKArray has the same data type as the two input
arrays (which must have the same type themselves, e.g. both inputs are float
SKArrays, or both are integer SKArrays, etc.)

The Boolean input anyNILIsNIL controls how NIL values are handled. If
anyNILIsNIL = 1 (TRUE), then if either of the pixels is NIL, the result is NIL. If
anyNILIsNIL == 0 (FALSE), and the value at a particular pixel in the first input
in1 is NIL, then the value of the corresponding comparison pixel from in2 is
stored in the output array (this value may itself be NIL).

5 August, 1998

90

Name

Synopsis

Description

Returns

Document
Revision Date

SK CopyMaskedEIements()

SKCopyMaskedElements() l
Copy values from one SKArray to another SKArray, at pixel locatzons where a
third ‘mask’ array has value equal to some prescribed value.

#include <skarrayarith.h> '

|
template <class T> i
void SKCopyMaskedElements(SKArray<T>& output, SKArray<T>& input,

SKArray<short>& mask, short maskValue /* = 1%/)‘;

|

|
This function loops simultaneously over the input, output, and mask arrays. At
pixels where the value in the mask array is equal to maskValue, the corresponding
pixel value in input is copied to the corresponding location in ousput. The
maskValue is an optional argument -- if no value is supplied for it in the call to
SKCopyMaskedElements(), it defaults to 1. i

The modified ourpur array. Pixels in the outpht array are set equal to the corre-
sponding pixel values in the input array, at locations where the mask array has

value equal to the maskValue.

5 August, 1998

91

Name

Synopsis

Description

Returns

Warning

See Also

Document
~ Revision Date

skarr

X

SKDerivativeFilter()
Compute a one-dimensional numerical derivative over a specified window
length at all pixels in an input SKArray.

#include <skarrayarith.h>

template <class T>
SKArray<float> SKDerivativeFilter(SKArray<T>& input, short dimension,
short windowWidth);

CSKETCH Derivative Filter function. For each applicable pixel in input, com-
putes a numerical derivative of the data in the array, using a window of width
windowWidth in dimension specified by dimension. Output array is shortened by
(windowWidth - 1) in the dimension of the filtering. This function is no longer
frequently used since the writing of SKLsqDerivFilter(), because the least-
squares filter can handle missing data values in the input; SKDerivativeFilter()
cannot handle missing values, i.e. there must be no il pixels in the input array to
this function. See the in-line source documentation for further discussion of this
function.

A float SKArray which stores the pixelwise derivatives of the input data array.
This function cannot handle nil values in its input array; thus if the function is to
be used, the developer must make sure that the supplied input does not have any
nil values.

SKLsgDerivFilter()

5 August, 1998

92

Name

Synopsis

Description

Returns

See Also

Document
Revision Date

SKDivideByElements() |
Function to return an array that has each element set to the quotient of the
corresponding numerator array element dzvzded by the denominator array
element. i

#include <skarrayarith.h>

template <class T> |
SKArray<T> SKDivideByElements(SKArray<T>& num, SKArray<T>& den);

Global function to return an array that has each element set to the quotient of the
corresponding numerator array element dividéed by the denominator array ele-
ment. If either of the numerator or denominator pixel is ril, or if the denominator
pixel is O, then the corresponding output pixel] is also nil.

An SKArray which is the same type (float, mt etc.) as the input nurm and den
SKArrays, which must themselves be of the same type.

|
SKArray<T>& SKArray<T>::operator /= (T) (scalar division operator for
SKArrays; divides each element of the array by the right-hand side scalar).

l

6 August, 1998 i

93

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

skarr

SKFirstDerivativeSum()
Function which calls SKDerivativeFilter and then SKSumFilter so that a
given pixel in the output image stores the sum of the first derivatives of points
within a small window of the corresponding pixel in the input image.

#include <skarrayarith.h>

SKArray<float> SKFirstDerivativeSum(SKArray<short>& input,
short dimension, short windowWidth);

CSKETCH First Derivative Sum Filter function. Calls SKDerivativeFilter()

and then SKSumfFilter() so that a given pixel in the output image stores the sum of
the derivatives of points within a small window of the corresponding pixel in the
input image.

Since both the derivative filter and the sum filter produce a "shorter" output
image in the direction of the filtering, this routine first creates an expanded image
(expanded by 2 * (windowWidth - 1) in the direction of the filtering). The
expanded array has its margin filled in via the SKArray class member function
SKArray<T>::Mirror(). Since each filter operation shortens the output by
windowWidth - 1 in the filter direction, the output image of the full SKFirstDeriv-
ativeSum() operation is sized the same as the original input.

A float SKArray which stores the pixelwise first derivative sums of the input data
array.

This function cannot handle #nil values in its input array, as it calls SKDerivative-
Filter() and SKSumFilter(), which both cannot handle ril values. Thus if the

function is to be used, the developer must make sure that the supplied input does
not have any #zil values.

SKDerivativeFilter(), SKSumFilter(), SKArray<T>::Mirror(),
SKLsqDerivFilter()

7 August, 1998

94

Name

Synopsis

Description

Returns

See Also

Document
Revision Date

1
|

- SKLsqDerivFilter()

SKLsqDerivFilter()
Compute a one-dimensional numerical derivative over a specified window
length at all pixels in an input SKArray, using a least-squares method.

#include <skarrayarith.h> ,"
f
template <class T> i
SKArray<float> SKLsqDerivFilter(SKArrayi<T>& input, short dimension,
short windowHalfWidthX, short windowHalfWidthY,
float minGoodFraction, float minCorrelation);

CSKETCH Least Squares Derivative Filter Function. For each pixel of the input
image, a window whose half-widths are windowHalfWidthX and windowHalf-
WidthY is used to determine the derivative alolng the specified dimension. The
size of the window is reduced symmetrically near the edges, so that the output
image is the same size as the input image. Tﬁe input minGoodFraction specifies
the minimum fraction of valid (i.e. non-ril) pi!xels in a window to return a non-nil
value for the pixel currently being processed.! In particular, this function can han-
dle nil values in the input image; the SKDerivativeFilter() function cannot. The
input minCorrelation specifies the minimum correlation coefficient to return a

non-nil value.

A float SKArray which stores the pixelwise derivatives of the input data array,
obtained using the least-squares method.

SKDerivativeFilter() !

6 August, 1998

Name

Synopsis

Description

Returns

Document
Revision Date

skarr

SKMedianFilter()
SKArray median filter function.

#include <skarrayarith.h>

template <class T>
SKArray<T> SKMedianFilter(SKArray<T>& input, short winX, short win},
float fraction, SKPadOp padOp)

CSKETCH median filter function. A 2-D window (window half sizes are winX
and winY) is centered on each pixel of the input image. All values that fall within
this window are added to an array. The array is then sorted. The "middle" element
of the array is used to determine the median value that is placed in the corre-
sponding element of the output array. Nil pixels are ignored, but a specified frac-
tion of the pixels within the window must be non-nil in order for the output image
to have a non-nil value at the corresponding pixel. The input SKArray is
expected to be NON-PADDED. Padding is done internally via the specified
padOp. See documentation for the helper class SKArrayPad for a full description
of supported padding options.

A new SKArray of the same type as the input array; each element of the output
array is the median of a 2D window of data centered at the corresponding pixel in

the input array.

6 August, 1998

96

| SKScaleArrayToBounds() -

Name SKScaleArrayToBounds()
Function to take an input array and scale a copy of the array to a speczﬁed
range. |

Synopsis #include <skarrayarith.h>

template <class T, class V>
SKArray<T> SKScaleArrayToBounds(SKArray<T>& inl, short num_bins,
Vh‘zgh View)

Description Function to take an input array inl and scale a copy of the array to a specified
range. Specifically, the number of (integer) bins, num_bins, for the output array
is passed in, as are high and low bounds for tpe scaling. Original input pixels
which are less than the low bound are set to zero in the output; input pixels which
are greater than the high bound are set to (num_bins - 1); input pixels between
low bound and high bound are ramped linearly from 0 to (num_bins - 1) (and
converted to the correct output type <T>). Nlote that this function is doubly-tem—
platized; the output array of type SKArray<T> is an SKArray of the same data
type (T) as the input inl, while the high and law bounds for the scaling may be of
a different data type (V). For example, one could specify float values for the low

and high boundaries even when scaling an SKArray of type short.
Returns The scaled SKArray, which has the same data type as the inl input SKArray.

Document 6 August, 1998
Revision Date !

97

Name

Synopsis

Description

Returns

Warning

Document
Revision Date

skarr

SKSumFilter()
For each pixel in an input SKArray, compute a one-dimensional sum of pixel-
values over a specified window length; results stored in an output SKArray.

#include <skarrayarith.h>

template<class T>
SKArray<T> SKSumFilter(SKArray<T>& input, short dimension,
short windowWidth);

CSKETCH Sum Filter function. For each applicable pixel in input, computes a
sum of the data in the array, over a window of width windowWidth in dimension
specified by dimension. Output array is shortened by (windowWidth - 1) in the
dimension of the filtering. This function cannot handle missing data values in the
input, i.e. there must be no nil pixels in the input array. See the in-line source
documentation for further discussion of this function.

An SKArray of the same type as the input SKArray, which stores the pixelwise
window sums of the input data array.

This function cannot handle nil values in its input array; thus if the function is to
be used, the developer must make sure that the supplied input does not have any

nil values.

6 August, 1998

98

6. Fuzzy Sets

6.1 Summary

This section includes various CSKETCH utilities for fuzzy logic applic

ations. Most of the funcltions in
) to 1.0. Examples are SKRisin-

this section are simple functions whose graph lies in the range from 0.(
gRamp() and SKFallingRamp(), which rise (respectively fall) from 0.0

to 1.0 (resp 1.0 t0 0.0) over a speci-

fied x range. The functions are typically used to generate weights with value between 0.0 and 1.0, to be

used in computing various weighted averages used by the algorithms.
SKFuzzyWeightedAverage(), which is used to compute a fuzzy weighte:
tation for class SKFuzzyFunc for further elaboration.

6.2 Functions

Fuzzy logic functions begin on the following page.

99

In addition, this function contains
4 average of images. See documen-

' skarr

 SKFallingRamp()

Name SKFallingRamp()
Compute a particular value of a function whose graph is a ‘falling ramp’.
Given a single input x-value, the corresponding y-value on the graph is com-
puted and returned. «

Synopsis #include <skfuzzysets.h>
float SKFallingRamp(float xvalue, float *mﬂ ectionPoints);

Description Function whose graph is a ‘falling ramp’. The inflectionPoints argument speci-
fies two points on the x-axis, namely x0 and x1. For points x with x < x0, the cor-
responding y-value is 1.0. When x > x1 the ykvalue is 0.0. From x =x0tox =x1
the graph is an decreasing straight line, going from the point (x0, 1.0) to,(x1, 0.0).
Given the input x = xvalue, the corresponding yvalue on the graph of this func-
tion is computed and returned.

Returns Given the input x = xvalue, the corresponding yvalue on the graph of this func-
tion is computed and returned.
Example #include <skfuzzysets.h>
int main(int argc, char *argv([])
{
float infPts[2], y; I
!
// Falling ramp falls from y=1 at x=0 to y=0 at x=5.
infPts{0] = O; infPts[1] = 5;
// Compute y-values at x = -1, 0.5, and 10
y = SKFallingRamp(-1.0, infPts); |
y = SKFallingRamp(0.5, infPts);
y= SKFallingRam_p(10.0, infPts);
}
Document 6 August, 1998

Revision Date i

101 ;

Name

Synopsis

Description

Returns

Example

See Also

skarr

SKFallingS()
Compute a particular value of a function whose graph is a ‘falling S’. Given
a single input x-value, the corresponding y-value on the graph is computed
and returned.

#include <skfuzzysets.h>

float SKFallingS(float xvalue, float *inflectionPoints);

Function whose graph is a ‘falling S’. The inflectionPoints argument specifies

_ three points on the x-axis, namely x0, x1, and x2. For points x with x < x0, the

corresponding y-value is 1.0. When x > x2 the y-value is 0.0. From x = x0

to x = x1 the graph is a downwards parabola; the value at x = x1 is 0.5. Fromx =
x1 to x = x2 the graph is an upwards parabola; the value at x = x1 is again 0.5 for
continuity, while the value at x = x2 is 0.0. Thus from x = x0 to x = x2 the graph
resembles a reverse letter ‘s’.Given the input x = xvalue, the corresponding
yvalue on the graph of this function is computed and returned.

This function is computed simply as 1.0 - SKRisingS(xvalue, inflectionPoints),

Given the input X = xvalue, the corresponding yvalue on the graph of this func-
tion is computed and returned.

#include <skfuzzysets.h>

int main(int argc, char *argv(])
{
float infPts[3], y;

// Falling s falls from y=1 at x=0 to y=0 at x=5. The graph changes
// from a downwards parabola to an upwards parabola at x = 2.

infPts[0] = 0.0; infPts[1] = 2.0; infPts{2] = 5.0;
// Compute y-values at x = -1, 0.5, and 10
y = SKFallingS(-1.0, infPts);

y = SKFallingS(0.5, infPts);
y = SKFallingS(10.0, infPts);

SKRisingS()

102

skarr

Document 17 July, 2002
Revision Date

103

Name

Synopsis

Description

Returns

See Also

Document
Revision Date

skarr

SKFuzzyWeightedAverage()
Function to return the fuzzy weighted average of an array of interest images.

#include <skfuzzyavg.h>

SKArray<short> SKFuzzyWeightedAverage(SKArray<short> *images(],
int numlmgs, SKFuzzyFunc<short,float> *weightFunc(]);

Function to return the fuzzy weighted average of an array of interest images.
There should be a corresponding fuzzy weight function in the weightFunc array
for each of the input images in images. Each pixel in each input image is
weighted by the corresponding weight function prior to averaging to find the out-
put value at that pixel. By using SKFuzzyFunc objects as the weighting func-
tions, we can in theory have a different weight at every pixel of the input image.
This differs e.g. from the averaging process in MIGFA which has only a choice of
2 weights at each pixel.

The weighted average of all the input SKArrays. This is returned as an SKAr-
ray<short>; values are converted to short after averaging by truncation.

SKAveragelnterestImages(), SKAveragelnterestlmagesExceptMin().

2 December, 1998

104

Name

Synopsis

Description

Returns

Example

Document
Revision Date

| SKRampPlateau) |

SKRampPlateau() »
Compute a particular value of a function whose graph is a ‘ramp plateau’.
Given a single input x-value, the corresponding y-value on the graph is com-
puted and returned. '

#include <skfuzzysets.h>

float SKRampPlateau(float xvalue, float *inflectionPoints);

|
Function whose graph is a ‘ramp plateau’. Tllle inflectionPoints arguments speci-
fies four points on the x-axis, namely x0, x1,)|(2 and x3. The y-value is zero
when x <= x0; y increases linearly from 0.0 to 1.0 for x0 <= x < x1; the graph
then plateaus, i.e. y is always = 1.0 for x1 <= X < x2; the graph then ramps down
linearly to 0.0 for x2 <= x < x3; and finally the graph is zero when x >= x3. Given
the input x = xvalue, the corresponding yvalue on the graph of this function is
computed and returned. |

Given the input x = xvalue, the correspondingi yvalue on the graph of this func-

tion is computed and returned. i

#include <skfuzzysets.h>

int main(int argc, char *argv[])

{

float infPts[4], y; ,
|
1
// Ramp plateau rises from y=0 at x=0 to y=1 at x=5; it plateaus
//(i.e.y =1) from x=5 to x=7; then falls linearly to y=0 ar x=10.

infP1s[0] = 0; infPts[1] = 5; infPts[2] = 7; infPts[3] = 10;
|

// Compute y-values at x = -1, 0.5, and 10
y = SKRampPlateau(-1.0, infPts);
y = SKRampPlateau(0.5, infPts);
y = SKRampPlateau(10.0, infPts);
} !

17 July, 2002

105 i

Name

Synopsis

Description

Returns

Example

Document
Revision Date

skarr

SKRisingRamp()
Compute a particular value of a function whose graph is a ‘rising ramp’.
Given a single input x-value, the corresponding y-value on the graph is com-
puted and returned.

#include <skfuzzysets.h>
float SKRisingRamp(float xvalue, float *inflectionPoints);

Function whose graph is a ‘rising ramp’. The inflectionPoints argument specifies
two points on the x-axis, namely x0 and x1. For points x with x < x0, the corre-
sponding y-value is 0. When x > x1 the y-value is 1.0. From x =x0to x =x1 the
graph is an increasing straight line, going from the point (x0, 0.0) to (x1, 1.0).
Given the input x = xvalue, the corresponding yvalue on the graph of this func-
tion is computed and returned.

Given the input x = xvalue, the corresponding yvalue on the graph of this func-
tion is computed and returned.

#include <skfuzzysets.h>

int main(int argc, char *argv[])
{
float infPts[2], y;

// Rising ramp rises from y=0 at x=0 to y=1 at x=5.
infPts[0] = 0; infPts[1] = 5;

// Compute y-values at x = -1, 0.5, and 10

y = SKRisingRamp(-1.0, infPts);

y = SKRisingRamp(0.5, infPts);
y = SKRisingRamp(10.0, infPts);

6 August, 1998

106

skarr

Name SKRisingS()
Compute a particular value of a function whose graph is a ‘rising S’. Givena
single input x-value, the corresponding y-value on the graph is computed and
returned. ‘

Synopsis #include <skfuzzysets.h>

Sfloat SKRisingS(float xvalue, float *inflectionPoints);

Description Function whose graph is a ‘rising S’. The inflectionPoints argument specifies
three points on the x-axis, namely x0, x1, and x2. For points x with x < X0, the
corresponding y-value is 0. When x > x2 the|y-value is 1.0. From x = x0
to x = x1 the graph is an upwards parabola; the value at x = x1 is 0.5. From x =
x1 to x = x2 the graph is a downwards parabola; the value at x = x1 is again 0.5
for continuity, while the value at x = x2 is ld Thus from x = x0 to x = x2 the
graph resembles a letter ‘s’. Given the input :x = xvalue, the corresponding
yvalue on the graph of this function is computed and returned.

Returns Given the input x = xvalue, the corresponding yvalue on the graph of this func-
tion is computed and returned.
Example #include <skfuzzysets.h>
int main(int argc, char *argv[])
{
float infPts[3], y;
// Rising s rises from y=0 at x=0 to y=1 at x=5. The graph changes
// from an upwards parabola to a downwards parabola at x = 2.
infPts[0] = 0.0; infPts[1] = 2.0; infPts[2] = 5.0;
// Compute y-values at x = -1, 0.5, and 10
vy = SKRisingS(-1.0, infPts);
y = SKRisingS(0.5, infPts);
y = SKRisingS(10.0, infPts);
}
Document 6 August, 1998
Revision Date

107 |

Name

Synopsis

Description

Returns

Example

See Also

Document
Revision Date

skarr

SKSPlateau()
Compute a particular value of a function whose graph is an ‘s plateau’.
Given a single input x-value, the corresponding y-value on the graph is com-
puted and returned.

#include <skfuzzysets.h>
Sfloat SKSPlateau(float xvalue, float *inflectionPoints);

Function whose graph is an ‘s plateau’. The inflectionPoints argument specifies
six points are specified on the x-axis, namely x0, x1, x2, x3, x4, and x5. When
X < X2 the graph is the ‘rising s’ described by SKRisingS(xvalue, x0, x1, x2). At
x = x2 the graph plateaus, i.e. y = 1.0 for x2 <= x < x3. When x >= x3 the graph
is the ‘falling s’ described by SKFallingS(xvalue, x3, x4, x5). Given the input x =
xvalue, the corresponding yvalue on the graph of this function is computed and
returned.

Given the input X = xvalue, the corresponding yvalue on the graph of this func-
tion is computed and returned.

#include <skfuzzysets.h>

int main(int argc, char *argv([])

{
float infPts[6], y;
// Graph is a ‘rising s’ for 0 <=x <= 4; plateaus at y=1 from x=4 to
// x=5; and is a ‘falling s’ from x=5 to x=9.
infPts[0] = O; infPts{1] = 1; infPts[2] = 4;
infPts[3] = 5; infPts[4] = 8; infPts[5] = 9.
// Compute y-values at x = -1, 0.5, and 10
y = SKSPlateau(-1.0, infPts);
y = SKSPlateau(0.5, infPts);
y = SKSPlateau(10.0, infPts);

}

SKRisingS(), SKFallingS()

6 August, 1998

108

7.1 Summary

General image processing functions.

7.2 Functions

7. Image Processing

Image Processing functions begin on the following page.

109

Name

Synopsis

Description

Returns
Warning

Document
Revision Date

-‘SKConvolutionOf()

SKConvqutlonOf()

Routine to compute the ‘convolution’ of an input image and a kernel. In actu-
ality, what is computed is the convolution|of the input image with the matrix
whose (i,j) entry is the (-i, -J) entry of the kernel. By definition the true convo-
lution of an image with a kernel at pixel (i Lj) is Sum(k) Sum(l) ((image(i+k,
Jj+l) * kernel(-k, -1)). So what is computed here is really the dot product of
the kernel with an equally-sized patch of the input image.

|

#include <skimageproc.h> :

{
SKArray<T> SKConvolutionOff SKArray<T>& inpu,
SKArray;<ﬂoat> &kernel);

| .
Routine to compute the ‘convolution’ of an input image and a kernel. In actual-
ity, what is computed is the convolution of the the image with the matrix whose
(i,j) entry is the (i, -j) entry of the kernel. By definition the true convolution of

an image with a kernel at pixel (i,j) is |

1 -
v

Sum(k) Sum(l) ((image(i+k, j+1)) *kernel:(-k, -1)).

So what is computed here is really the dot prloduct of the kernel with an equally-
sized patch of the input image.

|
|
A new SKArray, the output convolved array. i
I
The sizes of the kernel are assumed to be odd an ‘assert’ will fail otherwise.

18 November, 1998

111

Name

Synopsis

Description

Returns

Note

Document
Revision Date

skarr

SKGaussianKernel()
Function to compute a (2-dimensional) Gaussian kernel.

#include <skimageproc.h>

SKArray<float> SKGaussianKernel(float xPeakWidth, float yPeakWidth,
float xOffset, float yOffset);

Function to compute a Gaussian kernel, with the peak widths specified by xPeak-
Width and yPeakWidth, and the peak location at xOffset and yOffset relative to the
center of the returned image.

A new SKArray, the 2D gaussian kernel.

Note that the x- and y-sizes of the returned kernel are not known at the time of the
call to this function. Rather, we first compute a cutoff value below which we
consider the kernel to have value 0. This is based on the constant
SK_GAUSS_INTEGRAL_OUTSIDE_KERNEL (nominally defined to be 0.01).
The ‘extent’ of the kernel can be computed based on this cutoff vale and the peak
widths. The idea is that the contribution to the infinite integral of the gaussian
surface over the region of the x-y plane outside the kernel extent should be less
than SK_GAUSS_INTEGRAL_OUTSIDE_KERNEL. Then we must add xOff-
set and yOffset to the kernel sizes to account for the shift of the peak away from
0, 0).

18 November, 1998

112

Name

Synopsis

Description

Returns

Note

SKMarkMissingOf()
Function to mark pixels as missing (i.e. set them to NIL) if too few pzxels ina
window surrounding the current pixel do not have values within a specxﬁed
range of the current pixel. |

|
|

#include <skimageproc.h> -

template<class T> I
T SKMarkMissingOff SKArray<T> & input, T *xPtr, void *args);

l
Function to mark pixels as missing (i.e. set them to NIL) if too few pixels in a
window surrounding the current pixel do not have values within a specified range
of the current pixel. Processing at a given output pixel is as follows:
A window of data is centered at the correspon,ding input pixel (which is pointed
to by xPtr). The args argument is a pointer to a structure of type SKMarkMissin-
gOfArgs which houses the 4 remaining arguments: a kernel (type SKAr-
ray<short> *) which represents the data window; two floats, the lowerRange and
upperRange for comparison to the center pixel of the window of data; and the
minValidCount (a short). A count is made of pixels within the window. which lie
in the range centerPixelValue + lowerRange 1:1p to centerPixelValue + upper-
Range (inclusive). Thus lowerRange must belless than, or equal to, upperRange.
If this count exceeds the supplied mmValdeount then the corresponding pixel in
the output image is set to the original center p1xel value of the input image. If the
count is too small, the corresponding output p!lxel is set to NIL.

The result of applying the ‘mark missing of” operation at the current pixel; e.g. if
xPtr corresponds to pixel (x1, y1) in the input image, then outputPixel will
be the value at (x1, y1) in the final output image. The outpurPixel will be NIL if
the input pixel was an outlier, otherwise it w111 be the original value of the input
pixel. i
i :
Note that this function only returns the output pixel for the pixel of the input
which is currently being processed. To perform the SKMarkMissing OR) function
at all locations inside an array, use the SKArrc:zy<T>: :Apply() member function.

|

Note that the center pixel of the window is N(:)T allowed to count towards the
number of pixels within range. For example, if the window is 3 by 3 and the min-
ValidCount is 4, then 4 of the eight non-central pixels must be within range.
Rather than adding an inefficient check to see iif the pixel currently being tested is
the center pixel, this routine simply incremenlts the minValidCount by 1; thus the

113

i
! |

™

See Also

Document
Revision Date

skarr

center pixel’s contribution is effectively thrown out (the center pixel value will
always be in range).

This function requires three additional args beyond the standard ‘Apply’ args;
namely the lowerRange, upperRange, and minValidCount. The kernel for the
function and the 3 additional args will be packed into a structure defined in skim-
ageproc.h. A pointer to the struct will then be cast to void* before the call to this
function, so that the ‘Apply’ function will work with this function.
SKArray<T>::Apply()

18 November, 1998

114

Name

Synopsis

Description

Returns

Warning

Document
Revision Date

SKShrinkArray()
Function to produce a shrunk version of a|given input array.

I

#include <skimageproc.h> !

|
template<class T> !
SKArray<T> SKShrinkArray(SKArray<T>& input,

short newXSlze short newYSize);

i
Function to produce a shrunk version of a giv:en input array. Each pixel in the
output image replaces all pixels contained in 2i1 rectangular subwindow of the
input image. The output pixel is the median value of the input pixels in the sub-
window. Note that this function copies scaling information from the input array
to the output array as the input’s data may have been scaled.

A new SKArray, the shrunk array. |

The specified newXSize and newYSize must di!vide exactly the X and Y sizes
(respectively) of the original input image, e.g..a 10-by-10 array may be shrunk to
a 5-by-5 or 5-by-2 but not a 3-by-3 or 3-by-5.! If the new sizes do not exactly
divide the original sizes, an ‘assert’ statement will fail.

18 November, 1998

|
I
H
!
|
|
1
{
{
|
I

115

8. General Mathematical Functions

8.1 Summary

General-purpose mathematical functions defined in CSKETCH, such as Abs(), Min(), Max(), etc. Also
includes some standard array mathematical functions such as SKArrayComputeMedian().

8.2 Functions

General purpose mathematical function descriptions begin on the following page.

117

Name

Synopsis

Description

Returns

Document
Revision Date

skarr

ABS()
Inline templatized function to return the absolute value of a single scalar
argument

#include <skmath.h>

template <class T>
inline TABS(Ta);

Inline templatized function to return the absolute value of a single scalar argu-
ment.

The absolute value of the supplied numerical argument. The returned value has
the same numerical type (float, int, etc.) as the supplied input.

7 August, 1998

119

Name MAX() :
Inline templatized function to return the maximum of two supplied scalar
arguments. The two arguments must have the same data type; if they do not,
cast one (or both) so the types agree. ‘

Synopsis #include <skmath.h>

template <class T> |
inline TMAX(Ta, Th); !

Description Inline templatized function to return the maximum of two supplied scalar argu-
ments. The two arguments must have the sanfle data type; if they do not, cast one
(or both) so the types agree. For example:

// Won’t compile, due to conflicting types:
float a = 1.0;
float b = MAX(a, 0);

/' Will compile because of casting:
float a = 1.0;
float b = MAX(a, (float) 0);

Returns The maximum of the two supplied arguments. The maximum is returned as the
same type (T) as the two input arguments. '

Document 10 August, 1998
Revision Date

120 i

Name

Synopsis

Description

Returns

Document
Revision Date

skarr

MIN()
Inline templatized function to return the minimum of two supplied scalar
arguments. The two arguments must have the same data type; if they do not,
cast one (or both) so the types agree.

#include <skmath.h>

template <class T>
inline TMIN(Ta, Th };

Inline templatized function to return the minimum of two supplied scalar argu-
ments. The two arguments must have the same data type; if they do not, cast one
(or both) so the types agree. For example:

// Won’t compile, due to conflicting types:
float a = 1.0;
float b = MIN(a, 0);

/I Will compile because of casting: '
float a = 1.0;
float b = MIN(a, (float) 0);

The minimum of the two supplied arguments. The minimum is returned as the
same type (T) as the two input arguments.

10 August, 1998

121

Name MOD()
Function to return a mod b, e.g. 8 mod 6 =| 2
Synopsis #include <skmath.h> i
float MOD(float a, float b); i
Description Function to return ‘a’ mod ‘b’, e.g 8 mod 6 = 2. Correctly handles negative num-

bers as well, e.g. -9 mod 4 = 3. The returned yalue lies in the range from O to b,
even when b is negative (e.g. 7 mod -4 = -1).

Returns The value of a mod b, returned as a float. |
|

Document 10 August, 1998
Revision Date

122

Name

Synopsis

Description

Returns

Document
Revision Date

skarr

CEEND LT

SGN() |
Inline templatized function to return the sign of a single supplied scaler.
Returns 1 if argument is >= 0.0, otherwise returns -1.

#include <skmath.h>

template <class T>
inline short SGN(T a)

Inline templatized function to return the sign of a single supplied scaler. Returns
1 if argument a is >= 0.0, otherwise returns -1.

The sign of the supplied argument. The value 1 or -1 is returned as the same type
(float, short, etc.) as the input argument.

10 August, 1998

123

Name

Synopsis

Description

Returns

Warning

Document
Revision Date

SKArrayComputeMean() S

SKArrayComputeMean()
Function to obtain the mean value of an array. Mean value is returned as a
float in all cases.

#include <skmath.h>

template<class T>
float SKArrayComputeMean(SKArray<T>&|input);

Function to obtain the mean value of the inpuz:‘ SKArray. The mean of the array is
the sum of all non-NIL pixels in the array divided by the number of non-NIL pix-
els. The mean is returned as a floating-point 1 number. If all pixels are NIL, the
returned mean is (float) NIL. !

I

l

|

The mean value of the array is returned as a fioat .

The function handles 1, 2, and 3D SKArrays. |

In cases where all input values are NIL, the funcnon returns the ﬂoatmg point
value of NIL, not the value of NIL correspondmg to the input array’s data type.
This is bacause the mean of a set of numbers is in general not a perfect integer so
should always be returned as a fioat.

10 August, 1998

124

Name

Synopsis

Description

Returns

Document
Revision Date

skarr

SKArrayComputeMedian()
Function to obtain the median value of an array. Median value is returned as
the same type (int, float, etc.) as the input SKArray.

#include <skmath.h>

template<cla.§s >
float SKArrayComputeMedian(SKArray<T>& input);

Templatized function to take an input SKArray and return the median of the non-
nil values in the current "slice" of the SKArray. If all pixels are NIL, the returned
median is the correct value of NIL for the type of data in the inpuz array.

Currently only handles 1D and 2D arrays.

The median value of the input array is returned, as the same type (int, float) etc.
as the inpur array.

17 August, 1998

125

Name

Synopsis

Description

Returns

Warning

Document
Revision Date

-skarr

SKArrayComputeStdDev() | .

SKArrayComputeStdDev() :
Overloaded functions to compute and return the standard deviation of the
non-nil values of an SKArray. The standard deviation is returned as a float in
all cases.

#include <skmath.h>

template<class T>
float SKArrayComputeStdDev(SKArray<T>& input);

template<class T>
Sfloat SKArrayComputeStdDev(SKArray<T>¢IS’z input, float mean);

Function to compute and return the standard deviation of the non-nil values of an
SKArray. The first version is not supplied the mean value so it must be com-
puted; the second overloaded version takes the mean as an additional argument.
If all (or all but one) pixel is NIL, the returned standard deviation is (float) NIL.

The function handles 1, 2, and 3D SKArrays. :

The standard deviation of the array’s data vah:xes is returned as a float .

In cases where all input values are NIL, the fu!nction returns the ﬂoating-pomt
value of NIL, not the value of NIL corresponding to the input array’s data type.
This is because the standard deviation of a set of numbers is in general not a per-

fect integer so should always be returned as alfloat.

10 August, 1998 ‘

126

Name

Synopsis

Description

Returns

Document
Revision Date

SKArrayDecode()
Function to undo the encoding done in SKArrayEncode. That is, convert the
array values from scaled values to actual ‘real world’ values. The formula is:

actualValue = scaledValue | scaleFactor - scaleOffset
#include <skmath.h>

template<class T>
void SKArrayDecode(SKArray<T>& array);

Function to undo the encoding done in SKArrayEncode(). That is, convert the
array values from scaled values to actual ‘real world’ values. The formula is:

actualValue = scaledValue / scaleFactor - scaleOffset

The scaleFactor and scaleOffset are obtained from the array object itself (mem-
ber variables ‘scale’ and ‘offset’). Hence these variables must already have been
set. NIL values are left unchanged. The array’s data buffer is overwritten with
the unscaled data, and the array’s ‘scale’ and ‘offset’ are set to 1 and 0, respec-
tively.

Currently only handles 1D and 2D SKArrays.
The input array values are overwritten with the ‘decoded’ (e.g. real-world) val-
ues, and the scale and offset member variables of array are set to 1 and 0, respec-

tively.

17 August, 1998

127

Name

Synopsis

Description

Returns

Document
Revision Date

SKArrayDecodePixel() 4
Function to return the decoded value of a|(possibly) scaled input pixel of the
input array. '

#include <skmath.h>

template<class T>
float SKArrayDecodePixel(SKArray<T>& array);

Function to return the decoded value of a (po< sibly) scaled input pixel of the
input array. The pixel value at location (x, y)|m the input array is decoded
according to the ‘scale’ and ‘offser” member vanables of the input array. The
decoded value is returned as a floating-point number If the input value is NIL,
(floating-point) NIL is returned. If the array 1s unscaled, the actual pixel value is
returned, but as a float. The equation for the c;lecodmg is:

i
actualValue = scaledValue | scaleFactor - scaleOffset
Currently only handles 1D and 2D SKArrays !

The decoded (e.g. unscaled) value of the plxel at location (x, y) in array is
returned as a float. |

17 August, 1998

128

skarr

Name SKArrayEncode()
Function to encode an array of ‘true’ (unscaled) values into scaled values,
via the formula

scaledValue = (actualValue + scaleOffset) * scaleFactor.

Note that the desired scaling factors for the array must have been previously
set (e.g. via function SKArray<T>::SetScaling()).

Synopsis #include <skmath.h>

template<class T>
void SKArrayEncode(SKArray<T>& array);

Description Function to encode an array of ‘true’ (unscaled) values into scaled values,
via the formula

scaledValue = (actualValue + scaleOffset) * scaleFactor.
The scaleFactor and scaleOffset are obtained from the array’s scale and offset
member variables. This function treats the input as if it were unscaled (member
variables scale = 1 and offset = 0). To rescale an array which has already been
scaled by a different scale and offset, use function SKArrayRescale().
Currently only handles 1D and 2D SKArrays.

Returns The input array values are overwritten with the ‘encoded’ values computed as
described above.

Document 17 August, 1998
Revision Date

129

Name

Synopsis

Description

Returns

Document
Revision Date

SKArrayEncode()
Function to encode a single ‘real-world’ pixel value into the scaled value
stored inside an SKArray via the formula

|
scaledValue = (actualValue + scalerj‘set)| * scalefFactor.

Note that the desitred scaling factors for the array must have been previously
set (e.g. via function SKArray<T>: SetScallmg()

#include <skmath.h> ;

!
template<class S, class T> |
S SKArrayEncodePixel(SKArray<S>& array, T pixeiValue)

Doubly-templatized function to take an input,array and a scalar pixelValue (con-
sidered to be an unscaled or ‘real-world’ value) and scale the pixelValue accord-
ing to the scale and offset of the input array. lInput pixelValue is of type T; the
returned scaled value is of type S, as is the mput array from which the scale fac-
tors are taken. For instance, if we scale a ﬂoat pixelValue according to scale fac-
tors from an SKArray<short> array, the result is returned as a short. The
decoding formula is |

scaledValue = (pixelValue + scaleOffset) *; scaleFactor.

The scaleFactor and scaleOffset are obtained from the array’s scale and offset

member variables. This function will work for 1D, 2D, and 3D arrays as we only
need reference the array’s ‘scaleOffset’ and ‘scaleFactor’ member variables; no
values are read from the data buffer. \

The encoded value of the supplied pixelValue, returned with the same data type
as the input array. |

24 August, 1998

130

Name

Synopsis

Description

Returns

Document
Revision Date

skarr

SKAmayRescale)

SKArrayRescale()
Function to rescale (and reoffset) an SKArray which may or may not have
already been scaled and offset. (The ‘scale’ and ‘offset’ of the array will be 1
and 0, respectively, if the array has not previously been scaled.)

#include <skmath.h>

template<class T>
void SKArrayRescale(SKArray<T>& array, float newScaleFactor,
Sfloat newScaleOffset)

Function to rescale (and reoffset) an SKArray which may or may not have already
been scaled and offset. (The ‘scale’ and ‘offset’ of the array will be 1 and O,
respectively, if the array has not previously been scaled.)

The unscaling / rescaling pixel operations are performed as floats to preserve dig-
its; only when the newly-rescaled value is stored back in the array do we cast it to
type T (the type of data in the original input array). The rescaling is NOT done
via a call to SKArrayDecode() followed by a call to SKArrayEncode(), as that
method could lose digits.

The original input array’s data buffer is overwritten with the newly-rescaled data,
and the array’s ‘scale’ and ‘offset’ member variables are updated accordingly.

Currently only handles 1 and 2D arrays, not 3D.
The input array values are overwritten with the rescaled values, and the scale and
offset member variables of array are set to newScaleFactor and newScaleOffset,

respectively.

24 August, 1998

131

Name

Synopsis

Description

Returns

Document
Revision Date

- SKArraysDifferAtPixels() |

SKArraysDifferAtPixels() ‘
Function to take two SKArrays (presumably with the same type data) and
print (to the standard output) all coordinates at which the arrays dlﬁer by
more than the supplied tolerance. | -

#include <skmath.h>

void SKArraysDifferAtPixels(SKArray<T>&linputl, SKArray<T>& iﬁputZ,
double tolerance);

Function to take two SKArrays, inputl and inputZ (pre: sumably with the same
type data) and print (to the standard output) all coordinates at which the arrays
differ by more than the supplied tolerance. In addition to the coordinates, the
values of each array at the conflicting pixels will be printed. If checking for exact
equality of, say, int or short arrays, simply choose a tolerance of less than 1.0.

|
Note that the current slice values of each array ar : e compared, thus not necessarily
the full parent slices of each array. l

|

|

|

Handles 1, 2, and 3D SKArrays.

|

The pixel locations at which inputl and inputZ} fail to match within tolerance are
printed to the standard output. In addition to the coordinates, the values of each
array at the conflicting pixels are printed. '

17 August, 1998

132 i

W

9. Mathematical Morphology

9.1 Summary

Standard mathematical mérphology functions for image processing. Dilation, Erosion, Open, and Close
for both GrayScale and Binary images.

9.2 Functions

Mathematical morphology functions begin on the following page.

133

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

skarr

BinaryClose()
Function to perform a binary ‘closure’ (binary ‘dilate’ followed by binary
‘erode’ operation) on a supplied input image.

#include <skarray.h>

template <class T>
SKArray<T> BinaryClose(SKArray<T> &in, SKArray<T> &kernel,
T threshold);

The binary close operation finds, for each location in the input array, the binary
dilation by the structuring element (kernel), followed by the binary erosion with
the structuring element. A symmetrical kernel is assumed. ‘

The input array in is first binarized according to the supplied threshold (values
>= the threshold are set to 1, values < threshold (and nil values) are set to zero).
Note that this modifies the input array in which is passed by reference.

A new SKArray of the same size and type of the input array is returned. The new
SKArray holds the closed (i.e. Dilated and Eroded) array.

Note that the sizes of the kernel must be odd in each dimension, e.g. 3-by-3, 3-
by-5, etc. This function is implemented to handle 1, 2, or 3D arrays but has not
been tested on 3-dimensional data.

A new SKArray of the same size and type of the input array in is returned. The
new SKArray holds the closed (i.e. Dilated and Eroded) array.

The input array in will be binarized according to the supplied threshold. Pass a
copy of an input array to this function, rather than the array itself, if you wish to
keep the input data unchanged.

The supplied kernel is expected to have symmetrical data about its center. i.e. in
coordinates (x, y) relative to the center of the kernel, if kernel(x, y) = val, then
kernel(-x, -y) must = val.

BinaryDilate(), BinaryErode(), BinaryOpen()

19 August, 1998

135

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

BinaryDilate()

BinaryDilate()
Function to perform a binary dilation on a supplied input image.

#include <skarray.h>

l
template <class T> i
SKArray<T> BinaryDilate(SKArray<T> &trlz SKArray<T> &kernel,

T threshold); |

|
The binary dilation operation finds, for each locatlon in the input array in, the
maximum value of binary image values w1thm the region of support of the ker-
nel. The input array in is first binarized according to the supplied threshold (val-
ues >= the threshold are set to 1, values < thr!eshold (and nil values) are set to
zero). Note that this modifies the input array Tivhich is passed by reference.

A new SKArray of the same size and type of tile input array in is returned. The

- new SKArray holds the binary dilated array. ‘

i
The input array in will be binarized accordmg to the supplied threshold. Pass a
copy of an input array to this function, rather than the array itself, if you wish to
keep the input data unchanged. :

The supplied kernel is expected to have symmetrical data about its center. i.e. in
coordinates (x, y) relative to the center of the kemel, if kemel(x, y) = val, then
kernel(-x, -y) must = val.

BinaryClose(), BinaryErode(), BinaryOpen() !

19 August, 1998

136 i

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

skarr

BinaryErode()
Function to perform a binary erosion on a supplied input image.

#include <skarray.h>

template <class T>
SKArray<T> BinaryErode(SKArray<T> &in, SKArray<T> &kernel,
T threshold);

The binary erosion operation finds, for each location in the input array in, the
minimum value of binary image values within the region of support of the kernel.
The input array in is first binarized according to the supplied threshold (values
>= the threshold are set to 1, values < threshold (and nil values) are set to zero).
Note that this modifies the input array which is passed by reference.

A new SKArray of the same size and type of the input array ir is returned. The
new SKArray holds the binary eroded array.

The input array in will be binarized according to the supplied threshold. Pass a
copy of an input array to this function, rather than the array itself, if you wish to
keep the input data unchanged.

The supplied kernel is expected to have symmetrical data about its center. i.e. in
coordinates (X, y) relative to the center of the kemel, if kernel(x, y) = val, then
kernel(-x, -y) must = val.

BinaryClose(), BinaryDilate(), BinaryOpen()

19 August, 1998

137

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

‘BinaryOpen() .- ..~ -

BinaryOpen()
Function to perform a binary ‘open’ (binary ‘erode’ followed by blnary
‘dilate’ operation) on a supplied input image.

#include <skarray.h>

template <class T>
SKArray<T> BinaryOpen(SKArray<T> &in, SKArray<T> &kervzel
T threshold);

The binary open operation finds, for each location in the input array, the binary
erosion by the structuring element (kernel), followed by the binary dilation with
the structuring element. A symmetrical kenel is assumed.

The input array in is first binarized according| to the supplied threshold (values
>= the threshold are set to 1, values < threshold (and nil values) are set to zero).
Note that this modifies the input array irn which is passed by reference.

i
A new SKArray of the same size and type of the input array is returned. The new
SKArray holds the opened (i.e. Eroded and Dlllated) array.

Note that the sizes of the kernel must be odd Im each dimension, e.g. 3-by-3, 3-
by-5, etc. This function is implemented to handle 1, 2, or 3D arrays but has not
been tested on 3-dimensional data. }

A new SKArray of the same size and type of Fhe input array in is returned. The
new SKArray holds the opened (i.e. Eroded and Dilated) array.

The input array in will be binarized according'; to the supplied threshold. Pass a
copy of an input array to this function, rather|than the array itself, if you wish to
keep the input data unchanged.

The supplied kernel is expected to have symmetrical data about its center. i.e. in
coordinates (x, y) relative to the center of the kernel, if kerel(x, y) = val, then

kemnel(-x, -y) must = val.
|
BinaryClose(), BinaryDilate(), BinaryErode()

19 August, 1998

|
i
__—

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

skarr

GrayScaleClose()
Function to perform a gray scale ‘closure’ (gray scale ‘dilate’ followed by
gray scale‘erode’ operation) on a supplied input image.

#include <skarray.h>

template <class T>
SKArray<T> GrayScaleClose(SKArray<T> &in, SKArray<T> &kernel);

The gray scale close operation finds, for each location in the input array, the gray
scale dilation by the structuring element (kernel), followed by the gray scale ero-

sion with the structuring element. A symmetrical kernel is assumed.

A new SKArray of the same size and type of the input array is returned. The new
SKArray holds the (gray scale) closed (i.e. Dilated and Eroded) array.

Note that the sizes of the kernel must be odd in each dimension, e.g. 3-by-3, 3-
by-5, etc. This function is implemented to handle 1, 2, or 3D arrays but has not

been tested on 3-dimensional data.

A new SKArray of the same size and type of the input array in is returned. The
new SKArray holds the (gray scale) closed (i.e. Dilated and Eroded) array.

The supplied kernel is expected to have symmetrical data about its center. i.e. in
coordinates (X, y) relative to the center of the kernel, if kernel(x, y) = val, then
kernel(-x, -y) must = val.

GrayScaleDilate(), GrayScaleErode(), GrayScaleOpen()

19 August, 1998

139

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

- GrayScaleDilate()

GrayScaleDilate()
Function to perform a gray scale dilation on a supplied input image.

#include <skarray.h>

template <class T>
SKArray<T> GrayScaleDilate(SKArray<T>| &in, SKArray<T> &kernel);

The gray scale dilation operation finds, for eaéh location in the input array in, the
maximum of each sum of a kernel value and superimposed image value within
the region of support of the kernel. This maximum is assigned to the correspond-
ing location in the output image. The newly-c!:reated array, the gray-scale dilated
array, is returned. ; ~

A new SKArray of the same size and type of t!he input array in is returned. The
new SKArray holds the gray-scale dilated array.

The supplied kernel is expected to have symmetrical data about its center. i.e. in
coordinates (x, y) relative to the center of the kernel, if kernel(x, y) = val, then
kernel(-x, -y) must = val.

GrayScaleClose(), GrayScaleErode(), GrayScaleOpen()

19 August, 1998

140

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

skarr

 GrayScaleErode)

GrayScaleErode()
Function to perform a gray scale erosion on a supplied input image.

#include <skarray.h>

template <class T>
SKArray<T> GrayScaleErode(SKArray<T> &in, SKArray<T> &kernel);

The gray scale erosion operation finds, for each location in the input array in, the
minimum of each sum of a kernel value and superimposed image value within
the region of support of the kernel. This minimum is assigned to the correspond-
ing location in the output image. The newly-created array, the gray-scale eroded
array, is returned. :

A new SKArray of the same size and type of the input array in is returned. The
new SKArray holds the gray-scale eroded array.

The supplied kernel is expected to have symmetrical data about its center. i.e. in
coordinates (X, y) relative to the center of the kemel, if kernel(x, y) = val, then
kernel(-x, -y) must = val.

GrayScaleClose(), GrayScaleDilate(), GrayScaleOpen()

19 August, 1998

141

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

 GrayScaleOpen()

GrayScaleOpen()
Function to perform a gray scale ‘open’ (gray scale ‘erode’ fol!owed by gray
scale‘open’ operation) on a supplied mput image.

|

#include <skarray.h> E
template <class T> i
SKArray<T> GrayScaleOpen(SKArray<T>‘i&in, SKArray<T> &kernel);

|
The gray scale open operation finds, for each llocation in the input array, the gray
scale erosion by the structuring element (kemel) followed by the gray scale dila-
tion with the structuring element. A symmetncal kernel is assumed.

l
A new SKArray of the same size and type of the input array is returned The new
SKArray holds the (gray scale) opened (i.e. Eroded and Dilated) array.

Note that the sizes of the kernel must be odd 1n each dlmensmn, e.g. 3-by-3 3-
by-5, etc. This function is implemented to handle 1, 2, or 3D arrays but has not
been tested on 3-dimensional data. |

A new SKArray of the same size and type of the input array in is returned. The
new SKArray holds the (gray scale) opened (i.e. Eroded and Dilated) array.

The supplied kernel is expected to have symmetrical data about its center. i.e. in
coordinates (X, y) relative to the center of the kernel, if kemel(x, y) = val, then
kernel(-x, -y) must = val.

GrayScaleClose, GrayScaleDilate(), GraySC(;zleErode()
|
19 August, 1998

142

10. Matrix Operations

10.1 Summary

Standard matrix operations, where a 2-D SKArray is considered a ‘matrix’ in the mathematical sense.
Operations include matrix inversion, ‘LU’ decomposition and back substitution, and singular value decom-
position.

10.2 Functions

Matrix operation descriptions begin on the following page.

143

nJ

Name

Synopsis
Description

Returns

Note

Warning

Acknowledg-

-ment

Document
Revision Date

SKArraylInvert()
Function to invert a matrix (2D SKArray).

#include <skmatrix.h>
SKArray<float> SKArraylnvert(SKArray<float>& input);

Function to invert a matrix. This method first computes the LU decomposition of
a matrix and then solves for the inverse column-by-column by solving Ax = e(i),
where e(i) is the i’th column of the identity matrix.

The inverse matrix, as an SKArray<float>.

The first step of the inversion process is to compute the LU decomposition of the
input array. This will overwrite input with the LU decomposition. If this is not
desired, a deep copy (e.g. as returned by SKArray<T>::DeepCopy()) should be
made of the input and the copy passed in to this routine.

The inversion function may be numerically unstable for arrays which are nearly
singular. If the potential for a badly-conditioned matrix exists, then a singular
value decomposition / perturbation method should be applied to the input to pro-
duce a better conditioned matrix. See function CreateOeCovarianceMatrix() (in
the MIGFA code repository) for an example.

Since all of the CSKETCH ‘matrix’ functions (SKArraylnvert, SKArrayLUBack-
sub, SKArrayLUDecomp, and SKArraySVDecomp) are taken from ‘Numerical
Recipes in C’, the Oth row and column of all returned arrays is to be ignored, e.g.
if the inverse of an n-by-n array is desired, that array must first be copied to an
(n+1) by (n+1) array with zeroes in the Oth row and column. A new (n+1 by n+1)
array will be returned; the n-by-n inverse will be returned in the n-by-n subarray
with subscripts 1 through n of the larger array.

As mentioned above in the Note section, the input array must be prepadded with
arow and column of zeroes to account for ‘Numerical Recipes in C’ idiosyncra-
cies.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Reci-
pes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press,
Cambridgeshire, UK., 1992).

17 July, 2002

145

Name

Synopsis

Description

Returns

Note

Warning

Acknowledge-
ment

Document
Revision Date

SKArrayLUBacksub()]
Function to perform the the back-substztunon needed to solve a system of lin-
ear equations after LU decomposition.

#include <skmatrix.h>

void SKArrayLUBacksub(SKArray<float>& LUArray,
SKArray<short>&;index S.KArray<ﬂoart>& vector);

Function to perform the the back-substitution rlleeded to solve a system! of linear
equations after LU decomposition. E.g. to sollve Ax =b we first reduce A to LU
form, via SKArrayLUDecomp(). The results of that function call can then be
passed to this function to solve systems of lme!ar equations. Input vector (the ‘b’
vector or the right hand side of the set of linea'r equations) is overwritten by the
solution vector x. Specifically, the returned LU matrix as well as the index vector
returned by SKArrayLUDecomp() are neededIby SKArrayLUBacksub().

|
The ‘right hand side’ vector (the vector ‘b’ in f&x = b) is overwritten with the

solution vector Xx. |
|

Since all of the CSKETCH ‘matrix’ functions{(SKArraylnvert, SKArrayLUBack-
sub, SKArrayLUDecomp, and SKArraySVDecpmp) are taken from ‘Numerical
Recipes in C’, the Oth row and column of inpu't arrays is to be ignored, e.g. for
this function, the Oth row of the column input vector must be zero (e.g. if the
desired right-had side is (1, 1, 1), then the actual input vector should be
©, 1,1, 1. ‘

I
As mentioned above in the Note section, the input vector must be prepadded with
a row of zeroes to account for ‘Numerical Reciipes in C’ idiosyncracies.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, a!nd B.P. Flannery, Numerical Reci-
pes in C: The Art of Scientific Computing, 2nd ed. (Cambridge Umver51ty Press,
Cambridgeshire, UK., 1992). ;

18 November, 1998

(
I
|
I
i
|
|

146 1

Name

Synopsis

Description

Returns

Note

Warning

skarr

SKArrayLUDecomp()
Routine to take a matrix A and compute the ‘LU’ decomposition of the matrix.

#include <skmatrix.h>

void SKArrayLUDecomp(SKArray<float>& array, SKArray<short>& index,
SKArray<float>& scales, int *numlinterchanges);

Routine to take a matrix A and compute the ‘LU’ decomposition of the matrix A
(i.e. A=L * U where L is lower diagonal and U is upper diagonal). This decom-
position can then be used to efficiently solve linear equations of the type Ax =b.

All 4 input arguments are updated. The input array is overwritten with the LU
decomposition of A (‘L is stored in the lower triangular half and ‘U’ is stored in
the upper triangular half). The index array records the row permutations effected
on the input array in the process of computing the LU decomposition (this rou-
tine uses partial pivoting for numerical stability). The scales array stores the fac-
tors by which each row is scaled during the LU decomposition process. Finally,
numlInterchanges is set to the parity of the number of row intechanges needed in
the LU process -- +1 for an even number and -1 for an odd number of inter-
changes.

The input array will be overwritten with its LU decomposition. If this is not
desired, a deep copy (e.g. as returned by SKArray<T>::DeepCopy()) should be
made of the input and the copy passed in to this routine.

The returned index variable will be needed by any subsequent calls made to
SKArrayLUBacksub(). This is the routine which uses the LU decomposition of
an array A to efficiently solve the matrix equation Ax = b.

Since all of the CSKETCH ‘matrix’ functions (SKArraylnvert, SKArrayLUBack-
sub, SKArrayLUDecomp, and SKArraySVDecomp) are taken from ‘Numerical
Recipes in C’, the Oth row and column of all returned arrays is to be ignored, e.g.
if the inverse of an n-by-n array is desired, that array must first be copied to an
(n+1) by (n+1) array with zeroes in the Oth row and column. A new (n+1 by n+1)
array will be returned; the n-by-n inverse will be returned in the n-by-n subarray
with subscripts 1 through n of the larger array.

As mentioned above in the Note section, the input array must be prepadded with

a row and column of zeroes to account for ‘Numerical Recipes in C’ idiosyncra-
cies.

147

| skarr
! 1

Acknowledge- W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Reci-
ment pes in C: The Art of Scientific Computing, 2ndl ed. (Cambridge Umver51ty Press,
Cambridgeshire, UK., 1992).

Document 17 July, 2002
Revision Date

148

Name

Synopsis

Description

Returns

Note

skarr

SKArraySVDecomp()
Routine to take a matrix A and compute the singular value decomposition of
the matrix.

#include <skmatrix.h>

void SKArraySVDecomp(SKArray<double>& array,
SKArray<double>& wmatrix,
SKArray<double>& vmatrix,
SKArray<double>& scales);

Routine to compute the singular value decomposition of a matrix. The SVD of a
matrix A is a way of ‘factoring’ the matrix into the form

A =U * W * hermitian(V), where the matrices U, W, and V have significant
mathematical properties. This routine overwrites the input matrix A to be the
output matrix U. Pre-allocated matrices for W and V are filled in by this routine.
Also, a pre-allocated array ‘scales’, for holding various scale factors employed
by the routine, is filled in by this routine.

All 4 inputs are edited by the call to this function. The input array is overwritten
with the U matrix of the SVD of A (so if A will be needed later, pass in a deep
copy of A rather than A itself). The pre-allocated wmatrix and vmatrix arrays are
filled in with the W and V matrices of the SVD. Finally, ‘scales’ is filled in with
various scale factors used in computing the SVD.

The input array will be overwritten with the ‘U’ matrix of the SV decomposition.
If this is not desired, a deep copy (e.g. as returned by SKArray<T>::DeepCopy())
should be made of array and the copy passed in to this routine.

Since all of the CSKETCH ‘matrix’ functions (SKArraylnvert, SKArrayLUBack-
sub, SKArrayLUDecomp, and SKArraySVDecomp) are taken from ‘Numerical
Recipes in C’, the Oth row and column of all input and returned arrays is to be
ignored, e.g. if the inverse of an n-by-n array is desired, that array must first be
copied to an (n+1) by (n+1) array with zeroes in the Oth row and column. A new
(n+1 by n+1) array will be returned; the n-by-n inverse will be returned in the n-
by-n subarray with subscripts 1 through n of the larger array. Likewise the Oth
row and column of all input arrays must be initialized to 0 and the true data of an
n-by-n array moved to an n-by-n subarray with indices 1 through n rather than 0
through n-1.

149

Warning

Acknowledge-
ment

Document
Revision Date

skarr
.| |
! |
|
As mentioned above in the Note section, the input array must be prepadded with
a row and column of zeroes to account for ‘Numerical Recipes in C’ idi'osyncra—
cies.]

|
!
i
|
|
1
|

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Reci-
pes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press,
Cambridgeshire, UK., 1992).

17 July, 2002

150

- 11. Miscellaneous Functions

11.1 Summary

Some miscellaneous useful functions for operating on SKArrays.

11.2 Functions

Miscellaneous function description begins on the following page.

151

Name

Synopsis

Description

Returns

See Also

Document
Revision Date

skarr

SetElementsInlnterval()
Function to set all elements of the array which lie within some interval to a
mark value, possibly setting outliers to a different mark value.

#include <skarray.h>

template<class T, class V>
void SetElementsininterval(SKArray<T> & input,
const SKArray<V> & mask,
T markVal, V low, V high,
T outlierMarkVal = SKArray<T>::SK_NIL);

The SetElementsininterval functions are used to reset some (possibly all) ele-
ments of the input array to ‘mark’ and / or ‘outlierMark’ values, based on the
pixel values of the mask array. Specifically, if the pixel with coordinates (x, y) in
the mask image has a value between low and high (inclusive), then the pixe] at
(X, y) in the input image is set equal to markVal. If outlierMarkVal is not NIL,
and the pixel at (x, y) in the mask image lies outside the interval from low to high,
then the pixel at (x, y) in the input image is set to outlierMarkVal. If the outlier
mark is NIL, then pixels in the input image will not be changed at locations (X, y)
where the mask pixel value is not in the interval from low to high. The default
value of optional argument outlierMarkVal is NIL. See the CSKETCH Image
Processing Library Tutorial for usage examples.

The input array, which is passed in by reference, may have some of its data val-
ues modified as described above.

Member function SKArray<T>::SetElementsininterval().

21 September, 1998

153

Name

Synopsis

Description

Returns

See Also

Document
Revision Date

SetMissingToNearest() :
Function which attempts to fill a missing (nil) array value by computmg a
value based on the values of the nearest nez(lghbors This function does this for
one pixel; it may be used to attempt to fill i}:1 all missing array values via func-
tion SKArray<T>::Apply(). I

|
|

T SetMissingToNearest(SKArray<T>& input,!T* in_xp, int x, int y,

void*grayScale); |

|

This function is called to attempt to find a mjs$ing array value by computing a
value based on its nearest neighbors. This function does not necessarily find a
value for every NIL value. It only will return a value if one has been found within
the limits of the search. If no replacement candidates are found, the function
returns the appropriate value of NIL for the type of data of the input array. Other-
wise, the function returns the replacement vaIu:e (but does not acually set the
pixel to this replacement value). :

#include <skarray.h>

|
1

The x and y inputs give the (x, y) coordinates of the missing value in the input
array; the pointer in_xp points to the NIL data element in the input array. As
mentioned above, only this one NIL value will%attempt to be filled; the member
function SKArray<T>::Apply() can be used with this function to attempt to fill
all NIL values. In the event that multiple nearest non-NIL neighbors are found
(i.e. the choice for a replacement value is amblguous) then either the average
value or a rounded average value will replace the missing value. If the grayScale
argument is not NULL, the average is used; otherwise a rounded average is used.

The candidate replacement value for the NIL value. Again, this function itself
will not automatically overwrite the missing value in the inpur array with the
replacement value. |

Member function SKArray<T>::Apply().

|
|
21 September; 1998 |
|
|
|

154

Name

Synopsis

Description

Returns

Document
Revision Date

skarr

SKArrayNearEqual()
This function determines whether all pixels in the data buffers of two arrays
are numerically equal within a supplied tolerance.

#include <skarray.h>

int SKArrayNearEqual(SKArray<T>& inputl, SKArray<T>& input2,
double tolerance);

This function determines whether all pixels in the data buffers of two arrays are
numerically equal within the supplied tolerance.

Returns O if the SKArrays are not nearly equal (pixelwise), 1 if the SKArrays are
pixelwise equal within the supplied tolerance.

22 September, 1998

155

- SKThin).

Name SKThin() !
CSKETCH image thinning implementation. All distinct, connected Shapes
within the input image are reduced to chains a single pixel wide.

Synopsis #include <skarray.h>

SKArray<short> SKThin(SKArray<short>& input);

Description Functional Template Implementation of Levialdi’s homotopic thinning, with an
additional post thinning step. All of the shapes in an input image are skeleton-
ized, reducing them to chains a single pixel wide.

Returns A new SKArray<short>, the thinned array.

Document 22 September, 1998
Revision Date

156

Name

Synopsis

Description
Returns

Document
Revision Date

skarr

 SliceSizeEqual() -~

SliceSizeEqual()
This function determines if two arrays have equal slice sizes (i.e. have the
same number of array dimensions and the same size in each dimension).
#include <skarray.h>
int sliceSizeEqual (const SKArray<T> &, const SKArray<T> &);

This function determines if two arrays have equal slice sizes (i.e. have the same
number of array dimensions and the same size in each dimension).

Returns O if the SKArrays are not equal in slice size, 1 if the SKArrays are equal
in slice size.

22 September, 1998

157

12. Region Analysis

12.1 Summary

A set of functions for generating statistics on various ‘regions’ within the data array of a (1D or 2D only)
integer SKArray. The data must be short, or integer, because of the way regions are identified within SKAr-
rays. A region inside an SKArray is defined as the set of all pixels within the data buffer which have the
same value. Thus all pixels with value 1 comprise region 1, all pixels with value 2 comprise region 2, etc.
Note that individual regions need not be connected (by connected we mean that all pixels of the region
touch at least one other pixel of the region, whether horizontally, vertically, or diagonally). However,
region analysis can be constrained to connected regions only by use of the SKLabelRegions() function,
which takes an input SKArray and returns a new array with all distinct, connected regions assigned a dis-
tinct Jabel (i.e. all pixels in each region have a common value, and that value is unique to that region).
Function SKLabelRegions() is described in this section. The main driver function for region analysis,
SKRegionSummary(), does not assume that all regions are connected; rather it assumes all pixels with the
same value belong to the same region. If region analysis is desired to take place only on connected
regions, first create a new array via a call to SKLabelRegions() and then pass the new array into function
SKRegionSummary().

12.2 Conventions

The region analysis functions work closely with the SKRegionlnfo class and the associated SKRegion
structure. Specifically, function SKRegionSummary() returns a pointer to an SKRegioninfo object. The
returned SKRegionInfo object contains an array of SKRegion objects, one for each region in the input
SKArray. This array of SKRegion objects is the member variable known as ‘region’ in the SKRegionlnfo
object. Statistics for the i’zh region of data within an SKArray will be stored in the i’th element of the array
of SKRegion objects. Again, the i’th region of an SKArray is the (connected or disconnected) set of all
points with value i. Thus, if we set

SKRegioninfo *regionlnfo = SKRegionSummary(inputArray);

we would access the length of region 7 of inputArray as

(regionlnfo->region)[7].length;

Simliarly, the area of region 2 would be accessed as

(regionlnfo->region)[2].area;

12.3 Functions

Region analysis functions begin on the following page.

159

Name

Synopsis

Description

Returns

Document
Revision Date

skarr

 EliminatePoorShapes()

EliminatePoorShapes()
Function to eliminate all connected regions inside the input array which fail a
minimum length criterion.

#include <skregion.h>

SKArray<short> EliminatePoorShapes(SKArray<short>& input,
short inputThresh, float lengthThresh, short fillOpt);

Function to eliminate all regions inside the input array which fail a length crite-
rion. Specifically, a copy of the input array is first thresholded to eliminate back-
ground noise (values strictly less than inputThresh are set to 0, values greater
than or equal to inputThresh are set to 1). The thresholded image is then labelled
into distinct, connected regions by function SKLabelRegions(). Region analysis
is then performed via a call to SKRegionSummary(). Regions which fail a mini-
mum length criterion (length < threshLength) are deleted by setting all their pix-
els to zero. The argument fillOpt indicates whether some additional image
preprocessing should be done prior to the region length thresholding. If fillOpt is
true the binarized, thresholded interest image will be dilated using a 3 by 3 ellip-
tical kernel, then closed with a 5 by 5 elliptical kernel.

The final thresholded and length thresholded image. Distinct regions which
passed the length threshold will all be marked in the output image (e.g. all pixels
in the acceptable regions will have the same value). All other pixels (e.g. those
belonging to regions which are too short) will be set to 0.

3 December, 1998

161

Name

Synopsis

Description

Returns

Document
Revision Date

SKLabelRegions() !
Routine to take a (short) input SKArray and mark all distinct, connected, non-
zero regions of data in the input data with dlstmct short integer labels.
(
#include <skregion.h> '
|
SKArray<short> SKLabelRegions(SKArray<:short>& input)
i :
This routine takes a (short) input array and mal:'ks all distinct, connected, nonzero
regions of data in the input array with distinct labels. The input array values are
not changed -- rather the routine creates a new SKArra) <short> output array (the
same size as the input array), copies the input data to the output array, and then
performs the marking on the output array. Values of zero in the input image are
considered ‘background’ values and are 1gnored there is no region 0.

A newly-created SKArray, the same size as the input array. In effect, all distinct,
connected, nonzero regions of input are copled to the corresponding pixels in
output, and assigned a unique label (e.g. a common pixel value for each pixel in
the region). I
24 August, 1998 !

162

Name

Synopsis

Description

Implementation

Returns

Document
Revision Date

skarr

SKRegionArea()
Function to compute the area of each region in the input array. Area of a
region is defined to be the number of pixels belonging to that region.

#include <skregion.h>
void SKRegionArea(SKArray <short>& array, SKRegionlnfo *regionlnfo);

Function to compute the area of each region in the input array. Area of a region
is defined to be the number of pixels belonging to that region. Note that the
regions need not be connected. If statistics are desired for connected regions
within an SKArray<short>, be sure to first call SKLabelRegions() to get a new
SKArray in which all pixels within connected regions share the same pixel value.

The input SKRegioninfo object must have been constructed with a sufficient
number of SKRegion objects prior to the call to this image. For this reason, it is
preferable to simply call function SKRegionSummary() rather than SKRegion-
Area(). SKRegionSummary() will compute many additional statistics about
regions, and thus executes slightly more slowly, but SKregionSummary() is more
robust in that it dynamically determines how many SKRegion objects will be
needed inside the SKRegionlnfo object to store statistics about all regions.

For efficiency, this function and all related SKRegion functions compute region
statistics ‘in parallel’ for all regions within an SKArray. This is necessary as
there may be several hundred regions of interest within, e.g. a MIGFA interest
image. Without the parallel implementation, algorithm latency requirements
might not be met.

The i’th object in the array of SKRegion structures (stored inside the SKRegion-
Info object) is filled in with the area (number of pixels) of region i. Regioniof -

the input array is defined to be the set of all pixels with value i.

3 December, 1998

163

Name

Synopsis

Description

Implementation

Returns

Document
Revision Date

SKReglonBoundngect'

SKRegionBoundingRect() |
Function to compute, for each region in the|labelled input array, the coordt-
nates of a bounding box for the region. Specifically, the lower left and upper
right corners of the box are computed and sltored in corresponding SKRegion-
Info objects. i

#include <skregion.h>

void SKRegionBoundingRect(SKArray <short>& array,
SKRegionlnfo *regionlnfo)

Function to compute, for each region in the labelied input array, the coordinates
of a bounding box for the region. Speciﬁcally,lthe lower left and upper right cor-
ners of the box are computed and stored. Note that the regions need not be con-
nected. If bounding boxes are desired for connected regions within an -
SKArray<short>, be sure to first call SKLabelRegzons() to get a new SKArray in
which all pixels within connected regions sharcia the same pixel value.
The input SKRegionInfo object must have beenI constructed with a sufficient
number of SKRegion objects prior to the call to this image. For this reason, it is
preferable to simply call function SKRegzonSummary() rather than SKRegion-
Boundingrect(). SKRegionSummary() will computc many additional statistics
about regions, and thus executes slightly more slowly, but SKregionSummary() is
more robust in that it dynamically determines how many SKRegion objects will
be needed inside the SKRegionInfo object to st?re statistics about all regions.

|
For efficiency, this function and all related SKIélegion functions compute region
statistics ‘in parallel’ for all regions within an SKArray. This is necessary as
there may be several hundred regions of interest within, e.g. a MIGFA interest
image. Without the parallel implementation, algorithm latency requirements
might not be met. | ‘

The i’th object in the array of SKRegion structires (stored inside the SKRegion-
Info object) is filled in with the bounding box (encoded as the lower left and
upper right corners of the box) for region i. Reglon i of the input array is defined
to be the set of all pixels with value i. :

3 December, 1998

%

|

i

1o |
I

Name

Synopsis

Description

Implementation

Returns

Document
Revision Date

skarr

SKRegionCenterOfGravity()
Function to compute, for each region in the labelled input array, the coordi-
nates of the center of gravity of the region.

#include <skregion.h>

void SKRegionCenterOfGravity(SKArray <short>& array,
SKRegionInfo *regionlnfo);

Function to compute the center of gravity of each region in the input array. Note
that the regions need not be connected. If statistics are desired for connected
regions within an SKArray<short>, be sure to first call SKLabelRegions() to get a
new SKArray in which all pixels within connected regions share the same pixel
value.

The input SKRegionInfo object must have been constructed with a sufficient
number of SKRegion objects prior to the call to this image. For this reason, it is
preferable to simply call function SKRegionSummary() rather than SKRegion-
CenterOfGravity(). SKRegionSummary() will compute many additional statistics
about regions, and thus executes slightly more slowly, but SKregionSummary() is
more robust in that it dynamically determines how many SKRegion objects will
be needed inside the SKRegionInfo object to store statistics about all regions.

For efficiency, this function and all related SKRegion functions compute region
statistics ‘in parallel’ for all regions within an SKArray. This is necessary as
there may be several hundred regions of interest within, e.g. a MIGFA interest
image. Without the parallel implementation, algorithm latency requirements
might not be met.

The i’th object in the array of SKRegion structures (stored inside the SKRegion-
Info object) is filled in with the center of gravity of region i. Region i of the input
array is defined to be the set of all pixels with value i.

3 December, 1998

165

Name

Synopsis

Description

Implementation

Returns

Note

SKRegionSummary()
Top-level routine for computing region statlstzcs Calls all SKRszon func-
tions in the proper sequence (e.g. center of! Igravzty, area, and other region sta-
tistics must be known prior to computing length etc.) See documentation for
the SKRegion class for a description of regions within an SKArray’s data
buffer as well as a list of all the statistics computed / saved by this routme

#include <skregion.h>

|
SKRegionlnfo *SKRegionSummary(SKArray'<short>& input)

|
Top-level routine for computing region statlstllcs Regions within an
SKArray<short> are defined to be the set of all pixels with a common value; thus
the set of all pixels with value 1 is region 1, the set of all pixels with value 2 is
region 2, etc. Note that regions need not be copnected e.g. if the only pixels with
value 1 are at the four corners of an input image, then region 1 is still a valid
region made up of 4 non-contiguous points. St;ee documentation for the SKRegion
class for a list of all the statistics computed / saved by this routine.

l
For efficiency, this function and all related SKlRegion functions compute region
statistics ‘in parallel’ for all regions within an|SKArray. This is necessary as
there may be several hundred regions of interest within, e.g. a MIGFA interest
image. Without the parallel implementation, algonthm latency requirements

might not be met. |

|
(

A pointer to a newly-allocated SKRegioninfo obJect Internal to the SKRegion-
Info object is an array of SKRegion structures! One such structure will be allo-
cated for each distinct region in the input array. Each structure will be filled in
with statistical information about a corresponciling region. The correspondence
between regions and SKRegion structures can|be obtained from the index of the
SKRegion structure in the array: the statistics for the ith region are stored in the
ith SKRegion structure. i

SKRegionSummary() is in a sense the ‘master’|routine for region analysis. It calls
all other major region analysis.functions, SKRegionLength(), SKRegionArea(),
etc. For efficiency purposes, these ‘slave’ functions make certain assumptions
about the array of SKRegion structures inside ithe SKRegioninfo object:that they
are supplied as an argument (i.e. results that a‘lre pre-computed in SKRegionSum-
mary() prior to the call to a slave function). For this reason, one should not call
the ‘slave’ functions directly; this might involfve using uninitialized fields of the
SKRegion structures and garbage output could result. Only a few of the simpler

region analysis functions should be called dirglectly by a user. These include
|

|

166 ‘

skarr

SKLabelRegions(), SKRegionArea(), SKRegionBoundingRect(), and SKRegion-
CenterOfGravity(). Additionally, EliminatePoorShapes() may be called directly
since it performs its own region analysis (via calls to SKLabelRegions() and
SKRegionSummary()). Other than these functions, none of the region analysis
functions should be called directly by a user, so only these functions are
described in the ‘Region Analysis’ section of this document. Consult the in-line
source code documentation for further elaboration on the details of the ‘in-paral-
lel’ region analysis computations.

Document 13 October, 1998
Revision Date

167

13. Weather Radar Tools

13.1 Summary

A set of functions for operating on SKArrays which are especially useful in the context of weather radar
data analysis.

13.2 Functions

Weather radar data function description begins on the following page.

169

Name

Synopsis

Description

Returns

Warning

Document
Revision Date

skarr

stogram().

SKArraySimpleHistogram()
A simple (i.e. not particularly general) function to compute a histogram of
(the current slice of) an input array. Currently only supported for SKAr-
ray<short>.

#include <skwrt.h>

SKArray<int> SKArraySimpleHistogram(SKArray<short> &input);

A simple (i.e. not particularly general) function to compute a histogram of (the
current slice of) an input array. For now only supported for SKArray<short>.
The function will allocate and return an integer SKArray which represents the

histogram. The size of the histogram’s data buffer will be equal to the maximum
value of the (short) input array, plus 1; the histogram will be filled so that

histogram(0) = number of occurrences of "0" in input array,

histogram(1) = number of occurrences of "1" in input array,

etc., up to the maximum value of the input array.

An SKArray of type int which represents the histogram, computed as above.
This routine is not well-optimized since it is not anticipated to be used very fre-

quently. Currently handles only 1D and 2D SKArrays.

30 September, 1998

171

Name

Synopsis

Description

Returns

See Also

Document
Revision Date

SKAveragelnterestImages() |
Function to compute the pixelwise average of a list of input images..

#include <skwrt.h>

SKArray<short> SKAveragelnterestimages(LLNIDList &images,
short mterestThresho!ld)s

Function to compute the pixelwise average of a|1 list of input images. For MIGFA
these images are ‘interest’images, i.e. images returned by the various gust front
detectors. ,

[
The interestThreshold (nominally 128 for MICliFA) is used to delineate ‘confirm-
ing’ (positive) evidence of the existence of a particular feature, vs. ‘disconfirm-
ing’ (negative) evidence of the existence of thallt feature. If a particular pixel
value of an image is greater than, or equal to, the interestThreshold, then that
pixel value will be multiplied by the image’s c‘onﬁrmingWeight member variable
in computing the weighted average at that pixcfal. Similarly, if the pixel value is
below the interestThreshold it will be multiplied by the image’s disconfirming-
Factor. Note that each different image in the image list has its own confirming
and disconfirming factors which should have been set prior to this function call.

Pixelwise averages are converted to type short{ for output by rounding. Values of
the input images which are nil, e.g. missing, are ignored in the averaging process.
If at a particular location all input images are nil, then the correspondmg pixel in
the averaged image will also be nil. i

This function assumes all input images are of :type short int, as interest images
have short int data. The function can be templatized if averages for images with
different data types are needed. | '

i

I
|

A 2D SKArray<short> which stores the pixelwise averages of the input images.
|

Function SKAveragelnterestimagesExceptMin().
30 September, 1998 l

i
|

172 i

Name

Synopsis

Description

Returns
See Also

Document
Revision Date

skarr

_ SKAveragelnterestimagesExceptMin()

SKAveragelnterestImagesExceptMin()
Function to compute the pixelwise average of a list of input images, exclud-
ing the minimum pixel value across all images.

#include <skwrt.h>

SKArray<short> SKAveragelnterestImagesExceptMin(LLNIDList &images,
short interestThreshold);

Function to compute the pixelwise average of a list of input images, excluding
the minimum pixel value across all images. For example, if at location (x, y) =
(5, 10) of the output image, the input images have values 10, 7, and 6, then only
the 10 and 7 value will be used in computing the weighted average for the output
pixel at (5, 10).

The interestThreshold (nominally 128 for MIGFA) is used to delineate ‘confirm-
ing’ (positive) evidence of the existence of a particular feature, vs. ‘disconfirm-
ing’ (negative) evidence of the existence of that feature. If a particular pixel
value of an image is greater than, or equal to, the interestThreshold, then that
pixel value will be multiplied by the image’s confirmingWeight member variable
in computing the weighted average at that pixel. Similarly, if the pixel value is
below the interestThreshold it will be multiplied by the image’s disconfirming-
Factor. Note that each different image in the image list has its own confirming
and disconfirming factors which should have been set prior to this function call.

Pixelwise averages are converted to type short for output by rounding. Values of
the input images which are zil, e.g. missing, are ignored in the averaging process.
If at a particular location all input images are nil, then the corresponding pixel in
the averaged image will also be nil.

This function assumes all input images are of type short int, as interest images
have short int data. The function can be templatized if averages for images with
different data types are needed.

A 2D SKArray<short> which stores the pixelwise averages of the input images.

Function SKAveragelnterestImages().

30 September, 1998

173

Name

Synopsis

Description

Returns

See Also

Document
Revision Date

SKCreateCircularMask()
Function to build circular masks for MIGFA, AMDA, etc. The circle is cen-
tered at the true center of the output cartesian image.

#Hinclude <skwrt.h>

void SKCreateCircularMask(SKArray<short> *mask, SKResamp *resamp,
float maskRadKM, int nAzimuths, int nGates,
float gateSizeMeters, short maskValue);

Function to build circular masks for MIGFA, 1:XMDA, etc. The circle is centered
at the true center of the output cartesian image. A pointer to a pre-created SKRe-
samp object must be passed in to this routine. 'The maskRadKM is the desired
size, in KM, of the circle to be drawn in mask. |The circle will be filled with value
maskValue. The nAzimuths and nGates specify the size of typical polar images
being used by the current application (e.g. MI;GFA). Finally the gateSizeMeters
is the size of a gate of polar data, in meters. The circular mask is filled in by cre-
ating a polar image, size nAzimuths by nGates, with all values set to maskValue
for distances within maskRadKM of the or1g1n All other values are set.to NIL.
After this is performed, the resampler is run on the fabricated polar data, with
output to mask.

The mask array’s data buffer is filled in with the desired circular mask. Note that
the mask array itself must have been allocatedprior to calling this routine.

Class SKResamp

29 September, 1998 |

174

Name

Synopsis

Description

Returns

Warning

Documeht
Revision Date

skarr

- SKFliSector() . .

SKFillSector()
Function to take a (short) SKArray and fill in a sector of data with the sup-
plied fillValue. The start and end angle of the sector, as well as the sector’s
origin and radius are supplied as parameters. The start and end angles are
specified in the SKETCH sense ((image) north = 0 degrees, increasing in the
clockwise direction).

#include <skwrt.h>

void SKFillSector(SKArray<short>& input, double startAngle,
double endAngle, double xorigin, double yorigin,
short fillValue, double radius);

Function to take a (short) SKArray and fill in a sector of data with the supplied
fillValue. The start and end angle of the sector, as well as the sector’s origin and
radius are supplied as parameters. The start and end angles are specified in the
CSKETCH sense ((image) north = 0 degrees, increasing in the clockwise direc-
tion).

Pixels in the input array which are within the specified sector are set to fillValue.

Note that a radius value of 0.0 is equivalent to setting the radius to
SKArray<float>::SK_MAXIMUM, i.e. all radius values are considered in
range of the sector.

All supplied angles are first modded to the range -180.0 to +180.0. This is neces-
sary for correct angle range checking. For example, if filling the entire 330
degree sector from 90 degrees all the way around to 60 degrees, an angle of 75
degrees is out of bounds. If this angle were given as 435 degrees, rather than 75, -
the logic for determining which angles are in bounds would fail.

22 September, 1998

175

Name SKlIntegrateZDimension()

Function to take a 3-dimensional input imtlzge and return a 2-dimensional
image obtained by summing along the z direction of the 3-d image.

Synopsis #include <skwrt.h>

template <class T>
SKArray<T> SKIntegrateZDimension(SKArray<T>& input);

Description Function to take a 3-dimensional input SKArray and return a 2-dimensional
SKArray obtained by summing along the z direction of the 3-D image. Templa-
tized over input image data type. NIL values in the input image are ignored; if
every input pixel in an entire ‘pillar’ is NIL, then the output at the (x,y) location

of that pillar is set to NIL.
Returns The 2-D integrated (i.e. summed) array.
Document 29 September, 1998

Revision Date

176

Name

Synopsis

Description

Returns

Example

skarr

- SKPercentOfMassinZDimension()

SKPercentOfMassInZDimension()
Function to compute, for each "pillar" in a 3-D SKArray, the z-coordinate at
which the requested percentile of "mass" is attained.

#include <skwrt.h>

template <class T>
SKArray<short> SKPercentOfMassInZDimension(SKArray<T>& input,
float requestedPercent, float resolution);

Function to compute, for each ‘pillar’ in a 3-D SKArray, the z-coordinate at
which the requested percentile of ‘mass’ is attained. That is, at a given (x,y)
location, the ‘pillar’ is summed over z to find the total mass. Then a threshold is
computed as requestedPercentile * totalMass. The column is resummed starting
at z = 0, continuing until the sum exceeds the threshold. Roughly speaking, the
z-coordinate (denoted zthreshold) at which the sum exceeded the threshold is
stored at the corresponding (x,y) location in the output image. More accurately, a
resolution argument is supplied which can refine the simple pixel estimate given
above. What is actually stored in the output image is

SKROUND(resolution * (zthreshold + ((threshold - prev_sum) / curr)));

where prev_sum is the sum just prior to the point where the sum exceeded the
threshold, and curr is the pixel value which caused the sum to exceed the thresh-
old.

For an example see the Example section for this function (below).

A 2-dimensional (short) SKArray which stores, at each (x, y) location, the quan-
tity described above in the Description section (roughly the pixel at which the
sum exceeds the requested percentile).

As an example, consider a pillar whose entries are 1,1, and 0. Suppose the
desired percentile is 0.9. The total mass is 2 so the threshold is 0.9 * 2= 1.8. The
sum exceeds the threshold at z = zthreshold = 1. In this case prevSum would be 1
and the curr value is 1. If the resolution were 1, a zcoord equal to 2 would be
stored. If the resolution were 100, however, a z-coordinate of

SKROUND(100 + ((1.8 - 1)/1)) = 180 would be stored. Later dividing by

the resolution would indicate that the threshold was achieved at z = 1.8.

See also the appropriate test points in the SKE library description to see the effect
of changing the resolution.

177

Document
Revision Date

23 September, 1998

178

Name

Synopsis

Description

Returns

Document
Revision Date

skarr

SKPercentProbabilityDist()
Function to find the pixel value in the input SKArray corresponding to the
requested percentile of all the pixel values in input. For example, if the
requested percent is 90.0, this routine returns the minimum pixel value in the
input array which is greater than 90% of all other pixel values.

#include <skwrt.h>

float SKPercentProbabilityDist(SKArray<short>& input, |
float requestedPercent);

Function to find the pixel value in input corresponding to the requestedPercent
percentile of all the pixel values in input.

A histogram of all the pixel values in input is created. Note that input is assumed
to have data of type short, and that the minimum value is expected to be zero (the
input array may first be scaled by the calling routine to ensure that this is so). The
bin size of the histogram is one, so each discrete value in the (short) input array
gets its own bin.

Since the histogram only counts non-nil pixels, a sum of the values of the histo-
gram gives the number of non-nil pixels. This number is multiplied by the
requestedPercentile to get a targetCount. We then sum over the values in the his-
togram array until we first exceed the targetCount. The current index in the his-
togram array when we first exceed the targetCount gives the index in the
histogram of the desired percentile value. Because the minimum value in the
input was zero,and because the histogram was constructed with bin size equal to
one, this index is also the actual value of the requested percentile in the (possibly
scaled) input array.

Since the input array may have been scaled and offset, this value is then
‘decoded’ based on the scale and offset of the input array to give the ‘real-world’
value of the desired percentile value.

The real-world (e.g. unscaled) value in the input array which corresponds to the
requestedPercent percentile in the input. For example, if requestedPercent is
90.0, this routine returns the minimum pixel value which is greater than 90% of
all other pixel values in the input array.

29 September, 1998

179

Name

Synopsis

Description

Returns

Warning

See Also

Document
Revision Date

SKRadlallyAhgnedOnentatlon()

SKRadtallyAltgnedOnentatwn 0
Function to take an input 2D SKArray of 'orientations’ (angles) and deter-
mine how close each orientation is to the correspondmg radial angle.

#include <skwrt.h>

SKArray<short> SKRadiallyAlignedOrientation(SKArray<short>& orient,
SKCoordl center);

Function to take an input array of "orientations” (angles) and determine how
close each orientation is to the corresponding rladlal angle. For example, in a 9-
by-9 image the center pixel is (4, 4). The plxel at (8, 8) has a radial angle of 45
degrees relative to the center. If the value (onentatlon) at pixel (8, 8) is 50 then
this function will store "5" in the output unage) at pixel (8, 8).

I
This function is typically used in suppressing radially-alligned interest in feature

detectors, as such features are often caused by out-of-trip weather returns.

|
In this function the center is supplied as an arghment so that these radial angle
differences can be computed relative to a pomt other than the array’s true center
point, if desired. .,
The 2-D array of angle differences (pixelwise mput orientation differenced

against pixelwise radial angle). |

|
All angles are assumed to be 180 degrees ambxguous so angle differences are
computed by function SKAnglel 80Dzﬁerence() not furiction SKAngleDzjfer—
ence().

I
Functions SKAnglel80Difference() and SKAng;leDzﬁ‘erence().

30 September, 1998

|
|
l

180

Name

Synopsis

Description

Returns

Example

skarr

| SKReplaceMissingWithMedian()

SKReplaceMissing WithMedian()

Function to perform the ‘ReplaceMissingWithMedian’ function at a single
pixel within an input image. To replace all missing values in an image with a
median value this function should be used in conjunction with the SKArray
class member function "Apply()". See example below.

#include <skwrth>

template <class T>
T SKReplaceMissingWithMedian(SKArray<T> &input, T *xPtr, void *kPtr);

Function to perform the ‘ReplaceMissingWithMedian’ function at a single pixel.
If the current input pixel is (pointed to by xPtr) is nil, then this pixel value is
replaced by the median of all non-ril input pixels within the supplied window
(kernel) pointed to by kPtr. If all the pixels in the window are nil, then the input
pixel remains nil. If the current input pixel is non-nil, it is unchanged. To replace
all missing values in an image with a median value this function should be used
in conjunction with the SKArray class member function "Apply()".

The value to replace the pixel at xPzr with (if it is to be replaced, i.e. if it is miss-
ing). :

/I Tests for SKReplaceMissingWithMedian().

/I Input array. Nil values to be replaced with median of a window.
static char *medianlnputDatal[] =

{
"mil 2 3 45 6 7 8 910"
"2345678999
"112446¢6 888",
il 1 35797979
"mil 3 4 5 6 8nil 7 7 7",
"2 3 4 5 6 6nilnilnil 10",
"3 4 5 6 7 6nilnilnilni"
"1 1 3 3 5 Snilnilnil 8"
"131357577 3%
"nilnil 9 3 6 5nil 6 8nil",
0,

}’.

// Create a kernel for the median operation (window will be 3 by 3).

181

Document
Revision Date

SKArray<short> kernel(3,3); .

SKArray<short> output; !
SKArrayPad<short> pad(PAD_MIRROR, 0, II 1);

// Input must be padded.
SKArray<short> medianlnput(pad, 10, 10)'l

medianlnput.SetSliceVals(medianInputDatal |)
medianInput. Mirror(); |

// Replace missing values.
output = medianInput. Apply(SKReplaceMissingWithMedian, (void*)&kemel),

// Output will look like this:
static char *medianTruthDatal[] =
{
9 10",
9 9" |
8 8"
7 9%
77"
7 10", i
8 8 {
7 8" |
7 37 |
8 7", |
|
|

X
VNN N0 oo

NNNWNK\;NNNN
W~ WL N~NWN
O~NWU AR RNWNARAW
Www U yyn b N
AU UL NN AR
NN AN OAND
AU NN N

}’.

/I Note one pixel is still missing as all values within the 3 by 3 kernel were
// missing, so no median replacement value coluld be found.

29 September, 1998

|
l
!
i
|

182

v)

Name

Synopsis

Description

Returns

Warning

Document
Revision Date

skarr

 SKWeightedMergeTilts()

SKWeightedMergeTilts()

Function to merge two tilts (arrays, in polar (r, theta) format) into a single
tilt. Use data from higher tilt in close to the radar, (i.e. r < mergeBound-
NearKM), use data from low tilt away from radar (i.e. r > mergeBound-
FarKM) and use linearly ramped average of data from both tilts in between.

#include <skwrt.h>

template <class T>

SKArray<T> SKWeightedMergeTilts(SKArray<T>& tiltLow, SKArray<T>&
tiltHigh, float mergeBoundNearKM, float
mergeBoundFarKM);

Function to merge two tilts (arrays, in polar (r, theta) format) into a single tilt.
Use data from higher tilt in close to the radar, (i.e. r < mergeBoundNearKM), use
data from low tilt away from radar (i.e. r > mergeBoundFarKM) and use linearly
ramped average of data from both tilts in between.

The output (polar) SKArray of merged data.

In regions where the merged data is just the raw low or high tilt data, missing val-
ues in the raw data become missing values in the merged data. In regions where
there is weighted averaging, the tilt with the higher weight ‘wins’ in the case of
nil data. For example, if the low tilt weight is 0.2 and the high tilt weight

is 0.8, a missing value in the high tilt will translate to a nil value in the output
image regardless of the low tilt data. With the same weights and a nil low tilt
value and non-nil high tilt value, the unweighted non-nil high tilt value will
become the output value.

29 September; 1998

183

	Abstract
	INTRODUCTION
	CSKETCH IMAGE PROCESSING LIBRARY TUTORIAL
	2.1 Introduction
	2.2 Class Usage Examples
	2.3 Additional CSKETCH Function Packages
	A Detailed Look at the SKArray Class
	Class
	Class SKArray
	Class

	Class SKArrayPad
	Class SKChain
	Class

	Class SKFuzzyFunc
	Class

	Class SKRegionInfo
	Class

	Class SKResamp
	Class

	Class SKStmResamp

	ARRAY AFUTHMETIC
	5.1 Summary
	5.2 Functions

	FUZZY SETS
	6.1 Summary
	6.2 Functions

	IMAGE PROCESSING
	7.1 Summary
	7.2 Functions

	GENERAL MATHEMATICAL FUNCTIONS
	8.2 Functions

	MATHEMATICAL MORPHOLOGY
	9.1 summary

	MATRE OPERATIONS
	10.1 summary
	10.2 Functions
	11.1 summary
	1 1.2 Functions
	12.1 summary
	12.2 Conventions

	WEATHER RADAR TOOLS
	13.1 Summary
	13.2 Functions

