

Project Report
ATC-264

 ASR-9 Weather Systems Processor

Software Overview

O. Newell

20 October 2000

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Federal Aviation Administration,
Washington, D.C. 20591

This document is available to the public through

the National Technical Information Service,
Springfield, VA 22161

This document is disseminated under the sponsorship of the Department
of Transportation in the interest of information exchange. The United
States Government assumes no liability for its contents or use thereof.

...

REPORT DOCUMENTATION PAGE
Form Approved
OMS No. 0704-0188

Public reporting burden lor this collection of inforrnalion j~ estimated to average , hour per response, including the lime for reviewing instructions. searching existing data sources. gathering and maintaining the data needed,
and completing and f8ll'iewing the collection of informalion. Send comments regarding this burden estima1e or any other aspect of this collection of information, including suggestions tor reducing this burden. to Washington
Headquarters Services, Directorate for Infometian Op9f8,lions and Reports. 1215 Jefferson Davis Highway, Suite 1204. Artington, VA 22202-4302, and to the Office ot Management and BlJdget. Paperwork RedUdion Project
(0704-0188), WaShington, DC 20503.

1. AGENCY USE ONLY (Leave blank) I 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ASR-9 Weather Systems Processor Software Overview

C - Fl9628-00-C-0002
6. AUTHOR(S)

O. Newell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Lincoln Laboratory, MIT
244 Wood Street ATC-264
Lexington, MA 02420-9108

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Department of Transportation AGENCY REPORT NUMBER

Federal Aviation Administration
AND-420
800 Independence Ave., S.W.
Washington, DC 20591

11.SUPPLEMENTARY NOTES

This report is based upon studies performed at Lincoln Laboratory, a center for research operated by Massachusetts
Institute of Technology, under Air Force contract FI9628-00-C-0002.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

This document is available to the public through the National Technical
Wormation Service, Springfield, VA 22161

13. ABSTRACT (Maximum 200 words)

The ASR-9 Weather Systems Processor (WSP) augments the weather detection capability of existing ASR-9 radars to
include low-level wind shear warnings, storm cell tracking and prediction, and improved immunity to false weather echoes
due to anomalous propagation (AP). To economically develop and field an operational system at the 34 WSP sites, the FAA
is pursuing a strategy that leverages the software written during the 10-year R&D phase of the project. To that end, the
software developed at Lincoln Laboratory has been "hardened" to ensure reliable, continuous operation, and has been ported
to a "Phase II" prototype built around the latest generation of COTS hardware.

A significant number of the hardened software modules are being used in the production version of the WSP with
only minor modifications. This document provides a high-level description of these software modules, with an emphasis
on how the modules fit together in the WSP system. Descriptions of the hardware environment in which the software
executes are also provided.

14. SUBJECT TERMS 15. NUMBER OF PAGES
Airport Surveillance Radar Radar data
Wind Shear Microburst

16. PRICE CODE
Gust Front

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by AMSI Std. 239-18
298-102

..

..

ABSTRACT

The ASR-9 Weather Systems Processor (WSP) augments the weather detection capability of exist
ing ASR-9 radars to include low-level wind shear warnings, storm cell tracking and prediction, and
improved immunity to false weather echoes due to anomalous propagation (AP). To economically
develop and field an operational system at the 34 WSP sites, the FAA is pursuing a strategy that leverages
the software written during the to-year R&D phase of the project. To that end, the software developed at
Lincoln Laboratory has been 'hardened' to ensure reliable, continuous operation, and has been ported to a
'Phase II' prototype built around the latest generation of COTS hardware.

A significant number of the hardened software modules are being used in the production version of
the WSP with only minor modifications. This document provides a high-level description of these software
modules, with an emphasis on how the modules fit together in the WSP system. Descriptions of the hard
ware environment in which the software executes are also provided.

iii

..

TABLE OF CONTENTS

Abstract
List of lllustrations
List of Tables

1. INTRODUCfION

2. OVERVIEW
2.1 Radar Site Software Modules
2.2 Towerffracon Software Modules
2.3 Radar Site Hardware Components
2.4 Towerffracon Hardware Components
2.5 Software Environment

3. CORE SOFfWARE MODULES
3.1 GPS Time Server
3.2 Base Data Generation
3.3 Base Data Display
3.4 Six-Level Weather Server
3.5 Storm Motion Algorithm
3.6 Microburst Algorithm
3.7 Gust Front Algorithm
3.8 Alert Generator
3.9 Terminal Weather Information for Pilots
3.10 Product Data Multiplexor
3.11 Product Data Relay/Junction
3.12 Wind Data Server
3.13 Situation and Ribbon Displays

4. DATA RECORDING AND PLAYBACK
4.1 Time-Series Recording Subsystem
4.2 Base Data Recording Subsystem
4.3 Product Recording Subsystem

5. SUPPORT LIBRARIES
5.1 Memory Allocation
5.2 Message Logging
5.3 Interprocess Communication
5.4 CSketch Image Processing Library
5.5 Tclffk Image Display Extension
5.6 Weather Object Library

6. SOFfWARE DIRECfORY MAP AND BUILD TOOLS
6.1 Software Directory Map
6.2 Software Build Tools

APPENDIX A: CODING STANDARDS

APPENDIX B: WSP MEMORY MAPS
B.1 VME Memory Map
B.2 Bulk Memory Board Memory Map

APPENDIX C: FILE FORMATS

v

iii
vii

viii

1

3
3
5
6
8
9

11
11
11
16
18
20
22
25
28
29
31
31
31
33

37
37
39
41

43
43
43
44
47
49
52

55
55
57

61

63
63
63

65

TABLE OF CONTENTS (Continued)

C.l STC Map File Format
C.2 Clutter Map Format
C.3 Time-Series Data Format
C.4 Base Data Format

GLOSSARY

REFERENCES

vi

65
66
68
74

81

83

..

..

LIST OF ILLUSTRATIONS

Figure
No.

1. Phase II WSP Software Block Diagram - Radar Site Modules
2. Phase II WSP Software Block Diagram - TowerfTracon Modules
3. WSP Phase II Prototype

4. TowerfTracon Hardware Components

5. Layout of Radar Pulse Data
6. Base Data Generation Data Flow

7. Clutter Filtering and Autocorrelation
8. Base Data Collection /Post-Processing I Output
9. Base Data Display of Simulated Microburst and Gust Front
10. Six-Level Weather Server Input/Output

11. Storm Motion Algorithm Block Diagram
12. AMDA Flow Diagram

13. AMDA Analysis Display

14. Gust front Detection Algorithm Block Diagram
15. MIGFA Analysis Display
16. Alert Generation Block Diagram

17. Example of TWIP Text Message
18. Example ofTWIP Character Graphics Depiction
19. WSP-TWIP Software Modules
20. Situation Display Graphics Screen

21. Situation Display Ribbon Display Terminal
22. Situation Display Block Diagram

23. Time-series RecordinglPlayback Block Diagram
24. Base Data Recording/Playback Subsystem

25. Product Data Recording Block Diagram

26. Ring Buffer Layout
27. Server-Client Communications Layers
28. Server-Client TCP Implementation
29. Server-Client UDP Implementation
30. Functional Template Correlation Example

31. Imgsh Example Screen Output
32. ApplicationlImgsh Display Daemon Communication

33. WxObj Library Class Hierarchy

vii

Page

4

6
7

9
13
14

15
17
18
20

21
23

24
26

27
28
30
30
32
33

34

35

38
41

42

44

45
46
46
49
51
52

53

LIST OF TABLES

Table
No.

1. Base Data Types
2. DBZ To NWS Six Level Weather Mapping
3. Base Data Scan Group Contents
4. Base Data Products
B-1. VME Board Address Windows
B-2. Bulk Memory Board Address Map
C-l. Radar Pulse Header
C-2. Radar Data Word Pair

viii

Page

12
19
39
40
63
64
72
73

..

1. INTRODUCTION

The ASR-9 Weather Systems Processor (WSP) augments the weather detection capability of exist
ing ASR-9 radars to include low-level wind shear warnings, storm cell tracking and prediction, and
improved immunity to false weather echoes due to anomalous propagation (AP). To economically
develop and field an operational system at the 34 WSP sites, the FAA is pursuing a strategy that leverages
the software written during the lO-year R&D phase of the project. To that end, the software developed at
Lincoln Laboratory has been 'hardened' to ensure reliable, continuous operation, and has been ported to a
'Phase II' prototype built around the latest generation of COTS hardware. A significant number of the
hardened software modules are being used in the production version of the WSP with only minor modifica
tions.

This document provides a high-level description of the Lincoln-developed software modules, with
an emphasis on how the modules interact. Familiarity with the basic functions of the WSP is assumed.

• Readers unfamiliar with the WSP are referred to [1-9] as an introduction. An overview of the software
modules, and the hardware/software environment in which they execute, is provided in section 2. The
remainder of the document is organized into sections based on common functionality. Section 3 describes
all the 'core' software modules involved in the generation and display of the WSP's product output stream.
Section 4 describes the system's recording and playback capabilities. Section 5 describes the lower-level
software libraries shared by many of the algorithm modules. Section 6 provides a software directory map,
and details regarding the software build environment. Lastly, appendices provide information regarding the
coding standards used and a number of the key data stream and file formats. Note that descriptions of the
software modules related to the WSP system control and monitoring functions are not provided. This soft
ware, though based on code originally developed for the prototype system, has been substantially modified
by the WSP production contractor.

1

2. OVERVIEW

The WSP produces estimates oflow-Ievel windshear (microbursts and gust fronts) and storm cell
tracking/ prediction information, and provides graphical and textual displays of this information at the
TowerrrRACON facility. The majority of software modules execute in the RDP, a VME chassis contain
ing a variety of processing elements that resides at the radar site. A smaller number of modules execute in
external workstations residing primarily in the ATe facility.

This section provides a brief overview of all major software modules, including a description of the
hardware and software environment in which the software executes. A more detailed discussion of each
module is provided in subsequent sections.

2.1 RADAR SITE SOFTWARE MODULES

A block diagram of all major software modules running at the radar site is shown in Figure 1. Time
series data enters the system at the upper left, from where it is time-stamped and distributed to multiple
copies of the clutter filtering/autocorrelation function. This function is very compute-intensive, and is
therefore spread across multiple processors. The data distribution module also provides a data stream to
the time-series recording module. Following the filtering/autocorrelation step, 'base data' , consisting pri
marily of reflectivity (dBZ), velocity (V), and processing 'flags' data, are passed to a post-processing mod
ule, which recombines the output from the multiple processors, performs some spatial smoothing and
outputs the base data to the downstream weather algorithms and the base data recording module. The
post-processing step also includes the integration of wind sensor information into the base data stream.
This design results in base data recordings that contain all relevant system inputs synchronized in time,
allowing for offline playbacks to accurately recreate the real-time system performance. Note that the base
data recording module maintains a 20-hour base data history on disk, and provides a mechanism for trans
ferring some or all of the data to tape on command.

The six-level weather server module is responsible for performing smoothing/contouring operations
on the WSP base data and generating the six-level weather data stream. The data is output in polar form to
the ASR-9, from where it is transmitted to the controllers scopes in the normal manner. The data is also
converted to cartesian form, and transmitted to the storm motion algorithm module, the TWIP module, and
the situation displays (via the product multiplexor)..

The Storm Motion algorithm accepts six-level weather input in the form of cartesian images, and
tracks storm cells as they evolve and move through the terminal area. Motion vectors are generated for
each storm cell, as well as storm cell edge contour lines for the current time and 10 and 20 minutes into the
future. The output of the storm motion algorithm is sent to the SD, as well as to the microburst detection
algorithm.

The ASR-9 Microburst Detection Algorithm (AMDA) processes the polar velocity and reflectivity
data, in conjunction with a motion grid provided by the storm motion algorithm. The velocity field is
scanned for regions of divergent flow, and additional storm features such as storm cell motion and storm
cell edge location are considered to confirm/disconfirm microburst detections. Output from the microburst
detection algorithm is transmitted to the alert generation module.

The inputs to the Machine Intelligent Gust Front Algorithm (MIGFA) include polar-format base data
containing reflectivity and velocity information, and the current center-field wind estimate as taken from
the WSP's wind sensor interface in the tower equipment room. The algorithm searches the reflectivity and
velocity fields for the 'thin-line' and other related signatures typically present at gust front boundaries, and

3

uses the detections in conjunction with the center field wind estimate to generate a wind-shift estimate
product. MIGFA outputs gust front boundaries in the form ofline segments to the alert generation module.

'A
TER SD)

I WIND DATA Ir--------------..,
AID SAMPLES & BOt G f

l-
ase aa enera Ion I

WINDDAT... RIN-PE I , RELAY (FROMMAS
RADAR TIMING

I ., I
POSTPROC/ IGPSTIME I 1- I DATA FILT/ I BASE DATA
OUTPUT -SERVER I I I DISTRIB AUTOCORR I

p DISPLAY - .;.
~!':.

L __1_ - -- SERVER

---- I--J O··~

r----------- - I- 1----, I,r + l' r I
TIME ISERIES SIX-LEVEL WX MICROBURST GUSTFRONT

RECORDING SERVER

I DET;TIONI

I
SEG/ @] I

8~, t .. ALARM GEN ISMu~~~;GI I
GEN

I
TO ASR-9 'r + / r- - _ J

RADAR

+
INTERFACE STORM ALERT I RUNWAY- CONFIGMOTION GENERATION - I

SERVER
BASE DATA

+ I
RECORDING n

I RUNWAY

~ I
CONFIGREQ

Product TWIP

Generation I (FROM SD's)
TO COMM SERVER...-J

(X250UTPUn I
L ____

- -------- - ___ J

c=:::J
n ,r

8mmTape PRODUCT DATA..
PRODUCT OUTPUT MUX

(TO SD's)
Figure 1. Phase II WSP Software Block Diagram - Radar Site Modules

The alert generation module gathers microburst, gust front, wind sensor, and runway configuration
information, determines if any microburst and gust front detections intersect the currently active airport
runway arenas, and generates textual message suitable for output to the ribbon display in the tower. The
messages are output to the product multiplexor. Note that the alert generator also passes information
received on it's multiple input streams to the single output stream, effectively serving as a data stream con
centrator. This is done for efficiency reasons. The information passed through is used downstream by the
situation display when drawing the graphical representations of microbursts and gust fronts.

The Terminal Weather Information for Pilots (TWIP) module is a full implementation of TWIP
using the WSP as the input data source. The TWIP module converts the six-level weather images, along
with the microburst, gust front, and storm motion information, to a format suitable for output to aircraft
using the ARINe network.

The Product Multiplexor module serves to gather all data destined for the SD's and output it on a sin-

4

gle stream. A dedicated 'relay' module in one of the SO's at the TRACON facility reads the stream and
provides it to all SD's at the facility. This design results in a single transfer of data via the 128KBaud com
munication line between the radar site and the TRACON, as opposed to a separate transmission for each
SO.

2.2 TOWERITRACON SOFTWARE MODULES

A block diagram of the software modules running at the tower/tracon facility is shown in Figure 2.
Data arriving from the radar site via the 128K communications link are fed into a relay/junction module
running on the tower (master) SO, The relay/junction module is responsible for distributing product data to
all other machines at the tower/tracon facility (relay function), as well as automatically switching over to a
wind-data-only output if the link to the radar site should become impaired (junction function). This allows
the tower SD to continue display of center-field wind information on the ribbon displays, even when the
rest of the WSP system is unavailable.

The winds reader module, also running on the tower SO, reads data from the airport's LLWAS or
ASOS wind sensor and outputs the data to the radar site. The data is also fed to the local relay/junction pro
cess to provide the backup wind data path.

The display module reads the input data and creates graphics and text representations of the
microburst and gust front information. It also provides text-only output to any ribbon displays connected to
the workstation's serial ports. User interface elements are provided for changing a variety of display
parameters, such as range, background color, and overlay maps. The ability to access and modify the cur
rent runway configuration is also provided.

The product recording module taps into the product data stream and records the data to disk and/or
tape. The display settings for the machine on which the recording is being performed are also archived.
Sufficient storage is provided to allow for a 15-day history to be maintained.. Each SD separately maintains
a local product archive. The SO in the TRACON is equipped with an 8mm tape unit for permanent archival
of the data.

The external user product relay module taps into the product data stream, converts the TCPIIP data
packets to a serial byte stream, and outputs the data to up to 9 serial ports using the communication server
in the tower equipment room.

5

r-------------------------,
TOWER SITUATION DISPLAY (MASTER)

I
Runway Config

Requests
(To Radar Sne),...-------------------;

Primary Wind
Data Path

(To Radar Sne)

Raw Wind Data
(From Comm Server
in Eqpt. Rm)

DISPLAY

Product Data
(From Radar Site)

Backup Wind
Data Path

PRODUCT/
RELAY/

JUNCTION

L __
----------------~

•

Runway Config
Requests

(To Radar Sne)

r------ - -- -,
r-------,

DISPLAY

8mmTape

T
EXTERNAL USER
PRODUCT RELAY

REMOTE MDT
(TOWER EQPT ROOM)

L ~

Product Data
For External
Users (0-9)

(To Comm Servers
in Eqpt Rm)

TRACON SITUATION DISPLAYL ~

Figure 2. Phase II wSP Software Block Diagram - TowerlTracon Modules

2.3 RADAR SITE HARDWARE COMPONENTS

A block diagram of the Phase IT WSP prototype hardware that resides at the radar site is shown in
Figure 3. The majority of the WSP functionality is contained in a single VME chassis, occupying 11 of the
21 available slots. All components are available as commercial, off-the-shelf (COTS) products. The WSP
VME chassis hardware consists primarily of two board types, PowerPC-based array processing boards
from Mercury Computer Systems and SPARC-based single-board computers (SBC's) from FORCE Com
puters. Other cards include a 128Mb bulk memory card, and a GPS satellite receiver board.

The Mercury boards are responsible for handling the time-series data I/O and performing the com-

6

GPS Ant

F

-
WXAlg

Ree 1 I

Signal
Processing

I •
WSP

• " '101 HostI,...,...,....,..I""""'l"""...-..,....,...,...,.......-
o

Base Data DisplayLocal MDT/SO

o
M M S S S

~~
F F S G

C C P P P 0 0 P P

A A A R R A S
p P
P P R R R C C R R

SPARE
C C E E E E E E X SLOTS

I/O
(6)

R

~~
S S

A P P

C A A

E R R
C C C

RAID
eNTRl jjjj

9 GB 9 GB 9 GB 9 GB

F d 1 M
o 2 C
R 8 P

C M P
E '- B C

I

SPARE

o
SPARE I

8mm

SCSI Bus #2

r' - - ,

L ~ 8mmTape I
- I (opt)

L __ oJ

I

I ISCSI Bus #1

Radar AID Data +
Timing

M R
E A
M C

E

I

~

••

I Router/ IComm Server

t t
Dual 128kbps

Commlink
(To Tower LAN)

1L...-_E_th_em_ert_H_U_b_l.....::I----1·..m

DiskITape Subsystem

Figure 3. WSP Phase II Prototype

pute-intensive signal processing operations required to produce the base data stream. Each single-slot Mer
cury board supports two daughtercards, each daughtercard containing either two PowerPC CPUs and
64MB of memory, or a single high-speed I/O interface. In the production configuration, two of the boards
are populated with two daughtercards containing two PowerPC's each (4 processors per board), while the
remaining board has a single, two-processor daughtercard, and a daughtercard containing a high speed
interface (RIN-PE). All devices on the Mercury boards are interconnected via the 'RACEWay' a high
speed (l60Mb/sec.) crossbar network, allowing each device network-wide shared memory access. The
RACEWay interconnect between multiple VME boards is implemented via a 4-slot RACEWay intercon
nect bridge (ILK-4) that utilizes the VME backplane P2 connector. In addition to RACEWay access, each
device can function as a VME 32/64 master/slave, providing a large amount of flexibility for software
applications.

The FORCE SBC's are used for weather algorithm image-processing, data recording, and system
hosting functions. Each FORCE SBC consists of a 171 MHz/128 MB SUN compatible workstation in a

7

VME form factor, including support for two SBUS modules (requires the use of an additional VME slot).
System connections (SCSI, Ethernet, serial) are available on the front panel of each card, or alternatively
on the back of the chassis using an optional VME P2 interface card. Connections from SBus cards (video/
additional SCSI or Ethernet ports) are only available on the front panel. These boards are 1()()% software
compatible with Sun's desktop machines, requiring only the addition of a VME driver to the standard
Solaris 2.6 release in order to access the VME bus.

The FORCE card in VME #1 performs the 'host' function for the Mercury boards, allowing them
access to disk/terminal VO services as well as handling the software download process. This board is
equipped with an graphics card & display, and also serves as the base data display. A second FORCE CPU
is dedicated to time-series and base data recording. The other two boards are dedicated to the weather
detection algorithms, one to the microburst and storm motion algorithms, and the other to the gust front
algorithm (the most computationally intensive of the three).

A MicroMemory 6440D 128 MB memory card provides buffering for the radar data recording task,
as well as a variety of other buffers used during diagnostics. The memory is dual-ported, accessible via
VME or via the RACEWay. VME data transfer rates of up to 80 ME/sec. (VME64) are supported, while
RACEWay transfers can operate at the full 160 ME/sec. bandwidth of the RACEWay. The RACEWay con
nection is implemented via the VME P2 connector. The board is expandable to 512MB, although it is not
field-upgradable since the memory chips are soldered in place (for reliability) as opposed to being mounted
on SHv1M's.

TIme tagging information is obtained from a 8-channel GPS receiver implemented on a single-slot
VME card. This card acts as a VME slave, allowing other processors to obtain the current time/location
information using simple VME transfers. The supplier of the card is Brandywine Communications.

A ruggedized disk/tape subsystem is used to store programs and data. The selected system is a rack
mountable unit with a RAID controller, 49Gb SCSI disks, and an 8mm tape drive. The unit is split into
two separate SCSI buses. The first bus is connected to the RAID controller, which provides a fault-tolerant
9 Gb storage area (2 drives in mirrored configuration) for the WSP 'host' computer (the SPARC board in
slot #1) All critical run-time files are stored in this area. Note that SPARC CPU's #2, #3, and #4 all boot
using SPARC #1 as their file server, and they therefore share the benefit of the RAID system. The second
bus in the disk subsystem is connected to the other two 9 Gb drives and the 8mm tape drive. The SPARC
CPU responsible for data recording (#2) utilizes these devices to record base data. A failure of one of these
devices does not impact the run-time performance of the system - the WSP's fault-detection system is noti
fied of the failure, and the fault can be corrected at a later time.

Lastly, an optional high-speed 8mm recorder used to record the raw time-series data. The recorder
connects to a fast-wide SCSI interface installed on the recording SPARC, and is capable of recording 20
Gb at a continuous 3.0 Mb/sec. rate. In the production configuration, it is anticipated that there will be a
limited number of high-speed recorders, and they will be shared within each FAA region to help analyze
site-specific data quality issues.

2.4 TOWERffRACON HARDWARE COMPONENTS

The typical set of hardware at a TowerlTracon facility is shown in Figure 4. A pair of router/comm
servers located in the tower equipment room are used to provided the link to the LAN at the radar site, as
well as RS232 output ports for up to nine external users. A Sun workstation in the equipment room serves
as the remote MDT, and can double as a training machine for the Situation Display.

8

A single SD resides in the tower cab. Attached to the SD via a single serial line are 2 Ribbon Display
Terminals (RDT's) from DALE electronics. Note that up to 8 ribbon displays may be daisy chained on a
single serial line. A single SD also resides in the TRACON area. This SD is normally set up at the TRA
CON supervisor's position, along with a single RDT. Attached to the SD is an 8mm tape drive (Exabyte) to
provide the capability to save the most recent IS-day product archive to tape. An Ethernet hub in the TRA
CON allows for additional SD's to be installed if requested by the air traffic controllers (as was the case for
the early test sites).

Ribbon
Display #1

Tracon SD

Tower SD
(master)

Product
Recorder

(8mm tape)
L ~

r-------------,I Tracon I

I I
I
I
I
I
I
I
I
I
I

L ~

r----------------,I Tower Cab I

I I
I
I
I
I

External User
Ports (9) RS232

•t

Remote MDT

Dual 128kbps
Commlink

(To Radar Site)L ~

r-------------,
Tower Equipment Room

..

Figure 4. TowerlTracon Hardware Components

2.5 SOFTWARE ENVIRONMENT

2.5.1 Operating Systems

There are two primary operating systems used within the WSP system. The Mercury processors run
MC/OS, a proprietary real-time operating system optimized for the RACEWay architecture. The FORCE
single-board computers, and the external Sun workstations used for situation displays, run Sun Microsys
terns's version of UNIX (currently Solaris 2.6), an operating system which has historically possessed
excellent development tools and has now been extended with real-time multi-tasking capabilities. Both

9

operating systems support the POSIX-standard for system calls [10], resulting in a large degree of code
sharing between the two architectures.

VIrtually all of the WSP software that runs under Solaris has also been compiled and run on a
LINUX system. Although LINUX is not used in the context of the production system (with the exception
of the radar interface, not described in this document), the ability to run the software on a PC is useful in
the context of maintenance and working at remote sites using laptop computers.

2.5.2 Languages

The majority of code in the WSP is written in ANSI C or C++ [11,12]. Code running on or shared by
the Mercury processors is written in C, while the weather algorithms running on the FORCE SBC's are
coded in C++, a more natural choice for the recode of the original object-oriented Lisp-based implementa
tion.

Another language/toolkit of significance is Tcllfk [13,14], a scripting language with support for rap
idly implementing user interfaces. This language, in combination with C/C++ code, is used to implement
the WSP's base data, analysis, and situation displays, as well as the maintenance data terminal.

Lastly, a number of UNIX shell scripts (csh) are used to implement the majority of the system star
tup/and shutdown tasks.

2.5.3 Software Development Tools

The software development package supplied with the Mercury boards consists of a C compiler from
Metaware, Intel's assembler and linker tools, and a customized version of the Free Software Foundations
debugger, 'mcgdb'. The C compiler is capable of generating highly optimized code for the PowerPC archi
tecture, including support for the chip's single-cycle multiply-accumulate operation. The gdb-based
debugger has been extended to provide support for translation of PowerPC assembler instructions and
examination of registers, while retaining the familiar gdb command set. Rounding out the Mercury devel
opment environment is an optimized vector processing library, essentially eliminating the need for assem
bly language programming.

On the FORCE boards and Sun workstations, the GNU C/C++ compiler/debugger tool suite (gee/
g++/gdb) serves as the primary development toolset. Although a 'freeware' product, these tools are widely
used for many commercial products (witness Mercury's adaptation of the GNU debugger), and have
proven to be extremely robust As previously mentioned, the Tclffk package is also used, primarily as a
user interface development tool. This is also a freely available product, and, like the GNU tools, is mature
and well supported (currently being maintained/enhanced by Ajuba Solutions, a commercial company run
by the original developers ofTclffk).

Two code analysis tools, Purify and Quantify from Pure Software, are used to detect coding errors
and optimize the code running on the FORCE boards. Purify is the (UNIX) industry's most popular tool
for detecting memory leaks, uninitialized memory references, and other common C/C++ programming
errors. Quantify is perhaps less well known, but equally effective for code optimization tasks, allowing the
user to conveniently view CPU usage at the source code level. The combined use of these tools greatly aids
the production of error-free, efficient code.

10

•

3. CORE SOFTWARE MODULES

3.1 GPS TIME SERVER

The time server process reads the current time from the GPS receiver board, and stores it in a public
VME location for use by other processes. This process is made necessary by the fact that only one process
can read data from the GPS board at any given time, and multiple processes in the WSP require time
stamps.

The primary use of the time stamp is to time stamp the data as it flows through the processor. This is
done at the front end of the system by the PowerPC distributor module (see Figure 1.). Each pulse of radar
time-series data is tagged with the current time using I-second resolution. This time stamp is carried
through the entire processing chain, all the way to the final outputs to the situation displays. A secondary
use of the time stamp is to automatically synchronize the real-time clocks on all of the SPARC CPU's to
correct for any long-term drift. The time server process is responsible for synchronizing the clock on
SPARC CPU#I, and all other SPARC CPU's (in the VME chassis or external) update their clocks by peri
odic execution of the UNIX 'rdate' utility referencing SPARC#I as the 'master'.

The GPS hardware is designed to tolerate occasional loss of satellite signal, and continues to provide
an accurate time via it's internal reference. The return of a valid satellite signal causes the board to trans
parently return to normal operation.

More serious GPS errors, such as a prolonged lack of satellite signal, a non-responsive board, or a
bad time stamp, cause the time server process to fall into a backup mode, where time is obtained from the
on-board clock on SPARC CPU#1. The WSP will continue to function normally, with the exception of a
GPS maintenance alert on the MDT.

3.2 BASE DATA GENERATION

Base data generation encompasses the radar data acquisition and input to the PowerPC processing
array. subsequent clutter filtering, autocorrelation, and spatial smoothing operations, and output of base
data to the downstream weather algorithms. This section illustrates the data flow through the base data gen
eration process, providing specifics as to processor partitioning and associated data rates. As stated earlier,
this document does not contain many specifics regarding the signal processing algorithms used. Readers
are referred to [8] for a thorough treatment of the algorithms themselves.

The WSP outputs a variety of base data types. A summary of base data outputs with their common
abbreviations is shown in TABLE 1. The abbreviations shown are used throughout the remainder of this
document.

3.2.1 Time-Series Data Acquisition and Distribution

The ASR-9 radar interface supplies the WSP with a logical 32-bit data stream consisting of 10
header words and 1920 data words for each radar pulse (2 32-bit words per range gate x 960 range gates).
The data stream operates synchronously with the ASR-9 range gate clock. The data is physically fed to the
WSP using a I6-bit parallel cable compatible with Mercury's RIN-PE interface. Since there are two 32-bit
words transferred per range gate, and the physical interface is actually only a I6-bit interface, the signals
on the input cable are clocked at four times the 1.3 MHz range gate clock, or 5.2 MHz •

11

(

TABLE 1

Base Data Types

Type Description
Abbrev

LO_DBZ Low beam reflectivity data (dBZ)

LO_VEL Low beam velocity data (m/s)

HI_DBZ High beam reflectivity data (dBZ)

HI_VEL High beam velocity data (m/s)

DUAL_DBZ Dual beam reflectivity data (dBZ)

DUAL_VEL Dual beam velocity data (m/s)

FLAGS Data quality flags. (AP, second-trip, clutter breakthrough)

The 10-word header included within each radar pulse contains information such as antenna position,
RF switch status bits, counters incrementing at thel.3 and 10.3 MHz ASR-9 clock rates, and a pulse
counter that increments once per pulse. Words containing fixed bit patterns (Oxaaaa5555, Ox5555aaaa) are
also included for error checking/synchronization purposes. Data for each range gate consists of the AID
samples from the WSP's receiver and ASR-9 target channel receiver, and a bit containing the position of
the front-end high-speed beam switch for the range gate. The basic layout of the pulse data is shown in Fig
ure 5. See Appendix C for a detailed description of the time-series data format.

In addition to the data lines, the radar interface provides clock, SYNC, and VALID signals, as
required by Mercury's RIN-PE interface. The SYNC signal coincides with the first header word in a radar
pulse, and is used by the WSP software to synchronize to the start of a radar pulse. The VALID signal is set
to true for the 10 header words and the 1920 data words, then set to false during the remainder of the inter
pulse period. This signal is used to 'trim off' data following the 1930'th word of each pulse (range gate
960), preventing excess data words from being accepted into the RIN-PE FIFO. The use of VALID groups
the data into 1930 word, fixed-size frames, regardless of the radar PRE This eliminates the need for a
SYNC operation for every pulse (not guaranteed to have sufficient inter-pulse time to operate the RIN-PE
in that manner), since the position in the data stream is known following the first SYNC.

It should be noted that the above strategy of using fixed-size frames does not allow for access to data
during the radar pulse dead time. If access to such data is desired, as it may be at some point in the future
to allow processing of ASR-9 test targets, then the software controlling the RIN-PE will need to be modi
fied to ignore the SYNC and VALID signals, accept variable-sized pulses into the input buffers, and per
form the synchronization to the start of the pulse entirely in software. It does appear that there is sufficient
CPU bandwidth to implement such a strategy on the PowerPC node that controls the RIN-PE.

The RIN-PE interface does not have CPU of it's own, nor any memory other than 4Kx32-bit FIFOs.
Because of this, one of the Mercury PowerPC nodes must be used to control the interface and serve as the
distributor of data to the other nodes. This node also distributes data to the time-series recording function,
and contains a software time-series simulator for testing purposes. The computational load of the signal
processing algorithms is spread out over N processing nodes by feeding each node a range 'slice' of the

12

incoming data via a 128-pulse circular buffer. To minimize per-pulse transfer overhead, each transfer con
tains 16 pulses. Beyond the range of the wind shear detection algorithms (240 range gates, or 15 NMI), not
all range gates are processed. Processing only every 4th gate beyond a range of 15 NMI is sufficient to gen
erate accurate six-level weather estimates. Therefore, a secondary job of the data distribution process is to
decimate the data in range as appropriate when outputting the data to the compute nodes. A block diagram
of the data distribution throughout the front end is shown in Figure 6.

10 Word Radar Pulse Header

(ACP, Seq Count, Switch Info, Ax Status) -<

31 o

1920 Word Radar Data Block

(960 gates x 2 words/gate)

E===31 Gate 0

E==31 Gate 1

E===31 Gate2

•
•

Figure 5. Layout ofRadar Pulse Data

The current antenna position, as derived from the incoming radar headers, is transmitted to the 'col
lector' node responsible for base data range-slice reassembly and post-processing. This is used to drive the
collector task, and also provides a 'reference clock' for determining the peak processing delay in the com
pute node array. Lastly, a time-series simulator is provided for testing of the basic clutter filtering/autocor
relation functionality. The simulator is interactively controlled via the MDT, allowing a variety of user
specified test scenarios to be injected at the front end of the system.

3.2.2 Clutter Filtering and Autocorrelation

Each node in the PowerPC compute array monitors it's onboard input queue, converting the data as it
arrives to IEEE single-precision floating-point format and correcting for STC attenuation. The 1.3 MHz
clock in the radar pulse headers is monitored to determine the current PRF set and locate CPI boundary
crossings. When a 27-pulse 'extended' CPI (ECPI) of data is ready for processing, the clutter filtering and
autocorrelation operations are performed and the results transmitted to a shared memory buffer on the 'col
lector' node for range-slice reassembly and post-processing. A block diagram of this sequence is provide
in Figure 7.

13

Radar Pulses From Digital Interface

(1930 Words x 32 bits)

I
RIN-PE ,

4 K-word 1

FIFO

~ DMA I

Array of PowerPC Compute Nodes 'Collector'
1 10 Data.1 (Clutter Filtering, Autocorr, Z, V, AP Correction)Simulator PowerPC Node

)~ ~ ·- -DMA IHaW}",U1sel
.. ·

Cmds Buffer .. -
+ , Reassembly

Buffer

Control Program - ~ -- ··-
Range

~
-

Slice t- .
Buffers

Current Antenna Position
.

"Distributor' PowerPC Node +• I
Base Data II Spatial Filtering I
Simulator

128 MByte L rRecording Buffer

(VME Board)

Wind Sensor Data Base Data

I(from VME ring buffer)
Formatting,

Base Data Output

Figure 6. Base Data Generation Data Flow

14

TIME SERIES

FLAG

INPUT DATA
(range slice)

•
INPUT VALIDATION

ECPI SYNC

PRF DETERMINATION

(" FLOAT CONVERSION
2-DSTC MAPS - SCALING I STC

(Chan AlB, Un/Cire Pol, I CORRECTION

\.. LoIHi Beam)
~

ECPI BATCHING

CLEAR DAY ADAPTIVE CLUTTER FILTER FILT #/ AP
CLUTTER MAPS - AP DETECTION..
(LolHi, Un/Cire)

,Ir

AUTOCORRELATION WI
LAGS BUFFER) ~ - TEMPORAL SMOOTHING

AP DETECTION

+
DBZ VELOCITY DUAL-BEAM

VELOCITY

• ~ • n

TO COLLECTOR!

POSTPROCESSOR

Figure 7. Clutier Fillering and Autocorrelation

15

3.2.3 Post Processing and Base Data Output

The collector task monitors the current antenna position, and performs post processing on sectors of
base data at (current sector - 32), where a sector represents a 1.4 degree base data 'wedge'. This 45 degree
delay allows time for the compute nodes to complete all processing operations for a given sector. Although
the collector's main task is the output of base data to its various destinations, the output job requires only
approximately 5% of the CPU. To take advantage of this relatively unused PowerPC node, several of the
less intensive signal processing operations are carried out on the collector node prior to the output of base
data. The operations include completion of the DUAL_DBZ and FLAGS products, as well as the spatial
filtering of the DUAL_DBZ and DUAL_VEL products (the other base data products are not subject to
median filtering). An additional benefit of carrying out the spatial filtering on this node is that the data is
continuous in range, no longer broken up into range slices. This negates the need for overlapping the range
rings within each compute node in order to properly implement the spatial filter. A block diagram of the
postprocessing operations is shown in Figure 8.

The collector task is also responsible for integrating the wind sensor input into the base data output
stream. Wind data is made available to the collector via a VME ring buffer that is filled by a process run
ning on SPARC board #1 (it reads the data from the tower via a TCPIIP socket connection). Integration of
the wind data into the base data at this point allows for base data recordings to contain all the data neces
sary for repeatable, synchronized base data playbacks.

A base data simulator is also implemented on this compute node. The base data simulator provides
for increased programming flexibility when compared to the time-series simulator, since the amount of
data that must be generated is approximately an order of magnitude less. This simulator can produce rea
sonably realistic storm cells with associated microbursts and gust fronts. Signal contamination due to sec
ond-trip echoes, AP, and ground clutter breakthrough can also be specified. In general, this is the simulator
of choice when testing the basic functionality of the weather detection algorithms. The simulator is con
trolled via the MDT, where the system operator is presented with a number of canned scenarios, as well as
the option of creating new custom scenarios.

3.3 BASE DATA DISPLAY

The base data display software converts the polar reflectivity, velocity, and flags data into cartesian
images, and displays the images on the main WSP X-windows console. Two processes are involved, the
base data display server process and the base data display daemon process. The server process reads the
data from the VME-resident shared memory buffer, performs the cartesian conversion, and sends the
images to the display daemon via shared memory. The display daemon reads the incoming images, renders
the images on the display, and responds to user display requests (zoom, pan, etc...). The basic update rate
of the display is every two antenna scans (-9.2 seconds) (a more frequent update is of limited use given the
alternating beam strategy employed by the WSP receive chain). An example of the base data display is
shown in Figure 9. The user can view any four of the base data products simultaneously, along with the
appropriate color scales. Readouts track the cursor range/azimuth, as well as the underlying data value in
each window. All four windows can be independently zoomed and panned, or can be zoomed/panned as a
group.

16

Z.V. FlAGS FROM PowerPC COMPUTE NODES 1.2,3....N

l' +'r , r r

(COLLECTION BUFFER)(SHARED MEMORY)

,
CURRENT ANTENNA POSITION INPUT PROCESSING

~
FROM DISTRIBUTOR CPU

DATA FOR (ANTPOS •,r

DUAL DBZ PROCESSING

(HIILO BEAM COMPOSITE)

r

WIND DATA SPATIAL FILTERING
FROM VME BUFFER

u 1

BASE DATA OUTPUT

(VIA VME RING BUFFERS)

• t t t t

45)deg

MBALG GFALG WXSERVERS
(pOLAR/CART) DISPLAY RECORDING

Figure 8. Base Data Collection /Post-Processing I Output

17

Figure 9. Base Data Display ofSimulated Microburst and Gust Front

The above example also illustrates the functionality of the base data simulator. This simulated sce
nario contains a single storm cell which is producing a microburst as it tracks to the east at 5 mls. A gust
front has propagated out in front of the storm cell, presumably simulating an earlier microburst 'pulse' by
the isolated storm. Note the ability to specify different reflectivity/velocity patterns in the low and high
beams, a necessity when testing the detection algorithms.

3.4 SIX-LEVEL WEATHER SERVER

The six-level weather server converts the WSP data from dBZ units to the six-level equivalent and
performs spatial smoothing and contouring operations similar to those used in the original ASR-9 weather
channel. The resultant six-level data are output to the ASR-9 via the radar interface, and are also transmit
ted to the storm motion algorithm, the TWIP algorithm, and the situation displays (via the product multi
plexor) .

18

The inputs and outputs of the six-level weather server are shown in Figure 10. A new set of polar
base data is input to the server every other scan (-9.2 sec. update rate). The resolution of the data is 1/4
NM in the range dimension, and 1.4 degrees in the azimuthal direction (360/256). Following the temporal
and spatial smoothing, contouring, and NWS level conversion operations, three separate TCP/IP output
streams are generated. The stream directed to the ASR-9 interface consists of 120x256 polar images with a
range resolution of 1/2 NM (same resolution as the ASR-9 CD-2 format), and an update frequency of 6
scans (-28 sec.). The polar images generated for this stream are aligned to magnetic north, the ASR-9 con
vention.

The SD/fWIP output stream consists of480 x 480, 1/4 NM cartesian images, updated every 6 scans.
The images are aligned to magnetic north, as the SD and TWIP both present their displays using the mag
netic north convention. Note that although this stream is logically a single output stream, multiple 'clients'
can connect to it due to the use of the server-client TCPIIP software described in the software libraries sec
tion of this document. This is true for essentially all the TCPIIP data streams used throughout the WSP sys
tem

The storm motion output stream consists of 240 x 240, 1/2 NM cartesian images, updated every 6
scans. In this case, the resolution is reduced from the input resolution of 1/4 NM to reduce the size of the
image required to cover the full radar range. The 1/2 NM resolution is sufficient for the storm motion algo
rithm to accurately track storm cells, and the reduced memory footprint due to the smaller images is signif
icant since the algorithm maintain a 5-10 minute history of images in memory to compute the motion field.
Note that these images are aligned to true north, as WSP algorithm processing (as opposed to display) is
generally done in the true north domain.

The mapping of the data from dBZ to NWS level is shown in TABLE 2 The table reflects the stan
dard thresholds used by the NWS. The thresholds are, however, set up as variable site parameters in the
event that non-standard threshold levels are desired.

TABLE 2

OBZ To NWS Six Level Weather Mapping

OBZValue NWSLevel

<18 0

18 - 30 1

30 - 41 2

41 ·46 3

46 - 50 4

50·56 5

>56 6

19

ASR-9 INTERFACE OUTPUT STREAM

SDITWIP OUTPUT STREAM

480x480 CARTESIAN IMAGES

1/4 NM BIN RESOLUTION

MAGNETIC NORTH ALIGNMENT

6-SCAN (-28 SEC) UPDATE RATE

240 X 240 CARTESIAN IMAGES

1/2 NM BIN RESOLUTION

TRUE NORTH ALIGNMENT

6-SCAN (-28 SEC) UPDATE RATE

STORM MOTION OUTPUT STREAM

120 (RNG) X 256 (AZ) POLAR IMAGES

1/2 NM BIN RESOLUTION

MAGNETIC NORTH ALIGNMENT

6-SCAN (-28 SEC) UPDATE RATE

E SIX-LEVEL
wx. SERVER

BASE DATA (VME RING BUF)

240 (RNG) X 256 (AZ) POLAR IMAG

1/4 NM BIN RESOLUTION

TRUE NORTH ALIGNMENT

2·SCAN (-9.2SEC) UPDATE RATE

Figure 10. Six-Level Weather Server Input/Output

3.5 STORM MOTION ALGORITHM

The ASR-9 storm motion algorithm computes the motion of operationally significant storm cells and
outputs a set of motion vectors as well as the 10 and 20 minute extrapolated positions of the storm cells.
The vectors and storm extrapolated positions (SEP's) are displayed on the SD (see Figure 20.) as a traffic
planning aid. The algorithm also produces a 'gridded vector' product, essentially a pixel-by-pixel motion
field the same size as the input image. The gridded vector product is utilized by the microburst algorithm.

A block diagram of the algorithm is shown in Figure 11. Input to the algorithm consists of a stream
of cartesian six-level weather images, nominally spaced six scans (-28 sec.) apart. Each image is
240x240 pixels, with a pixel resolution of 0.5 NM. The algorithm is partitioned into three major functional
blocks, all running within a single process. The cross-correlation tracker cross-correlates pairs of images
and determines a motion field by maximizing the output of the correlation. Because it is difficult to accu
rately determine storm motion over a 28-second interval (insufficient SNR), the algorithm uses a sliding 5
minute window, where the images being compared are always at least 5 minutes (nominal VSP setting)
apart. The second functional block delineates storm regions via a mixture of contouring and a pixel-by
pixel boundary detection. The third stage of the algorithm utilizes the outputs of the previous two stages,
creating a set of motion vectors for each storm cell as well as a set of SEP's. These data are output to the
SD and the TWIP algorithm once every 28 seconds. The gridded vector motion field produced by the cross
correlation tracker is output via a separate stream to the microburst algorithm, to allow that algorithm to
remove motion effects from it's storm cell feature detectors.

20

SIX-LEVEL WX IMAGES
240x240xO.5NM

28 SEC UPDATE RATE
TCP/IP STREAM

TCP/IP S rREAM

" n
CROSS CORRELATION

STORM ANALYSISTRACKER

'GRIDDED VECTOR' rMOTION FIELD +
STORM VECTORISEP

GENERATOR

OTION GRID OUTPUT VEC/SEP OUTPUT TO SDITWIP
ICROBURST ALGORIT,~

"
28 SEC UPDATE RATE

8 SEC UPDATE RATE TCP/IP STREAM.

M
TOM

2

Figure 11. Storm Motion Algorithm Block Diagram

21

3.6 MICROBURST ALGORITHM

The ASR-9 Microburst Detection Algorithm (AMDA) processes the dual-beam velocity and reflec
tivity base data, detects regions oflow-Ievel divergent wind-shear, and outputs the detections to the WSP's
situation display alert generation module. The algorithm is divided into two threads of execution, a low
latency segment/alarm generation thread that runs at the same 4.6-second update rate as the antenna itself,
and a slower, 'interest' generation thread that runs once every 12 scans (-55 sec.). The low-latency thread
is intended to quickly detect the onset of wind shear utilizing primarily the velocity field, while the interest
generation thread extracts microburst-producing storm cell features that change more gradually, such as
local maxima in the reflectivity field and cell edge location. These additional features are used to validate
and/or enhance microburst signatures detected in the velocity field, providing an increased level of confi
dence in the final output.

A block diagram of the algorithm is shown in Figure 12. The segment/alarm generation thread
receives base data via a shared-memory ring buffer, and accumulates single scans of data in a scan buffer.
The products contained in the base data stream vary with the type of scan. The DUAL_DBZ, DUAL_VEL,
and FLAGS products are sent on every scan, whereas products only used by the interest generation task
(LO_DBZ, LO_VEL, HCDBZ, HeVEL) are sent only every 12th scan. When the segment generation
thread sees the extra products in the input stream, it forwards the scan to the interest generation thread via
a second shared-memory ring buffer. The second input to the interest generation thread, the storm motion
gridded vector motion field, arrives via a TCpnp socket connection to the storm motion algorithm.

Although the microburst algorithm is split into two separate threads of execution, it really consists of
three separate stages. The first stage of microburst detection occurs in the segment/alarm generation
thread, and detects regions of divergence in the velocity field for each 4.6-second scan. The second stage
occurs in the interest generation thread and results in a new combined interest image every 12 scans. The
final stage, alarm generation, combines the segments and interest features, performs some temporal
smoothing, and outputs a set of microburst information every 6 scans (-28 seconds).

AMDA output is broadcast over a TCPnP socket to the alert generation module, which generates the
textual warnings for the ribbon displays as well as messages directing the situation displays to 'light up' a
runway when it is being impacted by a microburst. The alert generation module outputs the text messages,
along with the original AMDA alerts, to the SD's via the product multiplexor.

During the development of the AMDA algorithm, an analysis display was developed to allow the
user to view the reflectivity and velocity input data, the intermediate interest images, and the detected
microburst features. An example of the display is shown in Figure 13. The display was built using the same
low-level facilities as the WSP base data display, and, like that display, can be interactively zoomed and
panned in a number of ways. The display is capable of running in real-time, with relatively modest CPUI
memory requirements, and has been included as part of the production system. The display runs is accessi
ble on a dedicated virtual desktop on the main WSP base data display.

22

Base Data Input Stream
(VME Ring Buffer) Storm Motion Input Stream

(TCP/IP)

________ .J

Cell Edge

Peakiness

Absolute DBZ

Non-Wx Mask

Zero-Crossing

Interest
Generation

Thread

(55 sec. update)

L _

r-------------------,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

L _

I DBDZ, DBV
I LBDZ, HBDZ

~-+_..,.....-..., FLAGS
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

- - --,

Divergence
Segment
Detection

Scan Buffer

Segment!Alarm
Generation

Thread

r- - --

I
I
I
I
I
I DBDZ, DBV
I FLAGS

I (5 second update)

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

______ .J
L _

Microburst Detection Output
To Alert Generator

(TCP/IP)

Figure 12. AMDA Flow Diagram

23

Figure 13. AMDA Analysis Display

3.7 GUST FRONT ALGORITHM

The ASR-9 Machine Intelligent Gust Front Algorithm (MIGFA) processes the reflectivity and veloc
ity base data, detects thin-line features characteristic of gust-front events, and outputs any detections to the
WSP's situation display. Like the microburst detection algorithm, MIGFA is split into two tasks, the basic
detection task, and a second, 'gust front update', task. The basic detection process perfonns the computa
tionally-intensive image processing portion of the algorithm, and cycles once every 24 scans (-2 min.).
The second task perfonns some spatial smoothing, and outputs one-minute 'updates' of gust-front detec
tions to the situation display. Partitioning the algorithm in this manner allows for the display to be updated
in a smooth and deterministic manner without requiring the computational portion of the algorithm to be
run at one-minute intervals.

A block diagram of the algorithm is shown in Figure 14. The detection stage of the algorithm reads
base data input from a VME-resident buffer at two-minute intervals. Once an entire scan has been read in,
a set of feature detectors is run on the data, producing a set of 'interest images' . Each feature detector is
essentially a 2-dimensional matched filter, and the interest image values correspond to the filter outputs.
The reflectivity thin-line detector 'rings' on 0.5-2.5km wide features with reflectivities in the -5 to 20 dBZ
range. The velocity variance thin-line detector is similar, matching thin-lines of coherent signature in the
velocity field. The high-level weather detector locates regions where the power return from the high beam
significantly exceeds that in the low beam, an indication that the region is not part of a low-level wind
shear event. The motion detector is used to differentiate moving thin-lines (actual gust fronts) from station
ary thin-line features (ground clutter breakthrough, road traffic, etc...). A velocity convergence detector
provides additional wind-shift infonnation in cases where the radar is producing valid wind estimates both
ahead and behind a gust front. A non-weather mask is applied to the output images of all the feature
detectors to mask out regions of clutter breakthrough, second-trip, and anomalous propagation. A feedback
loop containing information about previous detections is used to sensitize regions of probable gust front
activity. The interest images from all the detectors are then combined using a set of fuzzy logic weighting
rules, and passed to the feature extraction step. The feature extraction step performs a pixel-wise threshold
on the final interest image, and creates gust front detections for any groups of image pixels matching the
known gust front signature. Current detections, as well as a set of I-min. forecasts extending 20 minutes
into the future, are output to the gust front update task.

The gust front update task reads the detections/forecasts from the detection task, and smooths the
gust front curves using a cubic-spline smoothing algorithm. The smoothed detections are then output to the
SD at a steady one-minute update rate. Each one-minute output contains the I-minute detection or forecast
matching the current time, plus the forecasts for 10 and 20 minutes into the future. The SD displays the
current detection as a solid purple line, while the 1O,20-min. forecasts are displayed as dashed purple lines.
As mentioned above, the main reason for this task is to provide for a smoothly updating situation display
without placing awkward scheduling constraints on the image processing portion of the algorithm.

MIGFA, like AMDA, supports an analysis display tool running in a dedicated virtual desktop on the
main WSP base data display. An example of the display is shown in Figure 15.

25

Base Data Stream
Center Field Wind

Data Stream

r------------------------------,
Gust Front Detection Task

LO_DBZ, LO_VEL,HI_DBZ, HLVEL.
DUAL_DBZ, DUAL_VEL, FLAGS
(2min update rate)

Scan Buffer

Feature Detection

Reflectivity Thin Lines

Velocity Variance Thin Lines

Thin-line motion

Velocity Convergence

High-Level Weather

Detection History

Generate
Combined

Interest

Feature Extraction

~ Detection Feedback

L _

r---------------

---------------'
GF Detections/Forecasts @ -2-min. update rate

--------------,
Gust Front Update Task

Gust Front Update

L _

---------------'
Current GF Detections + 10, 20 min. Forecasts to SO

1-min. update rate

Figure 14. Gust front Detection Algorithm Block Diagram

26

Figure 15. MIGFA Analysis Display

3.8 ALERTGENERATOR

The alert generator module combines the output of the microburst and gust front algorithms with
runway configuration information to produce textual alerts for the ribbon displays. Put simply, a
microburst or gust front that intersects an active runway ARENA (AREa Noted for Attention) will result in
an alert message being generated for that ARENA. A step termed 'shear integration' is also performed to
reduce the magnitude of events that only partially intersect a runway arena. The alert generator also reads
the wind data via a VME ring buffer base data feed, and incorporates the center field wind data into the
current alert message. Note that the alert generator is continually outputting messages, even when no haz
ardous condition exists. In general, a new alert message is created and output whenever a new microburst
(-28 sec. update rate), gust front (-55 sec. update rate), or wind data (10 sec. update rate) record is
received. This results in an output message at least once every 10 seconds.

A block diagram illustrating the alert generator input and output streams is shown in Figure 16. For
efficiency reasons the alert generator serves a secondary role as a data stream concentrator. Not only are
new alert messages created and output, but the original input data are also included via a pass-through and
merge mechanism.

MICROBURST ALERTS

-28 SEC UPDATE

TCP/IP STREAM

GUST FRONT ALERTS

-55 SEC UPDATE

TCP/IP STREAM

WIND SENSOR DATA

10 SEC UPDATE

TCP/IP STREAM

RUNWAY CONFIG DATA

60 SEC UPDATE

TCP/IP STREAM

,

ALERT
Pass-Through GENERATION Pass-Through

~---.. .6' -y

ALERTS

t
.

MERGE

MB +GF + WIND + RW DATA

(PASSED THROUGH)

+
ALERTS

10 SEC MINIMUM UPDATE

TCP/IP STREAM

Figure 16. Alert Generation Block Diagram

28

3.9 TERMINAL WEATHER INFORMATION FOR PILOTS

The Terminal Weather Information for Pilots (TWIP) module converts the WSP product data to a
form suitable for display on ACARS cockpit displays and cockpit printers. TWIP data are sent to the
ARINC database via the FAA's NADIN II packet-switched network, from where they can be uplinked to
aircraft on demand. TWIP output from the WSP is compatible with the TDWRlITWS TWIP product, pro
viding a consistent product for all TWIP users.

The TWIP text message intended for cockpit displays (20 characters wide by 10 lines high), is
shown in Figure 17. The left side of the figure shows the weather situation and the right side shows the cor
responding text message.

The first two lines indicate that the message is for Washington National Airport (DCA) and the uni
versal time is 18: 10. In this case a 30 knot microburst is impacting one of the runways. Moderate (level 2)
precipitation is touching the airport and extends from the north through the east; heavy precipitation (level
3 or greater) is 1 run northeast of the airport. The storm is moving west at 15 knots.

An example of the TWIP character graphics depiction is shown in Figure 18. In this case there is a
rnicroburst-producing cell to the west of the airport. The moderate precipitation is indicated by '-', the
heavy precipitation by a '+', and the microburst by the letter 'M'. Note that the attenuated precipitation
symbol, '.', is not supported by the WSP due to the systems relative immunity to attenuation when com
pared with a TDWR operating at a wavelength of 5 cm wavelength. A gust front impacting the airport in
this case is delineated using the character 'G'. The runway location is indicated by the 'X' symbols, except
where the gust front impacts them as indicated by an '*'. A scale is provided in nautical miles in the hori
zontal and vertical directions along with a key to the symbols. Lastly, a textual storm motion information
string is provided on the bottom line of the printout.

A block diagram of the WSP-TWIP software modules is shown in Figure 19. The processing is split
into two separate processes, a main processing task and a NADIN II output task. Data enters the main task
via three TCPIIP streams. Six-level weather and storm motion data arrive on separate streams, while
microburst, gust front, and runway alerts arrive via a single, third stream originating from the alert genera
tor module.

The software within the main process is broken down into four major modules. The three modules
on the left side of the figure comprise the text message generation process, while the single module on the
right is responsible for the character graphics generation.

The Storm Cell Detector module detects storm cells in the vicinity of the airport by contouring areas
of higher reflectivity. Storm cells with reflectivities exceeding NWS levels 2 and 3 are reported as moder
ate and heavy precipitation, respectively. The Storm Impact Processor determines if a storm cell is cur
rently impacting or is expected to impact the airport and approach/departure areas, and if so, what the
intensity is.

The Text Message Generator combines the output of the Storm Cell Detector and the Storm Impact
Processor with the runway alert information and generates the TWIP text messages.

29

Weather Situation

Microburst

TWIP Text Message

DCA 1810

TDWR TERMINAL WX INFO

*MICROBURST ALERT

30KTLOSS

BEGAN 1805

-STORM(S)

ARPT N-E MOD PRECIP

1 NM NE HVY PRECIP

Figure 17. Example ofTWIP Text Message

Weather Situation TWIP Character Graphics Map
DCA 1810 MAP 15NM

WSP TERMINAL WX INFO

15 10 5 NORTH 5 10 lS

" GUST
FRONT

10

----++--- G

S ---+++++--- G

---++MM+-- X X G

Figure 18. Example ofTWIP Character Graphics Depiction

30

The Character Graphics Generator processes all input data types, with the exception of the runway
alert data, and generates the character graphics map. Output from the Character Graphics Generator and
the Text Message Generator is output to the NADIN II reformatter/output task and the WSP SD via TCPI
IP. (Although not a strict requirement, TWIP display capabilities are provided on the SD as a convenience
for tower personnel).

3.10 PRODUCT DATA MULTIPLEXOR

The Product Data Multiplexor serves as a data stream concentrator (fan-in), ingesting data from the
weather algorithm and runway configuration TCP/IP data streams and multiplexing it to a single TCP/IP
output stream. This reduces the number of connections required by the SD's and product recording mod
ule, and thereby simplifies system maintenance and fault isolation. It also helps to guarantees faithful
playback of recorded data, since the recording software will record and play back the data packets in the
same order as seen by the SD during real-time operation.

3.11 PRODUCT DATA RELAY/JUNCTION

The Product Data Relay is a close cousin of the Product Data Multiplexor. It exists to reduce the
amount of TCPIIP traffic across the 128 Kbaud communications link between the radar site and the tower
facility. In it's capacity as a relay, it reads data from a single input stream, and outputs it on a different
stream to all clients requesting the data (fan-out). In it's capacity as a junction, it allows the substitution of
a backup data stream in the case of a loss of data on the primary input stream. In the WSP design, the relay/
junction module is run primarily on the tower (master) SD. During system development and testing, the
relay/junction process has also been used to distribute data at remote monitoring sites. In general, the relay/
junction may be used at any point in the WSP LAN where a fan-out operation is required.

3.12 WIND DATA SERVER

The wind data server process reads the raw LLWAS or ASOS data stream, reformats it slightly, and
transmits the data to the radar site. Whether LLWAS or ASOS data is used as the source, the data appears
as a simple serial stream, and is read using one of the ports on the WSP's serial communications server in
the equipment room. The comm server essentially acts as a remote serial port on the WSP LAN, allowing
any connected host computer to read the incoming wind data. The reading of the data is performed by the
SD workstation in the tower. This allows for display of winds information on the tower SD even in the
event of a failure of the communications link between the tower and the radar site.

31

SIX-LEVEL

WX

TCP/IP

"

STORM

MOTION

TCP/IP

"

RUNWAY

ALERTS

TCP/IP

"

STORM IMPACT

PROCESSOR

SIX-LEVEL

T
STORM CELL

DETECTOR

SIX-LEVEL

WX

~

STORM

MOTION

+

RUNWAY

ALERTS

SIX-LEVEL

WX

~

PROCESS #1

STORM RUNWAY

MOTION ALERTS

CHARACTER

GRAPHICS

GENERATOR

TEXT MESSAGE

GENERATOR

PROCESS #2

NADINII

FORMAT & SEND

X.25 TO
ARINC

TWIP TEXT AND

CHARACTER GRAPHICS

MESSAGES

TCP/IP OUTPUT TO SO's
(VIA PRODUCT MUXj

Figure 19. WSP-TWIP Software Modules

32

3.13 SITUATION AND RIBBON DISPLAYS

The Situation Display (SD) is the final output device for the WSP products. The primary situation
displays are built around a Sun Workstation platform with an auxiliary text-only 'ribbon' display terminal
from DALE Electronics (the same terminal used for the TDWR system). A combination of graphical and
textual weather information is provided to the controllers at the Towerrrracon facility. Graphical informa
tion includes precipitation maps, microbursts, gust fronts, storm motion vectors, storm extrapolated posi
tions, and center-field or (optionally) LLWAS winds. Textual information consists of concise messages
describing the weather status for each runway/approach corridor particular runways.

The basic appearance of the SD graphical display is illustrated in Figure 20. Graphical representa
tions of the six-level weather, microbursts, gust fronts, storm motion and extrapolated positions, are shown
in the main panel. An overall warning status box is provided at the top right. A range selection area allows
the user to set the range to one of the four possible values. A panel at the lower-right indicates the overall
health of the system on an product-by-product basis. A menu bar at the top of the display provides access
to a number of additional features, such as geographical overlays, the runway configuration editor, and a
TWIP display window.

Figure 20. Situation Display Graphics Screen

33

Closely related to the SD are the ribbon displays, separate flat panel display terminals used to present
textual information regarding weather events in a highly-readable form (large letters). The large-format is
required since the ribbon displays are the source of the information relayed to pilots on final approach, and
the information must be easily accessible by all tower personnel. For convenience, multiple ribbon display
terminals are often provided in a single tower cab. This is easily accomplished since multiple, daisy
chained ribbon displays can be driven by the Sun workstation via a single serial connection.

The appearance of the ribbon display is illustrated in Figure 21. Note that the grille on the lower left
houses the audible alarm that is set off when a microburst or gust front first appears.

Figure 21. Situation Display Ribbon Display Terminal

A block diagram of the core SD software is shown in Figure 22. The SD software is partitioned into
three separate tasks, the main display 'server' task, the user interface task, and the runway configuration
task. The display server task is responsible for reading the input product stream, creating the graphical and
textual respresention of the data, and transmitting the results to the user interface task using a combination
of shared memory and built-in Tclffk interprocess communication protocols. The user interface task,
implemented using TclfTk in conjunction with the imgsh extension, actually displays the graphics infor
mation and provides the user interface elements necessay to control basic display parameters and airport
runway configuration. The runway configuration client task handles the aynchronous communication
between the SD and the runway configuration server process residing in the RDP at the radar site.

34

nwayCong~

equesls
RadarS~e)

.. ~ RUNWAY CONFIG
CLIENT

Ru
R

(To

SO USER
INTERFACE

Runway Cong~

Requests
(To Radar Site)

Product GraphicsITexl

(via shared memory)

Product Data
Stream

SO DISPLAY
SERVER

Current Display Settings

(To Product Recording)

Figure 22. Situation Display Block Diagram

35

4. DATA RECORDING AND PLAYBACK

The WSP is capable of recording and playing back three types of data, time-series data, base data,
and product data. Up to two hours of time-series data (- 20 Gb) can be recorded using a high-speed 8mm
tape drive (optional equipment). Time-series recordings are normally made only at the operators discre
tion. Base data are continuously recorded to disk at all WSP sites. Sufficient disk storage (I8 GB) is pro
vided to allow the most recent 20-hours of data to be stored. The archived base data can be transferred at
any time to an 8mm tape drive that is present at all sites. Product data is continuously recorded by each SD
in the TowerffRACON. Sufficient disk storage is provided to allow a 15-day history to be maintained
(-300 Mb max). The SD in the TRACON is equipped with an 8mm tape drive to for permanent archival of
the 15-day product data history on command.

4.1 TIME-SERIES RECORDING SUBSYSTEM

The time-series recording subsystem must be capable of recording sufficient data to accurately recre
ate the original base data and windshear alerts when it is played back through the signal processor. This
means that all data within the 240-gate range of the gust-front and microburst algorithms must be recorded,
as well as at least some of the data in the less critical region beyond 240 range gates. Recording only a sub
set (one scan every two minutes) of the long range data is somewhat of a compromise, since the scan-to
scan averaging of the lags data will not perform identically to real-time when data is played back, but it is
felt that the data will be sufficient to reproduce the original long-range six-level weather and storm motion
products with sufficient accuracy. The benefit to this approach is a reduction of the average data rate to the
point where it falls below the 3MB/sec. max transfer rate of the new high-performance 8mm tape drives.

Two factors complicate the task of recording the time-series data - the alternating beam mode, and
the 105 degree precession of the alternating beam switch point used to 'spread out' the effects of the cor
rupted data at the beam switch location. The approach taken here is to group a full low-beam cycle (360 +
105 degrees) and a full high-beam cycle (also 360+105 degrees) into a single 'volume scan', allowing each
volume scan to stand on it's own. Given that the antenna scan rate is typically 78.3 degrees/sec., each vol
ume scan represents approximately 11.9 seconds worth of data (-5 scans/min.)

Data rate for limited range volume scans (continuous):

10 header words + (240 gates @ I-gate spacing) * 2 channels =490 words/pulse =1960 bytes/pulse

1960 bytes/pulse * 1200 Avg PRF = 2.35 MBytes/sec.

Data rate for full range scans (once/min.):

10 header words + «240 gates @ I-gate spacing) + (180 gates @ 4-gate spacing» * 2 channels =

850 words/pulse = 3400 bytes/pulse

3400 bytes/pulse * 1200 Avg PRF = 4.1 MBytes/sec.

Average data rate:

(4 * 2.35 + 1*4.1)/5 scans = 2.7 MBytes/sec.

This data rate is within the 3MB/sec. max transfer rate of the high-speed 8mrn tape drive (Exabyte

37

'Mammoth' 8mm drive). Given a tape capacity of20 GB, this data rate translates to a recording duration of
roughly 2 hours/tape.

The offline analysis oftime-series data requires some additional system information, namely the
VSP settings in effect at the time of recording, as well as the STC and clutter maps. For convenience, the
recording software stores this information at the start of each time-series tape. See Appendix C for a
detailed description of the time-series data format.

A block diagram of the time-series RecordinglPlayback subsystem is shown in Figure 23. During
recording, time-series data is placed in a large buffer (-16MB) residing on an external VME memory
board. The SPARC CPU responsible for recording retrieves the data from the buffer into a second, on
board buffer, bundles the data into volume scans, and writes the volume scans to the disk or tape device.
During playback, the process is essentially reversed. Note that the PowerPC distributor node is responsi
ble for 'throttling' the data in playback mode since it has an accurate on-board high-resolution timer. This
reduces the SPARC processors job to simply reading the data from disk/tape and writing it to the PowerPC
node as fast as the PowerPC accepts it.

PowerPC
Distributor 1---.1-Node

128MB
Mem
Board

p
SPARC

CPU

8mm Tape
(20 GB)

a) Recording

8mm Tape
(20 GB) '--

Disk

........~--

t---

-
SPARC

CPU

128MB
Mem
Board

b) Playback

PowerPC
1---.1_ Distributor

Node

~

~ToPowerPC
_ r---- Compute

-. Nodes-.-.

Figure 23. Time-series Recording/Playback Block Diagram

38

4.2 BASE DATA RECORDING SUBSYSTEM

The primary goals of base data recording are to enable accurate recreations of weather events and
allow for algorithm evaluation and refinement. The volume of data recorded can be reduced through
knowledge of the algorithm requirements. The microburst algorithm, for example, requires continuous
recording of seven base-data products out to a range of 160 gates, while the storm motion algorithm
requires full-range data only every 6 scans (-28 sec.).

For convenience, base data files typically contain a number of scans, referred to in the following dis
cussion as a 'scan group'. Each scan group containing 12 physical antenna scans, corresponding to approx
imately one minutes worth of data. The first scan in each group contains all the products out to full range.
All other scans contain only the data required by the microburst algorithm, with the exception of the sixth
scan. which contains DUAL_Z and FLAGS data out to the full range of the radar for the benefit of the six
level weather generation algorithm. The nominal contents of each of the scans in the group is shown in
table form in Table 3. Note that the format is flexible enough to handle many other product/range combi
nations. Additional details regarding the format are provided in Appendix C.

TABLE 3

Base Data Scan Group Contents

Scan(s) ProductslRange Destination Algorithm(s)

1 LO Z, LO V, HI Z, HI V, DUAL Z, All Algorithms
FLAGS

240 gates @ 1-gate spacing +
180 gates @ 4-gate spacing

DUAL V
240 gates @ 1-gate spacing

2-5 DUAL Z, DUAL V, FLAGS Microburst Algorithm
160 gates @ 1-gate spacing

6 DUAL Z, FLAGS Microburst Algorithm, Six-Level
240 gates @ 1-gate spacing + Wx Algorithm
180 gates @ 4-gate spacing

DUAL V
160 gates @ 1-gate spacing

7-12 Same as scans 2-5 Microburst Algorithm

Alist of recorded base data products is shown in TABLE 4. Reflectivity values are stored using a sin
gle byte per gate, while all other data types are stored using two bytes/gate.

39

TABLE 4

Base Data Products

Product Product Bytes!
Description

Name Code Gate

LO_Z 0 1 Low Beam Reflectivity

LO_V 1 2 Low Beam Velocity

HLZ 2 1 High Beam Reflectivity

HLV 3 2 High Beam Velocity

DUAL_Z 4 1 Dual Beam Reflectivity

DUAL_V 5 2 Dual Beam Velocity

FLAGS 8 2 Data Quality Flags

Using information from the two tables, the average data rate can be computed as follows:

Scan 1 (11 bytes/gate * 240 gates + 9 bytes/gate*180 gates)* 256 radials/scan = 1.1 Mb/scan

Scans 2-5,7-12 5 bytes/gate * 160 gates * 256 radials/scan = 0.2 Mb/scan

Scan 6 (5 bytes/gate * 160 gates + 3 bytes/gate*260 gates)* 256 radials/scan = 0.4 Mb/scan

Avg Rate =(1.1 +.2*10 +.4) Mb /12 scans * (1 scan/4.6 sec.) =63 Kbytes/sec.

The average data rate requirement of 64 KBytes/sec. is easily met using a Exabyte 8505XL 8mm
tape drive unit (capable of transfer rates of up to 500 KByte/sec., uncompressed). The nominal uncom
pressed capacity of these drives is 7.0 GB/tape. This translates to a tape capacity exceeding 24 hours, a
convenient size for base data archives. As stated earlier, base data recordings at commissioned sites will
normally be maintained on disk, and only dumped to tape under operator control.

The base data recording/playback subsystem is illustrated in Figure 24. Data is transmitted from the
PowerPC base data output node to a 4 MB buffer residing on the VME memory board. The SPARC record
ing CPU copies the data into local memory, bundles it up into scan groups, and outputs the scan groups to
a 'staging' disk, from where they can be copied to tape by a background process. The use of the staging
disk serves to isolate the recording process from long (30 second) 8mm device startup times, as well as
provide the mechanism for maintaining the base data history at commissioned sites.

40

r -.....
PowerPC SPARC I'... ../

Output ~ CPU Staging 8mm Tape

Node - - Disk - (7 GB)

a) Recording

8mm Tape
(20 GB)

SPARC
CPU

b) Playback

ToWX
Algorithms

•

Figure 24. Base Data Recording/Playback Subsystem

Playback of base data is shown with a very general ''To WX Algorithms" final output. This is due to
the fact that playback capability includes, but is not strictly limited to, playbacks in the real-time system.
A single fast UltraSPARC or Pentium Pro machine, for example, could be used to read the data and run the
algorithms offline at near real-time rates. To support all types of playbacks, playback code is set up to have
configurable outputs (System V shared memory, VME shared memory, TCPflp).

4.3 PRODUCT RECORDING SUBSYSTEM

In order to accurately reconstruct events without resorting to a base data playback (VME Processor
required) the WSP is required to maintain a separate archive of all product data (precip, microburst, gust
front, etc...) displayed on the situation displays. Each SD records all data arriving the product input stream
on it's local disk, maintaining a continuous 15-day history (one file is recorded per day). In addition to the
product information, which is identical for all SD's, SD-specific information regarding the display settings
in use at any given time is recorded. This allows for an exact reconstruction of an event with regard to how
it appeared on a particular SD. The SD machine in the TRACON is equipped with a 8mm tape drive to
allow product archives to be transferred to tape. The 8mm tape drive may be attached to other SD's if the
display-specific information on a machine other than the TRACON SD is deemed important enough to
save to tape. A block diagram illustrating the default recording configuration is shown in Figure 25.

41

r---------------------,
TOWER SITUATION DISPLAY (MASTER)

SDSERVER

Product Data
(From Radar S~e)

PRODUCTI
-~~I RELAYI

JUNCTION

L _

Display Settings

PRODUCT
RECORDING

_____________ .J

r-----------,

TRACON SITUATION DISPLAYL .J

Figure 25. Product Data Recording Block Diagram

The data rate for an active weather period can range from 10-20 Mb/day. The maximum expected
disk/tape space requirement for storage of 15 days worth of data is therefore 20 Mb/day * 15 days = -300
Mb. This is a small amount of data given the capacities of current disk and tape units, and in fact, the disk
space available on the SD machines significantly exceeds this requirement.

A variety of options will be available for reviewing the product data. Basically, any machine that can
be configured as a situation display will have the capability of functioning as a playback device. This
includes the SD's at the tower and TRACON, as well as the MDT/SD in the tower equipment room.

Use of the tower display for playbacks may be restricted during some periods, since the WSP will
essentially be offline when the tower (master) SD is in playback mode. Playback at remote locations such
as Lincoln Laboratory or the FAA's Program Support Facility (PSF) will be possible via machines set up as
dedicated WSP playback displays.

42

5. SUPPORT LffiRARIES

Many of the software modules in the WSP system share a common set of support libraries. Facilities
include memory allocation, message logging, list and time handling functions, interprocess communica
tion, and graphical display.

5.1 MEMORY ALLOCATION

Dynamic memory allocation using system-supplied versions ofmallocOIfree() (or new/delete in
the case of C++) is often not a good idea for real-time applications that run for an indefinite period. The
system-supplied routines are not very efficient, and constant allocation/deallocation can lead to memory
fragmentation and eventual memory exhaustion. Out approach is to allocate memory up-front to the maxi
mum extent that it is practical (within the Alglnit() procedure), and also use customized versions of mal
locOlfree() with different names (MallocOlFreeO) everywhere within the algorithm code. This allows the
memory allocation implementation to be easily customized by the application. In the case of C++, the
renaming is unnecessary, since C++ mechanisms exist to override the system's new/delete calls. The
CSketch library overrides new/delete to efficiently implement the image processing functions, which may
heavy use of dynamic memory allocation.

Our particular implementation of a custom memory allocator works under the assumption that mem
ory is allocated/freed in blocks of similar sizes, and the allocation/free pattern is repeated throughout the
lifetime of the application. The allocator simply maintains a private cache of memory blocks, sorted by
block size.

The first request for a block in a particular size range is satisfied by a request to the system's mal
locO call. A subsequent request for a block of the same size (assuming the previous block has been freed)
will return a block from the memory allocator's cache, effectively bypassing the operating system. Frag
mentation is prevented by using a separate cache for each block size supported by the allocator. By
default, block sizes are spaced 32-bytes apart for requests up to 4096 bytes, following which they are
spaced 1024 bytes apart. (This means that a request for 4097 bytes will actually use up 4096+1024 bytes of
system memory, but to date the wasted memory hasn't proved significant for us).

5.2 MESSAGE LOGGING

During algorithm development, a variety of printfO-type messages find their way into the code. The
messages can typically be split into four classes, informational, warning, error, and debug. In a real-time
environment, a display may not be available for output of such messages, and it is desirable to provide a
mechanism for enabling/disabling certain message classes as well as allowing for logging the messages to
a file or socket connection. UNIX provides the syslog facility to accomplish this task. Because of our
portability requirement and our desire to enable customization of the message handling mechanism, we
have implemented a syslog-like facility for the WSP project. From an algorithm's point ofview, the facility
is quite simple. A C/C++ statement like:

Log(LOG_INFO, "Info msg%d\n", 1);

outputs the message to the system log. Like the syslog facility, four classes of messages are supported,
LOG_INFO, LOG_WARN, LOG_ERR, and LOG_DBG. In addition to the default debug level (1),
three additional levels of debug support are supported (LOG_DBG2, LOG_DBG3, LOG_DBG4). Debug
messages can be enabled on a per file or per function basis through the use of the logging configuration

43

file. Other features of our implementation include selective output to stdout/stderr and/or disk files, limited
log file sizes, and automatic creation of backup log files across multiple program runs.

5.3 INTERPROCESS COMMUNICATION

The interprocess communications methods used within the WSP system can be broken down into
two basic categories, shared memory-based communications, and UNIX socket-based communications.
Shared memory is the primary communications method used for medium to high bandwidth connections
within the WSP VME chassis, while the socket-based methods are used for lower bandwidth connections
in the VME chassis as well as all connections between nodes on the WSP LAN.

5.3.1 Shared Memory Ring Buffers.

Within the VME chassis, there are three basic mechanisms for shared memory communication:

• .Shared memory communication between two PowerPC compute nodes via the RACEWay.

• Shared memory communication between an PowerPC and a SPARC, or between two SPARC
CPU's, via the VME bus.

• Shared memory communication between multiple processes running on a SPARC CPU using Sys
tem V shared memory mechanism..

Each of these mechanisms tend to have certain restrictions with regard to data alignment and initial
ization sequence. For example, to allow DMA transfers to be efficiently used between PowerPC nodes, the
ring buffer record addresses must be known in advance, mandating the use of fixed size records. Use of the
SPARC 5's DMA controller requires that records be aligned on 64-byte boundaries. To provide a consis
tent interface to all these mechanisms, a library of ring buffer routines has been written that isolates the
higher-level code from the hardware-specific details. These routines implement a simple single-writer/sin
gle-reader shared memory ring buffer, where either the writer or reader is considered to be the 'master',
and is responsible for the creation and initialization tasks (record size, number of records, etc...). A ring
buffer 'slave' simply attaches to an existing ring buffer, and reads/writes data as the application demands.
The structure of the ring buffer is shown in Figure 26. In this example, the write pointer leads the read
pointer by two frames, indicating that there are two frames waiting to be read.

Ringbuf Header

Frame
Count

Uniformly sized, 64-byte aligned, data frames

--------~---------

Frame_-+__.........

Figure 26. Ring Buffer Layout

44

5.3.2 Server-Client communications using TCPIIP and UDP.

The Server-Client interprocessor communications package allows a server process to broadcast data
to multiple clients over a Local Area Network using either the TCPIIP or UDP protocols. TCPIIP is used
exclusively in cases where reliability of the communications pathway is ofparamount importance, as is the
case when transmitting data to the Situation Displays at the Tower and TRACON facility. The drawback
of TCPIIP, a connection-based protocol, is that it requires a separate data transmission for each connected
client, utilizing more and more of the LAN's bandwidth as each client is added. Therefore, to efficiently
support multiple non-critical remote situation displays, a UDP-based broadcast protocol is also supported.
The two protocols are implemented using a layered approach, illustrated in Figure 27. The choice of proto
col is typically specified at run-time via a configuration file.

Application Program
(Server)

Server/Client
API

Application Program
(Client)

Server/Client
API

- -,
I

I Network IL ~

Figure 27. Server-Client Communications lAyers

In the WSP, applications programs functioning as data 'servers' typically do not want to block when
sending data. Likewise, applications functioning as clients may not wish (or be able) to constantly monitor
a port for incoming data. To satisfy these requirements while at the same time avoiding the loss of data,
some form of buffering is necessary. This buffering is handled somewhat differently for the TCPIIP and
UDP protocols in order to handle some basic differences between the two communications methods.

5.3.2.1 TCP bnplementation

When a TCPIIP-based server is connected to multiple clients, each client may be connected via net
work paths of varying speeds. A client on the same physical machine, for example, utilizes the 'loopback'
network interface (very fast), while another client may be connected via a 56 or even 19.2 KBaud dial-up
PPP network connection. Simply transmitting data to each client in a serial fashion in such a configuration
would result in an overall latency for each 'send' operation equal to the sum of all the transmission delays
for each device. Instead a separate child process is created for each connection to provide true concurrent
serving of the data, while at the same time providing a buffer between the server and the client to allow the
server application to quickly resume its normal processing. The server simply transmits the data to each

45

child process via a UNIX pipe (minimal latency) and is free to continue. This design is depicted in Figure
28.

r----------------,

L

Child I
Process I

I Client Processl-.r Pipe ~~ Queue I - #1

I
Server I

Process I
Child I

Process
I

Client Process
1-.1 Pipe ~~ Queue I -~ #2

I
I

----------------~

Figure 28. Server-Client rcp Implementation

5.3.2.2 UDP Implementation

The UDP-based server implementation utilizes the internet broadcast mechanism to allow multiple
clients to 'listen' to a single data transmission on a single network. In this case, the assumption is made that
the actual latency due to the transmission of each UDP packet is minimal, and no buffering is performed on
the server side. Instead, buffering is performed on the client side, preventing the loss of data if a client is
busy processing data when new data arrives. Once again, a separate child process is used to implement the
buffering mechanism, although shared memory is used for child-parent communications in place of a
UNIX pipe for efficiency reasons (the code was inherited from an application requiring high bandwidth).
The UDP design is illustrated in Figure 29.

Server Process UDP
Broadcast

Client #1 Child
Process

Client #2
Child Process

Shared Memory

Queue

Shared Memory

Queue

Client #1
Process

Client #2
Process

Figure 29. Server-Client UDP Implementation

46

This implementation currently does not support retransmission of missing packets. Given the pro
jected ethernet loading of the dedicated WSP LAN, it is not anticipated that a significant number of pack
ets will be lost.

5.4 CSKETCH IMAGE PROCESSING LIBRARY

The CSketeh library is a port to C++ of an earlier LISP-based library developed at Lincoln Labora
tory to solve a variety of image processing problems. The library includes support for common image pro
cessing functions such as erosion and dilation, as well as more sophisticated techniques which blend
traditional kernel-based convolution with fuzzy logic operations. The C++ version of the library is cen
tered around a single multi-dimensional array class which shields application code from many of the low
level coding details. The overloading of common operators, such as '+' and '*', aids in the construction of
terse, highly-readable application code. The use of C++ 'templates' allows for the support of multiple
array types (short, int, float, etc...) from the same code base, simplifying the code maintenance task.

The general appearance of code written using the library is shown in the following C++ code frag
ment. In this example, two arrays are created, filled with a constant value, added together, and the sum
printed.

The program output follows the example.

1/
1/ File: example1.C
1/
II Simple sample program to add two arrays together
1/ and print result.
II

#include <stdio.h>
#include <iostream.h>
#include <skarray.h>

void main(int argc, char **argv)
{

SKArray<short> a(3, 3) ;
SKArray<short> b(3, 3) ;
SKArray<short> c;

a.RampFill(1);
cout « "A:" « endl;
cout « a « endl;

b.RampFill(10);
cout « "8:" « endl;
cout « b « endl;

c=a+b;
cout « "A+8:" « endl;
cout « c « endl;

}

47

--------------------------- Program Output: ------------------------------

A:
789
456
123

B:
16 17 18
13 14 15
10 11 12

A+B:
23 25 27
17 19 21
11 13 15

5.4.1 Functional Template Correlation

Functional Template Correlation (FTC) is worthy of special mention, since it is the pattern recogni
tion technique used most frequently by the weather detection algorithms. It is a blend of kernel-based con
volution and fuzzy logic.

Consider the case of the detection of a thin-line 'feature' in the reflectivity data (oftentimes an indi
cator of a gust-front). A simplistic detection algorithm could be stated as 'find regions of reflectivity where
there is a corresponding lack of reflectivity data on either side. A possible FTC implementation of the
algorithm is shown in Figure 30. A 3x7 kernel is convolved with the raw reflectivity image data. and the
scoring function specified in the kernel is used to map the underlying reflectivity values to a pattern match
'score'. The scores for the entire kernel are added and averaged to produce a final score for each point in
the input image. In this example, regions of constant high reflectivity will return a low score, as the kernel
edge pixels utilizing scoring function 0 will tend to cancel out the positive scores returned by the center
pixels. A similar result will occur given a thin-line of low reflectivity. The only situation returning a high
overall score is where the scores from the two regions of the kernel add constructively, a reflectivity thin
line.

Note that this process will only detect a thin-line at a particular orientation (north-south in this case).
In practice, the process is repeated multiple times using rotated versions of the same kernel to detect the
pattern at any orientation. In many cases, the number of repeated passes can be reduced due to processing
symmetry - a kernel rotated 180 degrees is often identical to it's 0 degree counterpart. Nevertheless, the
need for multiple passes contributes significantly to the overall processing requirement

48

Scoring function 0: Return positive value for dBZ < 20

Thin-line feature detector kernel

Scoring function 1: Return positive value for dBZ > 20

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

0 1 0

+

+

20dBZ

Figure 30. Functional Tempklte Correlation Example

5.5 TCLffK IMAGE DISPLAY EXTENSION

The Tclffk package provides facilities for embedding a simple command language into a C/C++
program, as well as a method for building Graphical User Interface (GUI) front ends to the WSP algorithm
and control software. A number of the software modules require efficient, real-time display of 2-D images
with overlaid graphics and text. While the toolkit does provide a canvas 'widget' for these situations, it was
found to be lacking in a number of areas. Built-in support for panning and zooming, flicker-free image
updates, and support for transmittal of drawing commands via shared memory were a few of the features
not well supported by the 'stock' TcllTk software.

One of the strengths of TcllTk is it's extensibility. There are established methods by which user
defined widgets (written in C) can be cleanly integrated into the package, resulting in a modified software
package that has all the features of the original, plus some additional capabilities. In the case of the WSP
software, an extension of the TcllTk WIndowing SHell (wish) called imgsh has been written to provide for
our image display needs. Imgsh is used in the implementation of the base data display, the situation dis
play, the (auxiliary) algorithm analysis displays, and a number of other miscellaneous utilities such as the
clutter and STC map display programs.

There are two chief modes of usage of the imgsh software. For simple programs, the entire applica
tion is often written entirely in Tcl and executed using the imgsh interpreter. No C/C++ code is typically
required, except perhaps to reformat image data prior to display. A more complicated usage involves the
setting up of a separate display 'daemon' process that listens for arriving graphics commands via UNIX

49

shared memory. This is the method commonly used by all real-time display software, as it is desirable to
decouple the data processing function from the display function in order to keep the display responsive to
user interaction at all times (In other words, a lengthy data processing computation will not cause a display
tool to appear to 'hang' for periods of time while the computation completes).

5.5.1 Simple Imgsh Usage

Imgsh incorporates several new commands/widgets to the standard wish interpreter to allow 2-D
images to be conveniently displayed. Image data is associated with an IIimage 'object', and displayed in
one or more IIimagewin widgets. An additional new widget, Ilcolorscale, is provided to produce color
scales for the various image windows (the '11' prefix, denoting "Lincoln Laboratory", is used to differenti
ate the new commands from existing Tcl command names). Display colors are controlled via an ASCII
colormap file, which associates certain values of the image data with specified colors.

The quickest way to understand the basic capabilities of imgsh is via example. A simple standalone
display script utilizing the basic features is shown below. Comments are provided to make the script self
explanatory. The ASCII colormap used by the script is also shown. The screen output produced by the
script is shown in Figure 31. As demonstrated by this example, the imgsh extension provides a reasonably
concise method of implementing useful graphical displays. Note that this sample script is very similar to
those used by the clutter and STC map display utilities, though those programs display data in multiple
windows simultaneously.

Example imgsh script

#
Initialize an object to hold an 64x64, 1-Km bin, 16-bit signed image. Set it up so that (0,0) in world
space corresponds to the center of the image (32,32)
IIimage testimg -nbins 64 64 -binsize 1.01.0 -databits 16 -datatype signed -refloc 32 32 0.0 0.0 \
-dataclass INTEREST

load the image data from a disk file into the image object. Data file contains test image with
negative values at bottom of image, gradually ramping up to positive values at the top of the
image.
testimg load testimg.dat

Create a 240x240 window for displaying the image, and issue the command to actually display the
image in the window
IIimagewin .win -geometry 240x240 -eolormap testMap
.win display testimg

Add range rings starting at 0,0 with a spacing of 10 Km
.win rings -center 0.00.0 -spacing 10.0

Add a colorscale
IIcolorscale .scale -geometry 240x40 -eolormap testimgcolors -dataclass INTEREST

Pack the image window and colorscale widgets into the main window, starting from the top down
pack .win .scale -side top

The ASCII colormap utilized by the example is shown below:

50

#
Simple colormap defin~ion for the dataclass named 'INTEREST'. Negative data values are
shades of blue, while pos~ive data values are shades of red. The syntax for each line is:
#
<StartValue> <Red> <Green> <Blue> <Bar Label Text>
#
In this example, values from -256 to -191 have an RGB value of (0,0,255), while values from
-192 to -129 have an RGB value of (0,0,224), etc...
#

INTEREST

-256 0 o 255 <192
-192 0 o 224 <128
-128 0 0 192 <64
-64 96 96 160 <0
0160 96 96 >0

64192 0 0 >64
128224 0 0 >128
192255 0 0 >192

Figure 31. lmgsh Example Screen Output

5.5.2 Using Imgsh as a Display Daemon

As mentioned above, a common usage of imgsh is to set up a imgsh-based display daemon and
transmit images and graphics to the daemon process from a C or C++ application. A set of C functions is
provided for this purpose, allowing for sending of image data and graphics commands via a shared mem-

51

ory 'channel'. Image data is transmitted more or less directly, while graphics commands are buffered for
increased efficiency. The C interface is flexible enough to allow multiple processes to interact with a sin
gle display daemon, a single process to interact with multiple daemons, or finally, multiple processes to
interact with multiple daemons. An attempt is made to conserve resources when possible. Unless otherwise
specified. each application uses a .single Tcl interpreter for communication with all display daemon pro
cesses. In addition, all image/graphics data sent from a given application to a given server is typically
multiplexed onto a single shared memory 'channel' to conserve shared memory, a somewhat scarce UNIX
resource.

One possible configuration, two application processes communicating with a single display daemon,
is depicted in Figure 32. The AMDA analysis display is set up using this model, with a dedicated display
daemon process receiving interest image data from the interest generation module and graphical
microburst data (shear segments and microburst shapes) from the alarm generation module. Note that the
display daemon most often executes a Tcl startup script that sets up all the basic image windows and con
trol panels, making many display modifications a simple matter of editing the startup script (no recompile
required).

Application Process #1

Graphics GBuf #1 t-
Graphics-"

r Shared Memory
GBuf #2 -

~ 'Channel'

Images

Imgsh Display Daemon
Application Process #2

Graphics GBuf #1 t-
r Shared Memory

Graphics GBuf #2 ..
~ 'Channel'

Images

Figure 32. Applil::ationlImgsh Display Daemon Communil::atUm

5.6 WEATHER OBJECT LIBRARY

The Weather Object Library (WxObj) contains a set of C++ classes representing the various WSP
output products. Each data product is encapsulated in one or more classes, each with it's own unique ID.
The primary uses for the library are product data I/O and graphical display. Product data network I/O is

52

implemented on top of the server-client package described earlier. Product data display is implemented on
top of the Tclffk imgsh extension described in? In most cases, the WxObj layer is the only API used by
the weather detection algorithms, effectively isolating them from the lower-level programming details.

The WxObj class hierarchy is illustrated in Figure 33. All object inherit from a common base class,
WxBase, which contains a type (object Id) field and a set of 'virtual' pack()/unpack() functions which
must be implemented within each derived class in order to perform file/network I/O. Many objects also
inherit from the WxDisplayable class, which contains a set of the most common display attributes (line
color, thickness, etc...), as well as a virtual display() function that must be implemented by the derived
class. The classes WxBase and WxDisplayable are commonly referred to as abstract base classes, since
they essentially function as a specification for what the derived classes must contain; there are no instances
of a WxBase or WxDisplayable being used on it's own.

8

Wx8ase

type

virtual packO
virtual unpackO

4d~'"-f"",
WxStream WxDisplayabie

virtual pack(int) display attr WxDispStream
virtual pack(float)

virtual drawLineOvirtual unpack(int) virtual displayO
virtual unpack(float) virtual drawArcO

4
virtual drawTextO...
virtual drawirnageO

~
...

WxMbShape 4WxArchiveStream size
strength

pack(int)
posttion WxTkDispStream

pack(float)
{ packO drawLineO

unpacklint) - unpackO drawArcO
unpack float) drawTextO... displayO drawlmageO-
/~

...

•I/O Network Display Window8
Figure 33. WxObj library Class Hierarchy

Two additional abstract base classes, WxStream and WxDispStream, define the functionality
required to perform file/network I/O and graphical display of product data. The WSP software currently
provides a single specific implementation of each of these classes. The WxArchiveStream class is an
implementation of an WxStream that packs and unpacks fundamental data types in an 'archive' format

53

compatible with older Lincoln Laboratory data files. The pack/unpack functions are machine-independent,
and utilize big-endian byte ordering whether running on a big-endian (Sun) or little-endian (PC) platform.
The WxTkDispStream class supplies the necessary graphics primitives to display weather products in a
Tk (imgsh) display window.

Each particular weather object class contains object-specific weather event information, as well as
high-level packing, unpacking and display routines. The WxMbShape class shown in the diagram con
tains microburst strength, size and location, pack()/unpack() routines and a display() function that draws
the characteristic 'band-aid' shape to a display device. The high-level pack()/unpack() routines break the
object down to it's fundamental data types, and utilize the pack()/unpack() routines defined in the
WxStream class to actually transmit or receive the data. In a similar fashion, the high-level display() func
tion utilizes the low-level routines in the WxDispStream class to perform it's job.

The abstraction of the WxStream and WxDispStream classes, while not strictly necessary for the
WSP application, allows for a great deal of flexibility in terms of support for additional file formats and/or
different graphical displays. For example, machine-independent I/O could also be implemented using
Sun's eXternal Data Representation (XDR) protocol by defining and using an WxXDRStream in place of
an WxArchiveStream. The weather object classes themselves would not require modification. Similarly,
graphical output using the OpenGL graphics library could be transparently implemented by replacing
WxTkDispStream with a WxGLDispStream class.

54

6. SOFTWARE DIRECTORY MAP AND BUILD TOOLS

6.1 SOFTWARE DIRECTORY MAP

The WSP software is organized into three top-level directories, Gmake, share, and wsp2. The
Gmake directory contains the master set of build files. The share directory contains code that is non WSP
specific such as general-purpose communications and image processing code. The wsp directory contains
all the WSP-specific code, including signal processing, windshear detection, and the WSP situation dis
play.Brief descriptions of the directories and their primary subdirectories are provided below.

Gmakel

sharel

bin/
bindbgl
cft2!
csketch!
imgsh!
ind
lib!
libdbgl
Uutil!
misd
polygon/
postplotl
selitel
wxobjl

wsp21
admin
alert!
algserv!
amda!
bddisp!
bdred
bdutill
bin/
bindbgl
clock!
cluttutill
colormapsl
control!
csall
env!
fIltDesign/
gfup!
ind
iqdiagl
iqdistrib!
iqred
lib!
libdbgl
logs!

Global make scripts used by aU lower-level directories

Non WSP-specific code. Shared by other Lincoln programs,
including 'Outboard MIGFA' (AOS-250 already familiar with
this code, so we are maintaining it in its own space)

Location for storing compiled version of binaries
Location for storing compiled version of binaries (debug variant)
LL Common Format Tape (CFT) I/O library (Analysis tool support)
C++ version of SKETCH image processing library
Image shell. TcllTk image display extension
Include files for shared libraries
Location for storing compiled version of libraries
Location for storing compiled version of libraries (debug variant)
General utilities (lists, time handling, memory management)
Miscellaneous function libraries (ring butTer, serial device)
Geometric analysis library
Plotting library (used by radar diagnostic utility programs)
Network communication library
Weather 'object' library (object-based communication/display)

WSP-specific code.
Software administration scripts
Alert generator
Data stream configuration files
ASR-9 Microburst Detection Algorithm
Base data display
Base data recording code
Base data utility programs (viewer, tape inventory, etc..)
WSP binaries (executables) (non-debug versions)
WSP-specific binaries (debug version)
GPS clock reader/distribution code
Clutter map utility programs (display)
Color maps for display programs
System control code (see Northrop documentation for details)
C-coded equivalents for MCIOS vector library
WSP user environment setup
Clutter filter design software
Gust Front Update Algorithm (works with MIGFA)
WSP system-wide include files
Time-series data diagnostic tool
Time-series data distribution code
Time-series recording code and utilities
WSP libraries (non-debug versions)
WSP-specific libraries (debug version)
Directory for runtime logging

55

maps!
mdtl
migfa/
misel
monl
paramsl
scripts!
sdJ
sigproc/
simi
stcutil/
stmmotl
twip/
users!
utili
wx/

Directory to hold clutter and STC maps (initially empty)
Maintenance Display Terminal code (see Northrop documentation for details)
WSP Machine-Intelligent Gust Front Algorithm
Miscellaneous WSP system-wide source fIles
System monitoring code (see Northrop documentation for details)
General-purpose parameter directory
startup/shutdownlgeneral purpose scripts
Situation display
Signal processing code (runs on Mercury processors)
Omine simulator utilities
STC map utility programs (display, map generation)
Storm Motion Algorithm
Terminal Weather Information for Pilots Algorithm
Default WSP user home directories
Miscellaneous utility programs
Six-level weather code

<Module1>/
inel
lib/

The majority of the directories listed above contain a set of common subdirectories, organized to
allow building the software for multiple-architectures (Solaris, Linux, PowerPC) and multiple variants
(debug/non-debug). The use of a common directory structure for the entire WSP software tree allows for
global software builds to be easily automated using a common set of high-level UNIX scripts and make
files. The basic directory structure is shown below. It is organized as a set ofhigh-level module directories,
each one containing a variable number of sub-module directories. The module category is generally
reserved for larger-scale software entities, such as the microburst and gust front algorithms. Module-level
directories contain their own incl, bini, and libl subdirectories, used for posted versions of the executables
and libraries. Sub-module level directories contain the source code and working versions of executables
and libraries for logically related pieces of the higher-level module. Note that a number of the directories
under wsp2 are not classified as higher-level modules, but are instead considered sub-modules of the wsp2
parent directory. This is generally true in the case of code that is shared among multiple applications, such
as the utility functions in the wsp2/miscl and wsp2/util/ directories.

Posted #includes for each architecture
Posted libraries for each architecture

solaris! iS86/ ppel
bini Posted binaries for each architecture

solaris/ iS86/ ppel
libdbgl Posted libraries for each architecture (debug variant)
bindgb/ Posted binaries for each architecture (debug variant)
scripts!

<SubModulel>/ Submodule contining source for libraries, binaries, and <optional> test code
inel Include fIle source
obj/ object files and working versions of libraries and binaries

solaris/ iSS6/ ppcl
objdbgl object files and working versions of libraries and binaries (debug variant)

solaris/ iSS6/ ppcl
srel source code and Makefile
test! (optional test directory)

obj/ object files and working versions of test program binaries
solaris/ iS86/ ppc/

srel source code and Makefile

<SubModule2>/ Submodule 2 (same structure as #1)

56

<SubModuleN>!

<Module2>!

<ModuleN>!

Submodule N (same structure as #1)

Major module 2 (same structure as #1)

Major module N (same structure as #1)

6.2 SOFTWARE BUILD TOOLS

The primary build tool used for WSP software development is the UNIX 'make' utility, specifically,
the version available from the GNU free software project, gmake. Additional C-Shell and Perl scripts are
used to augment the basic capabilities of gmake and automate the build process for the entire software
tree.

6.2.1 Common Makefile Description

Each src directory contains a UNIX makefile specifying all the targets for the directory. The make
file follows a specific format that allows for each target to have it's own logically separate set of compile
time options. A simple makefile with a single library target and a single binary target that depends on the
library is shown below:

#
Simple Makefile
#

#
This line always included first to load global defmitions used
within these Makefiles.
#
include $(GMAKE_HOME)/MakeHeader

Comment this out for verbose mode
QUIET = @

List of all targets in this directory
TARGETS = libsample.a progsample

Optional target to build everything in directory
all: $(TARGETS)

#
Targets used by global build scripts. lib and bin targets separated
to allow libraries to be built prior to binaries
#
Iib: libsclite.a
bin: progsample
Files and compile options for 'libsample.a' library target
OBJ.libsample.a := libfdel.o Iibfile2.0
INCPAm.libsample.a := -I.Jinc
INCPOST.libsample.a := .Jindfdel.h
CFLAGS.libsample.a := -Wall
DEP.libsample.a .-
LIB.libsample.a .-

57

Files and compile options for 'progsample' binary target
OBJ.progsample := progfilel.o progfde2.0
INCPATH.progsample := -I.Jinc
INCPOST.progsample .-
CFLAGS.progsample := -Wall
DEP.progsample := .J$(OBJDIR)/$(TARG_ARCH)/libsample.a
LIB.progsample := -L.J$(OBJDIR)/$(TARG_ARCH) -lsample

This line always included last to include Make rules and dependencies.
include $(GMAKE_HOME)/MakeTrailer

Generation of debug vs. non-debug variants is handled within the high-level Make scripts (see .I
GmakeIMakeHeader). When gmake is invoked with the -DDEBUG option, the scripts are set up in such a
way that object files. libraries. and executables end up in separate directories than their non-debug counter
parts (objdbgllibdbg/bindbg). Once the upper-level Make scripts have been configured for a particular
compiler, no additional statements in the source directory makefile are normally required.

Some WSP software executables require the use of a cross-compiler. In other words, the architecture
of the program library or executable does not match that of the current host (true for executables that are
run on the Mercury PowerPC boards). In this case, the Makefile must contain explicit information specify
ing the target architecture. This is done using the ARCH.<TARGET> option of the make system. The
example below shows the Makefile statements required to support a PowerPC variant of the 'progsample'
target shown above. Note that if a cross-compiled version of a program is included in the same directory as
a native-compiled version, they must be assigned different target names. Also note that explicitly defining
an architecture for a target causes the $(TARG_ARCH) string to expand to the architecture specified at the
time of the actual build.

OBJ.progsample_ppc := progfilel.o progfde2.0
INCPATH.progsample_ppc:= -I.Jinc
INCPOST.progsample-ppc:=
CFLAGS.progsample_ppc := -Wall
DEP.progsample_ppc := .J$(OBJDIR)/$(TARG_ARCH)/libsample.a
LIB.progsample-ppc := -L.J$(OBJDIR)/$(TARG_ARCH) -lsample
ARCH.progsample_ppc :=ppc

When creating a new Makefile, it's possible to make an error that causes the build to abort with non
obvious error messages. In such a case. it is useful to comment out the QUIET line in the Makefile. This
will cause the make scripts to become much more verbose, hopefully making the error more obvious.

Comment this out for verbose mode
#QUIET = @

More subtle problems may require additional knowledge regarding the GNU make utility. Refer to
the GNU make user's manual for details.

6.2.2 High-Level Make Scripts

When working with multiple modules (or installing a new software release as described earlier), it is
often desirable to perform automated builds of the entire software tree, or a significant subset of the tree.
To accommodate this, the makefile system includes a script, JGmakelMakeAII, that implements a recur
sive build starting from the current directory and working its way downward through all subdirectories.

58

A MakeAII issued from the top-level project directory builds all files for the entire project. By
default, the script does *not* build debug variants or cross-compiled targets. Options are used to control
this behavior. The options to MakeAII are shown below:

Usage: MakeAll [-hI [-dbg] [-i860] [oppel

Options:
[-hI Print usage message
[-dbg] Build debug versions of libraries and exeeutables
[-i860] Build Mercury versions of libraries and executables (i860)
[-ppe] Build Mercury versions of libraries and executables (PowerPC)
[-me] Build Spare-hosted binaries that interact with MCIOS

A global build is normally invoked in four stages. The first stage builds all the targets for the Solaris
architecture that are completely independent of the Mercury OS. This stage may be run on any Solaris
based workstation having access to the GNU development tools. The second stage builds all targets for the
Mercury PowerPC architecture, while the third stage builds the SPARe-hosted programs that interact with
the Mercury CPU's. Note that the stages two and three require access to the Mercury development toolset.
Lastly, the BuildSetPerms script is run to set the proper permissions for those executables that require
super-user privileges, such as the timeServer process responsible for reading the GPS clock and updating
the UNIX system time as necessary. The commands for the four build stages are shown below.

> MakeAll
> MakeAll-ppc
> MakeAiI-me
> BuildSetPerms (run as super-user)

It is often useful to redirect the output of the MakeAIJ runs to a file for later validation of a success
ful build. For example:

> MakeAll >& make.log'
> grep -i error make.log'

redirects all normal and error output to the me 'make.log'
checks the logfile for any compiler error messages.

6.2.3 Manual Build Process

When working on a single module and making only minor changes, it is sometimes convenient to
manually specify the individual steps in the build. This is especially true when building only a single target
in a directory containing many targets. Following the first global build, the following commands can be
used to manually rebuild and post a specific target:

> gmake <target>
> gmake POST=! <target>

Other usages are available for slightly more complicated operations. For convenience, a summary of
WSP-specific gmake flags is available by issuing a gmake command with either no build target, or a build
target of 'help' , from within a module's .Isrc directory. Help text similar to the following will be output:

> gmake -help

59

Makefile Command Summary:

gmake help Print this file

gmake clean Clean out .Jobj/<arch> directory

gmake DEPEND=1Iib bin Build dependency file for all library & binary targets. File is of the form
Make.dep.<arch>'. This command must be run at least once following an initial
checkout of a software module.

gmake lib Build all library targets in a given directory (non-debug version).

gmake bin Build all library targets in a given directory (non-debug version).

gmake DEBUG=1Iib Build all library targets in a given directory (debug version).

gmake DEBUG=1 bin Build all library targets in a given directory (debug version).

gmake POST=llib Post all library targets and associated include files to higher level directories
(typically .J.Jlib/<arch> and .J.Jinc)

gmake POST=1 bin Post all library targets to higher level binary directory (typically .J.Jbin/<arch»

gmake POSTlNC=llib Post all include files for aU library targets to a higher level directory
(typicaUy ..I.Jinc)

Note that any single target may be specified in place of the 'lib' and 'bin' targets shown above (when only a single
part of a module is being worked on).

60

•

APPENDIX A
CODING STANDARDS

In accordance with good programming practice, a standard set of file and function headers are used
throughout the WSP GFE code. The exact format differs slightly depending on the language being used
(C, C++, Tel, esh), but the same basic information is present in all cases.

Examples of the standard file and function headers for a C file are shown below:

*===

* (c) Copyright, 1997 Massachusetts Institute of Technology.
This material may be reproduced by or for the
U.S. Government pursuant to the copyright license
under the clause at 252.227-7013 (Oct. 1988).

$RCSfile: secondTrip.c,v $ $Revision: 1.1.1.1 $ $Date: 1997109/1419:54:50 $

===;:============================

* FILE: secondTrip.c

• DESCRIPTION:

• Routines to compute 2-D spatial variance in velocity field.
• Due to the ASR-9's micro-stagger, the phase of second-trip echoes
• is essentially random. The 2-D spatial variance of the velocity
* estimate can be used to distinguish between second-trip and normal
* weather echoes.

* FUNCTIONS:

* SecondTripDetectlnitO
* SecondTripDetectResetO
* SecondTripDetectO

* NOTES:

* Second-trip detection logic may be modified in the future to
* use separately computed Lo/Hi PRF reflectivity estimates.

*===
*$)
*1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

61

f${
*===

* FUNCTION: SecondTripDetectO

* DESCRIPTION:

* Detect second-trip Wx using the spatial variance of the velocity field.
* The variance at a given gate is calculated using the nearest 9
* neighbors, using the formula:

variance = SUM(V"2)/9 - VMEAN"2

* The output of this routine (variance) lags the input by one sector.
* Following a reset, the first two calls to this routine just serve to
* prime the data pipeline - the variance array is left untouched.

* INPUTS:

* vO
* v1
*V2

* OUTPUTS:

Velocity vector for currSector-1
Velocity vector for currSector
Velocity vector for currSector+1

* flags Modified flags array with SECOND_TRIPJLAG bit set
where second-trip was detected.

• RETURNS:

* Nothing

*===
*$}
*/

void SecondTripDetect(short *VO, short *v1, short *v2,
short *flags, int nGates)

62

•

•

APPENDIXB
WSP MEMORY MAPS

B.l VME Memory Map
A variety of boards occupy the WSP's VME chassis. Many of these boards communicate across the

VME bus. Memory on each board visible from the VME bus must be set up at it's own address within the
4GB VME space. Table B-1 provides the address window of each board. Note that the FORCE CPU's are
not currently accessed as VME slaves, so the addresses specified are simply those reserved for possible
use. Each of the Mercury DSP boards has up to 4 CPU's, each with 16 Mb of RAM. All the memory is
made visible to the VME bus, requiring a total window size of 64 Mblboard. The exception is the Mercury
DSP board that contains the RIN-T parallel interface in place of 2 of the CPU's, which requires only a 32
Mbwindow.

TABLE B-1

VME Board Address Windows

Board Name Base Address Window Size

FORCE CPU #1 Ox30000000 16Mb
(System Control)

FORCE CPU #2 Ox31 000000 16Mb
(Recording)

FORCE CPU #3 Ox32000000 16Mb
(Microburst Algorithm)

FORCE CPU #4 0x33000000 16Mb
(Gustfront Algorithm)

Bulk Memory Board 0x20000000 128Mb

Mercury DSP #1 Ox10000000 64Mb

Mercury DSP #2 Ox14000000 64Mb

Mercury DSP #3 Ox18000000 64Mb

Mercury DSP #4 Ox1COOOOOO 32Mb

GSP Clock Board Ox2FOOOOOO 64Kb

B.2 Bulk Memory Board Memory Map

The 128 Mb VME bulk memory board is used as a general purpose communication area, and is split
up into numerous dedicated regions. The addresses of those regions are shown in Table B-2. Note that as
currently specified, the base data output and time-series recording buffers are oversized. In future releases
of the software, the buffers will be 'tightened up' to free up room for future expansion. Changes to the
address map are effected by modifying the header file -wsp2/sharelinc!wsp30mm.h.

63

TABLE B-2

Bulk Memory Board Address Map

Base Address Window Size Description

0x20000000 512 Kb System monitoring area

0x20080000 5.5Mb Base data output buffer
(to base data display)

0x20600000 4Mb Base data output buffer
(to six-level weather gen)

0x20AOOOOO 6Mb Unused

0x21000000 8Mb Base data output buffer
(to microburst algorithm)

0x21800000 8Mb Base data output buffer
(to gustfront algorithm)

0x22000000 16Mb Base data output buffer
(to recording process)

0x23000000 10Mb Ramdisk for c1utteriSTC maps

0x23AOOOOO 4Mb Clutter map generation buffer

0x24000000 48Mb Time-series data recording
buffer

0x27000000 16 Mb Unused

64

•

APPENDIXC
FILE FORMATS

C.I STC Map File Format
The WSP interface hardware includes support for a 2-dimensional mapped STC. The mapped STC func
tion allows the STC attenuator to be 'opened up' in regions of relatively weak ground clutter. This
improves the WSP receive chain sensitivity in those areas, benefitting the gust-front detection algorithm as
well as the microburst detection algorithm in dry environments.

In keeping with the target channel STC capability, separate maps are maintained for channels A and B.
Because of the different characteristics of ground clutter when the radar is operating in circular polariza
tion, separate maps are maintained for linear/circular polarizations. Lastly, separate maps are used for the
low and high beams, for a total of 8 maps. In addition to being stored in flash memory within the WSP
radar interface, the maps are stored as disk files on the WSP RAID system. This allows the WSP processor
to conveniently access the information required to correct for STC attenuation prior to clutter filtering and
autocorrelation.

STC map files consist of a file header, followed by a variable number of maps, each map corresponding to
a certain channel/polarization/beam combination.

C.I.I STC File Header
The C structures for the file header are shown below. These structures, along with the structures for the
maps themselves, can be found in the file -wsp/inclstc_defs.h

#define STC_FILE_MAX_MAPS 8
#define STC_MAP_NSECTORS 256 r Fixed for now. */

typedef struct
{

int bytes;
int magicNum;
int version;
int spare;

r Total bytes in file, including header */
r STC_FILE_MAGIC_NUM (5566)

r Target Channel STC Info (now obsolete - see note below) */
STCInfoASR9 targChanSTC[N_CHANS][N_BEAMS); /* N_CHANS = N_BEAMS = 2 */

int nMaps; r Number of WSP Wx channel maps to follow */

} STCFileHdr ;

r Structure for ASR9 STC settings (now obsolete - see note below) */
typedef struct {

int rangeOffset;
int maxAtten ;
int refAtten ;
int stcSlope[NUM_ZONES=8); /* NUM_ZONES=8 */

} STCInfoASR9 ;

Note that the above structure is no longer used, but is included for backwards compatibility with older STC

65

map files. The ASR-9 STC target channel data is now available from the site's VSP database.

C.l.2 STC Map
Each map in the STC map file consists of a header, followed by the map data. The C structure for
the header is shown below. Note that although the file supports a varying number of range gates and sec
tors, the most common map will contain values for gates -8 to 248 and sectors 0-255.

typedef struct
{

int hdrBytes; r Bytes in this header. */
int mapBytes; r Total bytes in this map (including header) */
int version; r In case the format changes. */
int chan; /* 0 =A, 1 =B */
int polariz; r 0 =UN, 1 =CIRC */
int beam; /* 0 =Low, 1 =High */
int bytesPerGate; /* 2 (sizeof(short» */
int startGate; r -8 (allows setting of STC for 8 gates prior to main bang */
int nGates; r Total gates for this map. */
int gateStride; /* 1 =every gate, 2 =every other gate, etc.. */
float gateSize ; r Size of each gate in meters. */
int startSect; r (0-255) */
int nSects;

} STCMapHdr ;

The map data immediately follows the header record in the file. Data are ordered by range gate, then by
sector (azimuth), Le.:

C.2 Clutter Map Format
The WSP adaptive clutter filtering scheme relies heavily on the use of site-specific clear-day clutter maps.
The maps are created at WSP installation time, then periodically updated to reflect changes in seasonal
and/or man-made ground clutter. At processor startup, the maps are loaded into the memory of the DSP
boards, where the clutter filtering occurs.

Each map contains the 4 clutter filter bank outputs (all-pass, 20 dB notch, 40 db notch, 60 dB notch) mea
sured on a clear day. Azimuth resolution of the map is 1.4 degrees, resulting in 256 azimuths, or 'sectors',
per scan. The format supports separate maps for each beam/polarization/channel combination. In practice,
the need for separate maps for AlB channels has not been apparent, and the WSP system is set up to use the
same values for both channels. However, the format of the map file does support channel-dependent maps
should there be a need for them in the future.

Each map file contains a file header, followed by a variable number of clutter maps. The number of maps
and their type is provided in the file header. The nominal set of maps, in the default order in which they are
stored, is shown below:

Linear Polariz / Low Beam / Channel A&B
Linear Polariz / High Beam / Channel A&B
Circular Polariz / Low Beam / Channel A&B

66

Circular Polariz / High Beam / Channel A&B

C.2.! Clutter Map File Header

The C structure for the clutter map file header is shown below. The source file containing this structure is
located in:

type; /* CLUTTMAP_10 (39)*/
hdrBytes; r Header length in bytes */
version; r Header version num */
reserved;

typedef struct
{
int
int
int
int

char
WSPTime32

siteName[16]; r "ABQ", "AUS" "BOS", etc... */
time; r Time of map data */

int nMaps; r Number of maps to follow */

} CluttFileHdr ;

C.2.2 Clutter Map Header

Each map has it's own header, followed by the map data. The C structure of the map header is shown
below:

typedef struct {
int hdrBytes;
int mapBytes;
int beam;
int chan;
int polariz;
int spare;

r Bytes in this header. */
/* Total bytes in map (including header) */

/* (0 =Low, 1 =High) */
r (0 = A, 1 = B) */
r (0 = LIN, 1 = CIRC) */

int nScans; r # of scans used to produce this map. */
int nFilts; r Number of filters in map (4) */
int totalGates; r Total number of range gates in map */
int nRangeSegs;
CluttMapRangeSeg rangeSegs[CLUTTMAP_MAX_RANGE_SEGS];

} CluttMapHdr;

r
* Structure describing multiple range segments within the map. Typical maps have two range
* segments, one with single gate spacing from gate 0 to gate 239, and one with 4-gate spacing from
* gate 240 out to the full range of the radar.

67

*/
typedef struct
{
int firstGate;
int nGates;
int gateSpacing; r 1 =every range gate, 2 =every other gate.••. */
int spare;

} CluttMapRangeSeg;

C.2.3 Clutter Map Data

Clutter map data are stored immediately following the map header. Data are stored in order of filter/range
gate/sector. Clutter map values are stored as floating-point quantities, with each value representing the
power residue for filter N for the particular range cell (linear units - not dB).

Sector 0 Gate 0, Filter 0
Sector 0 Gate 0, Filter 1
Sector 0 Gate 0, Filter 2
Sector 0 Gate 0, Filter 3

Sector 0 Gate 1, Filter 0
Sector 0 Gate 1, Filter 1
Sector 0 Gate 1, Filter 2
Sector 0 Gate 1, Filter 3

etc....

C.3 TIme-Series Data Format

Time-Series data consists of the raw AID samples from both the ASR-9 target channel receiver and the
WSP's own weather receiver. Data is recorded using a high-speed 8mm tape recorder, capable of a sus
tained recording rate of 3 Mb/sec. Sufficient data is recorded to accurately recreate the original base data
and winshear alerts when a base data tape it is played back through the system. This means that all data
within the 240-gate range of the gust-front and microburst algorithms is, as well as some of the data in the
less critical region beyond 240 range gates (in order to reduce the bandwidth requirement below the 3 Mb/
sec upper limit). Recording only a subset (one scan every minute) of the long range data is somewhat of a
compromise, since the scan-to-scan averaging of the lags data will not perform identically to real-time
when data is played back, but it is felt that the data will be sufficient to reproduce the original long-range
six-level weather and storm motion products with reasonably good accuracy.

Two factors affect the design of the format - the alternating low/high beam mode used for WSP operation,
and the 105 degree precession of the alternating beam switch point used to 'spread out' the effects of the
corrupted data at the low/high beam switch location. The chosen format groups a full low-beam cycle (360
+ 105 degrees) and a full high-beam cycle (also 360+105 degrees) into a single 'volume scan', allowing
each volume scan to stand on it's own. Given that the antenna scan rate is typically 78.3 degrees/sec, each
volume scan represents approximately 11.9 seconds worth of data (-5 volume scans/min.)

68

•

•

Each volume scan file contains a file header, followed by a volume scan's worth of radar pulses. Time
series data tapes are simply a collection of time-series data files, with an EOF marker between each file on
the tape, and a double EOF (End-Of-Tape) following the last file. Prepended to the beginning of each tape
are several files containing the auxiliary information needed to accurately process the time-series data.
These auxiliary files include:

1. The current VSP database file
2. The current STC map
3. The current clutter map

These files are stored using a generic file header block (contains file name), followed by a byte-for-byte
copy of the corresponding disk file, using a tape blocksize of 64K. As with the time-series files, each aux
iliary information file on the tape is followed by an EOF.

C.3.1 TIme-Series Data File Header
The C structure describing the file header is shown below:

r
* The most common range spacings for most IQ files will be:
*
* Limited range (to save space)
*
* One segment of 240 gates, single gate spacing.
*
* Full range
*
* Two segments. First segment is 240 gates with single gate spacing.
* Second segment is 180 gates with 4 gate spacing.
*/

#define IQDATA_ID 12

#define IQ_VERSION NUMBER 4
#define IQ_FL3_FORMAT 0
#define IQ_ASR9_FORMAT 1
#define IQ_PHASE2_FORMAT 2
#define IQ_MAX_RANGE_SEGS 4
#define IQ_LOW_BEAM (Ox1)
#define IQ_HIGH_BEAM (Ox2)
#define IQ_BOTH_BEAMS (IQ_LOW_BEAM IIQ_HIGH_BEAM)

r Auxiliary info types. (only 1 so far) */
#define IQ_AUXINFO_CPIOFFSET 1

r
* Number of spare words in header structure. Make sure to decrement this

69

* appropriately if some spares are used!
*1
#define IQ_NSPARES 33

typedef struct
{

int
int
int
int

type;
hdrBytes;
version;
reserved;

r IDDATA_ID *1
r Header length in bytes *1

1* Header version num *1

int tapeld; 1* Unique ID for each 8mm tape *1
int volumeScanNum; r Sequential volume scan number *1
int volumeScanSpacing; r 1 =every scan... *1
int pulseHdrBytes; r Probably always be 40 (10 words) *1
int pulseBytes; 1* hdr + data *1
int tapeBlockSize ; r Multiple of pulse bytes *1

WSPTime32 startTime ; 1* Data as derived from first IQ pulse *1

int nSegs;
IQFileRangeSeg rangeSeg[IQ_MAX_RANGE_SEGS];

int reserved2;

r
* Number of CPI's that beam switch precesses by on each lo/hi beam

* 'scan'. Nominally 75 CPl's - probably won't change.
*1
int beamSwitchPrecessCPls;

char
char

siteName[16];
orgName[64];

r "ABQ", "BWI", ... *1
/* "LL:', "FAA", "NORTHROP", Etc... *1

calibFile[64];
stcFile[64] ;
cluttFile[64];
spareFile[64];

r
* The following fields were originally intended to allow each IQ file to be tagged with the name of the
* calibration (VSP), STC, and clutter map files in use when the data was recorded. Linkage of the 10
* file to auxiliary files in this manner turned out to be overly cumbersome, so these fields are now
* unused.
*1
char
char
char
char

char comments[1024]; r "Microburst's breaking out to west.:' *1

r
* Auxiliary info index structure. Auxiliary information blocks are typically appended to disk (not
* tape) files by analysis programs to, for example, enable fast lookups of particular pulse/range
* gates. Such a lookup table can be generated by making one pass through the disk file, and then
* the lookup table 'record' can be stored at the end of the file. For raw tape files, 'nAuxlnfoBlocks'

70

..

•

•

* will always equal O.
*/

int nAuxlnfoBlocks;
IQAuxlnfolndex auxlnfolndex[IQ_AUXINFO_MAX_BLOCKS];

r New fields for version 4 */
float latitude; r degrees */
float longitude; r degrees */
float altitude; r meters */
int timeZone; /* minutes behind GMT */

float magDeclination; r degrees */
int frequencyA; r Channel A freq (MHz) */
int frequencyB; r Channel B freq (MHz) */

int spares[IQ_NSPARES];

} IQFileHdr ;

typedef struct
{

int firstGate;
int nGates;
int gateSpacing; r 1 =every range gate, 2 =every other gate.... */
int spare;

} IQFileRangeSeg;

typedef struct
{
int type;
int bytes;
int startOffset;
int spare;

} IQAuxlnfolndex;

C.3.2 Radar Pulse Data

Each pulse consists of a lO-word header and 2 words of data for each range gate that was recorded. Table
C-l describes the format of the header words. Table C-2 describes the format of the data words. Note that
all words in the radar pulse data stream are 32-bits wide.

71

TABLE C-1

Radar Pulse Header

Word Description

0 Radar/Switch Status

Bits 16,17 SW103/104 status (00 = Lo, 01 = Hi, 10 = Circ)
Bit 19 SW106 status (0 = Chan A, 1 = Chan B)
Bit 20 Online channel (0 = A, 1 = B)
Bit 21 Polariz (1 = linear, 0 = eire)
Bit 22 Beam (0 = Low, 1 = High)

1 24-bit 1.3 MHz counter

2 16-bit pulse sequence counter

3 ACP / ARP counters
Bits 0-11 ACP counter (0-4095)
Bits 12-15 ARP counter (0-16)

4 1st half of data for range gate [-3]. The timing chain is set up so
that the COHO sample from the RVP7 appears at range gate [-
3]. The data from the COHO sample is used as a phase refer-
ence for all subsequent RVP7 data in a radar pulse. See the for-
mat of range gate data following this table for bit descriptions.

5 2nd half of data for range gate[-3] (RVP7 COHO sample)

6 Test Pattern (OxAAAA5555)

7 Test Pattern (Ox5555AAAA)

8 Time Word #1
Bits 0-4 Day (1-31)
Bits 5-8 Month (1-12)
Bits 9-20 Year (years >= 2000 stored as full 4-digit year)

9 Time Word #2
Bits 12-17 Second (Note: time stored as GMT)
Bits 18-23 Minute
Bits 24-28 Hour

Two 32-bit words of data are stored per range gate. Each pair of words contains the AID samples from the
target channel receiver and the AID samples from the WSP's weather receiver. A bit containing, the state
of the target channel beam switch is also included, allowing the WSP to determine the correct processing
path on a gate-by-gate basis.

72

•

..

TABLE C-2

Radar Data Word Pair

Words Description

10 + gate*2 Target Channel Rx Data + RVP7 shift bits
Bits 0-11 Targ Rx I sample (2's complement)
Bits 12-23 Targ Rx Q sample (2's complement)
Bits 24,25 RVP7 I sample exponent
Bits 26,27 RVP7 Q sample exponent
Bit 28 Targ Rx low/high beam status

(O=Low beam, 1 = high beam)

11 + gate*2 RVP7 Rx Data
Bits 0-14 I sample mantissa (2's complement)
Bits 15-29 Q sample mantissa (2's complement)

The target receiver I,Q samples are simply stored as 12-bit signed integers. The data from the WSP
receiver is split intol5-bit mantissa and 2-bit exponent portions, to allow for the receiver's wider dynamic
range. The floating-point value for a WSP 17-bit quantity is given by:

value = (mantissa * 16I\exponent).

Note that the phase of all the WSP samples is relative to the measured phase of the COHO at the start of
the pulse (available in words 4,5 of the pulse header), and this must be corrected for to recover the true
phase of the signal. This is accomplished by multiplying the sample at each range gate by the complex
conjugate of the COHO phase sample.

C.3.3 Generic File Header

The C structure for the generic file header (used for storing auxiliary information files to tape) is shown
below.

#define GENERIC_FILE_ID 4
#define GENERIC_FILE_VERSION

typedef struct
{
l/4-word header compatible with IQ, BaseData, file headers
int type;
int hdrBytes;
int version;
int reserved;

1/ Attribute fields to restoration of original file attributes on a restore
int attrsValid; 1/1 if following attr contain valid data

73

int ownerld;
int perms;
int month; /I File time
int day;
int year;
int hour;
int minute;
int second;

char filename[512];
}

The filenames used for the VSP, STC, and clutter map auxiliary files are of the general form, 'vspdb.vsp',
'sigmet.stc', and 'MMDDYY-HH:MM.clutt' ,respectively. The name of the clutter map reflects it's cre
ation date. Note that the file attribute and time fields of the header are not currently used by the software
that creates the time-series data tapes, and are all set to O.

C.4 Base Data Format

'Base Data' consists primarily of reflectivity, velocity, spectrum width, and quality flag data for all range
gates processed by the WSP. Data from the WSP's wind sensor is also integrated into the base data stream.
Base data serves as the input for all the product generation algorithms, such as the Microburst and Gust
Front detection algorithms. The data format is file based, with each base data file containing a header and
a number of scans (antenna revolutions) of polar radar data. Base data tapes are simply a collection of base
data files, with an EOF marker between each file on the tape, and a double EOF (EOT) following the last
file on the tape.

The primary goals of base data recordings are to enable accurate recreations of weather events and allow
for algorithm evaluation and refinement. The amount of data recorded is minimized through knowledge of
the algorithm requirements. The microburst algorithm, for example, requires continuous recording of
seven of the base-data products out to a range of 160 gates, while the storm motion algorithm requires data
at 12-scan (-55 sec.) intervals out to the full range of the radar. For convenience, data from multiple
antenna scans are grouped into a single file covering approximately a I-minute period (12 scans).

C.4.1 Base Data File Header
Each file contains a header record containing site-related information, as well as time information and
comment field for the benefit of inventory and other access programs. Including the site-related info in
every file essentially makes each file a standalone entity.

The C structures and definitions describing the file header is shown below

#define BASEDATA_ID (14)
#define BASEDATA_VERSION (1)
#define BD_MAX_SCANS (100)

typedef struct

74

•

..

{
int
int
int
int

type;
hdrBytes;
version;
spare;

r BASEDATA_ID (14) */

r BASEDATA_VERSION (currently 1) */

r 0 =A_CHAN, 1 =B_CHAN */
r 0 =L1N_POLARIZ, 1 =CIRC_POLARIZ */

int scanGroupNum;
int tapeBlockSize; r Block size in bytes for files stored on 8mm tapes */

WSPTime32 startTime;
WSPTime32 writeTime;

r Site information */
BDSitelnfo sitelnfo;

r
* Channel and polarization info for first radial in scan group.
*/
int chan;
int polariz;

r
* Number of scans in group, with byte offsets to the beginning of
* each scan for rapid access using Iseek.
*/
int nScans;
int scanOffset[BD_MAX_SCANS];

char comment[BD_MAX_COMMENT_LEN]; r Comment entered by user at record time */

} BDScanGroupHdr;

..

typedef struct
{
char siteName[16];
float latitude;
float longitude;
float altitude;
int timeZone;
float magDeclination;
int frequencyA;
int frequencyB;
int spare;

} BDSitelnfo;

1* (e.g. ABQ,DAL,.•.) */
1* degrees */
1* degrees */
r meters */
r minutes behind GMT */

r degrees */
r Channel A freq (MHz) (Note: PRF in radial hdr) */

1* Channel B freq (MHz) */

C.4.2 Base Data Record Format

Following the file header are a number of scan's worth ofbase data records, each record containing either a
'radial' of reflectivity, velocity and flags data, or a wind data sample. The starting offset for the beginning

75

r header only· useful when determining rec type */
r header + radial data */
r header + wind data */

of data records in the file is determined using the hdrBytes field in the file header.

r
* Union of data types carried in a base data record.
*/

typedef union
{

BDRecordHdr hdr;
Radial radial;
BDWind wind;

} BDRecord;

r
* Header for base data record.
*/

typedef struct
{
short type; r 1 for radial data, 2 for control msg (not yet used),

* 3 for wind data
*/

short bytes; r Length of entire record, including this header. */

} BDRecordHdr;

C.4.3 Base Data Radial Format
Each radial contains data for a single 1.4 degree azimuth wedge, and is made up of header and data por
tions. The data portion contains data for a number of different products, and itself is broken down into
product header portions and product data portions. Maintaining separate headers for each product allows
for each product to have separate range coverage, scaling, etc... The radial and product C structures are
shown below.

r
* Bit definitions for RadiaIHdr->flags field. Note that BEAM field is an indicator
* of the LOIHI beamswitch position at time of radial creation, but radials
* nevertheless contain products for both beams! The beamswitch position
* is mainly provided for diagnosing switch hardware problems.
*/

..

#define END_OF_SCAN
#define BD_CHAN_MASK
#define BD_POLARIZ_MASK
#define BD_BEAM_MASK

(Ox1)
(Ox2)
(Ox4)
(Ox8)

r generic end of scan flag */
r 0 =A_CHAN, 1 =B_CHAN */

r 0 =L1N_POLARIZ, 1 =CIRC_POLARIZ */
r 0 = LO_BEAM, 1 = HI_BEAM */

typedef struct
{

RadialHdr hdr ;
unsigned char data[1]; r Product headers/data (Variably sized array) */

76

type;
bytes;
gateSize;
sector;

} Radial;

typedef struct
{
short
short
short
short

RadialTime time;

r 1 for radial data, 2 for control messages (not yet used) */
r Length of radial record, including this header. */
r Gate size in meters. */
r 0-256 */

short scanNum;
short tiltNum; /* Unused in WSP system */
short az; /* Deg x 10 */
short el; r Deg x 10 */
short prf1; /* Primary PRF */
short prf2; r 2nd PRF for dual-prf radars (ASR-9) */
short flags; /* END_OF_TILT bit, among others */
short nProds ; /* Number of products in radial */

} RadialHdr ;

typedef struct
{
short month;
short day;
short year;
short hour;
short minute;
short second;

} RadialTime;

C.4.4 Product-level data structures

typedef struct
{

ProdHdr hdr ;
unsigned char data[1]; r Variably sized */

} Prod;

/* Maximum number of range segments in product */

typedef struct
{
short type;
short bytes; r Total length of this product record, including this header */
short bytesPerGate ;
short scale;

77

short offset;
short nRangeSegs ; r Number of range segments in product */
ProdRangeSeg rangeSeg[MAX_PROD_SEGS] ;

} ProdHdr;

r
* Each product radial may have separate regions (range segments) with
* different gate sizes. The gate size is a multiple of the fundamental gate size
* supported by the ASR-9 radar (1/16th NM, or 115.75 m). That multiple is stored
* in the 'gateSpacing' field for each range segment. A value of 1 corresponds to a
* gate size of 115.75m.
*/
typedef struct
{
short firstGate ; r Starting gate for range segment */
short nGates ; r Number of range gates in segment */
short gateSpacing; r Gate spacing in gates (1,2,3,4 etc..) */
short gateSize ; r Unused in WSP system */

} ProdRangeSeg;

r Code for bad (missing) product data. Most negative 16-bit and 8-bit numbers */
#define BADVAL (-32768)
#define BADVAL8 (-128)

r Flags Product bit definitions. */

#define AP_FLAG Ox1
#define CLUTTER_FLAG Ox2
#define SECOND_TRIP_FLAG Ox4

r Separate AP flag used in new clutter-filter-based AP detection scheme. */
#define FILT_AP_FLAG Ox80

C.4.S Base Data Wind Record Format

Base data records with a type of 3 contain wind data records. The WSP system supports the acquisition of
wind data from up to 16 wind stations, although at most sites, the actual number will be six (LLWAS2 net
work) or one (single station ASOS). The C structures associated with the wind records are shown below.

#define BD_WIND_STATION_ID_LEN 16
#define BD_WIND_AIRPORT_ID_LEN 16
#define BD_WIND_MAX_STATIONS 16

typedef struct
{

BDRecordHdr hdr;

78

BDTime
float

timeStamp;
or_degrees;

char airporUd[BD_WIND_AIRPORT_ID_LEN]; /I eg, "ABa", "MEM"
short cfa_direction_degs; 110--360 valid, 999 invalid data
short cfa_speed_knots; /I 0-99 valid, 255 invalid data
short cfa_gusCknots; /I 0-99 valid, 255 invalid data

short stationCount; /I 0, 1,2 •• Max_LLWAS2_Stations
BDWindStation station[BD_WIND_MAX_STATIONS];

} BDWind;

typedef struct
{
char id[BD_WIND_STATION_ID_LEN]; /I eg, "35A", "21CA"
float latitude; /I degrees West (NYC < 0.0)
float longitude; /I degrees North (NYC> 0.0)
float altitude; /I meters above mean sea level
short direction_degs; /I 0--360 valid, 999 invalid data
short speed_knots; /I 0-99 valid, 255 invalid data
short gusCknots; 1/ 0-99 valid, 255 invalid data
short flags; /I see Flag bit-map values

} BDWindStation;

79

AMDA
AP
API
ARENA
ARINC
ASOS
ATC
COHO
COTS
CPI
CPU
DMA
DSP
ECPI
FAA
FTC
GPS
GUI
IEEE
LAN
LLWAS
MDT
MIGFA
NWS
PRF
PSF
RAID
RDP
RDT
SBC
SCSI
SD
SEP
STC
TCPIIP
TDWR
mACON
TWIP
UDP
VSP
WSP
XDR

GLOSSARY

ASR-9 Microburst Detection Algorithm
Anomalous Propagation
Application Programming Interface
AREa Noted for Attention
Aeronautical Radio INCorporated
Automated Surface Observing System
Air Traffic Control
Coherent Oscillator
Commercial Off-The Shelf
Coherent Processing Interval
Central Processing Unit
Direct Memory Access
Digital Signal Processor
Extended Coherent Processing Interval
Federal Aviation Administration
Functional Template Correlation
Global Positioning System
Graphical User Interface
Institute of Electrical and Electronic Engineers
Local Area Network
Low Level Windshear Alert System
Maintenance Display Terminal
Machine Intelligent Gust Front Algorithm
National Weather Service
Pulse Repetition Frequency
Program Support Facility
Redundant Array of Inexpensive Disks
Radar Data Processor
Ribbon Display Terminal
Single Board Computer
Small Computer Systems Interface
Situation Display
Storm Extrapolated Position
Sensitivity Time Control
Transmission Control ProtocollInternet Protocol
Terminal Doppler Weather Radar
Terminal Radar Control ??
Terminal Weather Information for Pilots
User Datagram Protocol
Variable Site Parameter
Weather Systems Processor
eXternal Data Representation

81

REFERENCES

1. Weber, M.E., Noyes, T.A., "Wind Shear Detection with Airport Surveillance Radars", MIT Lincoln
Laboratory, Lincoln Laboratory Journal, Volume 2, no. 3, p. 511-26, 1989

2. Weber, M.E., "Dual-Beam Autocorrelation Based Wind Estimates from Airport Surveillance Radar
Signals", MIT Lincoln Laboratory, Project Report ATC-167, FAA/PS-89-5, JUll 1989.

3. Newell, OJ., Cullen, lA., "ASR-9 Microburst Detection Algorithm", MIT Lincoln Laboratory,
ProjectReportATC-197,1993.

4. R.L. Delanoy, S.W. Troxel, 'The Machine Intelligent Gust Front Algorithm", MIT Lincoln Labora
tory, Project Report ATC-196, 1993

5. Chomoboy, E.S., "Storm Tracking for TDWR: A Correlation Algorithm Design and Evaluation",MIT
Lincoln Laboratory, Project Report ATC-182, 1992.

6. F.W.Wilson Jr. R.K Goodrich, K. Brislawn, "Enclosing Shapes for Single Doppler Radar Features",
Journal of Atmospheric and Oceanic Technology, Volume 9, No.2, 97-107, April 1992.

7. Weber, M.E., Stone, M.L., "Low Altitude Wind Shear Detection Using Airport Surveillance Radars",
IEEE Aerospace and Electronics Systems Magazine, Volume 10, no. 6, p. 3-9.

8. Weber, M.E., "ASR Weather Systems Processor Signal Processing Algorithms", MIT Lincoln Labora
tory, Project Report ATC-, April 18, 1997

9. Saia, J.1., Stone, M.L., Weber, M.E, "A Description of the Interfaces between the Weather Systems
Processor (WSP) and the Airport Surveillance Radar (ASR-9)", MIT Lincoln Laboratory, Project
Report ATC-259, 1997

10. Lewine, D., "POSIX Programmer's Guide", O'Reilly & Associates, 1994

11. Lippman, S.B, "C++ Primer", Addison-Wesley, 1991

12. Eckel, B., "Thinking in C++", Prentice Hall, 1993

13. Welch, B.B., "Practical Programming in Tcl and Tk", Prentice Hall, 1995

14. Harrison, M., McLennan, M., "Effective Tclffk Programming", Addison-Wesley, 1998

83

