Project Report
ATC-264

ASR-9 Weather Systems Processor
Software Overview

O. Newell

20 October 2000

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LEXINGTON, MASSACHUSETTS

Prepared for the Federal Aviation Administration,
Washington, D.C. 20591

This document is available to the public through
the National Technical Information Service,
Springfield, VA 22161

This document is disseminated under the sponsorship of the Department
of Transportation in the interest of information exchange. The United
States Government assumes no liability for its contents or use thereof.

A single SD resides in the tower cab. Attached to the SD via a single serial line are 2 Ribbon Display
Terminals (RDT’s) from DALE electronics. Note that up to 8 ribbon displays may be daisy chained on a
single serial line. A single SD also resides in the TRACON area. This SD is normally set up at the TRA-
CON supervisor’s position, along with a single RDT. Attached to the SD is an 8mm tape drive (Exabyte) to
provide the capability to save the most recent 15-day product archive to tape. An Ethernet hub in the TRA-
CON allows for additional SD’s to be installed if requested by the air traffic controllers (as was the case for
the early test sites).

R e T T T P - - - — 1
| Tower Equipment Room I Tower Cab |
| 1 I
| L1 Ethernet]
al Hub —

| 1 o |
| (I Tower SD Ribbon Ribbon |
| Remote MDT L (master) Display #1 Display #2 |
| [T i i o) i i i i s J
| |
| |

P = = == o = = e = - - 1
| I Tracon
I | | I
| Ethernet | g— I I Ethernet I
Hub	; } Hub	
A		
*		
I Router/ Router/ I	I	
I Comm Server Comm Server		
I ; I Product .Tracon sSD . Bbbo I		
Wind Data	I Recorder et	
LLWAS/ASOS		(8mm tape) ,
Y I R S R = 4		
I Dual 128kbps External User |

Commiink Ports (9) RS232

| (To Radar Site) |
. et oo . o s B B A J

Figure 4. Tower/Tracon Hardware Components

2.5 SOFTWARE ENVIRONMENT
2.5.1 Operating Systems

There are two primary operating systems used within the WSP system. The Mercury processors run
MC/OS, a proprietary real-time operating system optimized for the RACEWay architecture. The FORCE
single-board computers, and the external Sun workstations used for situation displays, run Sun Microsys-
tems’s version of UNIX (currently Solaris 2.6), an operating system which has historically possessed
excellent development tools and has now been extended with real-time multi-tasking capabilities. Both

operating systems support the POSIX-standard for system calls [10] resulting in a large degree of code
sharing between the two architectures.

Virtually all of the WSP software that runs under Solaris has also been compiled and run on a
LINUX system. Although LINUX is not used in the context of the production system (with the exception
of the radar interface, not described in this document), the ability to run the software on a PC is useful in
the context of maintenance and working at remote sites using laptop computers.

2.5.2 Languages

The majority of code in the WSP is written in ANSI C or C++ [11,12]. Code running on or shared by
the Mercury processors is written in C, while the weather algorithms running on the FORCE SBC’s are
coded in C++, a more natural choice for the recode of the original object-oriented Lisp-based implementa-
ton.

Another language/toolkit of significance is Tcl/Tk [13,14], a scripting language with support for rap-
idly implementing user interfaces. This language, in combination with C/C++ code, is used to implement
the WSP’s base data, analysis, and situation displays, as well as the maintenance data terminal.

Lastly, a number of UNIX shell scripts (csh) are used to implement the majority of the system star-
tup/and shutdown tasks.

25.3 Software Development Tools

The software development package supplied with the Mercury boards consists of a C compiler from
Metaware, Intel’s assembler and linker tools, and a customized version of the Free Software Foundations
debugger, ‘mcgdb’. The C compiler is capable of generating highly optimized code for the PowerPC archi-
tecture, including support for the chip’s single-cycle multiply-accumulate operation. The gdb-based
debugger has been extended to provide support for translation of PowerPC assembler instructions and
examination of registers, while retaining the familiar gdb command set. Rounding out the Mercury devel-
opment environment is an optimized vector processing library, essentially eliminating the need for assem-
bly language programming.

On the FORCE boards and Sun workstations, the GNU C/C++ compiler/debugger tool suite (gcc/
g++/gdb) serves as the primary development toolset. Although a ‘freeware’ product, these tools are widely
used for many commercial products (witness Mercury’s adaptation of the GNU debugger), and have
proven to be extremely robust. As previously mentioned, the Tcl/Tk package is also used, primarily as a
user interface development tool. This is also a freely available product, and, like the GNU tools, is mature
and well supported (currently being maintained/enhanced by Ajuba Solutions, a commercial company run
by the original developers of Tcl/TK).

Two code analysis tools, Purify and Quantify from Pure Software, are used to detect coding errors
and optimize the code running on the FORCE boards. Purify is the (UNIX) industry’s most popular tool
for detecting memory leaks, uninitialized memory references, and other common C/C++ programming
errors. Quantify is perhaps less well known, but equally effective for code optimization tasks, allowing the
user to conveniently view CPU usage at the source code level. The combined use of these tools greatly aids
the production of error-free, efficient code.

10

Z\V, FLAGS FROM PowerPC COMPUTE NODES 1.23...N

ARRAL

COLLECTION BUFFER
(SHARED MEMORY)

'

CURRENT ANTENNA POSITION R —

FROM DISTRIBUTOR CPU

¢ DATA FOR (ANTPOS - 45) deg

DUAL DBZ PROCESSING
(HVLO BEAM COMPOSITE)

WIND DATA SPATIAL FILTERING
FROM VME BUFFER

BASE DATA OUTPUT
(VIA VME RING BUFFERS)
MBALG GFALG [“;’SSEF‘VEH% DISPLAY RECORDING

Figure 8. Base Data Collection /Post-Processing / Qutput

17

Figure 9. Base Data Display of Simulated Microburst and Gust Front

The above example also illustrates the functionality of the base data simulator. This simulated sce-
nario contains a single storm cell which is producing a microburst as it tracks to the east at 5 m/s. A gust
front has propagated out in front of the storm cell, presumably simulating an earlier microburst ‘pulse’ by
the isolated storm. Note the ability to specify different reflectivity/velocity patterns in the low and high
beams, a necessity when testing the detection algorithms.

3.4 SIX-LEVEL WEATHER SERVER

The six-level weather server converts the WSP data from dBZ units to the six-level equivalent and
performs spatial smoothing and contouring operations similar to those used in the original ASR-9 weather
channel. The resultant six-level data are output to the ASR-9 via the radar interface, and are also transmit-
ted to the storm motion algorithm, the TWIP algorithm, and the situation displays (via the product multi-
plexor) .

18

Base Data Input Stream

(VME Ring Buffer) Storm Mc(o}li%npl;;g;n Stream
| et e ealle e i P oo e e e e e e -
! I | DBDZ, DBV |
| | I LBDZ, HBDZ I
[Scan Buffer ; ' FLAGS Spead-Inhibit :
| I | (55 sec. update) |
| [
| DBDZ, DBV 1 ! S Peakiness |
| FLAGS | | |
| (5 second update) I : Aosolute DB2 Generate {
E ¥ I} ——{ CellEdge Combined | |
I Divergence | | Interest l
| Segment : | ——® Zero-Crossing |
| Datpcych i : | Non-Wx Mask :
|
| Lo !

| I I
| | Interest ,
| | Generation |
|
| Ly |
b b e s sl s caevas b et i
' |
' |
I ——————————
|
| |
| |
| |
I Segment/Alarm Combine Segments I
: Generation w/ Interest Features :
I Thread Generate Alarms |
| |
| |
| |
o i i e i S i v s i il al

Microburst Detection Output
To Alert Generator
(TCP/IP)

\

Figure 12. AMDA Flow Diagram

23

144

G i AMDA Display Daemon =

B O S T G A S 0 Vs S O B S Ry B LB Ry e 9:?

{2D-ABSDZLEVEL (D-RELDZPEAKS
2 B |

\

3.7

Figure 13. AMDA Analysis Display

LT

Options

VELOCRY 23 | [cleanvELOGTY
J0 e

SD THIN LINES al: 75D DZ THIN LINES

an ain £

DZ MOTION o al: i HVERGENCE
- =5 N 40

MBINED IHTERE S

q0

Figure 15. MIGFA Analysis Display

3.8 ALERT GENERATOR

The alert generator module combines the output of the microburst and gust front algorithms with
runway configuration information to produce textual alerts for the ribbon displays. Put simply, a
microburst or gust front that intersects an active runway ARENA (AREa Noted for Attention) will result in
an alert message being generated for that ARENA. A step termed ‘shear integration’ is also performed to
reduce the magnitude of events that only partially intersect a runway arena. The alert generator also reads
the wind data via a VME ring buffer base data feed, and incorporates the center field wind data into the
current alert message. Note that the alert generator is continually outputting messages, even when no haz-
ardous condition exists. In general, a new alert message is created and output whenever a new microburst
(~28 sec. update rate), gust front (~55 sec. update rate), or wind data (10 sec. update rate) record is
received. This results in an output message at least once every 10 seconds.

A block diagram illustrating the alert generator input and output streams is shown in Figure 16. For
efficiency reasons the alert generator serves a secondary role as a data stream concentrator. Not only are
new alert messages created and output, but the original input data are also included via a pass-through and
merge mechanism.

MICROBURST ALERTS GUST FRONT ALERTS WIND SENSOR DATA RUNWAY CONFIG DATA
~28 SEC UPDATE 55 SEC UPDATE 10 SEC UPDATE 60 SEC UPDATE
TCPAP STREAM TCP/P STREAM TCP/IP STREAM TCP/IP STREAM

y Y Y
ALERT
Pass-Through GENERATION Pass-Through
/
ALERTS
Y
ll———
fime-
MERGE
g———— |
o
MB +GF + WIND + RW DATA
(PASSED THROUGH)
+
ALERTS

10 SEC MINIMUM UPDATE
TCP/IP STREAM

Figure 16. Alert Generation Block Diagram

28

3.9 TERMINAL WEATHER INFORMATION FOR PILOTS

The Terminal Weather Information for Pilots (TWIP) module converts the WSP product data to a
form suitable for display on ACARS cockpit displays and cockpit printers. TWIP data are sent to the
ARINC database via the FAA’s NADIN II packet-switched network, from where they can be uplinked to
aircraft on demand. TWIP output from the WSP is compatible with the TDWR/ITWS TWIP product, pro-
viding a consistent product for all TWIP users.

The TWIP text message intended for cockpit displays (20 characters wide by 10 lines high), is
shown in Figure 17. The left side of the figure shows the weather situation and the right side shows the cor-
responding text message.

The first two lines indicate that the message is for Washington National Airport (DCA) and the uni-
versal time is 18:10. In this case a 30 knot microburst is impacting one of the runways. Moderate (level 2)
precipitation is touching the airport and extends from the north through the east; heavy precipitation (level
3 or greater) is 1 nm northeast of the airport. The storm is moving west at 15 knots.

An example of the TWIP character graphics depiction is shown in Figure 18. In this case there is a
microburst-producing cell to the west of the airport. The moderate precipitation is indicated by ‘-’, the
heavy precipitation by a ‘+’, and the microburst by the letter ‘M’. Note that the attenuated precipitation
symbol, ., is not supported by the WSP due to the systems relative immunity to attenuation when com-
pared with a TDWR operating at a wavelength of 5 cm wavelength. A gust front impacting the airport in
this case is delineated using the character ‘G’. The runway location is indicated by the ‘X’ symbols, except
where the gust front impacts them as indicated by an “*’. A scale is provided in nautical miles in the hori-
zontal and vertical directions along with a key to the symbols. Lastly, a textual storm motion information
string is provided on the bottom line of the printout.

A block diagram of the WSP-TWIP software modules is shown in Figure 19. The processing is split
into two separate processes, a main processing task and a NADIN II output task. Data enters the main task
via three TCP/IP streams. Six-level weather and storm motion data arrive on separate streams, while
microburst, gust front, and runway alerts arrive via a single, third stream originating from the alert genera-
tor module.

The software within the main process is broken down into four major modules. The three modules
on the left side of the figure comprise the text message generation process, while the single module on the
right is responsible for the character graphics generation.

The Storm Cell Detector module detects storm cells in the vicinity of the airport by contouring areas
of higher reflectivity. Storm cells with reflectivities exceeding NWS levels 2 and 3 are reported as moder-
ate and heavy precipitation, respectively. The Storm Impact Processor determines if a storm cell is cur-
rently impacting or is expected to impact the airport and approach/departure areas, and if so, what the
intensity is.

The Text Message Generator combines the output of the Storm Cell Detector and the Storm Impact
Processor with the runway alert information and generates the TWIP text messages.

29

Weather Situation

TWIP Text Message

Microburst

Cell

r

DCA 1810

TDWR TERMINAL WX INFO
*MICROBURST ALERT

30 KT LOSS

BEGAN 1805

-STORM(S)

ARPT N-E MOD PRECIP

1 NM NE HVY PRECIP

Figure 17. Example of TWIP Text Message

Weather Situation

TWIP Character Graphics Map

o
|] \ GUST

FRONT

DCA 1810 MAP 15NM

WSP TERMINAL WX INFO

15 10 5 NORTH 5 10
10 -
m——— e —— G
5 ———tt b ——— G
===t + MM+ -~ XXe

15

Figure 18. Example of TWIP Character Graphics Depiction

30

3.13 SITUATION AND RIBBON DISPLAYS

The Situation Display (SD) is the final output device for the WSP products. The primary situation
displays are built around a Sun Workstation platform with an auxiliary text-only ‘ribbon’ display terminal
from DALE Electronics (the same terminal used for the TDWR system). A combination of graphical and
textual weather information is provided to the controllers at the Tower/Tracon facility. Graphical informa-
tion includes precipitation maps, microbursts, gust fronts, storm motion vectors, storm extrapolated posi-
tions, and center-field or (optionally) LLWAS winds. Textual information consists of concise messages
describing the weather status for each runway/approach corridor particular runways.

The basic appearance of the SD graphical display is illustrated in Figure 20. Graphical representa-
tions of the six-level weather, microbursts, gust fronts, storm motion and extrapolated positions, are shown
in the main panel. An overall warning status box is provided at the top right. A range selection area allows
the user to set the range to one of the four possible values. A panel at the lower-right indicates the overall
health of the system on an product-by-product basis. A menu bar at the top of the display provides access
to a number of additional features, such as geographical overlays, the runway configuration editor, and a
TWIP display window.

Figure 20. Situation Display Graphics Screen

33

Closely related to the SD are the ribbon displays, separate flat panel display terminals used to present
textual information regarding weather events in a highly-readable form (large letters). The large-format is
required since the ribbon displays are the source of the information relayed to pilots on final approach, and
the information must be easily accessible by all tower personnel. For convenience, multiple ribbon display
terminals are often provided in a single tower cab. This is easily accomplished since multiple, daisy-
chained ribbon displays can be driven by the Sun workstation via a single serial connection.

The appearance of the ribbon display is illustrated in Figure 21. Note that the grille on the lower left
houses the audible alarm that is set off when a microburst or gust front first appears.

Figure 21. Situation Display Ribbon Display Terminal

A block diagram of the core SD software is shown in Figure 22. The SD software is partitioned into
three separate tasks, the main display ‘server’ task, the user interface task, and the runway configuration
task. The display server task is responsible for reading the input product stream, creating the graphical and
textual respresention of the data, and transmitting the results to the user interface task using a combination
of shared memory and built-in Tcl/Tk interprocess communication protocols. The user interface task,
implemented using Tcl/Tk in conjunction with the imgsh extension, actually displays the graphics infor-
mation and provides the user interface elements necessay to control basic display parameters and airport
runway configuration. The runway configuration client task handles the aynchronous communication
between the SD and the runway configuration server process residing in the RDP at the radar site.

34

#
Simple colormap definition for the dataclass named INTEREST’. Negative data values are
shades of blue, while positive data values are shades of red. The syntax for each line is:

<StartValue> <Red> <Green> <Blue> <Bar Label Text>

*+ W

In this example, values from -256 to -191 have an RGB value of (0,0,255), while values from
-192 to -129 have an RGB value of (0,0,224), etc...
#

INTEREST

256 0 0 255 <192
-192 0 0 224 <128
-128 0 0 192 <64
-64 96 96 160 <0
0160 96 96 >0
64192 0 0 >64
128224 0 0 >128
192256 0 0 >192

Figure 31. Imgsh Example Screen Oulput

5.5.2 Using Imgsh as a Display Daemon
As mentioned above, a common usage of imgsh is to set up a imgsh-based display daemon and

transmit images and graphics to the daemon process from a C or C++ application. A set of C functions is
provided for this purpose, allowing for sending of image data and graphics commands via a shared mem-

51

ory ‘channel’. Image data is transmitted more or less directly, while graphics commands are buffered for
increased efficiency. The C interface is flexible enough to allow multiple processes to interact with a sin-
gle display daemon, a single process to interact with multiple daemons, or finally, multiple processes to
interact with multiple daemons. An attempt is made to conserve resources when possible. Unless otherwise
specified, each application uses a single Tcl interpreter for communication with all display daemon pro-
cesses. In addition, all image/graphics data sent from a given application to a given server is typically
multiplexed onto a single shared memory ‘channel’ to conserve shared memory, a somewhat scarce UNIX
resource.

One possible configuration, two application processes communicating with a single display daemon,
is depicted in Figure 32. The AMDA analysis display is set up using this model, with a dedicated display
daemon process receiving interest image data from the interest generation module and graphical
microburst data (shear segments and microburst shapes) from the alarm generation module. Note that the
display daemon most often executes a Tcl startup script that sets up all the basic image windows and con-
trol panels, making many display modifications a simple matter of editing the startup script (no recompile
required) .

Application Process #1

Graphics—9 opuf #1
. Shared Me
Graphics 9 GBuf #2 y mosY -
A ‘Channel’
Images
Imgsh Display Daemon
Application Process #2
Graphics—# aBuf #1
. Shared Memo
Graphics —# GBuf #2 \ & - Y
A Channel
Images

Figure 32. Application/Imgsh Display Daemon Communication

5.6 WEATHER OBJECT LIBRARY
The Weather Object Library (WxObj) contains a set of C++ classes representing the various WSP

output products. Each data product is encapsulated in one or more classes, each with it’s own unique ID.
The primary uses for the library are product data I/O and graphical display. Product data network I/O is

52

