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1. INTRODUCTION 

The ASR-9 Processor Augmentation Card (9PAC) is a custom processing card that, when 
inserted in an ASR-9 system, provides for increased beacon and radar processing performance. 
This document describes the system and application software that executes on the prototype 
board, with an emphasis on how the software modules interact. The intent is to provide the 9PAC 
software support personnel with sufficient information to implement future enhancements without 
unintentionally compromising some aspect of the overall system. 

1.1 Hardware Description 

A block diagram of the 9PAC hardware is shown in Figure 1. The board is built around three 
TMS 32OC44 processors, each configured with 1 MB zero wait-state static RAM and either 
16 MB or 32 MB single wait-state dynamic RAM. The static RAM (SRAM) is connected to the 
local bus on each processor, while the dynamic RAM (DRAM) resides on the global bus. The 
local bus on one of the 044 processors is also connected to a set of peripherals, including a boot 
PROM, an ASR-9/9PAC multi-port memory, two serial controller chips, and a 20 MB flash card. 
Each of the three processors is connected to the other two processors via the C44 hi-speed com- 
munications ports. Note that although the C44 communications port hardware provides support 
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Figure 1. PAC Hardware BIock Diagram. 

Lo/Hi Speed 

Serial Comm 

for bi-directional links, the 9PAC uses two unidirectional (one read/one write) ports to avoid 
problems encountered with early C40 silicon. Note that the component location in the diagram 
does not correspond to the physical location on the actual 9PAC board. 
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1.2 System Software 

The software running on the ASR-9 Processor Augmentation Card (9PAC) is organized as a 
set of cooperating tasks, executing under the control of a real-time operating system. The operat- 
ing system, PACYOS, provides all the services typical of an embedded kernel such as interrupt 
handling, pre-emptive multitasking, queues, signals, semaphores, mailboxes, and memory man- 
agement. In addition, higher-level services exist to support C44 interprocessor communication, 
high-speed serial I/O, and flash card file access. 

The PAC/OS components are shown in Figure 2. At the lowest level are the multitasking ker- 
nel and the device drivers for the various 9PAC I/O devices. At an intermediate level, a set of 
I/O manager tasks exist to provide shared access to the commport, serial, and flash card devices. 
At the top level exist the 9PAC system tasks such as CPU monitoring and memory testing and the 
application tasks such as radar and beacon processing. 

SYSTEM TASKS APPLICATION TASKS 

I/O MANAGERS 

LOW-LEVEL SYSTEM SERVICES 

DEVICE DRIVERS 

KERNEL (Commport) (FlashCard) 

(seria’) (y-G---) 

9PAC HARDWARE 

Figure 2. PAUOS Components 

1.3 Application Software Architecture 

A high-level diagram showing the major functional blocks for the Phase I 9PAC application 
software is shown in Figure 3. As can be seen by the diagram, the sofmare makes heavy use of 
the lower-level system services discussed above. In the Phase I case, only two of the processors 
are used. One processor is responsible for all I/O functions, and in addition performs the radar/ 
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beacon merge operation. The second processor is dedicated to processing the raw beacon replies 
and generating beacon targets which are then returned to the first processor for the merge opera- 
tion. Note that the beacon processing is split into two tasks, a primary, high priority task that actu- 
ally generates the beacon targets, and a second, lower priority task responsible for periodically 
updating the dynamic reflector database and writing it out to the 9PAC flash memory card. Addi- 
tional details concerning the Phase I and Phase II applications are provided in Section 7. 

FROM HSIB - 

FROM ASP- 

TO ASP+- 

C44 #I: HOUSEKEEPER 
I 

RDR Primitives, RDR PRIM 

BCN REPLIES - 

+ RDRTGTS 

w VSPS 

PERFMON x, 

OUTPUT TGTS + 

MULTI-PORT 
RAM 

C44 #2:BEACON 

Figure 3. Phase I Application-Level Software Module Layout, 

1.4 Document Organization 

SERIAL 

* COMM 

FLASH 

* CARD I/O 

The remainder of this document is split into six sections and two appendices. Sections 2 and 
3 describe the PAC/OS kernel and inter-process communications facilities, respectively, with short 
programming examples provided. Section 4 describes the serial input/output capability, Section 5 
describes the flash file system, and Section 6 describes the built-in test faction. Section 7 pro- 
vides an overview of the 9PAC application software architecture. Appendix A provides a PAC/OS 
function reference and appendix B details the 9PAC memory map. 
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2. PAC/OS KERNEL ROUTINES 

2.1 Multitasking 

PAC/OS Tasks are always in one of five possible states: 

l TASK-RUNNING 

l TASK-READY 

l TASK-SLEEPING 

l TASK-BLOCKED, or 

l TASK-BLOCKED-WITH-TIMEOUT 
Tasks are scheduled to run based on their priority level, and the running task is always the 

highest priority task that has reached the TASK_READY state. Each task maintains its own pri- 
vate stack area. Once a task is created and started, it can never be terminated. This is an inten- 
tional characteristic of PAC/OS. It disallows the dynamic creation and deletion of tasks while the 
9PAC is running, a risky proposition in terms of memory management for a system that must be 
capable of running indefinitely. 

With the exception of the currently running task, all tasks are members of a linked list. Tasks 
in the TASK-READY state are kept in the ready list. Tasks in state TASK-SLEEPING or 
TASK-BLOCKED-WITH-TIMEOUT are kept in the sleeping list. Tasks that are simply 
blocked awaiting a signal with no timeout restriction are kept on a separate list, the blocking list. 
Maintaining separate lists for sleeping and strictly blocking tasks reduces the number of tasks that 
need to be examined each time a (1OOOIIz) timer interrupt occurs, preventing the system perfor- 
mance from degrading unnecessarily as the number of tasks increases. 

Semaphore operations, unlike signals, can affect the state of multiple tasks. To deal with this 
conveniently, tasks that are blocked on a semaphore (state TASK-BLOCKED or 
TASK~BLOCKED~WITH~TIMEOUT) are not on any of the previously mentioned lists but 
instead are maintained on a separate list that is private to each semaphore. A list of active sema- 
phores is also maintained so that a timer interrupt can access and wake up any tasks that are 
blocked on a semaphore with a timeout restriction. Semaphores and signals are explained in more 
detail later in this section. 

The following example spawns a process that prints “hello” once per second. 
#include <os.h> 
void hello( int ); 

smain() 
{ 

Task *helloTask ; 
TaskAttrs attrs ; 
int argl = 99 ; 

attrs = TASK-AlTRS ; I* Copy default attributes to structure. *I 

attrs.priority = 5 ; 
helloTask = TaskCreate( hello, &attrs, (void *)argl, NULL, NULL, NULL ); 

r^ Lower this tasks priority below helloTask to allow it to run. */ 
TaskSetPri( TaskSelf(), 2 ); 
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while( FOREVER ) ; P Loop forever (not allowed to return from smain() in PACOS) 
I 
void hello( int arg ) 
1 

while( FOREVER ) 
1 

SysPrintf(“Hello, arg = %d”, arg ); 
TaskSleep(1000); 

I 
I 

2.2 Signals 

Signals are sent Tom one task to another to indicate that some type of event, such as the 
arrival of data at a commport, has occurred. Signals are managed internally using a 32-bit mask, 
resulting in each task having 32 separate signals that it can be “‘listening” for. Currently, none of 
the signal bit positions is reserved, and all 32 signals are available for general use. To prevent sig- 
nal numbers from being inadvertently reused, a dedicated routine, TaskGetAvailSignaQ, is pro- 
vided to allocate signal numbers to the user. 

The following example utilizes two tasks, one that waits for a signal and one that sends the 
signal. The task that is waiting on the signal runs at the higher priority of the two, guaranteeing 
that it will become the running task each time it receives a signal. Every time the signal is 
received, a message is printed. Note that the order of the function calls in this example ensures 
that recvTaskSignum is initialized prior to being used by either the sender or receiver. 

#include cos.h> 

void recvSignal(); 
Uns recvTaskSignum ; p Global signal number. *I 

smain() 
1 

Task *recvTask ; 
TaskAttrs attrs ; 

attrs = TASK-ATTRS ; I* Copy default attributes to structure. *I 
attrs.priority = 5 ; 
recvTask = TaskCreate( recvsignal, &attrs, NULL, NULL, NULL, NULL ); 

TaskSetPri( TaskSelf(), 4 ); I* Lower priority below receiver task. (Causes task switch) */ 

P 
*When control returns to this task, the receiver has already initialized the global 
* recvTaskSignum and is blocked awaiting a signal. 
*I 

while( FOREVER ) 
{ 

SignalSend( recvTask, recvTaskSignum ); 
TaskSleep( 1000 ); 

I 
I 
void recvSignal() 
1 

recvTaskSignal = SignalCreate( recvTask, NULL ); 

while( FOREVER ) 
{ 

SignalWait( recvTaskSignum, 0 ); p No timeout specified. *I 
SysPrintf(“Got signal!\n”); 

1 
3 
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2.3 Semaphores 

PAUOS semaphores are counting semaphores that within the 9PAC software are typically 
used for mutual exclusion in one of two instances: when multiple processes are competing for 
access to a single resource or for task synchronization between two tasks (a data producer and a 
data consumer) accessing a first in, first out (FIFO) queue. The next example uses a semaphore to 
provide mutually exclusive access to a single resource-a flash memory card. The following sec- 
tion on FIFO queues illustrates how semaphores can be used to help coordinate access to a FIFO 
queue. 

f* 
* File: sem-mutex.c 
t 

* Example program to run three tasks that all access Flash memory. Since only one task can 
* access Flash memory at a given time, the tasks use a semaphore to provide mutual exclusion. 
*I 

#include cos.h:, 

void flashWriter( int ); 
Sem *flashSem ; 

smain() 
1 

Task *tar& *task3 ; 
TaskAttrs attrs ; 
int sleepperiod ; 

flashSem = SemCreate( I, NULL ); p Create a semaphore with an initial count of I */ 

attrs = TASK-ATTRS ; I* Copy default attributes to structure. *I attrs.priority = 5 ; 
sleepperiod = 1000 ; 
task2 = TaskCreate( flashwriter, &attrs, (void *)sleepPeriod, NULL, NULL, NULL ); 

sleepPeriod = 1500 ; 
task3 = TaskCreate( flashwriter, &at&s, (void *)sleepPeriod, NULL, NULL, NULL ); 

sleepperiod = 1300 ; 

while( FOREVER ) 
{ 

SemPend( flashsem, 0 ); p Get exclusive access. *I 
FlashlO( ); /* Hypothetical flash access routine. */ 
SemPost( flashsem ); P Give up exclusive access. *I 
TaskSleep( sleepperiod ); 

1 
1 

void flashWriter( int sleepperiod ) 
{ 

while( FOREVER ) 
{ 

SemPend( flashsem, 0 ); /* Get exclusive access. */ 
FlashlO( ); 
SemPost( RashSem ); P Give up exclusive access. *I 
TaskSleep( sleepperiod ); 

1 
I 

2.4 Queues 

Queues are most often used either to pass data between tasks or between an interrupt handler 
routine and a task. Because multiple processes access the queue structure, some form of mutual 
exclusion is necessary. For performance reasons (queues are heavily used in device drivers), it is 
not a good idea to use semaphores for this purpose. Instead, each of the queue routines briefly dis- 
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ables interrupts while it is altering the queue structures. Some form of task synchronization is still 
necessary, however, to put tasks to sleep when they are waiting on an empty queue and to wake a 
task when an item is placed on a queue. Both signals and semaphores can be used for this purpose, 
but signals should really be used only when a queue reader process needs the capability of block- 
ing reads on more than a single queue (the 9PAC server-client package uses this feature). The fol- 
lowing example uses a semaphore to coordinate queue accesses between a reader and a writer 
task. It also is the first example to make use of thememory manager via the MemAlloc() call. 

#include <os.h> 

#define NUM-PACKETS 4 

typedef struct { 
QueueElem *elem ; 
char data[128] ; 

} DataBuf ; 

void readers); 

smain() 
{ -- 

int i ; 
Queue *freeQueue, *dataQueue ; 
Sem *freeSem, *dataSem ; 
Task *readerTask ; 

freeQueue = QueueCreate( NULL ); 
dataQueue = QueueCreate( NULL ); 
for( i = 0 ; i < NUM-PACKETS ; i++ ) 
{ 

buf = MemAlloc( PAC-DRAM, sizeof(DataBuf), 0 ); 
QueuePut( freeQueue, (QueueElem *)buf ); 

1 
freeSem = SemCreate( NUM-PACKETS, NULL ); 
dataSem = SemCreate( 0, NULL ); 

readerTask = TaskCreate( reader, Lattrs, NULL, NULL, NULL, NULL ); 

If Send data to reader process. *I 
while( FOREVER ) 
C 

SemPend( freesem, 0 ); P‘ Wait for a free queue packet. *I 
buf = (DataBuf *)QueueGet( freeQueue ) ; 
QueuePut( dataQueue, (QueueElem *)buf ); 
SemPost( hataSem ); . 
SysPrintf(“Sent Queue packet\n”); 

1 
1 

void reader0 
C 

DataBuf *buf ; 

P 
* Wait for a data packet to appear on the data queue, then just put it back on the free 
* queue. 
*I 
while( FOREVER ) 
{ 

SemPend( datasem, 0 ); 
buf = QueueGet( dataQueue ); 
SysPrintf(“Got Queue packehn”); 
QueuePut( freeQueue, (QueueElem *)buf ); 
SemPost( freeSem ); 

I 
1 
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2.5 Memory Management 

The PAUOS memory manager is extremely simple. At startup, three memory segments are 
initialized: one for static RAM (PAC-SRAM), one for dynamic RAM (PAC-DRAM), and one for 
C44 on-chip RAM (PAC-CM). Memory is allocated using the MemAlloc() or MemAllocVer- 
boseEn- function calls. Once allocated, memory can never be freed, so all required memory must 
be allocated only at startup. This is an intentional characteristic of PAUOS. It ensures that mem- 
ory fragmentation will not occur and cause the 9PAC to crash after an indeterminate period. When 
a dynamic ‘pool’ of fixed-size memory buffers is required (such as in the case of interprocessor 
communication frames), the buffers are typically allocated at startup and placed on a free buffer 
‘stack’ from which they can be popped (allocated) or pushed (freed back to the stack). Neither 
function call returns NULL on failure, but instead, both halt the processor after putting an error 
message in the trace buffer. MemAllocVerboseErr() allows an added error message to be passed 
as au argument for added debugging capability. Memory statistics can be obtained at any time via 
the MemStat() function. The following code fragment illustrates the use of the MemAllocO fimc- 
tions, along with the trace buffer output for each if an error occurred. 

void allocBuf() 
1 

char *bufl, *buf2 ; 
buf = MemAlloc( PAC-SPAM, 1024,O ); p No special alignment. */ 
buf = MemAllocVerboseErr( PAC-DRAM, 1024,4, “allocBuf’ ); /* Align on a 4 word boundry.*l 

1 

If the memory request failed for MemAlloc(), the error message in the trace buffer would be: 
MemAlloc: Out of Memory, seg = 0 

or if the call to MemAllocVerboseErrO failed: 
allocBuf: MemAllocVerboseErr: Out of Memory, seg = 1 

2.6 Mailboxes 

Mailboxes are a useful mechanism for providing buffered access to a single resource. In the 
9PAC system software, for example, a mailbox is used to allow multiple processes to send mes- 
sages/data to the 9PAC serial port on C44 processor #l. The buffering capability is important to 
avoid holding up processes unnecessarily in a real-time environment. The following example 
starts up one task that reads a mailbox and two tasks that write to it. Note that an additional argu- 
ment, ‘senderArg,’ is provided by the mailbox routines to allow each message to be conveniently 
tagged with information (usually a structure pointer, but the example just uses an integer) specific 
to each sender. This can be useful in directing mailbox message feedback to the original sender 
process. 

#include Cos.h> 

#define MBX-MSG-SIZE 1024 
#define MBX-NUM-MSGS IO 

void writer( int ); 

Mailbox *mbx ; 

smain() 
1 

TaskAttrs attrs ; 
int senderArg ; 

mbx = MailboxCreate( MBX-MSG-SIZE, MBX-NUM-MSGS, NULL ); 
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I* Create 2 tasks that write to the mailbox, then sit and read it. *I 
attrs = TASK-ATTRS ; 
attrs.priority = 4 ; 
TaskCreate( writer, &attrs, (void *)32, NULL, NULL, NULL ); 

attrspriority = 5 ; 
TaskCreate( writer, Battrs, (void *)32, NULL, NULL, NULL); 

while( FOREVER ) 
{ 

MailboxPend( mbx, buf, &length, &senderArg, 0 ); p No timeout specified. */ 
SysPrintf(“smain: Got mail msg, len = %d, arg = %dW, length, senderArg ) ; 

1 
1 

void writer( int msgLen ) 
{ 

char *msg = MemAlloc( PAC-DRAM, msgLen, 0 ); 
int senderArg = 9 ; 

while( FOREVER ) 
{ 

SysPrintfrwriter: Posting msg, len = %d\n”, msgLen ); 
MailboxPost( mbx, msg, msgLen, (void *)senderArg, 0 ); 
TaskSleep( 1000 ); 

2.7 Interrupt Handling 

Whenever an interrupt occurs on one of the 9PAC processors, a C interrupt service routine is 
called. At startup, all interrupts are by default vectored to the routine ISR_unrecognized(), which 
simply puts a message describing the occurrence in the trace buffer (see Section 2.9) and halts the 
processor. Before enabling a specific interrupt, the routine ISRAttachO should be called to cause 
the processor to vector to the specified interrupt handler routine. The following example attaches 
an interrupt handler routine to the non-maskable interrupt (NMI). If an NMI occurs, a message 
will be printed to the trace buffer- Note that an optional argument can be passed to the handler 
routine. This is typically a pointer to a structure, usually containing some state information about 
the interrupt source device (such as a C44 commport), but here it is just set to a constant value to 
illustrate its use. 

. 

#include <os.h> 

static int devlnfo = 99 ; 

void intrHandler( int devlnfo ) 
1 

SysPrintf(“NMI interrupt occurred, devlnfo = %d\n”, devlnfo ); 
1 

smain() 
{ 

ISRAttach( 0x1, intrHandler, devlnfo ); 
while( FOREVER ) ; 

1 

2.8 C44 Register Access Routines 

There are certain C44 registers that are not directly accessible from C code. PAC/OS provides 
a variety of assembly language routines (SetST, SetIIE, OrST, OrIIE, etc.) to allow the registers to 
be read and/or modified. See Appendix A for more details. 
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2.9 Trace Buffer Support 

While debugging low-level routines it is often useful to access a trace buffer to get an idea of 
what is happening. PAC/OS provides a trace buffer facility that saves messages in static memory 
for later analysis. Normally, a portion of the C44 on-chip static RAM is used for this purpose. 
Many of the following examples leave evidence of their execution in the trace buffer using the 
SysPrintfO function call. Calls to SysPrintfO fill the trace buffer with ordinary ASCII text, acces- 
sible via a memory dump using a C44 JTAG-based debugger. 

2.10 Linked Lists 

General-purpose, doubly-linked list routines are provided by PACYOS. As with queues, any 
item that is to be added to a list must contain a linked list node header structure (consisting of the 
next and previous pointers) as its first member. Unlike queues, the linked list code is not intended 
for use as an inter-process communication mechanism but instead as a lighter-weight mechanism 
for organizing a list of items (such as aircraft targets) within a single task. The following code 
fragment declares an array of buffer data structures that contain the node header, creates a list, 
adds a few of the structures to the list, an then iterates through the list. 

#include <linklist.h> 

typedef struct { 
ListNodeHdr nodeHdr ; 
int size ; 
char data[256] ; 

}Buf; 

Buf bufArray[lOJ; 
Buf *bufPtr ; 
LinkList *buffList ; 

* Create the list, and place IO buffers on it. 
*I 
bufList = ListCreate( NULL ); 

for(i=O;iClO;i++) 
ListAppendltem( buflist, &bufArray[i] ); 

* Starting from the beginning of the list, iterate through the entire list. 
*/ 
bufPtr = ListGetFirstNode( bufList ); 
while( bufPtr != NULL ) 

bufPtr = ListGetNextNode( bufPtr ); 
. . . 

See Appendix A for a more complete description of all of the list functions. 
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2.11 Stack Routines 

The PAC/OS stack routines should not be confused with the C44 processor stack - they are 
totally unrelated. Stacks are a generally useful data structure in a number of situations, such as the 
buffer ‘pool’ situation described in Appendix A, Section A.3, Memory Functions. The following 
code illustrates how a buffer pool can be set up and managed using the stack routines: 

# include %tack.h> 
#define DATA-SIZE IO 

STACK-T *freeBufStack ; 
bufstruct *bufPtr ; 
bufstruct inData[DATA-SIZE} ; 

freeBufStack = MemStackCreate( PAC-DRAM, NUM-POOL-BUFS-, sizeof(BufStruct) ) ; 

I* 
* Hypothetical polling loop that reads data from somewhere... 
*I 
while( poll == TRUE ) 
I 

P 
* Grab a buffer, fill it with data, process it, then put it back on the free stack. 
*/ 
if( incomingData ) 
( 

bufPtr = StackPop( freeBufStack ); 
fillBuffer( bufPtr, inData, DATA-WE); 

1 

processActiveBuffers( ) ; 

p Put all buffers that are no longer active back on the free stack. *I 
for( all buffers ) 

if( !bufPtr->active ) 
StackPush( freeBufStack, bufF’tr ); 

This is certainly not the only way to handle a memory pool (queues could easily be used as 
well), but the stack implementation is extremely simple and is suitable for compiler inlining. 
Since the position of the bottom of the stack is known, it is also a trivial operation to see how 
many items are being held on the stack without having to keep track of it with a separate variable. 
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3. INTERTASK COMMUNICATIONS (ITC) FACILITIES 

In any multiprocessing environment such as the BPAC, it is desirable to make as transparent 
as possible the fact that the code is spread among multiple processors. In applications that paral- 
lelize well, such as large numerical models, this is usually done by running the same program on 
every processor, with each processor handling a subset of the data to be processed. The 9PAC 
software, however, does not conform to this model. It more closely approximates a computer net- 
work where each node performs an independent set of tasks and communicates with other nodes 
over network connections which, in the case of 9PAC, are the C44 high-speed communication 
ports. The PACYOS intertask conununications facilities provide server-client based transport 
mechanisms that allow node-independent communications to take place; that is, the interface 
looks the same whether or not the two tasks doing the communicating reside on the same C44 
node or on different C44 nodes. 

The communications software is comprised of two main layers: the networking layer and the 
server-client layer. The networking layer utilizes pairs of C44 commports as bidirectional links 
between C44 nodes and provides for multiple multiplexed channels over a single link. The server- 
client layer lies above the networking layer and provides nelsvork frame fragmentation/defrag- 
mentation and connection-based data/message protocols. 

3.1 Networking Layer 

The 9PAC board contains three TI32OC44 DSP chips which are interconnected by the C44 
high-speed communication ports. Each C44 processor has four available commports (numbered 
O-5), all of which are used to link each processor with its two neighbors. Each commport is capa- 
ble of bidirectional transfers, but problems with early C40 chips led to a design where each link is 
used in a unidirectional manner and pairs of commports are used to implement bidirectional trans- 
fers. A diagram of the connections is shown in Figure 4. 

5 1 

0 4 

C44#1 

1 4 0 5 

0 ,4 

5- 1 

a4 #2 c44 #3 

Figure 4. YPAC Network Physical Link Layout. 
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Each C44 has an on-chip DMA coprocessor capable of managing commport data transfers 
independently of the CPU. When a packet is ready to be sent, the CPU need only set up a parame- 
ter block for the DMA coprocessor and start it running. When the transfer completes, the DMA 
coprocessor raises an interrupt and the CPU can then free up any resources (buffers) that were 
used during the transfer and restart the DMA if another transfer is ready and waiting. 

The networking layer is designed to provide intertask communication support between tasks 
on the same processor as well as on different processors, so in addition to the actual physical 
interfaces shown above, there is a ‘loopback’ interface implemented in software. Above the level 
of the networking driver, the loopback interface appears identical to the physical commport inter- 
face, resulting in transparent communication between local or remote tasks. 

3.2 Multiplexing 

. 

There is only one bidirectional link between each pair of C44 nodes, and it must be shared 
among multiple tasks needing to use it. Each link is therefore multiplexed into a number of ‘chan- 
nels’ (The maximum number of channels per link is currently 20). Each channel operates inde- 
pendently, maintaining its own separate frame queues and status. When a channel is being utilized 
in a connection-based manner (the line blurs a bit here between the server-client layer and the net- 
working layer), information regarding the status of the channel on the other side of the connection 
is maintained so that data will not be sent if no more fi-ee f’iarnes are available on the other side. 
This is accomplished by requiring each channel that is receiving data to send a ‘frames freed’ sta- 
tus message to the sender whenever <N> fi-ames have been processed and fi-eed, where <N> is 
configurable, but it usually set to 112 the total number of frames in the receive queue. This status 
message is not actually seen by the sender process but is intercepted and processed in the network 
layer. This design allows some channels to be blocked, waiting for the receiver process on the 
other side to catch up, while at the same time other processes are fi-ee to transmit if frames are 
available on the other side. 

In PAC/OS, no channel has strict priority over another channel, but the design is such that 
channels belonging to tasks with higher priority will generally be serviced first. Additional priori- 
tization at the networking level could be added rather easily at a later time if necessary. 

3.3 Network Frames 

Data are transmitted across channels using ‘flames.’ A lo-word header at the beginning of 
each frame contains addressing and protocol information as well as the number of data words car- 
ried by the frame. The data portion of each frame is one of two fixed sizes (currently 256 words/ 
frame for ‘small’ frames or 4096 words/frame for ‘large’ frames). The 9PAC software currently 
uses small frames exclusively. The larger frame is included for future serial interface networking 
support, where the larger frame will be helpful in keeping interrupt overhead to a minimum. 
When transmitting a frame between C44 nodes (across a commport link), the entire size of the 
frame is always transmitted regardless of how ‘full’ the name is. This may seem wasteful, but 
receiving variable size frames using DMA requires two DMA operations: one for the header 
describing how much data will follow and one for the data transfer itself. It turns out that the inter- 
rupt processing overhead for the additional DMA operation is actually greater than the overhead 
of sending partially empty frames, so the latter choice was taken. Note that when frames are being 
transmitted using the loopback interface, simple pointer manipulation is used and no copy opera- 
tion actually takes place, and the above situation does not apply. 
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. 

In general, the software writer will not use the network layer routines but will instead use the 
server-client routines described below. 

3.4 Server-Client Protocol Layer 

The server-client protocol layer implements a connection-based protocol using the lower- 
level networking layer. Basically, when a process initializes a server stream, a stream ID and serv- 
ing process ID are registered with a connection manager process that runs on each C44 node. 
When a process wishes to register as a client of the server it opens a channel, and using that chan- 
nel, sends a connection request (specifying a stream ID) to the connection manager on the appro- 
priate C44 node. Assuming that the specified stream is being served, a channel is opened on the 
server side, a connection is established, and communication between server and client may then 
proceed. 

3.5 Server-Client Stream Configuration 

Each application has its own stream configuration, including stream names, server nodes, 
number of send and receive frames, and whether or not statistics should be gathered for each 
stream. This inforrnation is centralized in a single include file, typically included in the same file 
as smain(), that is compiled and linked into the application. An example of the stream configura- 
tion file is shown below: 

P 
* File: teststreamsh 
* 

* typedef struct { 
* char name[24] ; 
* int streamld ; 
* int srcNode; 
* int serverSendFrames; 
* int serverRecvFrames; 
* int ClientSendFrames ; 
* int clientRecvFrames ; 
* int frameSize ; 
* int debugLevel ; 
* int reportstats ; 
* } STREAM-INFO-T ; 
* 

STREAM-INFO-T *SC-streamsn = ( 
{ “nodel-test”, 10, 1,4,2,2,4, IP-SMALL-FRAMES, 0, FALSE}, 
{ “node2_test”, 11,2,4,2,2,4, IP-SMALL-FRAMES, 0, FALSE} 

int SC-nstreams = sizeof(SC-streams)lsizeof(STREAMJNFO_T) ; 

This example sets up the configuration for two streams: one that will be served by a task on 
node1 and one that will be served by a task on node2. 

3.6 Server-Client Messaging Transport Model 

PAUOS provides support for two server-client models. The first model, the messaging model 
is useful when a task wishes to listen for messages from other tasks, perform some action, and 
send replies back to the originating tasks. In the 9PAC software, this is most often used to imple- 
ment server tasks that provide multiplexed access to a single resource (such as the flash memory 
card). 
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Figure 5. Server-Client Message Transport Model, 

For reasons of simplicity, client tasks currently always block while awaiting a reply from a 
server (messaging model only!). This means there is never more than one outstanding server 
request per client at a given time. Given sufficient reason, this behavior may be modified in the 
future. 

#include <os.h> 
#include <ip.h> 
#include <sc.h> 
#include <teststreams.h> 
#include epac-net-config.h> 

void client( void ); 

smain() 
1 

SERVER-T *sp ; 
SC-SERVER-ATTRS-T *attrs ; 
TaskAttrs ‘attrs ; 

* Initialize Server-Client layer. This starts up a connection manager process on this node. 

&Jnit() ; 
P 
* Hardcode the node number here. In some situations, it will be automatically set during 
* the boot process, but typically not when the debugger is being used. 
*I 
IP-node( I ); 

/* 
* node vport config is a configuration table defined in pat-net-config.h that describes how 
* the pFocess&s are interconnected (i.e. which commports on one processor hook to those 
* on another processor. 
*i 
IP-init(node-vport-config); 

* Initialize the server task. This registers with the connection manager so client 
* connection requests can be honored. 
*I 
attrs.mode = SC-MSG-MODE ; 
sp = SC-server-init(“teststream”, &attrs ); 
I* 
* Start up client task. 
*I 
attrs = TASK-ATTRS ; 
attrs.pri = 6 ; 
TaskCreate( client, &attrs, NULL, NULL, NULL, NULL ); 
I* 
* Sit in a loop waiting for requests, and replying to the client that sent the request. The 
* reply in this case is simply an echo of the received message. 
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*/ 
while( 1 ) 
f 

words = SC-server-get-msg( sp, msg, MAX-LEN, &clientld ); 
SysPrintf(“Server: Got message of %d words\n”, words ); 
SC-server-reply( sp, msg, IO, clientld ); 

I 
I 

P 
* Client task to send message and receive reply every 2 seconds. 
*I 
void client(void) 
{ 

int i ; 
CLIENT-T *cp ; 
SC-CLIENT-AlTRS-T *attrs ; 
int msg[lO] ; 

for(i=O;i<lO;i++) 
msg[i] = i ; 

attrsmode = SC MSG-MODE ; 
cp = SC-client-i~it(“teststream”, &attrs) ; 

while( 1 ) 
{ 

SC-client-send-msg( cp, msg, 10 ); 
TaskSleep( 2000 ); 

I 
1 

3.7 Server-Client Data Transport Model 

The second model, the data model, allows a single task to send data to multiple clients using 
a single data stream. As shown in Figure 6, the communication in this case is unidirectional, with 
each connected client receiving an exact copy of the data being transmitted by the server. If no cli- 
ents are connected to a server, the data are simply discarded until a client does connect. The 
amount of buffering between server and client is user-configurable, as is the blocking mode used. 
This model is used extensively in the 9PAC software to pass Beacon and Radar information 
between tasks. 

I I I I 

Server L-v- 

Figure 6. Server-Client Data Transport Model. 

The following example starts up a server and a client in data transport mode and sends data 
from the server to the client. 

#include <os.h> 
#include 4p.h> 
#include <sc.h> 
#include dteststreams.h> 
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#include cpac-net_config.h> 

void client( void ); 

smain() 
1 

SERVER-T *sp ; 
TaskAtirs *attrs ; 

SC-init() ; 
IP node( 1 ); 
IPrinit(node-vport-config); 

* Initialize the server task, Default mode is data mode, so no attributes need be 
* specified. 

Jp = SC-server-init(“teststream”, NULL ); 

* Start up client task. 
*I 
attrs = TASK-AlTRS ; 

~~~~~~t~~client, &atirs, NULL, NULL, NULL, NULL ); 

* Send a 1000 words of data every second. 
*I 
while( 1 ) 
1 

words sent = SC-server-send-data( sp, data, 1024 ); 
SysPrGtf(“Server: Sent message of %d words\n”, words-sent ); 
TaskSleep(l000); 

I 
1 
I* 
* Client task to send message and receive reply every 2 seconds. 
*I 
void client(void) 
{ 

CLIENT-T *cp ; 
int data[lOOO] ; 
int words ; 
cp = SC-client-init(“teststream”, NULL) ; 
while( 1 ) 
{ 

words = SC client-get data( cp, data, 1000 ); 
SysPrintf(“zient: Received %d words of data\n”, words ); 

}Serial IO 
1 
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4. SEFUALIIO 

4.1 High-Level Architecture 

PACYOS provides two levels of support for the 9PAC serial ports. At the lowest level, a 
device driver layer provides an interface between a serial port device and a task executing on C44 
#l . At a higher level, a set of cooperating system-level tasks provides true distributed write access 
to CWE of the serial ports, allowing any task on one of the three processors to send messages to a 
host computer (normally a Sun workstation outfitted with a high-speed serial card). For conve- 
nience, support for the printf() family of functions is also provided as part of the higher layer. The 
basic architecture of the serial I/O facilities is shown in Figure 7. 

c44 #I c44#2 

\ t ! 
Serial I/O 

f Local Serial l/O \ 
Multiplexor 

riaV0 Msgs c44#3 

pp \ 

Serial l/O Ports I-4 

\ 
Local Serial l/O 

Figure 7. Serial I/O Facilities. 

At the application level, tasks make calls to printf(). In the Phase I 9PAC software, the serial. 
I/O facilities are primarily used to output diagnostic messages and radar/beacon target data to a 
connected Sun workstation using a single serial line. This utilizes the distributed serial I/O mech- 
anism whereby calls to printf() and sendMsg() are made by the various 9PAC application tasks. 
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On processor #l, these calls are set up to communicate directly with a serial I/O server task which 
provides shared access to a single serial port. On processors #2 and #3, the serial requests are first 
transformed into messages and then forwarded to the serial I/O server using the PAC/OS ITC 
facilities described in Section 3. 

Note that in the current implementation, serial communication using these distributed facili- 
ties is strictly unidirectional (output). In addition, the entire chain of serial I/O communications is 
set up to be non-blocking to prevent unanticipated delays in application software due to serial I/O. 
If the aggregate serial I/O data rate exceeds the capacity of the serial link at any point, the excess 
data are simply discarded. (Generous buffering provided by the serial I/O multiplexor and server 
tasks is normally sufficient to prevent this, however). 

In future 9PAC applications, it may become necessary to begin using additional serial chan- 
nels (to support direct output of CD-2 data, for example). In such a case, a second task communi- 
cating directly with the serial I/O driver would likely be used. In general, though it is possible to 
control more than one serial port from a single task, it is advisable for reasons of flexibility to 
allocate a separate task to each serial connection. If the connection is to be used for a single pur- 
pose, it is likely that all the desired functionality and the serial I/O driver calls can be imple- 
mented in the same task. 
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5. FLASH FILE SYSTEM 

5.1 High-Level Architecture 

PACYOS provides for true distributed access to the 20 ME3 flash card. Any task on one of the 
three processors can access files stored on the card, and accesses from multiple tasks are permit- 
ted to occur simultaneously. This is in keeping with the philosophy of the ITC layer-applications 
tasks which can in general be moved between physical C44 processors with no loss of access to 
basic system services. 

The file access capability is implemented in an analogous manner to a UNIX distributed file 
system, using the layered architecture shown in Figure 8. At the highest level, application-level 
tasks make calls to a set of standard functions, including FileOpen(), FileRead(), FileWrite@ and 
FileClose(). These calls generate file I/O messages which are forwarded to a multiplexor task 
local to each C44 node. The purpose of the multiplexor process is to limit the number of inter-pro- 
cessor connections related to file system access to two-one for each ‘remote’ processor. This 
helps to minimize the total number of network fi-ames that must be allocated for interprocessor 
communication. After reaching the multiplexor, file I/O messages are transmitted to the master 
file server on processor #l , 

C44#1 

f 
Local File I/O 
Multiplexor 

File l/O Msgs 

Master Flash File 
IlOServer File I/O Msgs 

20 MB Flash Card 

c44#2 

q/ Local File I/O \ 
Multiplexor 

Figure 8. Distributed Flash Filesystem Architecture. 
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This server is responsible for providing multiplexed access to the single flash card. It services 
requests one at a tirne on a first-in, first-out basis (FIFO). Each transaction generally consists of 
an arriving request, a flash card read or write access, and a return message containing data and 
any error status information- 

The master file server contains the majority of the flash file system internals such as main- 
taining lists of allocated vs. free blocks on the flash card in a MS-DOS-compatible file allocation 
table (FAT). It also translates the high-level read/write requests to the low-level block-oriented 
accesses provided by the flash card device driver (ATAOpen(), ATAReadBlock(), ATAWrite- 
Block(), etc.). Note that although the file server module provides hooks to support multiple device 
types (the original 9PAC prototype contained 4MB on-board flash in addition to the 20 MB flash 
card), only the ATAxxx() driver routines are currently in use. 

The modules comprising the distributed flash filesystem are all configured as low-priority 
tasks to avoid stealing CPU cycles from the real-time radar/beacon processing tasks. That fact, in 
conjunction with the relatively slow write rate of flash memory, results in file J./O taking a rela- 
tively long time (up to 0.1 seconds per 256-byte transfer). Obviously, the real-time radar/beacon 
processing tasks cannot tolerate such delays. For that reason, the real-time processing functions 
that contain an element of file l/O (such as the beacon processing code and its associated reflector 
database file) are typically implemented as two tasks: the high-priority processing task and a 
lower priority file I/O task. Both tasks access the same in-memory copy of the information saved 
on the flash card, but only the low priority task does actual reads/writes from/to the flash card. 

5.2 Low-Level Flash Filesystem Architecture 

The Flash File System (FFS) driver library is compatible with the following technologies: 

l DOS tile system 
l PCMCIA ATA flash card standard 
l TMS32OC4x DSP processor 
l ANSI C language 
The library supports two interfaces: 1) a user command interface and 2) a programming inter- 

face. Functions that implement the user command interface support the following operations: 

format -- DOS-format the flash card 

getFFS -- copy the FFS from the flash card to on-board RAM 

dir -- display file names and sizes 

delete <filename> -- delete a file 

mv <SRCfile> <DESTfile> -- rename a file 

cpTo <FFSfile> <HOSTfile> -- copy GIOSTfile> to <FFSfile> 

cpFrom <FFSfile> <HOSTfile> -- copy <FFSfile> to <HOSTfile> 

csFFS <FFSfile> -- checksum file <FFSfile> 

putFFS -- copy the on-board FFS to the flash card 
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For the 9PAC system, these operations may be performed through a serial port interface to a 
host computer. 

The programming interface supports the following operations: 

format 

getFFS 

open 

close 

read 

write 

seek 

tell 

size 

flush 

putFFS 

-- DOS-format the flash card 

-- get the FFS from the flash card 

-- open a file (KDONLY, WRONLY, APPEND) 

-- close a file 

-- read file data 

-- write data to a file 

-- move file access point 

-- get current file access point 

-- get current file size 

-- write file’s sector buffer to the flash card 

-- copy the FFS to the flash card 

These functions are available to the real-time kernel and application code. 

The driver implements a standard DOS file system (FAT16). All tiles contain 32-bit integers 
with DOS and TMS320C4x compatible byte ordering (little endian). 

5.2.1 Special Features/Limitations 

The 9PAC project required a fail-safe file system. As a result, additional redundancy (beyond 
that provided by DOS) and integrity are built in. Redundant copies of the FAT table (part of DOS) 
and root directory are implemented. In addition, all alterable file system data structures are check- 
sum checked. Provision also was made to ensure that one consistent file system is always present 
on the card. This assures protection against power failure or card removal while the file system is 
being updated. 

To accommodate redundant root directories, the standard DOS 512 entry root directory was 
replaced with two 256 entry copies. The resulting file system is still compatible with DOS FAT16 
but limited to 256 tile entries in the root directory. Since support for this many files was consid- 
ered more than adequate for the 9PAC application, subdirectory support was not implemented. 

5.2.2 Derivative File Systems 

Although the requirement was later dropped, the 9PAC project initially had a requirement to 
support a file system for flash memory mounted directly on the processor board. This memory 
presented an additional design challenge: the memory must be written in 64 Kilobyte blocks. A 
copy of the flash card file system was adapted to support this requirement by implementing a 64 
Kilobyte software cache between the file system and the memory. As an intermediate step in the 
conversion process, the file system was fast converted to support a RAM disk-that is, a file sys- 
tem for a region of SRAM or DRAM memory. The net result of these efforts is that three separate 
file systems were created: 

. PCMCIA ATA flash card 

l On-board flash memory 
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l On-board RAM disk 
The user command and programming interfaces are the same for all tile systems. 

A RAM disk is useful for situations in which a real-time system must access files at high 
speed. Files may be transferred between it and a slower flash file system during less time-critical 
periods. 

5.2.3 File System Design Strategy 

The file system design strategy was primarily constrained by the desire to implement a file 
system that was compatible with DOS FAT16 and by the characteristics of the specific storage 
media supported. For example, the DOS file system implements a sector size of 512 bytes and 
uses a FAT to specify access to clusters of file sectors. It was also necessary to minimize write 
operations to flash memory since write operations are relatively slow and flash memory has Iim- 
ited write cycle life expectancy (see Section 5.2.3.3, Wear Leveling). 

As a result of these and other constraints, the file system was designed to support a mode of 
operation in which the file system data structures in a formatted flash memory file system are first 
copied into Rail before file operations are performed. The in-memory copy of the file system is 
then modified as file operations take place. The data structures in the actual flash memory file sys- 
tem may then be synchronized with the current in-memory version by periodically copying the in- 
memory image at convenient times. Note, however, that application file sectors are written to 
flash memory as they are filled by the application program. Only the tile system data structures 
(e.g., the FAT and root directory structures) are maintained in RAM and written periodically. This 
approach has advantages and shortcomings. 

Clearly, by maintaining and accessing an image of the file system data structures in RAM, 
file operations are faster. Indeed for a real-time system, this is probably the only practical 
approach that will satisfy access timing requirements since flash memory writes are relatively 
slow. An additional advantage is that flash memory sectors that hold file system structures sustain 
less wear. On the other hand, only the in-memory file system image is current all the time. If the 
system should loose power, some of the recently written data could be lost. However, the existing 
flash memory file system would still be consistent and files would still be accessible. 

5.2.3.1 Data Structures 

The design associates a file descriptor data structure with each file created. Among other data 
items, this structure contains a 5 12 byte sector buffer. Sector size was chosen to comply with DOS 
FAT1 6 and the PCMCIA ATA specification. The sector buffer is managed like a cache. That is, on 
a file read operation, the file sector containing the data to be read is copied into the buffer. As long 
as program reads require data ti-om that sector, data are read from the buffer. When reads are 
required fi-om a different sector, the new sector is copied into the buffer. 

Similar operations take place in a file write operation. When the buffer has been filled, its 
contents are copied to the appropriate file sector in flash memory. The file descriptor structure 
maintains a “buffer dirty” flag which is set whenever data are written to the buffer, The flag is 
used to signal the need to copy the buffer back to the file system before it is overwritten with data 
fi-om a different sector. This mechanism supports random read/write operations. 

The DOS file system maintains a FAT data structure that implements a link list mechanism 
for locating clusters of file sectors. A cluster is a contiguous block of sectors and is the smallest 
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unit of storage managed by the file system. The various implementations of DOS use different 
numbers of sectors per cluster. The number used may be read from the boot sector data structure 
stored in the file system. 

Since sectors are allocated to files in units of clusters, data storage efficiency is impacted by 
the sectors-per-cluster value chosen. The value also affects the size of the FAT table and, as a 
result, the time it takes to update the flash memory file system from the in-memory copy. Large 
values result in smaller FATS and hence faster updates. Once a file system is formatted, the num- 
ber of sectors per cluster is read fi-om the boot sector data structure when the file system is loaded 
into the in-memory image. 

The format function for the flash card file system programming interface has an argument 
for specifying the number of sectors per cluster. The format command in the user command inter- 
face for this file system defaults to eight sectors per cluster. But this value may be overridden by 
specifying a command option. The design is different for the on-board flash memory and RAM 
disk file systems, however. 

As indicated earlier, on-board flash memory must be written in 64 Kilobyte blocks. To sup- 
port this, an additional level of buffering was implemented between the file descriptor sector buff- 
ers and memory. The new buffer also contains 64 Kilobytes and is accessed as a secondary cache 
called the current cluster cache. That is, the tile system accesses file sector buffers in the current 
cluster cache rather than directly from flash memory. The current cluster cache is read and written 
to/from flash memory as needed to support file requests. It holds an entire cluster of sectors. 

Since the current cluster cache contains 64 Kilobytes and a sector is 5 12 bytes, the number of 
sectors per cluster for this file system is fixed at 128. This (rather large) value is a direct result of 
the requirement that writes to flash memory must be in 64 Kilobyte blocks. The operational 
impact of this is that files are allocated storage in 64 Kilobyte blocks. 

In the case of the RAM disk, the number of sectors per cluster is specified by a symbolic con- 
stant, which is currently set to eight. This value has been found to provide a reasonable compro- 
mise between memory access speed and usage efficiency. A different value may be chosen by 
changing the value of the symbolic constant and rebuilding the library. 

5.2.3.2 Redundancy and Intearitv 

As indicated earlier, the file systems were designed to be fail safe. Failure mechanisms 
include power failure or card removal while the file system is being updated and actual memory 
chip failure at any time. Two mechanisms were implemented to detect and recover from these 
failures: 1) checksum calculations and 2) file system redundancy. 

To detect errors, a checksum is computed for each file system data structure as it is written to 
the flash memory. The checksum values are stored in a separate structure within the file system. 
When the file system is later read back into its RAM memory image, its checksums are again 
computed and compared to the previously stored values. If the previous attempt to update the file 
system experienced a failure, the checksums will not agree and the failure will be detected. 

It is possible to recover from a file system failure by maintaining redundant copies of file sys- 
tem data structures in the flash memory. If all of the data structures for each copy are updated con- 
secutively, then at least one copy will be consistent at all times. The code is written to attempt to 
read one copy, and if a checksum error is detected, to read the second copy. 
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An additional level of redundancy is built into the on-board flash memory file system. The 
redundant file system is first built in the 64 Kilobyte current cluster cache buffer. It is then stored 
in the first two 64 Kilobyte blocks of flash memory. This is done to guard against the possibility 
of a single write operation failure. If errors are detected in the redundant copies read from the first 
block, the second block is read and accessed. For this file system, a total of four complete sets of 
file system data structures are maintained in flash memory. 

An additional mechanism is implemented to support file system redundancy. The standard 
DOS file system maintains two copies of the FAT structure but only one copy of the root direc- 
tory. As indicated earlier, the FFS file system maintains two copies of the root directory in the 
same space that would ordinarily be occupied by the DOS root directory. The number of files that 
may be created in the root directory is therefore reduced from 512 to 256 (actually 255-one 
entry is used for a file system volume label). A checksum is maintained for each copy. 

5.2.3.3 Wear Leveling 

Flash memory wears out (fails) after a large number of write operations (several hundred 
thousand, depending on the technology used). The PCMCIA ATA flash card standard provides a 
means to extend the life of a flash card by changing the mapping of logical sectors to physical sec- 
tors. This operation is called “wear leveling.” Two commands are provided. The first returns sta- 
tus indicating whether wear leveling is needed; the second performs the remapping operation. 

Since a wear level check can take up to 12 seconds to complete and the actual leveling opera- 
tion can take up to 30 seconds, these operations should usually be performed by a low level, pre- 
emptable task and only occasionally. The FFS driver provides functions to perform the two 
operations and includes calls to them. The check function is called each time the in-memory copy 
of the file system is written to the card (by the putFFS operation). If this call indicates that wear 
leveling is needed, the second function is called to perform the actual operation. 

It should be noted that the maximum execution times stated for these operations are rarely 
seen in practice since they assume a fully loaded flash card. Also, since the card actually performs 
the operations (it contains its own processor), the driver functions spend most of their time polling 
for a completion status. This time may be more productively used by higher priority application 
tasks that preempt the polling task. Finally, since the write operation cycle limit is very large, the 
wear leveling operation will occur only very rarely-perhaps never in some designs. 

5.2.3.4 Compatibilitv 

When the flash card file system software was completed, it was possible to demonstrate com- 
patibility with the drivers supplied with laptop/notebook computers manufactured by NEC, HP 
and Epson. That is, flash cards formatted by these machines could be accessed by the FFS and 
flash cards formatted by the FFS could be accessed by these computers. The only qualification to 
this was that the flash card first had to be formatted by the laptop/notebook since their DOS driv- 
ers put code on the card that is run when a card is inserted. The FFS does not alter this code when 
it formats a card. 

Although the file systems were compatible at one point in time, it was not practical to keep 
them compatible as new versions of manufacturer drivers were released. Therefore, no assurance 
may be given that the FFS is compatible with a given manufacturer’s equipment. However, this 
does not negate the usefulness of the FFS in real-time systems. The file system may still be 
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accessed through the host command interface via a serial port and through the programming inter- 
face. If required, the file system could be brought back into compliance with current PC drivers. 

The laptop/notebook and FFS drivers referred to all implement standard DOS FAT16 file sys- 
tems. The primary difference is the sectors-per-cluster value used. The NEC driver used two sec- 
tors per cluster while the Hewlett-Packard (HP) and Epson drivers implemented four. By contrast, 
the FFS formats use eight by default, but may format or access a file system with any reasonable 
value. These differences reflect different anticipated user requirements. For laptops and note- 
books, support for a large number of small files is desirable and very fast access time is not too 
important. However, in a real-time system fewer files of larger size are common and access time 
is usually critical. As indicated earlier, a larger sector-per-cluster value results in a larger file 
block granularity and shorter file access time. 

5.2.4 File System Component Relationships 

Figures 9, 10, and 11 show the relationships between library files, application programs and 
memory interface hardware for the three types of file systems supported. At the highest Applica- 
tion Interface level, the user programming view is the same for all file system types. Application 
programs typically include the real-time program and an EPROM monitor program that accesses 
a serial port in support of a host command interface. 

Application Interface 

fl-shell.c 

fl-f1esys.c 
=I 

flashcard.c 

Hardware Interface 

(flash card) 

- 

Library 
Files 

Include 
Files 

Figure 9. Flash Card Files Structure. 
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Application Interface 

fm-i0.c 

fm-m0n.c 

fm-sheI1.c 

fm-ti1esys.c fs-comm0n.c 

fm-mem.c 

flashmemz 

Hardware Interface 

(flash memory) 

Library 
Files 

. 

flmem.h Include 
Files 

flmemDev.h fs-common.h 

Figure IO. Flash Memory Structure. 

At the lowest Hardware Interface level, the files are custom tailored to specific hardware 
requirements. For the flash card and flash memory file systems, the hardware interfaces are suffi- 
ciently complex to warrant separate interfaces contained in files ji’ashcard.c and jlashmem.c, 
respectively. In addition, the flash memory file system requires a software cache mechanism (the 
current cluster cache) that is implemented in file fi mem.c. By contrast, the RAM disk file sys- 
tem memory interface is straightforward and is contained in file rd-mem.c. 

, 

Certain operations are common to all three file systems and are included in common file 
fs-common.c. These consist of functions to pack and unpack DOS file system data structures and 
a checksum function. Since these functions are shared, they must be reentrant. 
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Application Interface 

rd-mem.c 

Hardware Interface 

W memory) 

Figure Il. RAM Disk Files Structure. 
-  

. 

5.2.4.1 File Access Operations 
Files xx-io.c (where XX isJI, fm or rd, depending on the file system) contain functions that 

implement the file access operations required by a real-time program. Operations j&-mat, open, 
close, read, write, flush, seek, tell and size are implemented here. Files may be opened with access 
option RDONLY, WRONLY or WRONLY 1 APPEND. In all cases except RDONLY, if the file 
does not exist, it is created. 

The seek operation may be performed on any successfully opened file. Since the smallest unit 
of storage in a file is a 32-bit integer, the seek index specifies the integer offset from the beginning 
of the file. 
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5.2.4.2 Maintenance Operations 
Functions that maintain the file systems are present in files xx-shel1.c. These functions would 

normally be called by a real-time program’s operator console task or as a result of commands 
received from a host computer via a serial port. Functions are provided to format a file system, 
read it into its in-memory image and write it back out, delete or rename a file and collect data 
needed to display a file system directory. 

5.2.4.3 Command Interface Operations 

Functions specifically designed to ease the implementation of an operator console or 
EPROM monitor interface are present in files xx_mon.c. Interface functions are provided for all of 
the functions in files xx-sheZZ.c. In addition, functions to copy files to and from the host and to 
checksum a file are provided. The functions implement an ASCII text dialog with an operator 
console task or host computer to support operator requests and indicate operator entry errors. 

5.2.4.4 DOS Access Operations 

The mnctions that read and write file system data structures and file sectors are contained in 
files xxfiZesys.c. In the DOS FAT16 file system, parameters are packed into data structures on (8- 
bit) byte boundaries. By contrast, the TMS320C4x stores all parameters in 32-bit integers. To 
accommodate these differences, a set of functions was needed: to unpack DOS FAT16 data struc- 
tures as they are read in and to pack them as they are written out. These functions are present in 
file fs-common.c and are called by the functions in files xxfiZesus.c as a file system is read or 
written. The functions in these files implement much of the interface to the DOS FAT16 file sys- 
tem. 

5.2.4.5 Cluster Cache Operations 

The on-board flash memory file system buffers an entire cluster of sectors in an internal 
buffer called the current cluster cache. Functions to read and ‘write this buffer are present in file 
fm-mem.c. The buffer is actually used for two purposes. When the file system is being read or 
written, it is used to store a file system memory block image. As indicated earlier, the file system 
is stored in the first two 64 Kilobyte blocks of flash memory. However, during normal file access 
operations the current cluster cache buffer is used to store file clusters. Two sets of buffer access 
functions are included in file fm-mem.c to support these two sets of buffering operations. 

5.2.4.6 Include Files 
File system data structure definitions and symbolic constants are declared in include files 

flash. h, flmem. h, vamdisk. h and fs-common.h. Symbolic constants that define the “dimensions” 
and default parameter values for the file systems are defined in these files. For example, symbolic 
constant MAX-OPEN-FILES specifies the maximum number of files that may be open at one 
time for a file system (currently set to 20). The default number of sectors per cluster symbolic 
constant SECTORS-PER-CLUSTER is defined to be eight.: Constants such as these are only 
needed when the library is being built. 

Symbolic constants and function prototypes needed by an application program to access the 
file system functions present in the library have been broken out into separate include files:flash- 
Dev. h,jZmemDev. h and vamdiskDev. h. These are the only files that need to be included in an appli- 
cation program. 
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5.2.5 File System Size Specifications 

The target flash card used during the file system design was an Epson ATA212SDOO. This is 
a 20 Mbyte card that conforms to the PCMCIA ATA command set specification. The file system 
should work with any other card conforming to this size and specification. DOS file systems that 
access disks larger than 32 Mbytes use extended partitions. The current FFS design does not 
implement this concept and is therefore limited to card memory capacity of 32 Mbytes. 

The size and location of on-board flash memory accessed by the flash memory file system are 
specified by parameters set in include files. As a result, the file system library must be rebuilt to 
change these values. In the current design, parameter FLASH-MEM-SIZE (in fileflmem. h) is set 
to 4 Mbytes and the memory starts at address 0x12000000. 

The RAM disk file system uses memory allocated from the program heap. Its size is specified 
by parameter IV&I-DISK-DATA-SIZE, which is set to 128 Kilobytes in the current design. 
Again, the library must be rebuilt to accommodate a different value. 

5.2.6 File System Function Descriptions 
Appendix A contains summary programming interface descriptions for all of the flash card 

file system functions callable fi-om a real-time program or host command interface. As stated ear- 
lier, the interfaces for the flash memory and RAM disk file systems are similar-only function 
names are modified. 
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6. BUILT-IN TEST 

The 9PAC software performs a set of built-in test (BIT) procedures at run-time to ensure the 
hardware and software are operating correctly. Tests include basic memory checks, detection of 
non-responsive tasks, and detection of non-responsive processors. For efficiency’s sake, some of 
these conditions are inferred from the condition of the ‘algorithmic’ task data paths, while others 
are allocated to a dedicated BIT task executing on each processor node. 

A block diagram of the tasks involved in BIT for 9PAC Phase I is shown in Figure 12. A BIT 
task executing on each processor is responsible for performing run-time memory diagnostics on 
the majority of 9PAC SRAM and DRAM memories. The SRAM attached to each processor is 
used almost exclusively for program code and intertask communication (ITC) buffers. In the case 
of program code, a simple checksum test is performed, verifying that the checksum matches the 
sum computed when the processor started running. The SRAM allocated to ITC buffers is not 
checked, as it is being accessed simultaneously by the C44 processor and the on-chip DMA 
coprocessor and is never in a known, testable state with respect to the C44. In this case, error 
checking logic in the ITC software is responsible for detecting any corrupted data packets and 
halting the affected C44 processor. 

DRAM memory is used primarily for program data and is tested using a walking one’s write/ 
read test. A write/read pattern test is considered essential is the case of program data since the 
memory is being used in a write/read manner (in contrast to the program text area, which is read- 
only). In order to run such a test, the memory to be tested is divided into small segments. The seg- 
ments are small enough that each one can be tested in a short, determinate amount of time, allow- 
ing interrupts to be disabled during the critical save/write/read/restore operation. 

c44 #I C44##2 

9PAC 
ALIVE 

COUNTER 

BTD PM DATA 
- -c-E? 

Figure 12. BIT Task and Communication Paths. 
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Note that a small region of DRAM memory is reserved for use by the ITC facilities. As with 
the SRAM equivalent, this region is not explicitly checked due to possible contention between the 
C44 and its DMA coprocessor. 

Any error condition detected by the BIT memory testing task is handled in one of two ways. 
On a remote processor, an error status is communicated to the CPU statistics (CPU usage, etc.) 
task. The output of the CPU statistics task is inhibited, resulting in a timeout being detected on 
C44 #l a short time later. This timeout, in turn,’ inhibits the 9PAC ‘alive counter,’ causing the 
radar to switch to the alternate channel via logic implemented within the ASR-9 ASP and MB? 
processors. This error path also serves to detect crashes of processor #2 since the CPU statistics 
data will be lost in such a case. The sharing of the CPU statistics data stream with the BIT func- 
tionality is a natural fit since a memory error can be considered to be a CPU statistic of sorts. The 
strategy also minimizes the use of ITC resources. 

On processor #l, a BIT memory test error is communicated directly to the input task, and the 
alive counter is immediately inhibited (with the same result as above) 

The second class of errors detected by the BIT subsystem are non-responsive processing 
tasks. In this case the hardware and system-level software are still functioning normally, but one 
of the major processing tasks is not. The most cormnon causes of such a failure are infinite loops 
and unanticipated deadlocks. In a heavily tested system, failures of these types should be 
extremely rare, but they must be detected and handled nevertheless. Once again, advantage is 
taken of existing data streams to perform this task. Each major software module communicates 

~performance monitoring data to an output task on processor #l during normal operation. The 
basic update rate of the monitoring data packets is once per antenna scan (-4.6 set), rapid enough 
to allow for timely detection of non-responsive tasks. As shown in the block diagram, a timeout of 
any of the performance monitoring data streams is communicated to the input task and the alive 
counter is again halted. 
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7. SOFTWARE APPLICATION ARCHITECTURE 

The application software that runs on the 9PAC determines the positions of radar and beacon 
target reports, replacing software that previously ran on the ASR-9 Array Signal Processor (ASP). 
The deployment of 9PAC will occur in two phases. The Phase I application replaces only the bea- 
con target detector (BTD) and radar/beacon target merge (MRG) functions of the ASP. The Phase 
II application includes the Phase I surveillance functions and also replaces the primary radar func- 
tions of the ASP, which are the radar correlation and interpolation (C&I) and radar scan-to-scan 
correlation (TRK) functions. 

Phase I can be thought of as a subset of Phase II, and therefore there are many software 
libraries shared between the two applications. The many lower-level system services described in 
Sections 2 through 6 of this paper are shared, as are the BTD and MRG modules mentioned 
above. 

The Phase I and II application programs are described in more detail in the following subsec- 
tions. 

7.1 The Phase I Application 

The Phase I application consists of two executable programs since Phase I uses only two of 
the C44 processors on the 9PAC. A high-level block diagram of the Phase I application is shown 
in Figure 13. One processor, called the housekeeping processor, is responsible for all I/O func- 
tions, and in addition performs the radar/beacon target merge (MRG). The second processor, 
called the beacon processor, performs the BTD function, which entails generating beacon target 
reports from the beacon reply data input to 9PAC and identifying “false” target reports resulting 
from signal reflections. 

The Phase I application interacts with the ASP and HSIB via a 128 kilobyte multi-port RAM. 
The multi-port RAM replaces the internal dual-port RAM used by the ASP in an ASR-9 without 
the 9PAC modification. The HSIB provides the beacon reply data. The ASP provides the primary 
radar target report data, variable site parameter data entered by an operator at the Remote Moni- 
toring System (RMS) terminal, and also antenna position. The 9PAC outputs the target reports 
resulting from the MRG function. The 9PAC also outputs performance monitoring data once per 
scan, which the ASP forwards to the RMS for operator review. The ASP and 9PAC exchange var- 
ious status information (e.g., alive counters, etc.). 
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Figure 13. Phase IApplication Software Block Diagram. 

7.1.1 The Housekeeping Processor 

SERIAL 
t COMM 

FLASH 

* CARD l/O 

The 9PAC housekeeping processor runs several software tasks. The major tasks, shown in the 
block diagram, include input, output, MRG and data recording. A complete list is provided in 
Table 1, including the appropriate section in this document where low-level system services are 
described, where appropriate. The housekeeping processor is the only one that can access the 
multi-port ILAM, serial ports, and flash card file system. As such, in Phase I, the housekeeping 
processor provides tasks to serve requests from the beacon processor to access these system 
resources. 
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Table 1. 
Housekeeping Processor Tasks 

Input 

output 

, 

MRG 

MRG Reflection Map Update 

Data Recording Section 4 

TTY Server Section 4 

File Server Section 5 

File MUX 

Built In Test (BIT) 

Section 5 

Section 6 

CPU Statistics Section 6 

The input task runs with the highest priority on the housekeeping processor. This design 
choice was made so that incoming data can be processed in a timely manner. In order for 9PAC to 
function properly, it must be fast enough to keep ahead of the incoming data stream. The input 
task fetches all incoming data fi-om the ASP and HSIB and sends it to the appropriate 9PAC tasks 
using the PAC/OS inter-process communication facility described in Section 3. Beacon replies, 
antenna position, and VSP data are sent to the BTD task on the beacon processor. The beacon 
reply data are also sent to the data recording task. The primary radar primitive data are also sent to 
data recording even though these data are not processed by the Phase I application (since radar 
processing is performed by the ASP in Phase I). Radar target reports, antenna position, and VSP 
data are sent to the h4RG task. The input task is also responsible for advancing the alive counter 
(approximately every 16 ms) that the ASP uses to determine whether 9PAC is functioning prop- 
erly. Finally, the input task performs system integrity tests as follows: it checks the multi-port 
RAM to detect access errors and it looks for CPU statistics from the beacon processor to ensure 
that the beacon processor is alive. Whenever possible, the input task sleeps (for 2 ms) so that the 
other housekeeping tasks can run. 

The primary responsibility of the output task is to copy target reports and performance moni- 
tor data into the multi-port MM within certain time constraints. The output task is idle until data 
arrive in its input queues and the input tasks give it a chance to run. Target reports received from 
the MRG task are copied into the multi-port RAM for the ASP and also are sent to the data 
recording task. Beacon test reply data received from the BTD task are copied into the multi-port 
RAM. This can be thought of as part of the built-in-test capability. The output task receives mes- 
sages from the MRG on a regular basis, even when no target report data is ready. This allows the 
output task to check for the arrival of performance monitor data from the BTD and h4RG tasks. 
When both performance monitor data streams have arrived, usually near or at the north mark, the 
output task places this data in the multi-port RAM and also sends them to the data recording task. 

37 



The MRG task wakes up when it receives beacon target reports from the BTD or radar target 
reports from the input task. As was the case with the output task, the MRG task receives packets 
of data on a regular basis, even if there are no new target reports to process. Once awake, the 
MRG task inputs any new reports and goes through its beacon and radar target report lists looking 
for radar and beacon reports that appear to be from the same aircraft. The MRG task has a limit on 
how long it can hold reports, After dealing with any incoming reports and going through its report 
lists, the MRG task outputs any reports that it is done with to the output task. Radar and beacon 
target reports are also sent to the data recording task. Once per scan the MRG task sends perfor- 
mance monitoring data to the output task. Before going back to sleep, the MRG task checks for 
incoming VSP data from the input task. 

As part of the MRG process, a dynamic radar/beacon reflection map is used to determine 
whether or not beacon reports flagged as false by the BTD can be deleted if they are merged with 
a primary radar report. A separate MRG reflection map update task is run, at a lower priority than 
the MRG task, to periodically copy this map to the 9PAC flash memory card. 

Data recording is performed by connecting an external Sun workstation or suitably equipped 
PC to the high-speed serial high-level data link control (HDLC) port on the 9PAC. Data extraction 
services are provided by the 9PAC software in the data recording task running on the housekeep- 
ing processor. The data recording task has direct access to the serial I/O server process as dis- 
cussed in Section 4. Data extraction from the beacon processor requires the formulation of data 
messages that are sent to the data recording task by the recording MUX task on the beacon pro- 
cessor. Figure 14 illustrates the various data message paths handled by the data recording task. 

7.1.2 The Beacon Processor 
The beacon processing is divided into two major tasks: the BTD and the reflector file update 

task. The BTD is the higher priority task that actually generates the beacon target reports and 
maintains the dynamic reflector file. The lower priority reflector file update task is responsible for 
periodically copying the reflector file to the 9PAC flash memory card. When the lower priority 
task runs, updates to the reflector file by the BTD are prevented via the semaphore mechanism 
provided by the PAC/OS kernel (Section 2.3). 

The BTD task receives beacon replies, antenna position, and VSP data from the input task on 
the housekeeping processor. It outputs beacon target reports to the MRG task and beacon test tar- 
gets and performance monitoring data to the output task. BTD also sends a variety of tracking and 
reflection data to the recording MUX, which forwards the data to the housekeeping data recording 
task as shown in Figure 14. 

A complete task list for the beacon processor is provided in Table 2. The antenna position 
task runs periodically for a short time to receive the antenna position from the input task. The 
recording MUX and TTY MUX tasks are part of the serial I/O function (Section 4). The File 
MUX forwards requests for flash memory card operations to the File Server task on the house- 
keeping processor as discussed in Section 5. BIT and CPU Statistics tasks are part of the built-in- 
test facility (Section 6). 
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Figure 14. Phase I Data Extraction Block Diagram. 
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Table 2. 
Beacon Processor Tasks 

BTD 

Reflector File Update 

Antenna Position 

Recording MUX 

l-l-Y MUX 

File MUX 

Built In Test (BIT) 

CPU Statistics 

Section 4 

Section 4 

Section 5 

Section 6 

Section 6 

7.2 The Phase II Application 

The Phase II application performs much of the Phase I functionality and adds primary radar 
processing. Phase II consists of three executable programs, one for each of the C44 processors on 
the 9PAC. A high-level block diagram of the Phase II application is shown in Figure 15. The 
housekeeping and beacon processors perform similar tasks to their Phase I counterparts. The bea- 
con processing executable is moved to the third processor, and the radar processing lives on the 
second processor. This was done because the second processor has twice as much dynamic RAM 
as the other two-the extra DRAM is required by the radar processing algorithms. 

The Phase II application interacts with the MIP and HSIB via the multi-port RAM on the 
9PAC and also on the external dual-port RAM where the MIP looks for target report data. The 
ASP is completely removed, and the 9PAC assumes control of the interface. The MIP is unable to 
access the multi-port RAM on the 9PAC, so all communications must take place via the external 
dual-port RAM. The Phase II application also takes over direct communication with the HSIB. 
The HSIB provides both beacon replies and radar primitives. The MIP provides the VSP data and 
antenna position. The 9PAC generates both the radar and beacon target reports, performs the 
radar/beacon merge, and outputs the target and performance monitoring data to the external dual- 
port RAM. The MIP and 9PAC exchange various status information (e.g., alive counters, etc.). 

. 

7.2.1 The Housekeeping Processor 

The Phase II housekeeping processor runs an executable program very similar to the Phase I 
program, with a few exceptions. This section will discuss only the differences. Refer to Appendix 
A for a description of the basic housekeeping functions. 

The Phase II input task does not receive radar targets; instead, it fetches radar primitives from 
the HSIB and sends them to the radar correlation and interpolation (C&I) task, which resides on 
the radar processor. VSP data are sent to the radar processing tasks (C&I and TRK). 
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The Phase II output task has additional performance monitoring streams to handle (from the 
C&I and TRK tasks). The output task also has to process correlated radar reports sent by the TRK 
task on the radar processor. These reports are copied into the external dual-port RAM in the same 
manner as are the target reports output by the MRG The correlated reports are also sent to the data 
recording task. 
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Figure 15. Phase II Application Software IBI Mode Block Diagram. 
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The block diagram in Figure 15 applies only when Phase II 9PAC is performing the beacon 
and merge functions. When the ASR-9 is co-located with a Mode S beacon system, the Phase II 
application must modify its behavior when Mode S is performing the beacon and merge func- 
tions. A block diagram of the Phase II software interactions in monopulse mode is illustrated in 
Figure 16. As shown in the diagram, there are two differences. The first is that the MRG process- 
ing is bypassed to allow radar targets to go from the C&I task to the output task as quickly as pos- 
sible. The second difference is that the input task has to retrieve from the external dual-port RAM 
target reports resulting from the Mode S merge. It then forwards these reports directly to the TRK 
task. 
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Figure 16. Phase II Application Softiare Monopulse Mode Block Diagram. 
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The Phase II data recording task is identical to that of Phase I. There are, however, additional 
data streams in Phase II that are not present in Phase I. These new data messages to be extracted 
from the 9PAC include primary radar adaptive map data, as well as track status information fi-om 
the radar TRK function. The Phase II data extraction architecture is illustrated in Figure 17. 

7.2.2 The Radar Processor 

The radar processor of the Phase II 9PAC performs two major functions previously handled 
by the ASP: radar correlation and interpolation (C&I) and radar scan-to-scan correlation (TIK). 

The C&I function itself performs three different sub-functions. The first job, correlation, con- 
sists of grouping together clusters of individual radar primitive input data by range and azimuth. 
The second job, interpolation, consists of determining the range, azimuth, and Doppler estimate 
for each radar primitive cluster. This results in a radar target report. There are many sources of 
false target reports, including ground clutter, vehicular traffic, weather fronts, and bird flocks. The 
third and fmal job of the C&I, adaptive thresholding and geocensoring, is responsible for setting 
amplitude thresholds in range/azimuth/Doppler space to regulate the probability of aircraft detec- 
tion and false-alarm generation. 

The C&I function is separated into three software tasks. The C&I task performs the bulk of 
the work, which includes correlation, interpolation, adjusting the various adaptive map tbresh- 
olds, and applying these thresholds to each target report. It also outputs to the MRG task those 
reports that pass through the adaptive thresholding and geocensoring filters. The C&I Adaptive 
Update task makes corrections to the adaptive thresholds based on the results of the radar/beacon 
MRG and TRK functions. This prevents returns from aircraft from being used to erroneously 
increase the adaptive thresholds. Finally, the Geocensor Map Save task periodically copies the 
geocensor map data to the 9PAC flash file system on the flash memory card. This task is quite 
similar to the update tasks used to save the beacon dynamic reflector file (Section 7.1.2) and 
dynamic false target merge map (Section 7.1-l). 

The TRK function performs scan-to-scan correlation of reports output by the MRG task. The 
TRK task tracks radar-only, beacon-only, and radar-beacon reports and maintains a track file. 
However, the ASR-9 is required to output only correlated radar reports, so the tracker outputs 
only those radar reports that correlate to a track. Beacon-only and radar-beacon reports are not 
output. Correlated radar reports are sent to the output task on the housekeeping processor. 
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Figure 17, Phase II Data Extraction Block Diagram. 

7.2.3 The Beacon Processor 

The beacon processing in Phase II is identical to that of Phase I. See Section 7.1.2 for more 
information. 
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APPENDIX A 
PAC/OS FUNCTION REFERENCE 

This section provides detailed information regarding the PACYOS functions available to 
application tasks. The functions are grouped into the following categories: 

l Flash Filesystem 
l MailBoxes 
l Memory Allocation 
l Queues 
l Lists 
l Stacks 
l Semaphores 
l Signals 
l Register Access 
l Task Management 

A.1 Flash Filesystem Functions 

fiformat() 
fl-getFFS() 
fl-checkFFS() 
fl-delete() 
fl-dir0 
fl-move0 
flgutFFS() 

fLownO 
fl-close() 
fl-read0 
fl-write0 
fl-flush0 
fl-seek0 
fl-tell0 
fl-size() 

SYNOPSIS 

int fl-format(unsigned int sectorsqer-cluster); 
sectorsper-cluster Number of (5 12 byte) sectors managed by each file system cluster 

RETURNS 

Returns 0 on success; returns -1 on failure. 

DESCRIPTION 

fl-format0 creates a standard DOS FAT16 file system on a PCMCIA ATA flash card with the 
specified number of sectors per cluster. A sector is a contiguous block of 5 12 bytes; a cluster 
is a contiguous block of sectors. A cluster is the smallest unit of storage managed by the file 
system. Note that the time it takes to read/write the file system from/to the flash card is 
heavily dependent upon the sector per cluster value chosen and that writes take about ten 
times longer than reads. At one sector per cluster, it takes about eight seconds to write the file 

45 



system. At four, it takes about two seconds. Recommended is 8 or 16 sectors per cluster. Most 
laptop/notebook PCs use 2 or 4, reflecting their use with lots of small files. Some, but not all, 
can read file systems with values other than their design value. For a flash card to be accessi- 
ble by a laptop/notebook, it must first be formatted by that machine. This puts code on the 
card that is executed by the laptop/notebook each time the card is inserted. The fl-format0 
function may then be used to reformat the card to change its sector-per-cluster value. The 
fl-format0 function does not write over the code placed on the card by the laptop/notebook. 

SYNOPSIS 
int fl-getFFS(unsigned int do-chksum); 

do-chksum Checksum checks the file system as it is read 
RETURNS 

Returns 0 on success; returns -1 on failure. 
DESCRIPTION 

fl-getFFS() reads a DOS FAT16 file system from a PCMCIA ATA flash card into an in-mem- 
ory image. The file system may have been created by flyformat or by a compatible laptop/ 
notebook format command. THIS FUNCTION MUST BE SUCCESSFULLY CALLED 
BEFORE ALL OTHER FILE SYSTEM FUNCTIONS (except fi-format()) to load a copy of 
the file system data structures into RAM memory. The other functions access these structures. 
If the file system should be checksum checked as it is read, do-chksum should be TRUE, oth- 
erwise set it to FALSE. This feature was included to allow file systems that were alternatively 
created or changed (e.g., via a laptop/notebook) to be read. Checksums are computed and 
stored on the card when fl_putFFS() is run. 

SYNOPSIS 
int fl-checkFFS(void); 

RETURNS 

Returns TRUE if the file system has been loaded, FALSE ifit has not. 
DESCRIPTION 

fl_checkFFSO checks to see if the flash file system has been loaded (i.e., fl-getFFS() has 
been run successfully). It returns TRUE if it has, FALSE if it has not. 

c 

SYNOPSIS 
int fl-delete(char *filename); 

filename Name of file (in DOS 8.3 format) to be deleted 
RETURNS 

Returns 0 if successful, -1 on error, and -2 if file was not present. 
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DESCRIPTION 

a-delete0 deletes the specified file from the file system. Note that a filename must have a 
DOS 8.3 format. That is, it must have up to eight characters for the primary name and up to 
three characters for the name extension. Note also that THE FFS FILE SYSTEM SUPPORTS 
ALPHA, NUMERIC AND ‘-’ CHARACTERS ONLY in a filename. Any other characters or 
format will result in a -1 error return. 

fl dir0 

SYNOPSIS 
unsigned int fl-dir(FILENAME_T ** m.tr[ I); 

f%Pw 1 An array of pointers to FILENAME_T structures 
RETURNS 

Number of valid FILENAME-T data structures pointed to by fnqtr. 
Pointer fhgtr, which points to the data structures. 

DESCRIPTION 

fl-dir0 collects the filenames and (8 bit byte) sizes of files in the file system. FILENAME_T 
data structures containing file name and size data are constructed in an internal static array. 
This function returns the number of valid entries in that array and its address. The function 
collects the names and sizes of files for display by a command shell program. A file system 
may have up to 255 entries. The data structure is shown below: 

typedef struct ( /* file info data structure */ 

char *file-nameqtr; /* pointer to file name */ 
char *file-extqtr; /* pointer to file extension */ 
unsigned int file-size;/* file size in 8 bit bytes */ 

IFILENAME-T; 

Call/use syntax: 

FILENAME-T ““fnp; 

charqtrl = fnp[O]->file-nameqtr; 
charqtr2 = mp[O]->file_extqtr; 
uint-val = fnp[O]->file-size; 
etc. 
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SYNOPSIS 
int fl-move(char *srcfile, char *destfile); 

srcfile Source filename 
destfile Destination filename 

RETURNS 

Returns 0 on success, -1 on error, -2 if source file is not present, and -3 if the destination file- 
name is in error or already exists. 

DESCRIPTION 

fl-move0 changes the name of a file. Note that if a file with the destination filename already 
exists, it will not be overwritten. It is necessary to delete the file before this function will suc- 
ceed. Both filenames must conform to the DOS 8.3 format and contain alpha, numeric and “-” 
characters only. 

SYNOPSIS 
int flqutFFS(void); 

RETURNS 

Returns 0 on success; returns -1 on failure. 
DESCRIPTION 

fl_putFFS() writes the DOS FAT16 file system from the in-memory image to the PCMCIA 
ATA flash card. This function MUST BE CALLED TO RECORD ANY CHANGES MADE 
BY THE FILE SYSTEM ACCESS FUNCTIONS. Note that a file’s data sectors are written to 
the file system as they are changed. However, the in-memory file system data structures that 
manage access to these sectors are not written to the card until this function is called. This 
function “synchronizes” the card’s file system data structures with its data. As a result, this 
operation should be carried out periodically, when time allows. Note also that this operation 
requires a fair amount of execution time. However, most of that time is spent polling the card 
for completion status. Therefore, the best place to call this function is in a low-priority task 
that may be preempted by other higher priority tasks. 

SYNOPSIS 
int fl-open(char *filename, unsigned int flags); 

filename Name of file to be opened (in DOS 8.3 format) 
flags File access attributes. Selected from the following: 

FL-RDONLYOpen for reading an existing file (returns -1 if file 
does not exist) 
FL-WRONLYOpen for writing only (if file exists, it is truncated 
to zero length) 
FL WRONLY ] FL APPEND Open file for writing only (if file 
exizts, it writes at itsend) 
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RETURNS 

On success, returns a file descriptor; on failure, returns -1. 
DESCRIPTION 

fl-open0 opens the named file with the specified access attributes. In all cases except 
FL-RDONLY, if the named file does not already exist, it is created. The file’s current file 
index is set to the beginning of the file in all cases except FL-WRONLY 1 FL-APPEND. In 
that case, the current file index equals the current length of the file-so an fl-write0 opera- 
tion will append to the file. The current file index may be moved to another location in the file 
using the fl-seek0 function. Writes and reads will then begin at that location. 

SYNOPSIS 
int fl-close(unsigned int fd-idx); 

fd-idx File descriptor (an index, returned by a previously successful 
fl-open0 call) 

RETURNS 

On success, returns 0; on failure, returns -1. 
DESCRIPTION 

fl-close0 closes the file indicated by its argument file descriptor. 

SYNOPSIS 
int fl-read(unsigned int fd-idx, void *buff, unsigned int num-ints); 

fd idx 
b<ff 

File descriptor 
Pointer to destination buffer 

num-ints Number of integers (32 bits) to read 
RETURNS 

On success, returns number of integers actually read; on failure, returns -1. 
DESCRIPTION 

fl-reado attempts to read the specified number of (32 bit) integers from the specified file 
starting at the current file index. The current file index points to the beginning of the file if the 
read is the first since the file was opened, or to the next integer in the file after the last read/ 
write operation, or to the location specified in a previous fl-seek0 operation. If the number of 
integers requested exceeds the number remaining in the file, the function reads those remain- 
ing and returns the number read. If the file descriptor argument is invalid (file is not open) or 
if a read operation fails (flash card problem), the function returns -1. 

SYNOPSIS 
int fl-write(unsigned int fd-idx, void *buff, unsigned int r-rum-ints); 

int fd-idx File descriptor 

49 



buff Pointer to source buffer 
num_ints Number of integers (32 bits) to write 

RETURNS 

On success, returns number of integers actually written; on failure, returns -1. 
DESCRIPTION 

fl-write0 attempts to write the specified number of (32 bit) integers to the specified file start- 
ing at the file’s current file index. The current file index points to the beginning of the file if 
the write is the first since the file was opened, or to the next integer in the file after the last 
read/write operation, or to the location specified in a previous fl-seek0 operation. If the file 
descriptor argument is invalid (file is not open) or if a write operation fails (flash card problem 

* 

or card is full), the function returns - 1. 

fl flush0 
Y 

SYNOPSIS 
int fl-flush(unsigned int fd-idx); 

fd-idx File descriptor 
RETURNS 

On success, returns 0; on failure, returns - 1. 
DESCRIPTION 

fl-flush0 writes the current in-memory file sector buffer to the flash card. A program may 
wish to do this to assure that all data written to the file have actually been written to the flash 
card (similar to the UNIX sync operation). The function does not modify the file’s logical con- 
tents. 

fl seek0 

SYNOPSIS 
int fl-seek(unsigned int fd-idx, unsigned int offset); 

fd idx File descriptor 
ofget Pile index 

RETURNS 

On success, returns 0; on failure, returns - 1. I 
DESCRIPTION 

fl-seek0 relocates the current file index to the location specified by offset. The value of offset 
is the (32 bit) integer file index relative to the beginning of the file. It may be set to FL-EOF, 

t 

in which case a subsequent fl-write0 operation will append data to the end of the file. The 
value of offset may not exceed the length of the file (see fl_size() for length). The function 
will return -1 if it does, or if a card access problem occurs. The function may be used on any 
successfully opened file. 

I 
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fl tell0 

SYNOPSIS 
int fl-tell(unsigned int fd-idx); 

fd-idx File descriptor 
RETURNS 

Returns the file’s current file index. 
DESCRIPTION 

fl-tell0 returns the specified file’s current file index. The current file index is the index (off- 
set) to the next integer to be read or written. Its range is zero to the length of the file in inte- 
gers. As a result, it may point to the next integer after the last integer written (as yet 
unoccupied). A file’s current file index is advanced automatically as a file is read or written. 
Alternatively, it may be set by function fl-seek@ 

SYNOPSIS 
int fl-size(unsigned int fd-idx); 
fd-idx File descriptor 

RETURNS 

Returns the file’s size in integers. 

DESCRIPTION 

fl-size0 returns the specified file’s size in (32 bit) integers (i.e., the number of integers in the 
file). If a file’s (8 bit) byte size is not an integral number of integers, this function returns one 
more than the number of complete integers in the file. The last integer will contain less than 
four valid 8 bit bytes. Note that if the file was created by a laptop/notebook DOS file system, 
it may not be an integral number of integers in length. 

. 

A.2 Mailbox Functions 

Function summary: 

Mailbox *MailboxCreate() 

Bool MailboxPend() 
Bool MailboxPost() 

MailboxCreate 

SYNOPSIS 
Mailbox *MailboxCreate( Uns maxMsgSize, Uns mbxslots, MailboxAttrs *attrs ) 

maxMsgSize Maximum size for each message, in bytes. 
mbxSlots Total available slots in the mailbox 
attrs Other mailbox attributes (not yet used) 

RETURNS 

Pointer to an initialized mailbox. 
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DESCRIPTION 

MailboxCreate creates and initializes a new mailbox. The user specifies what the largest 
permitted message is, and also the number of available slots. No mailbox attributes are cur- 
rently defined at this time, so the attrs argument should always be specified as NULL. 

SYNOPSIS 
Boo1 *MailboxPend( Mailbox *mbx, void *msg, int *length, int timeout ) 

mbx Mailbox Pointer 
msg Buffer for received message 
length Length of received message 
timeout Timeout in system clock ticks 

RETURNS 

TRUE if a message was found, FALSE if a timeout occurred 
DESCRIPTION 

MailboxPendO Waits for a message to appear in the mailbox. If the timeout argument is non- 
zero, the routine will return FALSE if a timeout occurs before a message arrives. If the time- 
out argument is 0, the routine waits for a message indefinitely. Upon receipt of a message, the 
length of the message is return in the length argument. 

SYNOPSIS 
Boo1 *MailboxPost( Mailbox *mbx, void *msg, int length, int timeout ) 

mbx Mailbox Pointer 
msg Buffer pointer to transmit message 
length Length of transmit message 
timeout Timeout in system clock ticks 

RETURNS 

TRUE if a message was sent, FALSE if a timeout occurred 

DESCRIPTION 

MailboxPost Waits for a free slot to open in the mailbox, then copies the message to the 
mailbox. If the timeout argument is non-zero, the routine will return FALSE if a timeout 
occurs before a free slot becomes available. If the timeout argument is 0, the routine waits 
indefinitely for a free slot. The length of the transmitted message is specified by the caller in 
the length argument. 
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A.3 Memory Functions 

Definition and Function Summary 

#define PAC-SRAM 0 
#define PAC-DRAM 1 

typedef struct 

t 
Uns size ; 
Uns used ; 
Uns length ; 
Uns arg ; 

} MemSegStat ; 

void *MemAlloc(); 
void *MemAllocVerboseErr() 
void Memlnit(); 
void MemStat() ; 

MemAllocO. MemAllocVerboseErrO 

SYNOPSIS 

void *MemAlloc( int segId, int size, int align ); 
void *MemAllocVerboseErr( int segId, int size, int align, char *errMsg ); 

segId Memory segment Id. Valid values for the 9PAC are PAC-SRAM 
or PAC-DRAM 

size Requested memory size in bytes. 
align Buffer alignment. Must be a power of 2 (or 0) 
errMsg Verbose version Error message. 

RETURNS 

A pointer to a memory buffer of the requested size. These function do not currently return if 
an error occurs, but instead halt the processor after leaving an error message in the trace 
buffer. If a call to MemAlloc() fails, a message similar to the following will be put in the trace 
buffer: 
MemAlloc: segId=X, size=XXXX **** Out of Memory! **** 

If MemAlIocVerboseErrO fails, it also writes the specified extra message to the trace buffer 
before halting. Usually the extra message consists of the function name that is calling 
MemAllocVerboseErrO, enabling the user to quickly tell which MemAllocO is causing the 
problem. 

Memlnitl) 

SYNOPSIS 

void MemInit( MemConfigSeg memConfigTable[] ); 

DESCRIPTION 

Men&i@ is called by main0 at system startup to initialize the memory segments. Unless 
PACYOS itself is being modified, the user will never call this routine. 
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SYNOPSIS 
void MemStat( int segId, MemSegStat *segStat ) 

segId Memory segment Id. Valid values for the 9PAC are PAC-SRAM 
or PAC DRAM 

segStat Pointer-6 structure for retrieved status information 
DESCRIPTION 

MemStat() allows the caller to retrieve the current status of a memory segment. The returned 
structure is laid out as follows: 

typedef struct 

1 
Uns size ; 
Uns used ; 
Uns length ; 
Uns arg ; 

} MemSegStat ; 

A.4 Queue Functions 

Defmition and Function Summary 

typedef struct QueueElemStruct QueueElem ; 

struct QueueElemStruct 

1 
QueueElem *next ; 
QueueElem *prev ; 

1 

typedef struct 

{ 
QueueElem *first ; 
QueueElem *last ; 

} Queue ; 

Queue *QueueCreate() 
Bool *QueueEmpty() 
QueueElem *QueueGet() 
QueueElem *QueueGetWait() 
void QueuePut 
void QueuePutAndSignal() 

SYNOPSIS 
Queue *QueueCreate( QueueAttrs *attrs ) 

attrs Queue attributes (not yet used) 
RETURNS 

Pointer to an initialized queue. 
DESCRIPTION 

QueueCreate creates a new queue and initializes it to be empty. No queue attributes are cur- 
rently defmed at this time, so the attrs argument should always be specified as NULL. 

54 

4 



. 

J 

SYNOPSIS 
Boot *QueueEmpty( Queue *q ) 

9 Queue pointer. 
RETURNS 

TRUE if the queue is empty, otherwise FALSE. 

SYNOPSIS 
QueueElem *QueueGet( Queue *q ) 

9 Queue pointer. 
RETURNS 

Element from f?ont of queue, or NULL if the queue is empty. 

QueueGetWaitO 

SYNOPSIS 
QueueElem *QueueGetWait( Queue *q, int sigMask, int timeout ) 

9 Queue pointer. 
RETURNS 

Element from front of queue, or NULL if a timeout occurs. 
DESCRIPTION 

If the queue is non-empty, QueueGetWaitO acts like QueueGet and immediately returns 
the item at the front of the queue. If the queue is empty, this routine blocks waiting for a signal 
or timeout. If a timeout occurs before a signal, NULL is returned; otherwise, a pointer to the 
first item in the queue is returned. This routine is typically used in conjunction with 
QueuePutAndSignalO (see below) 

SYNOPSIS 
void QueuePut( Queue *q, QueueElem *elem ) 

9 Queue pointer. 
elem Pointer to a data structure containing a QueueElem as its first 

member 
DESCRIPTION 

QueuePut places the specified queue element on the tail of the queue. 

SYNOPSIS 
void QueuePutAndSignal( Queue *q, QueueElem *elem, Task *task, int sigNurn ) 

9 Queue pointer. 
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elem 

task 
sigNum 

DESCRIPTION 

Pointer to a data structure contaimng a QueueElem as its first 
member 
Task pointer 
Task signal number 

QueuePutAndSignalO places the specified queue element on the tail of the queue and then 
signals the specified task that it has done so. This routine is typically used in conjunction with 
QueueGetWaitO. 

A.5 List Functions 

Function summary 
Linklist *ListAlloc() 
Linklist *ListCreate() 
void ListAddltem() 
void Listlnit() 
void ListAppendltem() 

void *ListGetltem() 
void *ListGetFirst() 
void *ListGetNext() 
void *ListDeleteltem() 

int ListEmpty 
void *ListSeek() 
void *ListGetltemNum() 
void ListFreeltemsToStackO 
int ListPack 
int ListUnpack 

void *ListGetFirstNode() 
void *ListGetLastNode() 
void *ListGetPrevNode() 
void *ListGetNextNode() 
void ListlnsertNode() 
void ListAppendNode() 
void *ListDeleteNode() 

SYNOPSIS a 
Linklist *ListAlloc() 

RETURNS 

A pointer to an initialized (empty) linked list, if successful; aborts program on a memory allo- 
cation failure. 

DESCRIPTION 

ListAlloc() allocates memory for a Linklist structure and initializes it (by calling ListInitO). 
The list name defaults to “noname”. 
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SYNOPSIS 
Linklist *ListCreate( ListAttrs *attrs ) 

attrs Pointer to a list attributes structure 
RETURNS 

A pointer to an initialized (empty) linked list, if successful; aborts the program on a memory 
allocation failure. 

DESCRIPTION 
* 

ListCreate allocates memory for a Linklist structure and initializes it (by calling 
Listhit( The list name is set to the string pointed to by attrs->name. 

ListAddltemlj 

SYNOPSIS 
void ListAddItem( Linklist *list, void *item, int pos ) 

list Pointer to an existing linked list 
item Pointer to item to be added to the list 

Pas Position of insertion: 
APPEND-ITEM Add at end 
INSERT-ITEM-BEFORE Insert before “current item” 
INSERT-ITEM-AFTER Insert item after “current item” 
PREPENDJTEM Add at beginning 

RETURNS 

void; Aborts program if pos is invalid. 
DESCRIPTION 

ListAddItemO adds an item to an existing list at the position indicated by pos. The list “cur- 
rent item” (list->curr-node) is the position of the last list operation. All but the last seven list 
functions listed above maintain the “current item” pointer, list-Xurrnode, for future refer- 
ence. 

t ListlnitO 

SYNOPSIS 

t void ListInit( Linklist *list ) 
list Pointer to a Linklist structure to be initialized 

RETURNS 

void 
DESCRIPTION 

ListInit() initializes a Linklist structure to the “empty” state. 
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ListAwaendltemO 

SYNOPSIS 
void ListAppendItem( Linklist *list, void *item ) 

list Pointer to an existing linked list 
item Pointer to item to be appended 

RETURNS 

void 
DESCRIPTION 

I 

4 
ListAppendItemO is provided to make function inlining more likely for this frequently used 
operation. It appends an item to the end of an existing list. 

ListGetltemO 

SYNOPSIS 
void *ListGetItem( Linklist *list, int option ) 

list Pointer to an existing linked list option identifier of item to get: 
NEXT-ITEM item after “current item” 
FIRST-ITEM first item in list 
LAST-ITEM last item in list 
PREV-ITEM item before “current item” 
W-RR-ITEM “current item” 

RETURNS 

Pointer to requested item; NULL if requested item is not present. 
DESCRIPTION 

ListGetItemO returns a pointer to the requested item on an existing linked list. It DOES NOT 
remove the item from the list. It repositions “current item’: to the item whose pointer is 
returned. 

ListGetFirstO 

SYNOPSIS 
void *ListGetFirst( Linklist *list ) 

list Pointer to an existing linked list 

RETURNS 

Pointer to first item in the list. 
DESCRIPTION 

ListGetFirstO returns a pointer to the first item on an existing linked list. It DOES NOT 
remove the item from the list. The “current item” is repositioned to the first item. 
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ListGetNextO 

SYNOPSIS 
void *ListGetNext( Linklist *list ) 

list Pointer to an existing linked list 

RETURNS 

Pointer to next item in list; NULL if “current item” is at end of list or list is empty. 
DESCRIPTION 

ListGetNextO returns a pointer to the next item on an existing linked list. It DOES NOT 
remove the item from the list. The next item is the one after the current “current item.” The 
“current item” is repositioned to the item whose pointer is returned. 

ListDeleteltemO 

SYNOPSIS 
void *ListDeleteItem( Linklist *list, Node-header *node ) 

list Pointer to an existing linked list 
node Pointer to list item to be deleted 

RETURNS 

Pointer to list item after the item deleted; NULL if item deleted is the last node on the list. 
DESCRIPTION 

ListDeleteItemO repositions “current item” to the item past the item to be deleted and then 
removes the item from the list. If the item to be removed is the last item on the list, “current 
item” is set to NULL. Note that it is the calling function’s responsibility to return the deleted 
item to the list’s associated free stack. 

ListEmMvO 

SYNOPSIS 
int ListEmpty( Linklist *list ) 

list Pointer to an existing linked list 

RETURNS 

TRUE if list is empty, FALSE otherwise. 
DESCRIPTION 

ListEmpty tests a list to see if it is empty or not and returns an indicator. 

ListSeek 

SYNOPSIS 
void *ListSeek( Linklist *list, Node-header *seek-node ) 

list Pointer to an existing linked list 
seek-node Pointer to a node item 
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RETURNS 

seek-node 
DESCRIPTION 

ListSeek repositions “current item” to the item described by seek-node. 

SYNOPSIS 
void *ListGetItemNum( Linklist *list, int num ) 

list pointer to an existing linked list 
num Number of the item desired 

RETURNS 

Pointer to requested item; NULL if item is not present. 
DESCRIPTION 

ListGetItemNumO searches for the n+l’th item in a list (n = 0 for fast item, etc.). It DOES 
NOT remove the item from the list. The “current item” is repositioned to the requested item. 

ListFreeltemsToStackO 

SYNOPSIS 
void ListFreeItemsToStack( Linklist *list, STACK-T *f?ee_stack ) 

list Pointer to an existing linked list 
fee-stack Pointer to list’s associated free stack (see Section A.6) 

RETURNS 

void 
DESCRIPTION 

ListFreeItemsToStackO removes all items from the list and deposits them in the indicated 
stack. A list usually has an associated stack for storage of unused list items. 

SYNOPSIS 
int ListPack( Linklist *list, char *buf, int maxbufbytes, int itemsize ) 

list Pointer to an existing linked list 
buf Pointer to destination buffer 
maxbufbytes Size of destination buffer 
itemsize Size of individual list items 

RETURNS 

Number of items packed. 

DESCRIPTION 

ListPack packs a linked list into a buffer so it can be transmitted to other processes. It packs 
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as many items as will fit in the buffer (this may be less than all on list!) It packs entire items, 
including the list node header. It DOES NOT remove items from the list. 

SYNOPSIS 
int ListUnpack( Linklist *list, STACK-T *freestack, char *buf, int bufbytes, int itemsize ) 

list Pointer to an existing linked list 
fi-eestack Pointer to a stack of free list items 
buf Pointer to a buffer containing the packed items 
bufbytes Size of buf buffer 
itemsize Size of items in buffer buf 

RETURNS 

Number of items unpacked. 

DESCRIPTION 

ListUnpack unpacks an array of items into a linked list. Items are copied into list items 
popped from the list’s associated free stack (the calling function must assure that sufficient 
items are present on the stack). Items copied contain the list node header. If buf was packed 
using ListPackO, this will be true. 

The following functions do not use the concept of an implicit list “current item” (current 
node). 

SYNOPSIS 
void *ListGetFirstNode( Linklist *list ) 

list Pointer to an existing linked list 

RETURNS 

Pointer to first item (node) on the list. 
DESCRIPTION 

. ListGetFirstNodeO returns a pointer to the first item in an existing list. It DOES NOT 
remove the item from the list. 

, ListGetLastNodeO 

SYNOPSIS 
void *ListGetLastNode( Linklist *list ) 

list Pointer to an existing linked list 

RETURNS 

Pointer to last item (node) on the list. 



DESCRIPTION 

ListGetLastNodeO returns a pointer to the last item in an existing list. It DOES NOT remove 
the item from the list. 

SYNOPSIS 
void *ListGetPrevNode( void *item ) 

item Pointer to reference item 

RETURNS 

Pointer to list item before reference item; NULL if no previous item is present. 
DESCRIPTION 

ListGetPrevNodeO returns a pointer to the list item previous (before) the one specified by the 
function argument. It DOES NOT remove the item from the list. 

CistGetNextNodeO 

SYNOPSIS 
void *ListGetNextNode( void *item ) 

item Pointer to reference item 

RETURNS 

Pointer to list item before reference item; NULL if no next item is present. 
DESCRIPTION 

ListGetNextNodeO returns a pointer to the list item next (before) the one specified by the 
function argument. It DOES NOT remove the item from the list. 

ListlnsertNodeO 

SYNOPSIS 
void ListInsertNode( Linklist *list, void *new-item, void *cm-r-item, int pos ) 

list Pointer to an existing linked list 
new-item Pointer to list item to be inserted 
cur-r-item Pointer to desired list “current item” 

Pas Insertion specification: 
INSERT-ITEM-BEFORE insert before cur-r-item 
INSERT-ITEM-AFTER insert after curr item - 

RETURNS 

void; aborts program if pos is unrecognized. 
DESCRIPTION 

ListInsertNodeO inserts a new item into an existing list at a point before or after the specified 
“current item.” 
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ListAmendNodeO 

SYNOPSIS 
void ListAppendNode( Linklist *list, void *item ) 

list Pointer to an existing linked list 
item Pointer to item to be appended 

RETURNS 

void 

F DESCRIPTION 

ListAppendNodeO appends a list item to the end of an existing list. 

ListDeleteNodeO 

SYNOPSIS 
void *ListDeleteNode( Linklist *list, void *voidNode ) 

list Pointer to an existing linked list 
voidNode Pointer to item (node) to be deleted. 

RETURNS 

Pointer to next item (node) on the list; NULL if the item deleted was the last. Aborts the pro- 
gram if the specified node pointer is NULL. 

DESCRIPTION 

ListDeleteNodeO deletes the specified item from an existing list. Note that it is the calling 
function’s responsibility to return the deleted items to the lists associated free stack. 

A.6 Stack Functions 

Function summary 
STACK-T *StackAlloc() 
int StackFill() 
STACK-T *MemStackCreate() 
STACK-T *MemStackContigCreate() 
STACK-T *MemStackContigReset() 
int StackPush 

c 
void *StackPop() 
int StackSpace 

StackAllocO 

SYNOPSIS 

STACK-T *StackAlloc( int max-items ) 
mm-items Stack capacity 

RETURNS 

Pointer to the allocated STACK-T structure; NULL if memory allocation failure. 
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DESCRIPTION 

StackAlloc() allocates memory for a STACK-T structure and initializes it. Initialization 
includes allocating memory for max-items pointers to stack entries. Depreciated: use 
MemStackCreateO for new code. 

SYNOPSIS 
int StackFill( STACK-T *stack, int itemsize ) 

stack Pointer to STACK-T structure returned by StackAlloc() 
itemsize Size of item to be stacked 

RETURNS 

One if successful; NULL if a memory allocation failure. 
DESCRIPTION 

StackFill() allocates memory for max-items stack items, each of size itemsize, and attaches 
them to the stack created by StackAllocO. Depreciated: use MemStackCreateO in new code. 

MemStackCreateO 

SYNOPSIS 
STACK-T *MemStackCreate( int memSeg, int riftems, int item&e ) 

memSeg Memory segment to use nItemsStack capacity 
itemsize Size of item to be stacked 

RETURNS 

Pointer to the allocated STACK-T structure; NULL if memory allocation failure. 
DESCRIPTION 

MemStackCreateO combines the operations of StackAllocO and StackFill@ In addition it 
allows the calling function to select the memory segment within which the stack will be allo- 
cated. This function should be used in place of StackAllocO and StackFillO in new code. 

MemStackContiaCreate0 

SYNOPSIS 
STACK-T *MemStackContigCreate( int memSeg, int &ems, int itemsize, 
char **baseAddr ) 

memSeg Memory segment to use 
nItems Stack capacity 
itemsize Size of item to be stacked 
baseAddr Address of a pointer to the memory allocated for the contiguous stack items. 

RETURNS 

Pointer to the allocated STACK-T structure; NULL if a memory allocation failed. 
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DESCRIPTION 

MemStackContigCreateO allocates memory for a stack in a manner similar to MemStack- 
Create(). However, memory allocated for stack items is continuous, and a pointer to that 
memory is returned in baseAddr. 

SYNOPSIS 
STACK-T *MemStackContigReset( STACK-T *stack, int nItems, int itemsize, 
void *baseAddr ) 

stack Pointer to an existing stack 
nItems Stack capacity 
itemsize Size of item to be stacked 
baseAddr Address of a pointer to the memory allocated for the contiguous stack items. 

RETURNS 

NULL (return specification is not used). 
DESCRIPTION 

MemStackContigResetO re-initializes a stack created by MemStackContigCreateO. The 
stack is left in the “full” state. 

SYNOPSIS 
int StackPush( STACK-T *stack, void *item ) 

stack Pointer to an existing stack. 
item Pointer to an item to be pushed onto the stack. 

RETURNS 

One if item is successfully pushed; NULL if stack is full. 
DESCRIPTION 

StackPushO pushes an item onto an existing stack. 

StackPod\ 

SYNOPSIS 
void *StackPop( STACK-T *stack ) 

stack Pointer to an existing stack 

RETURNS 

A pointer to the removed stack item if successful; NULL if stack is empty. 
DESCRIPTION 

StackPop pops an item fi-om an existing stack. 
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StackSDaceO 

SYNOPSIS 

int StackSpace( STACK-T *stack ) 
stack Pointer to an existing stack 

RETURNS 

The number of empty entries on the stack. 

DESCRIPTION 

StackSpace returns the number of item spaces available on an existing stack. A 

A.7 Register Access Functions 

C40 Register Access Functions. See the TI C40 User’s Guide for more information regarding 4 
these registers: 

GetSTO, SetSTO, OrST() 
GetllE(), SetllE(), OrllE() 
GetllF(), SetllF(), OrllF() 
GetDIE(), SetDIE(), OrDIE() 

IntDisable() 
IntEnable 
IntRestore() 

GetSTO. GetlIE& GetllFO. GetDIE 

SYNOPSIS 

Uns GetSTo, Uns GetIIE(), Uns GetIIF(), Uns GetDIE() : 

RETURNS 

The current value of the register. 

SetSTO. SetllEO. SetllFO. SetDIE 

SYNOPSIS 

void SetST( Uns val ), void SetIIE( Uns val ), void SetIIF( Uns val ), void SetDIE( Uns val ) 
val New value for register 

0 
OrSTO. OrllEO. OrllFO. OrDIEO 

SYNOPSIS 
Y 

void OrST( Uns val ), void OrIIE( Uns val ), void OrIIF( Uns val ), void OrDIE( Uns val ) 
val Value to OR with current value of register 

IntDisableO. IntEnableO. IntRestoreO 

SYNOPSIS 

Uns IntDisable(), void IntEnable(), void IntRestore( Uris oldGIE ) 
oldGIE Old Global Interrupt Enable Setting (0x2000 or 0 ) 
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RETURNS 

IntDisableO returns the previous state of the GIE bit in the status register 
DESCRIPTION 

IntDisableO disables interrupts by setting the GIE bit in the status register to 0. The previous 
value of the GIE bit (0x2000 if interrupts were enabled, or 0 if they were disabled) is returned. 
IntRestoreO allows the restoration of the previous GIE value returned by IntDisableO 
IntEnable simply sets the GIE bit in the status register by doing an OR operation. 

A.8 Semaphore Functions 

Function summary: 

SemCreate() 
SemPend() 
SemPost() 

SYNOPSIS 
Sem *SemCreate( int initialCount, SemAttrs *at& ) 

initialCount Initial count for semaphore 
attrs Semaphore attributes 

RETURNS 

Pointer to an initialized semaphore. 
DESCRIPTION 

SemCreateO creates a new semaphore and initializes its value to initialCount. If the sema- 
phore is being used for mutual exclusion, initialcount is usually specified as 1. When used 
for synchronizing queue access, the semaphore is usually initialized to the number of items 
that are initially in the queue. 

No semaphore attributes are currently defined at this time, so the second argument should 
always be specified as NULL. 

(I SYNOPSIS 
int SemPend( Sem *sem, int timeout ) 

. sem Semaphore pointer 
timeout Timeout in system clock ticks 

RETURNS 

TRUE if successful, FALSE if timeout. 
DESCRIPTION 

If the semaphore count is greater than zero, SemPendO decrements the count by 1 and returns 
TRUE. Otherwise, the calling task is suspended until another task calls SemPostO or a time- 
out occurs. If the timeout argument is 0, the task will remain suspended indefinitely waiting 
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for the semaphore. 

Note: SemPendO cannot be called by interrupt handler routines! 

SemPostO 

SYNOPSIS 
SemPost( Sem *sem ) 

sem Semaphore pointer 

DESCRIPTION 

SemPost() wakes up the highest priority task waiting on the semaphore. If the awakened task 
is of higher priority than the current task, a context switch is performed. If SemPost() is being 
called from an interrupt handler, the context switch is delayed until just prior to the return 
from interrupt, so the entire C interrupt handler will always be completed before the switch. If 
no task is waiting, SemPost() simply increments the semaphore count by 1 and returns. 

A.9 Signal Functions 

Function summary: 

Uns SignalAlloc( ) ; 
void SignalSend(); 
int SignalWait(); 

SianalAllocO 

SYNOPSIS 
Uns SignalAlloc( Task *task ) 

task Task handle 

RETURNS 

Available signal number for the specified task, or 0 if no more signals are available. 
DESCRIPTION 

SignalAllocO returns an available signal number for a given task. Signals are managed inter- 
nally using a 32-bit bitmask, and the signal number returned from this routine ranges from 
1~~0 to 1<<3 1. A zero return value signifies that no more signals are available for the given 
task. t 

SianalSendO 

SYNOPSIS 
Uns SignalSend( Task *task, int sigNum ) 

task Task handle 
sigNurn Signal number 

DESCRIPTION 

‘i 

SignalSend Sends a signal to a task. If the task is waiting for the signal, the task is put into 
the TASK-REMDY state. If the signalled task is of higher miority than the running task, a 
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context switch is performed. If called from within an interrupt handler routine, the context 
switch is not actually performed until just before the return from interrupt occurs, so the entire 
C interrupt handler is always completed before the context switch. 

Note: Current implementation limits an interrupt handler to 1 SignalSend call per interrnpt. 
This is all that is currently required, but if the need arises, the signal code will be have to be 
modified. 

SYNOPSIS 
Uns SignalWait( int sighlask, int timeout ) 

sigMask Bitmask of signals to wait for 
timeout Timeout in clock ticks 

RETURNS 

The signal number that awoke the task, or 0 if a timeout occurred. 
DESCRIPTION 

Wait for the occurrence of a signal matching any one of those specified in sigMask. This 
allows a task to wait for any one of several events to occur. 

Note: SignalWait cannot be called by interrupt handler routines! 

A.10 Task Management Functions 

Definition and function summary: 

#define OS-MINPRI 1 
#define OS-MAXPRI 15 

typedef struct 

{ 
int priority ; r” Default = 4 *I 
int stacksize ; /* Default = 8192 */ 
int stackseg ; r” Default = PAC.-DRAM *I 
char name[32] ; /* Default = ‘noname’ */ 

} TaskAttrs ; 

I 
Task *TaskCreate( ) ; 

V 
int TaskGetld( ) ; 
int TaskGetPri( ) ; 
Task *TaskSelf() ; 
void TaskSetPri( ) ; 
void TaskSleep( ) ; 
void TaskYield( ); 
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TaskCreate 

SYNOPSIS 
Task *TaskCreate( Fxn entry, TaskAttrs *at&s, void *argl, void *arg2, void *arg3, void 

*arg4 ) 
entry Entry point (Function address) for newly created task 
attrs Pointer to TaskAttrs structure containing the task initialization information 
argl-arg4 Arguments to be passed to new task entry point function 

RETURNS 

Task handle for new task. 

TaskGetldO. TaskGetPriO ” 

SYNOPSIS 
int TaskGetId( Task *task ) 
int TaskGetPri( Task *task ) 

task Task handle 

RETURNS 

An integer value representing the Task Id (0 to (OS-=-TASKS-l)) or the task priority. 

TaskSelfO 

SYNOPSIS 
Task *TaskSelf( ) ; 

RETURNS 

The task handle for the current task. 

TaskSetPriO 

SYNOPSIS 
void TaskSetPri( Task *task, int newPri ) 

task Task handle 
newPri New priority value 

DESCRIPTION 

P 

TaskSetPriO is used to dynamically adjust the priority of a task. It is most often used to adjust 
a task’s own priority, using ‘TaskSetPri( TaskSelf& new?rf )’ 

TaskSleeDO 

SYNOPSIS 
void TaskSleep( int sleepTicks ) 

sleepTicks Number of clock ticks to sleep. 
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DESCRIPTION 

TaskSleep puts the task to sleep for sleepTicks timer ticks. The timer on the 9PAC is cur- 
rently being run at 1000 Hz, so a TaskSleep(lOOO) will sleep for 1 second. 

SYNOPSIS 
void TaskYield( ) ; 

DESCRIPTION 

TaskYield yields to another task of equal priority, if there is such a task in the 
TASK-KEADY state. This allows round-robin type scheduling to be easily implemented. 

, 
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APPENDIX B 
9PAC MEMORY MAP 

Base Address Top Address Unique Size Comments 

Local Bus: 

0x00000000 OxOO2FFFFF 0x00300000 C44 internal ROM, registers, etc. 

0x00300000 OxOO3FFFFF 0x00080000 EPROM (512K bytes) 

0x00400000 OxOO4007FF 0x00000800 Flash Card Common Memory 

0x00400800 

0x00410000 

0x00410800 

OxOO4OFFFF 

OxOO4107FF 

OxOO4FFFFF 

0x00000800 

Empty 

Flash Card Attribute Memory 

Empty 

0x00500000 OxOO5OFFFF 0x00000080 Serial #I CPU access 

0x00506000 

0x00510000 

OxOO506FFF 

0x0051 FFFF 

0x00000080 Serial #I channel B DMA access 

0x00000080 Serial #2 CPU access 

0x00514000 

0x00516000 

OxOO515FFF 

OxOO516FFF 

0x00000080 

0x00000080 

Serial #2 channel A DMA access 

Serial #2 channel B DMA access 

0x00520000 OxOO52OFFF 0x00000001 Peripheral interrupts CSR 

0x00521000 0x00521 FFF 0x00000001 External DMA requester control 

0x00522000 OxOO522FFF 0x00000001 Flash memory CSR 

0x00523000 OxOO523FFF 0x00000001 Hardware version number/MPRAM fault 

0x00600000 0x0061 FFFF 0x00010000 Multi-port RAM (HSIB/ASP) 

0x00620000 OxOO62FFFF 0x00000001 Last HSIB write address #I (Radar) 

0x00630000 

0x00640000 

OxOO63FFFF 

OxOO64FFFF 

0x00000001 

0x00010000 

Last HSIB write address #2 (Beacon) 

External dual port RAM (MIP) 

0x00650000 OxOO65FFA9 Empty 

OxOO65FFAA OxOO65FFAF 0x00000006 HSIB control/status registers 

Ox0065FFBO OxOO7FFFFF Empty 

0x00800000 OxOOFFFFFF 0x00040000 Zero wait state static RAM 

73 



Base Address Top Address Unique Size Comments 

0x01000000 Ox7FFFFFFF Empty 

Global Bus: 

0x80000000 

0x80400000 

0x80800000 

Ox803FFFFF 

Ox807FFFFF 

OxFFFFFFFF 

0x00400000 

0x00400000 

Dynamic RAM bank 0 

Node 2 - Dynamic Ram bank 1 
Node 1 and 3 - Empty 

Empty 
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3 

9PAC 
ASCII 
ASP 
ASR 
ATA 
BIT 
BTD 
C&I 
CPU 
DMA 
DOS 
DRAM 
DSP 
EPROM 
FAT 
FFS 
FIFO 
JTAG 
HDLC 
HSIB 
I/O 
ITC 
PAC-CRAM 

+ 

MIP 
MRG 
MUX 
N-MI 
PCMCIA 
PROM 
RMS 
SLAM 

i u TRK 
TTY 
VSP 

GLOSSARY 

ASR-9 Processor Augmentation Card 
American Standard Code for Information Interchange 
Array Signal Processor 
Airport Surveillance Radar . 
Advanced Technology Attachment 
Build-In Test 
Beacon Target Detector 
Correlation and Interpolation 
Central Processing Unit 
Direct Memory Access 
Disk Operating System 
Dynamic RAM 
Digital Signal Processor 
Electronically Programmable Read-Only Memory 
File Allocation Table 
Flash File System 
First In, First Out + 
Joint Test Action Group 
High-level Data Link Control 
High-Speed Interface Buffer 
Input/output 
InterTask Communication 
C44 on-chip RAM 
Random Access Memory 
Megabyte 
Message Interface Processor 
radar/beacon Merge 
Multiplexer 
Non-Maskable Interrupt 
Personal Computer Memory Card International Association 
Programmable Read-Only Memory 
Remote Monitoring System 
Static RAM 
scan-to-scan correlation 
Teletype 
Variable Signal Processor 
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