

Project Report
ATC-284

 WSP Utility Libraries

O. J. Newell

23 October 2000

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Federal Aviation Administration,
Washington, D.C. 20591

This document is available to the public through

the National Technical Information Service,
Springfield, VA 22161

This document is disseminated under the sponsorship of the Department
of Transportation in the interest of information exchange. The United
States Government assumes no liability for its contents or use thereof.

REPORT DOCUMENTATION PAGE
Form Approved
OIUB No. 07044l88

C - F19628-00-C-0002
j. AUTHOR(S)

0. Newell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS

Lincoln Laboratory, MIT
244 Wood Street
Lexington, MA 02420-9108

8. PERFORMING ORGANIZATION
REPORT NUMBER

ATC-284

3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
Department of Transportation
Federal Aviation Administration
AND-420
800 Independence Ave., S.W.
Washington, DC 20591

11 .SUPPLEMENTARY NOTES

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

This report is based upon studies performed at Lincoln Laboratory, a center for research operated by Massachusetts
Institute of Technology, under Air Force contract F19628-00-C-0002.

12a. DISTRIBUTION/AVAIlABlLlTY STATEMENT 12b. DISTRIBUTION CODE

This document is available to the public through the National Technical
Information Service, Springfield, VA 22161

13. ABSTRACT (Maximum 200 words)

The ASR-9 Weather Systems Processor (WSP) augments the weather detection capability of existing ASR-9 radars to
include low-level wind shear warnings, storm cell tracking and prediction, and improved immunity to false weather echoes due
to anomalous propagation (AP). To economically develop and field an operational system at the 34 WSP sites, the FAAis pursuing
a strategy that leverages the software written during the lo-year R&D phase of the project. To that end, the software developed
at Lincoln Laboratory has been ‘hardened’ to ensure reliable, continuous operation, and has been ported to a ‘Phase II’ prototype
built around the latest generation of COTS hardware.

A sign&ant number of the hardened software modules are beingused in the production version of the WSPwith only minor
modifications. Included as part of the software are a number of lower-level utility libraries to provide basic services such as memory
management and network communications. This document provides a detailed description of these common utility libraries.

14. SUBJECT TERMS
Airport Surveillance Radar
Wind Shear
Gust Front

Radar data
Microburst

15. NUMBER OF PAGES
60

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified Unclassified

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by AMSI Std. 239-l 8
298-l 02

ABSTRACT

The ASR-9 Weather Systems Processor (WSP) augments the weather detection capability of exist-
ing ASR-9 radars to include low-level wind shear warnings, storm cell tracking and prediction, and
improved immun.ity to false weather echoes due to anomalous propagation (AP). To economically
develop and field an operational system at the 34 WSP sites, the FAA is pursuing a strategy that leverages
the software written during the lo-year R&D phase of the project. To that end, the software developed at
Lincoln Laboratory has been ‘hardened’ to ensure reliable, continuous operation, and has been ported to a
‘Phase II’ prototype built around the latest generation of COTS hardware.

A significant number of the hardened software modules are being used in the production version of
the WSP with only minor modifications. Included as part of the software are a number of lower-level utility
libraries to provide basic services such as memory management and network communication. This docu-
ment provides a detailed description of these common utility libraries.

. . .
Ill

TABLE OF CONTENTS

Abstract
List Of Illustrations

1. INTRODUCTION

2. CORE UTILITY LIBRARIES
2.1 Memory Management
2.2 Linked Lists
2.3 Time Handling
2.4 Message Logging

3. SERVER-CLIENT NETWORK COMMUNICATIONS LIBRARY
3.1 Server Client Sample Programs
3.2 Message Transport Example
3.3 SCLite Implementation

APPENDIX A: CORE UTILITY LIBRARY REFERENCE
A.1 Memory Management Library Reference
A.2 Linked List Reference
A.3 Time Class Reference
A.4 Message Logging Library Reference

APPENDIX B: SERVER CLIENT NETWORKING LIBRARY REFERENCE
GLOSSARY
REFERENCES

. . .
ul

Vii

1

3
3
5
7
7

11
13
15
18

23
23
27
32
34

39
51
53

LIST OF ILLUSTRATIONS

Figure
No.

1, Server-Client Transport Modes
2. Server-Client Communications Layers
3. TCP Implementation of Server-Client Data Transport Mode
4. Server-Client UDP Implementation
5. TCP Implementation of Server-Client Message Transport Mode

Page

11
12
19
20
21

Vii

1. INTRODUCTION

The ASR-9 Weather Systems Processor (WSP) augments the weather detection capability of exist-
ing ASR-9 radars to include low-level wind shear warnings, storm cell tracking and prediction, and
improved immunity to false weather echoes due to anomalous propagation (AP). To economically
develop and field an operational system at the 34 WSP sites, the FAA is pursuing a strategy that leverages
the software written during the lo-year R&D phase of the project. To that end, the software developed at
Lincoln Laboratory has been ‘hardened’ to ensure reliable, continuous operation, and has been ported to a
‘Phase II’ prototype built around the latest generation of COTS hardware.

A significant number of the hardened software modules are being used in the production version of
the WSP with only minor modifications. Included as part of the software are a number of lower-level utility
libraries that are shared by many of the higher-level weather detection algorithms. These libraries supply
basic functionality such as linked list and time manipulation routines, as well as more advanced facilities
such as a custom, high-performance memory manager. A comprehensive network communications facility
is also provided.

The software described here stands on its own, and knowledge of the WSP system as a whole, while
beneficial, is not assumed. Interested readers should refer to [l] for a comprehensive overview of the WSP
software environment.

.

2. CORE UTILITY LIBRARIES

2.1 MEMORY MANAGEMENT

The widespread use of dynamic memory allocation in a real-time application can sometimes be
problematic. The basic problem is that the system-supplied memory allocation routines (maZZoc(),free())
are not normally very efficient, and constant allocation/deallocation of memory blocks can lead to frag-
mentation of the memory heap and eventual exhaustion of the memory resource. One solution is to largely
avoid dynamic memory allocation following system startup, allocating enough memory up-front to handle
the maximum expected system loading. While this strategy can work fairly well for simpler applications, it
tends to break down in larger, more complex applications such as the WSP’s weather detection algorithms.
In the more complex cases, the common use of a large number of temporary working buffers for images
and other data simply makes preallocation of all necessary working arrays impractical with respect to both
resource efficiency and programming convenience.

Studies of memory usage by the applications running in the WSP system have shown that the size
distribution of allocated memory blocks tends to be quantized as opposed to continuous. In other words,
the applications tend to use blocks of memory of certain sizes, allocating and freeing the memory blocks
over and over again. This fact can be exploited by a custom memory manager that takes advantage of the
quantized nature of allocation requests and maintains multiple memory pools, each pool consisting of
fixed-size blocks that are used to handle requests for a distinct size range. The use of fixed block sizes
within each individual memory pool guarantees that no fragmentation occurs within each pool. Each pool
is organized as a simple stack of free memory blocks, resulting in fast and predicable response times for
allocations and deallocations.

The number and size distribution of the separate memory pools affects the overall efficiency of the
memory manager. Use of a small step size for successive pools (e.g. 32 bytes) limits the number of wasted
bytes for each allocation to 3 1 bytes. On the other hand, using such a small step size over the whole range
of expected request sizes (O-5 12K) results in an unacceptably high number of separate pools from a pool
management standpoint. To address this issue, the WSP memory manager splits the pools up into ‘small’
and ‘large’ categories. The ‘small’ category covers requests from O-4096 bytes, and uses a step size of 32
bytes. This results in efficient use of memory when large numbers of relatively small objects are allocated.
The ‘large’ category covers request from 4096-512Kbytes, and uses a step size of 1024 bytes, keeping the
number of separate pools required to cover the desired size range to a manageable number (508). Note that
the category boundaries and step sizes are currently hard coded, but could easily be set up as runtime
parameters should the memory manager be used in another application with differing allocation require-
ments.

Use of the memory manager in a C program is identical to the use of the normal maZZoc() andfiee()
routines, with the exception the custom memory manager routines being called MaZZoc() and Free0 to dif-
ferentiate them from the system-supplied routines. Use of the memory manager in a C++ program is even
more transparent, since the linking in of the custom memory manager automatically overrides the system-
supplied new/delete routines. Additional functions are provided in the library to support analysis of mem-
ory usage and debugging. The MemStats() function prints out the number of allocated blocks for each
memory pool that is in use, as well as a summary of total memory usage. The MemStatsDiJgT) function is
similar, but prints out the differences in memory utilization between multiple calls to the function, allowing
a programmer to instrument a programmer and isolate memory-related problems. Lastly, the MenzExit()
function frees up all memory being used by the custom memory manger back to the system. This is useful
when using a thud-party memory analysis tool (such as Purify) to track down memory leaks, since such
tools typically expect all memory to be explicitly freed prior to program termination.

3

The following example illustrates the use of the above functions.

#include <Mem.h>

int main(int argc, char *argvn)
{

char ‘bufl ;
char *buf2;
char *buf3;

/’ Allocate three buffers of varying sizes Y
bufl = Malloc(32);
buf2 = Malloc(2048);
buf3 = Malloc(8192); *

/* Print out summary usage statistics */
MemStats(stdout);

.

/* Initial call to MemStatsDiffO (saves current usage state) */
MemStatsDiff (stdout);

/* Free up one of the buffers and print out new memory usage changes */
Free(buf2);
MemStatsDiff(stdout);

/* Free up all memory cached by custom memory manager back to system */
MemExitO;

exit(O);
1

When compiled and run, the program produces the following memory usage output.

MemStats:
Blocksize Total used Free

32 1 1 0
2048 1 1 0
8192 1 1 0

Total Heap Size (Never DEcreases): 10272 Used: 10272 Free: 0

MemStatsDiff: OLD NEW
Blocksize Total used Free Total Used Free

32
.s

0 0 0 1 1 0
2048 0 0 0 1 1 0
8192 0 0 0 1 1 0

,.

Total Heap Size (Never DEcreasss): 10272 Used: 10272 Free: 0

MemStatsDiff: OLD NEW
Blocksize Total Used Free Total Used Free

2048 1 1 0 1 0 1

Total Heap Size (Never DEcreases): 10272 Used: 8224 Free: 2048

See appendix section A. 1 for detailed description of all functions included with the memory man-
agement library.

2.2 LINKED LISTS

There are two types of list classes provided by the utilities library, an intrusive linked list class and a non-
intrusive linked list class. The intrusive linked list class requires each stored object to be defined with a
linked list pointer structure as it’s first element. The intrusive class is intended for cases where speed is
important, and each item may reside on only a single list at any given time. The non-intrusive list, as it’s
name suggests, does not require the objects themselves to contain any linked-list related fields, as the
linked list pointer information is managed using separate, dynamically allocated linked list node structures.
This allows for more flexibility (objects can reside on multiple lists), but has somewhat slower perfor-
mance. In general, unless large numbers of objects must be visited very rapidly, the non-intrusive list is a
better choice, and is the list class used most frequently by the WSP software.

The following two examples illustrate the use of the intrusive and non-intrusive linked list classes.

If
// Test program for intrusive linked list class
If

#include <unistd.h>
#include cstdio.h>
#include cstdlib.h>

#include cLLDList.h>

// Test object for list insertion. Must have list link as first element of structure.

typedef struct
{

LLDListLink link;
int value;

} TestObj;

int main(int argc, char *argvjJ)
{

int i;
LLDList list;
TestObj objArray[lO];

// Put 10 items on the list
for(i=O;i<lO;i++)
{

objArray[i].value = i;
LLDList.PutTail(&objArray[i]);

1

// Iterate through the list, printing out each entry

TestObj *obj = (TestObj *)LLDList.FindFirst();

while(obj != NULL)

5

{
printf(“List Elem %d: Addr: 0x%x Value: %d\n”, n, (unsigned int)obj,

obj->value);
n++;
obj = (TestObj *)LLDList.FindNext(obj);

1)

/I
// Test program for intrusive linked list class
I/
#include <LLDList.h>

/I
‘

// Test object for list insertion. Doesn’t require any linked list
N pointers when a non-intrusive list is used
II

2

typedef struct
{

int value;
} TestObj;

int main(int argc, char *argv[l)
{

int i;
LLNlDList list;
LLNlDListCursor listCursor;
TestObj objArray[lO];

// Put 10 items on the list
for(i=O;iclO;i++)
{

objArray[il.value = i;
LLNIDList.PutTail(&objArray[i]);

1

// Iterate through the list, printing out each entry. When a non-intrusive
// linked list is used, objects may reside on multiple lists, so a separate
// list cursor is used to maintain the list position

TestCbj ‘obj = (TestObj *)LLDList.FindFirst(cursor);

while(obj != NULL)
”

{
printf(“List Elem %d: Addr: 0x%x Value: %d\n”, n, (unsigned int)obj,

obj-xalue); .
n++;
obj = (TestObj *)LLDList.FindNext(cursor);

1

1

See appendix section A.2 for a detailed description of all functions provided by the linked list
classes.

2.3 TIME HANDLING

Tiie information is used extensively throughout the WSP software. The set of most frequently used
time manipulation routines (time differencing, adding, etc...) have been encapsulated in a C++ class for
programming convenience. The class supports overloaded versions of the addition and subtraction opera-
tors to increase the readability of time manipulation code, as well as an overloaded print method for use
with the C++ tout operator. The example below illustrates the straightforward use of the class to compute
the difference between two times and print the results.

II
/I Time class test program
I/

#include eLLTime.h>

int main(int argc, char ‘argvjj)
{

// Construct two time objects, initialized to be 10 seconds apart
LLTime tl (4, 1,1997,10,20,30); // 4/l /97-l 0:20:30
LLTime t2(4, 1,1997,10,20,40); // 4/l /97-l 0:20:40

// Print out the two times
tout cc ‘41 = “ << tl cc “ t2 = “ cc t2 cc endl;

// Compute the difference in seconds and print it
int timeDiff = t2 - tl ;
tout <c “t2 - tl = “ <c timeDiff cc “ seconds “ c< endl;

// Add 10 seconds to tl and print result
t1 += 10;
tout c< “tl += 10 = “ cc tl cc endl;

When compiled and run, the program produces the following memory usage output.

tl = 04/01/l 997-l 0:20:30 t2 = 04/01/l 997-l 0:20:40
t2 - tl = 10 seconds
tl += 10 = 04/01/l 997-l 0:20:40

See appendix section A.3 for a complete description of all functionality provided by the time class.

2.4 MESSAGE LOGGING

The logging of diagnostic and error messages is a common requirement of most medium to large
scale .software systems, especially during the software development and debugging phase. The messages
can typically be split into four classes, informational, warning, error, and debug. Depending on circum-
stance, it is often desirable to have flexibility with regard to whether the output is diiected to a terminal
window, a file, or simply discarded. The UNIX syslog facility provides most of the necessary features, but
is somewhat limited in its ability to support the multiple separate logs required by the WSP software. The
WSP message logging library, modelled after the syslog facility, provides the required functionality.

7

From an algorithm’s point of view, the facility is quite simple. A call such as:

Log(LOG-INFO, “Info msg %d\n”, 1);

outputs the following message to the current logging destination:

Nov 18 20:30:46 [INFO] Info msg 1

All messages are prefixed with a time tag, and the message ‘class’, which corresponds to the first
argument passed to the Logo function. Available basic message classes are LOG INFO, LOG-WARN,
LOG-ERR, and LOG-DBG. In addition to the default debug level (l), 3 addit.nal levels of debug are
supported (LOG-DBG2, LOG-DBG3, LOG-DBG4) to allow for finer control of the amount of output
produced by a rumring program. Debug messages can be enabled on a per file or per function basis using
the logging configuration file. Other features of the logging implementation include selective output to std-
out/stderr and/or disk files, fixed limits on log file size, and automatic creation of backup log files across
multiple program runs and/or multiple days.

The logging behavior is controlled using a configuration file, normally read once at program startup. An
example configuration file is shown below: Note that the configuration file supports UNIX shell-style com-
ments (leading ‘#‘).

#==------------------------

File: log.conf

Logging facility configuration file.

#===-------------------

Output LOG-INFO message to file ‘testlog.YYMMDD-HHMMSS’ AND stdout
info testlog.%T,stdout

All other message just go to log file. Files can be different for each message type, but are
typically set to the same file.
warn testlog.%T
err testlog.%T
debug testlog.%T

#==
stdoutktderr can be redirected to a logging file (including one of
the ones specified above).
#===--------------=------------

stdout testlog.%T
stderr testlog.%T

#==---------======----------=======

Debug message control. Allows specification of debug level and scope

Debugging level can range from 1 to 4, with 4 being the most detailed

8

(more output). The default level is 1. Debug scope can range from a single function
to all files in the application.

debuglevel 2

debugEnableFile logtestl .C

#==

To save backup copies of logfiles across multiple program runs or
multiple days, specify a non-zero value for numBackups

#==~=====================

numBackups 2
*

#==

Daily backup setting. Setting this value to ‘true’ or ‘yes’ allows
separate logfiles to be maintained for each 24-hour period.

dailyBackup true

#==

Max history size in bytes. If logging output exceeds this amount,
the current file is made into a backup (number of backups controlled
by numBackups parameter) and a new file is started.

#==~========~====================

maxHistorySize 100000

The following sample program illustrates the initialization and use of the logging package. Assum-
ing the configuration file shown above is used, the output of the program will be written to stdout and the
disk file ‘testlog.YYMMDD-HHMMSS’.

#include cstdio.h>

#include <Log.h>

int main(int argc, char *argv[l)
{

int i;

if(LogOpen(“log.conf’) e 0)
{

fprintf(stderr, “Error opening log\n”);
exit(-1);

1

9

Log(LOG-INFO, “Hello %d (info)\n”, i);

Log(LOG-WARN, “Hello (warn)\n”);
Log(LOG-ERR, “Hello (err)\n”);

Log(LOG-DBGP, “Hello (dbg2)\n”);

printf(“normal printfh”);

LogClose();

Program output (disk file and stdout):

Dee 09 13:00:31 [INFO] Hello 1 (info)
Dee 09 13:00:31 WARN] Hello (warn)
Dee 09 13:00:31 [ERR] Hello (err)
Dee 09 13:00:31 [DBG] Hello (dbg2)
normal printf

See appendix section A.4 for a detailed description of the functionality provided by the logging
library.

10

3. SERVER-CLIENT NETWORK COMMUNICATIONS LIBRARY

The server-client communications library (XL&) provides a high-level set of functions for inter-
process communication using UNIX sockets. Using SCLite, processes may communicate with each other
using either TCP or UDP sockets while remaining largely isolated from low-level details such as read/
write time-outs due to a network outage.

Two major modes of server-client communication are supported. The data transport mode (Figure
1.a) allows a process to act as a data server to one or more data clients. This is by far the most common
usage in the context of Lincoln Laboratory weather algorithm software. The message transport mode (Fig-
ure 1 .b) represents the more traditional usage of the term server-client, where a server process listens for
requests from one or more clients, and replies to each request individually,

a) Server-Client Data Transport Mode

Client #l 1

Server

-i.,i,,,,

R&ply

b) Server-Client Message Transport Mode

Figure 1. Server-Client Transport Modes

SCLite currently supports two underlying communications protocols. The TCP protocol is normally
used for low-to-medium bandwidth connections where guaranteed delivery of each data packet is critical.
TCP, a connection- based protocol, requires a separate data transmission to each connected client. For
higher bandwidth connections (sustained data rate > lOOWsec.), the cormectionless UDP protocol is sup-
ported as a lower-overhead (albeit less reliable) alternative, since it supports true Ethernet broadcasts and
does not require a separate data transmission for each connected client. Note that the UDP protocol is
only supported when using the package in the data transport mode, since the message transport mode relies
on a reliable connection. The two protocols are implemented using a layered approach, illustrated in Figure
2.

11

.

I I I I

Application Program Application Program
(Server) (Client)

I I
1 I

I I
I Network I
L--------------------------J

Figure 2. Server-Cl&t Communidions Layers

A key element of the server-client package is the configuration file -- an ASCII file containing a list
of stream names with associated protocol information. The file allows for the protocol and port information
for a given data or control streams to be reconfigured without having to modify the processes making use
of the stream (other than restarting them with the new configuration file). A sample configuration file is
shown below:

Sample server-client configuration file

Format of each entry:

<streamName> <serverHost> <protocol> q~orb [protocolOptions]

Field definitions:

streamName ASCII name for the stream. 32 characters max.

serverHost Hostname of server. The reserved word ‘local’ specifies that the server
is running on the local host.

protocol Protocol for service. Available protocols are TCP and UDP

port TCP or UDP port number for service.

[protocolOptions]

queuesize csite>Queue size in bytes for server (TCP protocol) or client (UDP protocol)

Stream entry for transmitting data from TCP port 6661 on host ‘frederick’ to client applications

12

Stream entry for transmitting data on TCP port 6663 on local host to client applications running on
local host

stream2 local TCP 6663

Stream entry for transmitting data on UDP port 6664 on frederick to client applications running on
frederick or other LAN-accessible hosts.

stream3 frederick UDP 6663

The configuration file is specified when the stream is opened in one of two ways. If a filename is passed to
the SCOpen() function, the specified filename will be used. Otherwise, the filename contained in the
environment variable SC-CONFIG-FILE is used. Note that for backwards compatibility with an older
version of the package, the environment variable ALG-SERVICES will be used if SC-CONFIG-FILE
does not exist.

3.1 SERVER CLIENT SAMPLE PROGRAMS

Simple examples server-client data transport and message transport applications are shown below.
These and other examples can be found in the sclite test directory (currently resides in /sw/share/sclite/test/
src).

3.1.1 Data Transport Example

This example consists of a pair of programs. The data server, sc-write.c, sits in a loop and transmits
a data packet filled with a ramp at one second intervals. The data client, sc-read.c, reads the incoming
packets and prints out a message for every packet received. Note that no user-level connection manage-
ment is required. Whenever the server program calls SCSend(), the SCLite package checks for new con-
nections and cleans up after any connections that were broken since the last call to SCSend(). Similarly,
whenever the client calls SCRecv(), a connection attempt is made if the server-client stream is not already
in the connected state.

For simplicity, status/error handling is largely omitted from these examples. The example programs
in the sclite/test/src directory illustrate typical status/error handling sequences.

Configuration file:
/*
* File: testconfig
*

+ Test program configuration file specifying parameters for single test stream
*/

teststream localhost TCP 8000

Server program:

/*
* File: sc-write.c
*

* Test program to write a server-client data stream.
*I

#include <stdio.h>

13

#/include cServerClient.h>

void main(int argc, char *argv[)
{

int i;
SCStream *sp ;
int buf[BUFWORDS] ;

if((sp = SCOpen(“teststream”, SC-WRONLY, ‘YestConfig”)) == NULL)
{

fprintf(stderr;“(scwrite) Failed to establish server service - exiting\n”);
exit(2);

1

/* Fill buffer with ramp */
for(i=O ; i c BUFWORDS ; i++)

buf[i] = i;

for(i=O;ic100000;i++)
{

sleep(1);
printf(“Sending ret %d, %d bytes\n”, i, BUFWORDS*sizeof(int));
SCSend(sp, buf, BUFWORDS*sizeof(int), SC-NOTIMEOUT);

SCClose(sp);

Client program:

I*
* File: scread.c
*

* Test program to read a server-client data stream.
*

*I
#include estdio.h>
#include =&rverClient.h>

#define MAX-WORDS (8192)

void main(int argc, char *argva)
{

int i, recLen;
int recCount = 0;
int buf[MAX_WORDS] ;
SCStream ‘sp;

* Open stream in read-only mode (implies data client usage). Default is to block on
* calls to SCRecv().
4
if((sp = SCOpen(‘teststream”, SC-RDONLY, “testConfigFile”)) == NULL)
{

fprintf(stderr:‘(scread) Failed to establish client service - exiting\n”);
exit(2);

14

while(1)
{

P
* Wait for incoming data, and perform connect/reconnect sequence as needed
*I
if((recLen = SCReov(sp, buf, MAX_WORDS*sizeof(int), SC-NOTIMEOUT)) > 0)
{

printf(“Received ret %d: %d bytes:‘: reccouht, reclen);

I* Print out 1 st 4 words “1
printf(“words[O-31: %d %d %d Y&n”, buf[O], buf[l], buf[2], buf[3]);
recCount++;

1
else if (recLen == SC-NOCONNECTION)
{

printf(“sc-read: not connected to server - sleeping 1 second\n”);
sleep(l):

1
else

{ I*
* When client configured as blocking, any return status other than a data packet
* packet length or a NOCONNECTION indication is unexpected
*I
printf(“sc-read: Unexpected status from SCRecv (%d) \n”, reclen);
exit(-1);

1

3.2 MESSAGE TRANSPORT EXAMPLE

This example consists of a pair of programs, scserver.c and scc3ent.c. In the message transport
mode, the server process waits for incoming messages from one or more clients, and, when a message is
received, responds with a reply message. The configuration file is the same as used in the previous exam-
ple. Note that the server program uses SCRecvFrom() and SCSendTo() in order to associate a unique client
id with each data transfer.

This example also introduces the use of connect/disconnect handler functions. Since the connectHis-
connect sequence is handled largely within the context of SCSend()/SCRecv() calls, the connect/disconnect
handlers act can be used as notifiers to a server-client application that a new connection has occurred. A
typical connect handler may output some fixed start-up information to the newly connected client. A typi-
cal disconnect handler may release any server resources that have been allocated to a particular client, such
as an ‘ownership’ token of some shared resource.

Server program:

* File: scserver.c
*

* Simple server test program. Waits for requests from clients and sends replies.

15

#include estdio.h>
#include cServerClient.h>

#define RECV-BUF-WORDS 8192
#define REPLY-BUF-WORDS 1024
#define RECV-TIMEOUT 2000 /* 2 set */

* Handlers for new connections or broken connections. These versions only
* output a simple print message
*I

void ConnectHandler(SCStream l sp, int clientld, void ‘arg)
{

printf(“ConnectHandler: clientld: %d arg: Ox%x\n”,
clientld, (unsigned int)arg);

1

void DisconnectHandler(SCStream *sp, int clientld, void ‘arg)
{

printf(“DisconnectHandler: clientld: %d arg: Ox%x\n”,
clientld, (unsigned int)arg);

>

void main(int argc, char l argvu)
{

int i, recvBytes, clientld;
int recvBuf[RECV-BUF-WORDS] ;
int replyBuf[REPLY-BUF-WORDS] ;
SCStream *sp ;

/* Open stream in r/w mode, specifying that this is the server side */
if((sp = SCOpen(‘teststream” , SC-RDWR I SC-SERVER,

‘testConfig”)) == NULL)
{

fprintf(stderr,“Error opening stream ‘teststreamln”);
exit(-1);

1

SCSetConnectHandler(sp, ConnectHandler, (void *)0);
SCSetDisconnectHandler(sp, DisconnectHandler, (void *)0);

/’ Put a simple ramp in the reply buffer */
for(i = 0 ; i < REPLY-BUF-WORDS ; i++)

replyBuf[i] = i;

while(1)

5
* Wait for client request
*I
if((recvBytes = SCRecvFrom(sp, recvBuf, MAX-BUF_WORDS*sizeof(int),

RECV-TIMEOUT, &clientld)) c 0)
{

printf(“Error (%d)\n”, bytes);
1
else if(bytes == 0)

{

16

printf(7imeout\n”);
)
else
{

printf(“Received msg of %d bytes, sending reply to client %d\n”,
recvBytes, clientld);

SCSendTo(sp, replyBuf, REPLY-BUF-WORDS, SC-NOTIMEOUT, clientld);

SCClose(sp);
>

Client program:

* File: scc1ient.c
*

* Simple client test program. Sends requests to server processes
* (see scserver.c) and waits for replies.
*I

#include cstdio.h>
#include <ServerClient.h>

#define CONNECT-TIMEOUT 60000 /* 60 set *I
#define SEND-TIMEOUT 2000 P 2 set */
#define RECV-TIMEOUT 8000 P 8 set *I
#define SEND-BUF-WORDS 1024
#define REPLY-BUF-MAX-WORDS 8192

void main(int argc, char *argvo)
{

int i, bytes, bytessent;
int sendBuf[SEND-BUF-WORDS] ;
int replyBuf[MAX-BUF-WORDS] ;
SCStream ‘sp ;

/* Put a simple ramp in the buffer */
for(i = 0 ; i c SEND-BUF-WORDS ; i++)

sendBuf[i] = i;

/* Open stream in r/w mode, specifying that this is the client side */
if((sp = SCOpen(‘teststream” , SC-RDWR I SC-CLIENT,

‘SestConfig”)) == NULL)
1

fprintf(stderr,“Failed to establish server service - exiting\n”);
exit(-1);

1

/* Wait for initial connection (example of SCConnect() call usage) */
while(! (status = SCConnect(sp, CONNECT-TIMEOUT)))

printf(“Waiting for connection\n”);

while(1)
{

if((status = SCSend(sp, sendBuf, SEND-BUF_WORDS*sizeof(int), SEND-TIMEOUT)) > 0)

17

/* Successfully sent message -wait for reply */
if((replyBytes = SCRecv(sp, replyBuf, REPLY-BUF-MAX-WORDS, RECV-TIMEOUT)) > 0)
printf(“Received reply of %d bytes \n”, replyBytes);

else if(replyBytes == 0)
printf(“SCRecv: Timeout\n”);

else if(replyBytes == SC-NOCONNECTION)
printf(“SCRecv: No connection\n”);

else
printf(“SCRecv: Unknown error, return status = (%d)\n”, replyBytes);

1
else if(status == SC-NOCONNECTION)
{

printf(“SCSend: No connection\n”);
break;

1
else if(status == 0)
{

printf(“SCSend: Timeout\n”);
break;

1

sleep(1);
1

SCClose(sp);
1

3.3 SCLITE IMPLEMEWTATION

This section provides implementation details of the TCP and UDP data and message transport mech-
anisms. Knowledge regarding the implementation is of generally useful when design server-client pro-
grams using the SCLite package, especially when assessing design trade-offs.

3.3.1 TCP Implementation - Data ‘hnsport Mode

When a TCP/IP-based data transport server is connected to multiple clients, each client may be con-
nected via network paths of varying speeds. A client on the same physical machine, for example, utilizes
the ‘loopback’ network interface (very fast), while another client may be connected via a 56 or even 19.2
Kilobaud dial-up PPP network connection. Simply transmitting data to each client in a serial fashion in
such a configuration would result in an overall latency for each ‘send’ operation equal to the sum of all the
transmission delays for each device. To avoid this latency, a separate child process (or thread) is created for
each connection to provide a more concurrent serving of the data. To further reduce the latency from the
perspective of the server process, each child process is equipped with a buffering mechanism. This allows
the server to quickly resume its normal processing once the data has been transferred to the child process
(fast).

Threaded and non-threaded variants of the TCP data transport protocol are provided by the SCLite
package. The non-threaded version is the default, since the threaded version is not yet supported on all tar-
get platforms. When available, the threaded variant is preferred, since use of dedicated threads to perform
the socket accept/connect sequence better insulates application programs from internal UNIX connection
timeouts when attempting to connect/reconnect a socket during a network outage. The major functional
blocks of the threaded and non-threaded implementations are shown in Figure 3.

18

.

Server
Process

4 connectReq

a) Non-Threaded Implementation

c

Main
Server
Thread

Server Process

Client Process
WL

Client Process #l

4 Main Clierread 1

A

-------1
Connector Thread l

L ------- -I

4

-------1
Connector Thread I

L --- ---

5

A

Main Client Thread

Client Process #2

b) Threaded Implementation

Figure 3. TCP Implementation of Server-Client Data Transport Mode

19

3.3.2 TCP Implementation of Message Transport Mode

The message transport implementation is somewhat simpler than the data transport implementation,
since there is no need for any buffering above and beyond that provided by the TCP network layer. The
basic architecture is shown in Figure 5. As with the data transport implementation, both threaded and non-
threaded variations are provided.

Server-client programs using this message transport facility will most commonly utilize a simple
request/reply protocol, with a single reply being sent for every incoming request message. The implemen-
tation is, however, capable of supporting more complex schemes (such as allowing a server process to peri-
odically send a message to one or more clients without receiving any incoming request). Basically, once
the communications link is established, it possesses all the properties of the (underlying) M-duplex UNIX
socket.

3.3.3 UDP Implementation of Data Transport Mode

The UDP-based data transport implementation utilizes the intemet broadcast mechanism to allow
multiple clients to ‘listen’ to a single data transmission on a single network. In this case, the assumption is
made that the actual latency due to the transmission of each UDP packet is minimal, and no buffering is
performed on the server side. Instead, buffering is performed on the client side, preventing the loss of data
if a client is busy processing data when new data arrives at the network interface. Once again, a separate
child process is used to implement the buffering mechanism, although shared memory is used for child-
parent communications in place of a UNIX pipe for efficiency reasons (the code was inherited from an
application requiring high bandwidth). The UDP design is illustrated in Figure 4.

The UDP protocol places a 1472 byte limit on the length of individual data packets. SCLite performs
automatic packet fragmentation on the server side and defiagmentation on the client side to allow for trans-
parent transfers of larger packets. The implementation currently does not support detection/retransmission
of missing packets. If missing packets are a significant problem, either the network itself should be rede-
signed to reduce them to an absolute minimum, or use of the TCP protocol should be considered.

Server Process

+ Client#l Child Client #l
Process Process

Queue
UDP

Broadcast

Client #$2
Shared Memory

-) Child Process
Client ##2 .
Process

Queue

Figure 4. Server-Client UDP Implementation

20

.

Server
Process

connectReq

+-Req
*

Reply ---W
b

connectReq

--Req
4

Reply ---b
b

b) Non-Threaded Implementation

Main
Server
Thread

+RRecl
.

Reply --b

4 a

4--Rq
1

Reply +

Server Process

Client Process #l

1 Client Process ##2 1

Client Process #l

Main Client Thread

$
r-------i

> Connector Thread 1
/L ------- -I

I
G ------- Connector Thread 1 1

L --- 5 --- J

Main Client Thread

Client Process ##2

b) Threaded Implementation

Figure 5. TCP Implementation of Server-Client Message Transport Mode

21

APPENDIX A
CORE UTILITY LIBRARY REFERENCE

A.1 MEMORY MANAGEMENT LIBRARY REFERENCE

This section provides detailed descriptions of the functions provided by the custom WSP memory
manager. These functions are made available when an application is linked with the memory management
library (-hnem).

Name n!fdzoc()
Custom memory manager wrapper for system malloc().

Synopsis #include 44em.h>

void *Malloc(size-t sz);

Description Allocates a block of (no smaller than) sz bytes according to the WSP custom
memory manger scheme. For example, if the small block size for the custom
memory manger is 32 bytes, and a request for 50 bytes is made, then a block of
64 bytes will be returned. As described in the overview to the mem library, this
approach is used to prevent memory fragmentation.

This is a ‘fast’ malloc which will simply return the first free block of the appro-
priate size from the custom memory manger’s cache of blocks. If no blocks of
the appropriate size are available, a new one will be allocated and returned via
system malloc(). If the requested sz is larger than the maximum block size for
the custom memory manager, the new block will be allocated via system mal-
loco. Note that these large blocks are ‘umnanaged’, i.e. the custom memory
manage does not maintain a cache of these extremely large blocks; it is assumed
that there will be few, if any, such requests over the lifetime of any of the WSP
algorithms.

Returns Pointer to the new memory block. If memory is exhausted, prints a message and
calls MemStats() and MemStatsDifl) to report memory manager state.

See Also MemStats(), MemStatsDiff()

Name Free0
Custom memory manager wrapper for systemfree().

23

Synopsis #include <Mem.h>

void *Free(void *m);

Description Frees a block of memory according to the WSP custom memory manger scheme.

This is a ‘fast’ free which simply places the block on the appropriate stack of free
(i.e. available for use) blocks, for later use by the memory manager. If the size of
the block is greater than the maximum blocksize of the memory manager, it is
explicitly fieed by systemfiee(). It is assumed that there will be few, if any, such
large blocks needed over the lifetime of any of the WSP algorithms.

Returns

Note

Nothing

Note that via the WSP scheme, the block size is maintained internally in each
block. This size is set to a key value upon freeing of the block. In this way,
checks for multiple frees can be.readily accomplished. If the block size is set to
this key value, and Free0 is then called for that block, it is probable that a double
free is being performed on that block. In this case a message is printed and a seg-
mentation fault is forced to allow for easier debugging.

Name MemStats()
Utility for printing out custom memory manager statistics.

Synopsis #include cMem.h>

void MemStats(FILE *j$);

Description Utility for printing out custom memory manager statistics. For each block size
used by the manager, prints out the block size, total blocks allocated at that size,
number of blocks at that size currently in use, and number of blocks at that size
currently on the free stack. Note that the information is printed out only for block
sizes currently in use (e.g. if no blocks of size 5 12 have been requested, no info
for that size block will be printed). After printing this information, the total heap
size that has been allocated at the time of the call to MemStats() is printed, fol-
lowed by the total heap size currently in use, and finally the total heap size on the
free stacks.

Returns

See Also

Nothing

MemStatsDifl), which prints out the change in memory manager statistics since
the last call to MemStatsDi@r().

24

Name

Synopsis

MemStatsDifi)
Utility for printing out custom memory manager statistics. Prints out the
change in memory manager statistics since the last time MemStatsDiffo was
called.

#include <Mem.h>

void MemStatsDifl FILE *j$);

Description Utility for printing out changes in custom memory manager statistics between
subsequent calls to MemStatsDifl). On the first call, this routine prints out the
full set of memory manager statistics as printed by MemStats(). Memory statis-
tics from that time are saved for comparison to the current statistics the next time
MemStatsDi$o is called. On subseqent calls, statistics are only printed for the
block sixes that have witnessed allocation/deallocation activity.

Returns

Name MemExit()

Nothing

Function toffee all unused memory chunks (allocated and maintained by the
custom memory manager) back to operating system.

Synopsis #include &em.h>

void MemExit(void);

Description Function to free all unused memory chunks (allocated and maintained by the cus-
tom memory manager) back to operating system. This is useful when using tools
like Purify that would report the memory as leaked if this wasn’t done. It should
be the VERY LAST call made before exiting.

Returns Nothing

Name new0
DeJinition of ‘new’ which overrides system ‘new’; allows WSP custom mem-
ory management to be used transparently from WSP C++ algorithms.

25

Synopsis #include <Mem.h>

void * operator new (size-t sz);
void * operator new [] (size-t sz);

Description Definition of ‘new’ which overrides system ‘new’; allows WSP custom memory
management to be used transparently from WSP C++ algorithms. Essentially
just calls Malloc() from the custom memory library.

Returns Pointer to the new memory block. If memory is exhausted, prints a message and
exits.

See Also Malloc() from the mem library.

Name delete0
Definition of ‘delete’ which overrides system ‘delete’; allows WSP custom
memory management to be used transparently from WSP C++ algorithms.

Synopsis #include cMem.h>

void operator delete (void *m);
void operator delete [] (void *m);

Description Definition of ‘delete’ which overrides system ‘delete’; allows WSP custom mem-
ory management to be used transparently from WSP C-I-+ algorithms. Essen-
tially just calls Free0 from the custom memory library.

See Also Free0 from the mem library.

A.2 LINKED LIST REFERENCE

This section provides detailed descriptions of the linked list classes provided with the WSP utility
library. These classes are made available when an application is linked with the general utility library
(-lllutil) .

Name

Synopsis

Description

Constructors

Destructors

Public
member
functions

class LLDList

#include <LLLIlist.h>

Provides methods for managing doubly linked lists of application objects.
Objects are required to start with a LLDListLink structure.

LLLIList()

-LLLIList()
Deletes just the list object (LLDList) itself. Does not delete nodes on the list.
These must be cleaned up by the application.

void *GetHead()
Gets the first object on the list, while simultaneously removing it from the list.
All relevant list constructs are updated to reflect the modified list. The object is
returned as a void pointer and must be cast to the correct type by the application.
NULL is returned if the list is empty.

void PutHead(void *)
Prepends an object to the head of the list, updating all relevant list constructs.

void *GetTail()
Gets the last object on the list, while simultaneously removing it from the list.
All relevant list constructs are updated to reflect the modified list. The object is
returned as a void pointer and must be cast to the correct type by the application.
NULL is returned if the list is empty.

void PutTail(void *)
Appends an object to the end of the list, updating all relevant list constructs.

void * FindFirs t()
Finds the first object on the list. This is the object located at the list head.
Does not remove object from the list. The object is returned as a void pointer and
must be cast to the correct type by the application. NULL is returned if the list is
empty.

void *FindNext(void *obj)

27

Finds the object on the list following the one pointed to by obj. Does not remove
the object from the list. The object is returned as a void pointer and must be cast
to the correct type by the application. NULL is returned if there are no objects
following obj on the list (i.e. obj is at the list tail).

void *FindLast()
Finds the last object on the list. This is the object located at the list tail.
Does not remove object from the list. The object is returned as a void pointer and
must be cast to the correct type by the application. NULL is returned if the list is
empty.

void *FindPrev(void *obj)
Finds the object on the list preceding the one pointed to by obj. Does not remove
the object from the list. The object is returned as a void pointer and must be cast
to the correct type by the application. NULL is returned if there are no objects
preceding obj on the list (i.e. obj is at the list head).

void *FindIndexed(short index)
Finds an object on the list based on its index location. The index is referenced to
the head of the list. The head is considered index zero. Does not remove the
object from the list. The object is returned as a void pointer and must be cast to
the correct type by the application. NULL is returned if the list has too few
objects (i.e. list size c (index +l)).

void InsertBefore(void *next, void *obj)
Insert an object obj before the object pointed to by next. If next is NULL, insert
the object at the end (tail) of the list.

void InsertA#er(void *prev, void *obj)
Insert an object obj after the object pointed to by prev. Ifprev is NULL, insert the
object at the front (head) of the list.

void *Remove(void *obj)
Removes the object pointed to by obj from the list. Note that obj is not deallo-
cated, it is up to the application to do this. Returns A pointer to next object on
list, or NULL if the object deleted was the last on the list.

int NumElements()
Returns the number of elements on the list.

int IsEmpty
Determine if list is empty. If it is, return TRUE (l), otherwise return FALSE (0)

void Reverse0
Reverses the order of objects on a list.

28

Name

Synopsis

Hierarchy

Description

Component
Structures

nstructors

Destructors

Assignment
operators

Other operators

Public
member
functions

class LLNIDList

#include 4LN.IDList.h>

LLNIDListLink->LLNIDList

Provides methods for managing non-intrusive (NI) doubly linked lists of applica-
tion objects. Objects are not required to contain any particular linking structure.
By contrast, the LLDList class requires that list objects begin with an
LLDListLink structure.

typedef struct LLNIDListNodeStruct LLNIDListNode;

struct LLNIDListNodeStruct

c
LLNIDListNode *prevFree;
LLNIDListNode *next;
LLNIDListNode *prev;
void *obj; I* Pointer to object stored on list. *I

);

typedef struct LLNIDListNodeStruct LLNIDListLink;

LLNIDList()

4Lh?IDList()

LLNIDList& operator += (LLNIDList &rhs)

Concatenates the nodes of two LLNIDLists by appending the nodes of rhs onto
the end of the list of nodes for lhs. The input rhs is unmodifkd.

LLNIDList operator + (LLMDList &lhs, LwIDList drhs)
Returns a new LLNIDList which is the oncatenation of lhs and rhs. The ele-
mentes of Zhs are positioned first in the new list, followed by those of rhs. Note
there are then multiple copies of pointers to the list nodes; the nodes themselves
are not duplicated.

friend ostream& operator cc (o&-earn& OS, LLNIDList& list)
Output operator for LLN.IDList. The number of nodes is fist printed, then for
each node, the node number followed by the address of the node.

int NumElements()
Returns the number of nodes in the LLNIDList.

void *GetHead()
Gets the first object on the list, while simultaneously removing it from the list.
All relevant list constructs are updated to reflect the modified list. The object is

29

returned as a void pointer and must be cast to the correct type by the application.
NULL is returned if the list is empty.

void PutHead(void *)
Prepends an object to the head of the list, updating all relevant list constructs.

void “GetTail
Gets the last object on the list, while simultaneously removing it from the list.
All relevant list constructs are updated to reflect the modified list. The object is
returned as a void pointer and must be cast to the correct type by the application.
NULL is returned if the list is empty.

void PutTail(void *)
Appends an object to the end of the list, updating all relevant list constructs.

void *FindFirst(LLNIDListCursor &cursor)
Finds the first object on the list. This is the object located at the list head.
Does not remove object from the list. The object is returned as a void pointer and
must be cast to the correct type by the application. NULL is returned if the list is
empty. Also, input cursor, which is passed by reference, is set appropriately
(pointing to the head of the list) for use with subsequent FindNext(), FindPrev(),
etc. calls.

void *Findhkxt(LLiVIDListCursor &cursor)
Finds the object on the list following the one pointed to by cursor. Does not
remove the object from the list. Updates cursor to node found. Returns a pointer
to the object following cursor, or NULL if cursor pointed to the last object on the
list. The object is returned as a void pointer and must be cast to the correct type
by the application.Updates cursor value to point to the object found.

void *FindLast(LLiYIDListCursor &cursor)
Finds the last object on the list. This is the object located at the list tail.
Does not remove object from the list. The object is returned as a void pointer and
must be cast to the correct type by the application. NULL is returned if the list is
empty. Also, input cursor, which is passed by reference, is set appropriately
(pointing to the tail of the list) for use with subsequent FindNext(), FindPrev(),
etc. calls.

void *FindPrev(LLiVIDListCursor &cursor)
Finds the object on the list preceding the one pointed to by cursor. Does not
remove the object from the list. Updates cursor to node found. Returns a pointer
to the object preceding cursor, or NULL if cursor pointed to the f.irst object on
the list. The object is returned as a void pointer and must be cast to the correct
type by the application.Updates cursor value to point to the object found.

void *FindIndexed(LLNIDListCursor &cursor, int index)
Finds an object on the list based on its index location. The index is referenced to
the head of the list. The head is considered index zero. Does not remove the
object from the list. The object is returned as a void pointer and must be cast to
the correct type by the application. NULL is returned if the list has too few

30

objects (i.e. list size < (index +l)). Also cursor is updated to point to the object
found.

void InsertBefore(LLiVIDListCursor &cursor, void *obj)
Insert an object before the object pointed to by cursor. The cursor must point to a
valid list node.

void InsertAfier(LLNIDListCursor &cursor, void *obj)
Insert an object after the object pointed to by cursor. The cursor must point to a
valid list node.

void *Remove(LLhYDListCursor &cursor)
Delete the link for the object at the current cursor postion from the list. Returns
the object whose link was just deleted and updates the cursor to the next object
on the list. Returns NULL if the cursor is positioned at the end of the list
(NULL). The object is returned as a void pointer and must be cast to the correct
type by the application. Prior to calling this function, the cursor must have been
assigned a valid value by performing a call to one of the Find()/Get() functions.

int IsEmpty()
Determine if list is empty. If it is, return TRUE (l), otherwise return FALSE (0)

void Clear0
Removes all objects from the list. Note that the nodes are deallocated via calls to
delete.

31

A.3 TIME CLASS REFERENCE

This section provides detailed descriptions of the time class provided with the WSP utility library.
These classes are made available when an application is linked with the general utility library (-lllutil).

Name class LLTime

Synopsis

Hierarchy

Description

#include <LLTime.h>

LLnm.e

Supports date/time calculations. All times packaged into LLZJme objects are
interpreted as GMT.

Constructors LLl%?le()

Destructors

Assignment
operators

Default constructor; returns the time of the birth of UNIX (l/1/1970 0O:OO:OO).

LLiYme(const LLEme &fiom)
Copy constructor; a new LLEme object is created with all fields (month, day,
etc.) copied from the supplied LLi%e object.

LLEme(const short month, const short day, const short year,
const short hour, const short min, const short see)

Creates a new LLEme object with the specified month, day, etc.

-LLl!lme()

LLl%ne& operator = (const LLllme &)
Assign all fields of lhs LLZlme object to those of rhs.

int operator = = (const LLJime &)
Checks whether all fields of lhs LLi!Ime object are equal to corresponding fields
of rhs LLlrime object.

int operator < (LLi7me &)
Determines whether lhs LLZ’Zme object is chronologically before rhs LLTime
object. Returns 1 if true, 0 otherwise.

int operator > (LLlJme &)
Determines whether lhs LLiYme object is chronologically after rhs LLlZne
object. Returns 1 if true, 0 otherwise.

int operator - (LLEne &) II Diference in seconds, lhs - rhs

32

Access
functions

LLEme operator + (int) II Add ‘int’ seconds
void operator += (int) /I Add ‘int’ seconds

The following functions return the indicated field of the LLEme object.

short getYear(void)
short getMonth(void)
short getDay(void)
short getHour(void)
short getiMinute(void)
short getSecond(void)

time-t getSeconds(void)
Convert LLZ?me object to time since Epoch in seconds; returns this value.

int getJulianDay(void)
Returns the day of the year (0 through 365 or 366 for leap years) corresponding
to the time indicated in the LLTime object. Accounts for leap years, etc.

The following functions set the indicated field of the LLTime object.
void setYear(const short y)
void setMonth(const short m)
void setDay(const short d)
void setHour(const short h)
void setMinute(const short m)
void setSecond(const short s)

II Set all Jields at once.
void set(short mo, short d, shorty, short h, short m, short s)

void setToGM(time-t t) /I Set using time in secomis since epoch
void setToPresentGM(void) II Set to current Greenwich Mean 7’Zme

Public data
members

short month
short day
short year
short hour
short minute
short second

Related global
functions

friend ostream& operator << (ostreamb, const LLlZme &)
Prints out an LL%ze object, in form year, month, day, hour, minute, second.

33

A.4 MESSAGE LOGGING LIBRARY REFERENCE

This section provides detailed descriptions of the message logging functions provided with the WSP
utility library. These classes are made available when an application is linked with the general utility
library (-lllutil).

Name Log@@)
Open a message logging file.

Synopsis #include dog.h>
c

int LogOpen(char *configFile)

Description Opens up one or more destinations for logging utility output; log outputs are as
specified in the con$gFiZe. This function must be called prior to any calls to the
Logo function.

A commented example of a valid configuration file is shown below. All valid
options are discussed in the comments provided.

#==

File: log.conf

Logging facility configuration file.

#==

Output streams for the main 4 logging classes. Output can be to
a file and/or stdout/stderr. If both a file and stdouVstderr are used,

specify like ‘testlog,stdout’ (no spaces allowed)

The same file can be specified for multiple logging classes.
To discard all messages for a given logging class, specify /dev/null
as the output stream.

A ‘%T’ included anywhere in the filename will expand to the time
that the log file is opened. The timestring looks like: ‘YYMMDD-HHMMSS’

In conjuction with the ‘dailyBackup’ and ‘nBackups’ options (see below),

34

this feature can be used to create daily logfiles with meaningful names.

Output LOG-INFO message to file ‘testlog.YYMMDD-HHMMSS’ AND stdout
info testlog.%T,stdout

All other message just go to log file. Files can be different for each message type, but
are typically set to the same file.
warn testlog.%T
err testlog.%T
debug testlog.%T

==

stdoutktderr can be redirected to a logging file (including one of
the ones specified above). This is handy if libraries external to
an application make use of stdoutlstderr (bypassing the Logo function
library). As with the 4 message ‘classes’ described above, stdoutktderr
may also be redirected to /dev/null
#===

stdout testlog.%T
stderr testlog.%T

#=============3==

Debug message control. Allows specification of debug level and scope

Debugging level can range from 1 to 4, with 4 being the most detailed
(more output). The default level is 1.

If debugging enabled by specifying output stream other than /dev/null,
debugging messages from all modules in the application will be output
by default (global scope). The output can be made more selective using
two commands (in combination or individually)

debugEnableFile <file> [startLine] [stopLine]

debugEnableFunction <functionName>

If [startLine] and [stopLine] are not specified for the file version,
debugging messages are enabled for the entire file. Up to 20 of each
‘rule’ can be specified at one time.

The matching process is a simple substring match for both the
<file> and cfunctionName> fields, so, for example, a function name of

35

“Gust” would match any function prototype containing the word “Gust”
(In the case of C++, even if the “Gust” string is part of one of the
function arguments)

debuglevel 2

debugEnableFile logtestl .C

Sample syntax to enable debugging for all member functions of class ‘Dummy’
#debugEnableFunction Dummy::

#==

To save backup copies of logfiles across multiple program runs or
multiple days, specify a non-zero value for numBackups

#==

numBackups 2

#=c==

Daily backup setting. Setting this value to ‘true’ or ‘yes’ allows
separate logfiles to be maintained for each 24-hour period. The
current file becomes a backup file, which is kept around until the
‘numBackups’ value is exceeded.

The default is to do the switchover at 0O:OO:OO local time. If the
additional argument ‘GMT’ is supplied, the switchover will occur at
0O:OO:OO GMT

If no ‘dailyBackup’ setting is specified (commented out or missing),
creation of backup files is controlled solely by ‘maxHistorySize’.

dailyBackup true
#dailyBackup true GMT

#==

Max history size in bytes. If logging output exceeds this amount,
the current file is made into a backup (number of backups controlled
by above parameter) and a new file is started.

#==

36

maxHistorySize 100000

Returns 0 is log was successfully opened, -1 otherwise.

Name LogO
Log a message.

Synopsis #include <Log.h>

int Log(int loggingclass, char *$nt, I* args*l . . .)

Description Writes a printf-style message to the message log, using the specified logging
class. Valid values for loggingclass are LOG-INFO, LOG-Wm, LOG-ERR,
LOG-DBG, LOG-DBG2, LOG-DBG3, and LOG-DBGA The LOG-INFO
class is intended for informational messages that are the result of normal program
operation. The LOG-WARN class is intended for warning messages that are
indicative of a non-fatal error condition. The LOG-ERR class is intended for
serious errors which possibly require immediate attention. The four LOG-DBG
classes are intended for debug messages of varying detail, ranging from
LOG-DBG typically being used for high-level debugging messages (function
entry/exit) and the other LOG-DBG<X> classes being used for messages provid-
ing successively greater detail. As described in the LogOpen description, the
output for the various classes can be individually controlled via the configuration
file.

Note that the function prototype in Log.h does not match the function signature
shown above. This is due to the fact the loggingclass argument is actually a con-
catenation of several arguments, and the LOG-c% class definitions are actually
macros that pass multiple arguments. This is done to transparently provide line
number, file, and function name information to the logging function.

Returns 0 is log was successfully opened, -1 otherwise.

Name LogClose()
Close a message Zogging$Ze.

Synopsis #include <Log.h>

void LogCZose(void)

Description Close a message logging file. Hushes all log output buffers.

Returns Nothing

37

APPENDIX B
SERVER CLIENT NETWORKING LIBRARY REFERENCE

This appendix provides detailed descriptions of the functions provided with the WSP server-client network
communications library. These functions are made available when an application is linked with the normal or multi-
threaded variants of the library (-lsclite or -1scliteMT).

Name

Synopsis

Arguments

Description

sP

SCCZose() closes down the specified server-client stream and frees up any associated
resources.

Returns Zero on success, or -1 if the stream pointer is invalid (not initialized properly or already
closed).

See Also SCOpenO

Name

Synopsis

Arguments

Description

SCClose()
Close a server-cZient stream.

#include <ServerCZient.h>

int SCCZose(SCStream *sp);

Pointer to open server-client stream.

SCConnect()
(Re)connect a client.

#include <ServerCZient.h>

int SCConnect(SC&i-earn* sp, int timeout);

sP Pointer to server-client stream object.

timeout Timeout value for connection attempt, in milliseconds.

SCConnect() connects a client to a server. Calling this function is not strictly necessary, as
each call to SCRecv() will attempt to (re)connect an unconnected client stream, but it can
come in handy in certain situations.

39

Returns TRUE if the connection was established, or FALSE if timeout occurred.

See Also SCOpenO

Name

Synopsis

SCOpen()
Open a server-client stream.

#include <ServerCZient.h>

SCStream *SCOpen(char *serviceEntry, intfigs, char *con#gFde);

Arguments ServiceEntry

SC-WRONLY

SC-RDONLY

(SC-RDWR I
SC-SERVER)

(SC-RDWR I

The service entry can take on one of two forms. The
most common form is a simple service name, such as
‘datastreaml ‘. If so specified, additional connection-
related information (hostname, port number, etc...) is
derived from the line in the server-client configuration
file with the matching service name. Alternatively, the
ServiceEntry string may contain all the required connec-
tion information, in the same format as the conf&rration
file. This can be useful when a program wants to
dynamically generate it’s own stream configuration. For
example, a serviceEntry of “datastreaml juliet TCP
8900” specifies a stream name of ‘datastreaml ’ on host
‘juliet’ using the TCP protocol and port number 8900.

Flags bitmask controlling stream r/w mode and other
options. Flags values are described below.

Data server mode. The stream is configured as a unidi-
rectional output stream, serving data to one or more cli-
ents.

Data client mode. The stream is configured as a unidi-
rectional input stream, accepting data from a stream
configured as a data server.

Message server mode. The stream is configured as a
bidirectional message-oriented server connection, suit-
able for receiving messages from one or more
message-oriented clients and transmitting a reply.

Message client mode. The stream is configured as a

40

SC-CLIENT)

SC-NONBLOCK

SCJZAW

confgFile

bidirectional message-oriented client connection, suit-
able for sending messages from a message-oriented
server.

Non-blocking mode. Calls to SCSend() or SCRecv() will
not-block if the send queue backs up or the receive
queue is empty, but will instead return immediately with
appropriate status.

Raw IO Mode. Application ‘sees’ Server-Client headers.
Useful for porting programs which used the old Server-
Client package, where the protocol headers were always
visible to the application.

Name of configuration file containing list of stream
names with corresponding port numbers and protocols.
If specified as NULL, the configuration file specified in
environmental variable SC-CONFIG-FILE will be
used. If the environment variable SC-CONFIG_FILE
does not exist, a check is made for the existence of a sec-
ond environment variable, ALG-SERVICES (to sup-
port an older version of the server-client library)

Description SCOpenO opens a server-client stream for write-only, read-only, or read/write
access. It should be noted that the stream is not in a connected state upon return
from this routine. This is due to the dynamic nature of the connections. From the
server’s perspective, there may not be any clients ready to connect at startup, and
it is not desirable to block in SCOpenO waiting for a client to request a connection.
The converse is true for the case of a client -- the corresponding data server may
not be running and it is desirable to avoid blocking in the SCOpenO call for any
given stream since the process may be a client of other, existing, servers.
In general, the management of connections is handled internally to the SCSe&()/
SCSendTo() and SCRecv()lSCRecvFrom() calls. During each call to SCSend(),
the stream is checked to see if any new clients are requesting a connection. If so,
the connection is made and added to the servers list of connected clients. During
each call to SCRecv(), a check is made to see if the client is connected to a server,
and if not, an attempt is made to (re)establish the connection. If the user does
wish to block a program functioning as a client until a server responds, the SCCo-
nnect() call can be used.

Returns

Environment
Variables

Pointer to opened server-client stream, or NULL if open failed.

SC-CONFIG-FILE (preferred) or ALG-SERVICES (legacy backward com-
patibility). One of these environment variables must point to a file containing a
description of the server-client SCStream linkages used by the application.

See Also SCCZose()

41

Name

Synopsis

Arguments

Description

Returns

See Also

Name SCRecvFrom()
Receive data via a Server-Client stream.

Synopsis #include <ServerClient.h>

SCRecv()
Receive data via a Server-Client stream.

#include <ServerClient.h>

int SCRecv(SCStream *sp, void *data, int maxBytes, int timeout);

sP Pointer to open server-client stream.

data Pointer to data buffer for receipt of data.

maxBytes Maximum allowed length for arriving data packet
(sizeofltita)). Packets larger than this value will be dis-
carded, and the return value will be set to
SC-OVERFLOW to indicate the condition. Normally,
this argument will be specified to allow for the largest
expected data packet.

timeout When the stream is configured as blocking, this value
specifies a timeout value in milliseconds. A value of -1
(or SC~NOTIMEOUT), indicates that there is no time-
out, and the call should block forever waiting for data.
This argument is ignored when the stream is configured
as non-blocking.

SCRecv() receives a packet of data from a Server-Client stream.

Number of bytes received, 0 if no data was available, SC-ERROR (-1) if an
unknown error occurred, SC-NOCONNECTION (-2) if the client is not cur-
rently connected to a server, or SC-OVERFLOW (-3) if a data packet was dis-
carded because it was larger than the buffer passed to SCRecv().

SCOpen(l), SCSend(1)

int SCRecvFrom(SCStream *sp, void *data, int maxBytes, int timeout,

42

Arguments sP

data

maxBytes

timeout

int *clientId);

Pointer to open server-client stream.

Pointer to data buffer for receipt of data.

Maximum allowed length for arriving data packet
(sizeofldata)). Packets larger than this value will be dis-
carded, and the return value will be set to
SC-OVERFLOW to indicate the condition. Normally,
this argument will be specified to allow for the largest
expected data packet.

When the stream is configured as blocking, this value
specifies a timeout value in milliseconds. A value of -1
(or SC~NOTIMEOUT), indicates that there is no time-
out, and the call should block forever waiting for data.
This argument is ignored when the stream is configured
as non-blocking.

Description SCRecvFrom() receives a packet of data from a Server-Client stream, returning
the clientId of the sender. This routine is normally used in conjunction with
SCSendTo() to implement a server process that waits for requests from multiple
clients, services the request, and returns a result.sends a packet of data to all cli-
ents currently connected to the specified data stream

Returns

See Also

Number of bytes received, 0 if no data was available, SC-ERROR (-1) if an
unknown error occurred, SC~NOCONNECTION (-2) if the client is not cur-
rently connected to a server, or SC-OVERF’LOW (-3) if a data packet was dis-
carded because it was larger than the buffer passed to SCRecv().

SCOpenO, SCSendTo(I)

.

Name SCSelect()
Send data via a Server-Client stream.

Synopsis #include <ServerClient.h>

int SCSelect(SCStream *streamSet[], int n&earns, int timeout,
SCStream *readySet[]);

Arguments streamse t Set of input streams to check for I/O readiness.

43

nstreams

timeout

Number of streams in stream set

Timeout value in milliseconds. A value of
SC-NOTIMEOUT (-1) indicates that the call should
block indefinitely waiting for I/O.

Description

readyset Set of streams with pending I/O

Wait (block) for input to become available on at least one of the streams in the
specified set. Connection attempts are made periodically for any streams in the
set that are in the unconnected state (either never connected or a connection was
dropped). The connect attempt interval for each stream can be controlled by the
call to SCSetConnectInterval() (default value = 5 xc)

This routine is normally used by processes that read data from multiple data
streams, to avoid polling each stream separately. A call to SCSelect(), followed
by a SCRecv() call for each ready stream is used instead.

Returns Number of streams in readyset. A value of indicates that a timeout occurred
prior to any streams being ready.

See Also SCOpen(l), SCRecv()

Name SCSend()
Send data via a Server-Client stream.

Synopsis #include <ServerClient.h>

int SCSend(SC&-earn *sp, void *data, int bytes, int timeout);

Arguments sP Pointer to open server-client stream object.

data Pointer to data buffer to send.

bytes Number of bytes to send

timeout When the stream is configured as blocking (i.e.,
SCOpenO default; SC-NONBLOCK was not
specified), this value specifies a timeout value
in milliseconds. A value of -1 (or
SC~NOTIMEOU’I’) indicates that there is no
timeout, and the call should block forever on a
fitll client queue. This argument is ignored when
the stream is configured as non-blocking.
(NOTE This argument is not yet fully sup-
ported, and is intended as a placeholder for a
future release.

Description SCSend() sends a packet of data to all clients currently connected to the specified
data stream. When using the TCP protocol in combination with non-blocking
mode, a full queue for ANY of the connected clients will result in a return value
of 0 bytes. When using the UDP (broadcast) protocol, the returned byte count
will always equal the amount specified in the SCSend() call, since the transmitter
has no way of knowing if any clients are actually receiving the data.

Returns

See Also

Number of bytes sent, 0 if server stream is configured as non-blocking and data
was not successfully transmitted due to a full client queue,
SC~NOCONNECTION if no clients are currently connected (TCP only), or
SC-ERROR (-1) if an (unknown) error occurred.

SCOpen(l), SCRecv(I)

Name SCSendTo()
Send data to speci$ed client via a Server-Client stream.

Synopsis #include <ServerClient.h>

int SCSendTo(SCStream *sp, void *data, int bytes, int timeout, int clientld);

Arguments sP Pointer to open server-client stream object.

data Pointer to data buffer to send.

bytes Number of bytes to send

timeout When the stream is configured as blocking (i.e.,
SCOpenO default; SC-NONBLOCK was not speci-
fied), this value specifies a timeout value in millisec-
onds. A value of -1 (or SC~NOTIMEOUT) indicates
that there is no timeout, and the call should block for-
ever on a full client queue. This argument is ignored
when the stream is configured as non-blocking.
(NOTE: TIMEOUT NOT YET SUPPORTED FOR
SCSend())

clientld Client Id, as obtained from SCRecvFrom(). If specified
as SC-ALL-CLIENTS, the data packet will be written
to all clients. If specified as negated version of a clien-
tId, data is sent to all client *except* the specified client.

Description SCSendTo() sends data to the specified client. This routine is normally used in
conjunction with SCRecvFrom() to implement a server process that waits for
requests from multiple clients, services the request, and returns a result.sends a
packet of data to all clients currently co~ected to the specified data stream.

45

Returns Number of bytes sent, 0 if server stream is configured as non-blocking and data
was not successfully transmitted due to a full client queue,
SC~NOCONNEXTION if no clients are currently connected (TCP only), or
SC-ERROR (-1) if an (unknown) error occurred.

Name

Synopsis

See Also
SCOpen(l), SCRecvFrom(l)

SCSetBlocking(), SCSetQueueSize()
Setfinctions for server-client streams.

#include <ServerClient.h>

void SCSetBlocking(SC&ream* sp, int blockFlag);

void SCSetQueueSize(SCStream* sp, int queuesize);

Arguments sP Pointer to open server-client stream object.

blockFlag TRUE to enable blocking, or FALSE to disable block-
ing.

queuesize Size for server or client queue, in bytes.

Description SCSetBlocking() sets a server-client stream to blocking or non-blocking. Qpi-
tally the blocking mode will be set by the call to SCOpenO, but it is sometimes
handy to temporarily switch modes back and forth in complex applications.

NOTE: Non-blocking mode is not yet supported for streams configured as serv-
ers (SC-WRONLY) -- only clients.

Returns Nothing.

See Also SCOpenO

SCSetQueueSize() sets the queue size for the specified server-client stream The
queue size defaults to 512K (Large, but necessary for backward compatibility
with SC-pat applications and config files). A more flexible approach to setting the
queue size is to use the -queueSize option in the server-client configuration file.
See the SCLite library documentation for more details.

46

Name

Synopsis

SCSetConnectHandler(), SCSetDisconnectHandlmf)
Set handler functions for connection state changes

#include <ServerClient.h>

void SCSetConnectHandler(SCServer “sp,
void (*handler)(SCServer *sp, int clientId, void *arg),
void *handlerArg);

void SCSetDisconnectHandler(SCServer *sp,
void (*handler)(SCServer “sp, int clientId, void *arg),
void *handlerArg);

Arguments sP

handler

Pointer to active server object.

Handler function to call when new connection or broken
connection occurs. When invoked, the handler’s first
two arguments are the pointer to the stream with a new
or broken connection, and the unique clientId for the
new or broken connection. The third argument will be
the handler argument passed by the user to the corre-
sponding Set0 function (see below)

handlerArg Argument to pass to handler function when it is invoked.

Description SCSetConnectHandler() and SCSetDisconnectHandler() install a handler func-
tion to be called when a new client connects to, or existing client disconnects
from, a server stream. New connection/ broken connection processing is normall
performed upon entry to each SCSend() or SCRecvFrom() call (which call
depending on whether the server is configured as a data server or a message
server). The handler is invoked at user-level (not via a signal handler), allowing
for safe use of all system functions (mfzlloc(),fiee(), etc...).

A typical use of the connect handler is to send additional ‘startup’ information to
newly connected clients, by invoking a separate call to SCSend() within the han-
dler function. The handler invocation code is set up to expect this usage -- it guar-
antees that an SCSend() called from within a handler will NOT process any
additional incoming connections (and possibly recursively invoke the connection
handler). It is also guaranteed that the data transmission triggered by the han-
dler’s SCSend() will occur prior to the data transmission for the original
SCSend(), allowing for the ‘startup’ information to be transmitted to the client
before any other data is set.

A typical use of the disconnect handler is to free up any shared resources that are
‘owned’ by the client with the matching clientId. This helps to prevent possible

47

program deadlocks when a network connection becomes unreliable for any rea-
son.

Note: These calls are only currently valid for servers using the TCP protocol.
(Since UDP is cormectionless, they don’t apply).

Returns

See Also

Nothing.

SCSend(), SCRecvFrom()

Name SCSetRecTypeO, SCGetRecType(), SCSetHdrType()
scgac library compatibility functions,

Synopsis #include <ServerClient.h>

void SCSetRecType(SCStream *sp, unsigned short recType);

unsigned short SCGetRecType(SCStream* sp);

void SCSetHdrType(SCStream *sp, int hdrType);

Arguments sP Pointer to open server-client stream object.

recType

hdrType

Record type of the server-client protocol header.

SC_HEADER_16BYTE (default) to transmit 16-byte
headers, SC-HEADER-SBYTE to transmit &byte
headers. When using the (old) &byte headers, the maxi-
mum record size than can be transmitted is 128 KBytes.

Description In typical usage, server-client protocol headers are transparent to the application.
The headers (containing record length, type, sequence # info) are prepended to
the user’s data buffer when sending records and stripped off on the other end
prior to being ‘seen’ by a client process. This was not the case with an older ver-
sion of the communication library, scgac, where the headers were visible at the
application level, and, in fact, used to encapsulate record type information. To
support I/O from/to these applications, a mechanism is needed to get/set the
record type of the protocol header. SCGetRecType() and SCSetRecType() provide
this mechanism. In addition, to support really old scgac applications, the func-
tion SCSetHdrType() is supplied to allow the user to control whether the protocol
headers transmitted are the new 16-byte variety (default) or the older 8-byte vari-
ety (128K max record length).

When sending data, a call to SCSetRecType() should precede a corresponding call
to SCSe&o. If only one record type is being used, a single call to SCSetRec-

48

Returns

See Also

Type0 following the call to SCOpen() will result in all transmitted records being
tagged with the specified record type. When receiving data, a call to SCGetRec-
Type0 following a successful call to SCRecv() will retrieve the record type of the
record just received.

An alternative method of achieving backward compatibiiity is to use the
SC-RAW mode flag to make the headers visible to the application. This may
have some uses, but it is not recommended, since the raw header information uti-
lizes big-endian byte ordering, and the application will not be portable to a little-
endian (Intel) machine.

SCGetRecType() returns the record type contained in the header block of the last
record received. SCSetHdrType() and SCSetRecType() return nothing.

SCOpenO

49

GLOSSARY

AP Anomalous Propagation
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
FAA Federal Aviation Administration
LAN Local Area Network
TCP/IP Transmission Control Protocol/Internet Protocol
UDP User Datagram Protocol

51

REFERENCES

1. Newell, O.J., “ASR-9 Weather Systems Processor Software Overview”, MIT Lincoln Labora-
tory, Project Report ATC-264,20 October 2000.

