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ABSTRACT

The Integrated Terminal Weather System (ITWS) development program was initiated by the

Federal Aviation Administration (FAA) to produce a fully automated, integrated terminal weather

information system to improve the safety, efficiency and capacity of terminal area aviation opera­

tions. The ITWS will acquire data from FAA and National Weather Service (NWS) sensors as well as
from aircraft in flight in the terminal area. The ITWS will provide air traffic personnel with products

that are immediately usable without further meteorological interpretation. These products include
current terminal area weather and short-term (0-30 minute) predictions of significant weather phe­
nomena.

The Terminal area-Local Analysis and Prediction System (T-LAPS) is being evaluated as a
possible provider of the Terminal Winds Product for the ITWS. T-LAPS is a direct descendant ofthe

Local Analysis and Prediction System (LAPS) developed at the National Oceanic and Atmospheric

Administration's (NOAA's) Forecast Systems Laboratory (FSL). T-LAPS takes meteorological

data from a wide variety of data sources as input and provides a gridded, three-dimensional (3-D)
analysis of the state of the local atmosphere in the terminal area as output. For the 1992 system, the
output was a gridded 3-D analysis ofthe horizontal winds. This information is intended to be used by

the Terminal Air Traffic Control Automation (TATCA) program to estimate the effects of winds on
aircraft in the terminal area. The 1993 and 1994 T-LAPS systems will incorporate more sophisti­

cated wind analysis algorithms.

The T-LAPS '92 demonstration at the Lincoln Laboratory Terminal Doppler Weather Radar
(TDWR) FL-2C field site in Kissimmee, Florida during August and September was quite success­

ful. The primary area ofcoverage was a 120 Ian by 120 Ian box centered on the Orlando International

Airport. The T-LAPS system was able to utilize radar information from both the TDWR testbed and

the operational NEXRAD/WSR-88D radar in Melbourne, Florida. This report documents the im­
plementation of the T-LAPS system that was run during the 1992 summer demonstration and dis­
cusses the design and some implementation details of the system.
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1. INTRODUCTION

The Integrated Terminal Weather System (ITWS) development program was initiated by the
Federal Aviation Administration (FAA), [Sankey and Hansen, 1993] to produce a fully automated,
integrated terminal weather information system to improve the safety, efficiency and capacity of
terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Ser­
vice (NWS) sensors as well as from aircraft in flight in the terminal area. The ITWS will provide
air traffic personnel with products that are immediately usable without further meteorological
interpretation. These products include current terminal area weather and short-term (~30minute)
predictions of significant weather phenomena.

The Terminal area-Local Analysis and Prediction System (T-LAPS) is being evaluated as a
possible provider of the Terminal Winds Product for the FAA's ITWS [Evans, 1991; Ducot, 1993].
The Terminal Winds product is to provide a gridded three-dimensional analysis of the winds in the
terminal area. The purpose of this report is to document the implementation of the T-LAPS system
that was run during the Orlando 1992 summer demonstration. This report will discuss the design
and some implementation details of the system. A detailed discussion of algorithm design or algo­
rithm performance during the demonstration is beyond the scope of this report.

T-LAPS takes as input meteorological data from a wide variety of data sources, including cur­
rent sensor data and background information from larger-scale analyses. The output of T-LAPS is
a gridded, three-dimensional (3-D) analysis of the state of the local atmosphere. For the 1992 sys­
tem, the output was a gridded 3-D analysis of the horizontal winds. This information in tum is in­
tended to be used by the Terminal Air Traffic Control Automation (TATCA) [Andrews and Welch,
1989] program in order to estimate the effects of winds on aircraft in the terminal area.

T-LAPS is a direct descendant of the Local Analysis and Prediction System (LAPS) [McGin­
ley, et aI., 1991], which was developed at the National Oceanic and Atmospheric Administration's
(NOAA's) Forecast Systems Laboratory (FSL). LAPS is a large and complex system that produces
a fairly complete analysis of the state of the local atmosphere. T-LAPS '92 was built around the
subset of LAPS that is relevant for computing gridded 3-D horizontal winds. Additions were made
to the LAPS core system in order to adapt it to the needs of the terminal environment. The most im­
portant changes were adapting the system to work on the small scale of the terminal environment
(a 120 km by 120 km domain versus LAPS' original 600 km by 600 km domain) and upgrading the
system so that it could make use of radar Doppler measurements from multiple radars. T-LAPS is
an ongoing project, but this report will only discuss only the 1992 version of the system. In the im­
mediate future (1993, 1994), the system will incorporate more sophisticated wind analysis algo­
rithms.

The centerpiece of the 1992 T-LAPS effort was a demonstration of the system at Lincoln Labo­
ratory's Terminal Doppler Weather Radar (TDWR) testbed [Merritt, et aI., 1989] FL-2C field site
in Kissimmee, Florida during August and September. The primary area of coverage was a 120 km
by 120 km box centered on the Orlando International Airport in Orlando, Florida. Notably, the
T-LAPS system was able to utilize radar information from both the TDWR prototype radar in Kis­
simmee and the operational NEXRAD/WSR-88D radar [Crum and Alberty, 1993] located in Mel­
bourne, Florida. Fielding the system involved porting the initial FSL software, modifying the analy­
sis software for the terminal environment, arranging for the ingest of multiple data sources,
constructing a display, arranging for the archiving of data, and making the system work reliably.
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The T-LAPS '92 demonstration was quite successful. The system was up and running, collect­
ing and recording data within a few days of the availability of the last significant data source in Au­
gust. The system ran reliably until the demonstration was terminated due to lack of significant
weather in late September. The T-LAPS '92 demonstration marked the first demonstration of a pro­
totype ITWS product using a wide variety of data sources. The resulting dataset became the basis
for further algorithm development.

The report is organized as follows. Section 2 is an extended introduction that discusses the func­
tionality of each ofT-LAPS's major modules, with emphasis on showing how the whole system fits
together. The remainder of the report discusses implementation issues, showing how the original
FSL code was turned into a deployable system. Section 3 focuses on data acquisition. Section 4 pro­
vides details about the process of porting the FSL LAPS code to the Lincoln Laboratory computer
environment. Section 5 discusses the real-time scheduler/driver. Section 6 covers a display system
for presenting the results ofthe system. Section 7 discusses the archiving ofresults for later playback
and analysis. Section 8 is a short concluding section.
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2. T-LAPS '92 STRUCTURE

The task of the T-LAPS '92 system was to acquire data from various data sources, analyze the
data to obtain a representation of the gridded 3-D horizontal winds, display the results, and save the
results for further analysis. Accordingly, there were four major modules of the system: a data ingest
module, a wind analysis module, a display module and a data archive module. The fifth major mod­
ule was a driver/scheduler to coordinate the activities of the other four modules. The archive module
was not really a separate, identifiable piece of software; the code that does exist is part of the driver.
A simplified block diagram of the system is shown in Figure 1.

Control

Data - Analysis - Display. .
Ingest

• •
--

• Data Driver ~ Archive

....

Figure 1. T-LAPS block diagram.

2.1. Data Ingest Module

The purpose of the Data Ingest Module was to access data from sources external to the T-LAPS
system. This was a difficult task because of the number and variety ofthe different data sources. The
Data Ingest Module was a collection of independent submodules that each handled a different data
source. The data sources that were already accessible at the FL-2C site were Doppler radar data and
Low Level Windshear Alert System (LLWAS) data. The radar data were resampled from their origi­
nal polar coordinate system into a Cartesian coordinate system that T-LAPS could use. T-LAPS had
to acquire other sets ofdata from outside organizations via telephone lines. Surface aviation observa­
tions (SAOs) were acquired from a NASA facility at Cape Canaveral. Automated pilot reports gen­
erated by the Aircraft Communications Addressing and Reporting System/Meteorological Data
Collection and Reporting System (ACARS/MDCRS) were acquired from Aeronautical Radio, Inc.
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(ARINe). Data from a national-scale gridded analysis system called the Mesoscale Analysis and
Prediction System (MAPS) were acquired from FSL. At times, the acquisition of data from outside
organizations was adversely affected by circumstances beyond the control ofthe T-LAPS system. A
great deal of the complexity of the data acquisition submodules was devoted to robustly adapting to
problems with the external data sources.

2.2. Analysis Module

The task of the analysis module was to assemble all the data sources into a single, gridded 3-D
representation of the horizontal winds. To perform this task, the LAPS system uses two different
sub-modules. The "wind package" interpolates the different data sources to produce the initial
gridded winds, while the "balance package" uses the physics of the wind/pressure relationship to
refme the initial gridded winds. The analysis module in the deployed T-LAPS '92 system consisted
of three distinct components: the balance package and two separate versions of the wind package.

2.2.1. 10 km/2 km Cascade

In order to supply timely, high-resolution wind information, T-LAPS used a faster update rate
and a higher-resolution analysis grid than does the original LAPS system. In order to take advantage
of the high update rate and high-resolution data provided by Doppler weather radar, T-LAPS used
an update rate of five minutes and a grid resolution of 2 km. This presented a problem because of
the great disparity in both grid resolution and update rate between the MAPS data used as back­
ground and the wind analysis. To solve this problem, two levels of wind analysis were used. A first­
level analysis was run in a manner very similar to the original LAPS. This fIrst-level analysis, in
tum, provided the background for a high-resolution, fast update second-level wind analysis. The
two-levels of analysis idea is called the "cascade of scales."

LAPS takes the 60 km MAPS analysis (each MAPS grid point represents roughly a 60 km by
60 km area) and uses it as the background for its own 10 kIn analysis (each LAPS grid point repre­
sents roughly a 10 kIn by 10 km area). There is one version each of the wind package and the balance
package, both using a 61-point by 6I-point 10 km grid. The system has 21 vertical levels spaced
50 millibars apart. The vertical domain reaches from 1100 millibars (below sea level) to 100 milli­
bars. The system is run once an hour. The structure of the LAPS wind analysis system is shown in
Figure 2.

T-LAPS uses two scales of analysis. The internal structure of the T-LAPS Analysis Module
is shown in Figure 3. In T-LAPS, the two blocks in the figure labeled Winds_10 and Balance_10
essentially recreated the manner in which LAPS works. Together these two packages are called the
"10 km analysis." The 10 km wind package and the balance package were run every 30 minutes.
The output of the balance package was then used as the background to the 2 km wind package. The
2 km wind package - Winds_2 in the figure - was run every five minutes using the most recent
10 km result as its background. A five-minute update rate was chosen because it is approximately
the same amount of time as a TDWR volume scan.

It would have been possible to jump directly from the 60 km MAPS to a 2 km wind analysis,
but the disparities in scale would have been large. The update rate and data densities of both surface
observations and ACARS are effectively utilized by an intermediate-scale analysis. The introduc­
tion of a second scale of analysis allowed the 10 km analysis to supply a higher quality background
to the 2 km analysis than was possible by using MAPS directly.

4



MAPS Bac~kar'Ol

Other Data
output

Figure 2. LAPS wind analysis.

Other Data

Other Data

Figure 3. T-LAPS wind analysis 10 km/2 km cascade.

output
to display

In T-LAPS '92 the 10 km analysis exists solely to provide a high-quality background for the
2 km analysis. Therefore, the size of the 10 km domain was only slightly larger than the size of the
2 km domain. For the 10 km analysis, a grid size of 19 by 19 was used, giving a total domain size
of 180 km by 180 kID (measuring between the nominal grid points, not the outer edges of the grid
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boxes). Because of the needs of the balance package, the fu1121 vertical levels used in LAPS are
also used in the 10 km analysis. The 2 km analysis used a 61 by 61 grid, giving a total domain size
of 120 km by 120 km. To save file space and processing time, the 2 Ian analysis used only 13 vertical
levels. Both domains were centered on the Orlando airport, so the 2 km domain nested inside the
10 km domain. Figure 4 shows the two domains superposed on a map ofcentral Florida. The eastern
Florida coast shown in the figure is the Cape Canaveral area, while the western Florida coast shown
in the figure is the Tampa/St. Petersburg area.

10km Domain
(180 km x 180 km
total size)

r--............----------4~......,2kmDomain
(120 km x 120 km
total size)

Figure 4. Nested T-LAPS domains.

2.2.2. Wind Package

The wind package constructed a 3-D grid of the horizontal wind field by interpolating together
the different sources of wind information [Albers, 1992]. The underlying engine of the wind pack-
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age is based on Barnes interpolation [Barnes, 1964]. Except for radar data, the number of observa­
tions from the various data sources is very small compared to the number ofgrid points. Barnes inter­
polation uses an exponential weighting scheme to obtain values for the empty grid points between
the observations. The interpolation has a smoothing effect on grid points that do have observations.
Two separate Barnes interpolation passes are used. In the fIrst interpolation pass, all the vector (2-D
horizontal) wind observations are interpolated to fonn a fIrst-pass wind fIeld. This includes data
from surface observations, LLWAS, and ACARS. Next, the radial Doppler velocities are turned into
synthetic vector observations. An azimuthal component for each radar observation is estimated by
looking at the fIrst-pass wind field. The estimated azimuthal component is combined with the radial
radar velocity observation to produce the synthetic vector observation. In a second pass, all the origi­
nal vector observations and the synthetic vector radar observations are interpolated to give the fInal
result.

An important part of the wind analysis algorithm is the use ofa background fIeld. In the Barnes
interpolation passes described above, the observations are not directly interpolated together. The
deviation ofeach observation from the background fIeld is computed and the deviations are interpo­
lated together. The resulting fIeld is then added to the background to produce the fmal result. When
there are no observations, the background fIeld becomes the fInal result. Additionally, the back­
ground is used for data quality control by disregarding observations that deviate too much from the
background. MAPS data is used for the 10 km background, while the output of the 10 km analysis
is used as the background for the 2 km wind analysis.

In the spring of '92 Lincoln Laboratory and FSL jointly designed, and FSL implemented, an
upgrade to the wind package so that it utilizes Doppler infonnation from multiple radars [Cole, etai.,
1993]. A detailed explanation of the "multi-single Doppler" algorithm is beyond the scope of this
report, but it basically works as follows. Ifa grid point has two radar observations, then the fIrst radar
observation is handled essentially as before by comparing it against the fIrst pass wind fIeld and
deriving a synthetic 2-D observation. The second observation is then handled by comparing it
against the synthetic observation derived from the fIrst observation. The algorithm is asymmetric in
the manner in which it treats the two radars; the second radar is more important. If the radar beams
are orthogonal to each other, then the method is essentially the same as standard dual Doppler. If the
radar beams are parallel to each other, then the second radar observation overwrites the fIrst radar
observation. Thus, the most trusted radar near the airport - FL-2C - was used as the second radar,
while the Melbourne NEXRADIWSR-88D was used as the fIrst radar.

2.2.3. Balance Package

The balance package is applied to the outputofthe wind package. The balancepackage also uses
pressure infonnation from MAPS and vertical wind infonnation from various other LAPS modules.
The balance package modifIed the pressure fIeld and the wind fIeld by using them as mutual con­
straints upon one another. The package used an iterative adjustment scheme to make the pressure and
wind fIelds be consistent with each other in accordance with meteorological fonnulas that describe
the wind/pressure relationship. There was no attempt by Lincoln Laboratory to modify the balance
package algorithm.
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The balance package counts on having no air escaping out of its top and bottom boundaries, so
the vertical domain of the balance package needs to extend from the bottom of the atmosphere (the
ground) to nearly the top of the atmosphere. The vertical domain of the wind package must match
that of the balance package so the wind package must also use a vertical domain that extends almost
to the top of the atmosphere.

2.3. Real-Time Driver/Scheduler

The driver is the module which controls the operation of the T-LAPS system. It is the timekeep­
er of the system and it schedules and coordinates the operations of the other modules. The timing
requirements of the analysis module were relatively simple and the execution times of the individual
analysis programs were relatively stable. The data ingest programs, however, had somewhat more
complex timing requirements and much less predictable execution times. The design of the driver
was simplified by exploiting the fact that the driver program and all the components of the analysis
module were run on a single machine. This is not a very good model for future T-LAPS systems,
but it was useful in '92 for reducing the level of effort needed to construct a viable system. The so­
phistication that is in the driver is devoted to flexibly adapting to missing or late data sources.

The communication between T-LAPS modules is primarily file-based, an arrangement that
was inherited from the LAPS software. The driver provides the "glue" between the various modules
by copying data files between the working directories used by the different modules and sub-mod­
ules. As a part of this functionality, the driver also arranges for important data files to be copied into
special archive directories.

2.4. Displays

The displays were used to depict the results of the T-LAPS analysis. The real-time displays
depicted the horizontal winds over the area of the T-LAPS domain in central Florida. Radar reflec­
tivity and radial velocity information were also shown on these displays. The quantity ofinformation
depicted depended on the location of the display. Three displays were used during the demonstration
period.

The primary display was located at the FL-2C site. At that installation, both the horizontal
winds and the resampled radar radial velocity data were depicted for the surface to approximately
18,000 feet above ground level. The wind fields were stratified into 13 levels by the analysis pro­
grams. This display was used for monitoring T-LAPS performance and for demonstrations.

Secondary displays were located at Lincoln Laboratory in Lexington, Massachusetts and at the
National Weather Service (NWS) office in Melbourne, Florida. Due to bandwidth constraints, only
5 levels of wind data were available for display at these locations. The Lexington display was used
for monitoring both the weather situation and the performance of T-LAPS during real time. The
NWS Melbourne display was used for demonstration purposes. For the secondary displays, only the
surface level ofradar radial velocity information was depicted. For all displays, only the surface lev­
el of radar reflectivity information was shown. Analysis results for each time interval were trans­
mitted to the Lexington and Melbourne displays via dedicated telecommunications links.

Figure 5 illustrates the T-LAPS display. The wind speed and direction at each grid point are
represented by an arrow. The reference arrow in the upper right comer provides a scale for the ar­
rows. Radar reflectivity is shown using a simple gray-scale representation. The display shows a sea
breeze front moving in from the east coast.
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3. DATA INGEST

T-LAPS used five different data sources during the '92 demonstration. MAPS data, ACARS
data, and smface station data were brought to the FL-2C site via telephone lines and then further
processed into thefonnats used the byanalysis programs. Radardata and llWAS data were already
available at site and were ingested using standard Lincoln software.

3.1. MAPS Data

The MesoscaleAnalysis and Prediction System (MAPS), also developed at FSL, is a national­
scale meteorolo.gical data analysis system [Benjamin, et al., 1991; Schlatter, 1991]. MAPS is apro­
totype for the fuIme Aviation Gridded Forecast System (AGFS) [Sherretz, 1991; Kraus, 1993],
which will provideche background data for an operational ITWS. The domain ofMAPS is the entire
continental United States. It operates on an 81 by 62 grid with 25 vertical layers. Each grid point
represents a nomilllaJ. 60 km by 60 km area, although the actual area of the grid points varies some­
what due to the polar stereographic coordinate system used by MAPS.

MAPS opet:ates on a three-hour time cycle. MAPS is keyed to Universal TIDle, so results are
produced forthenmes O:OOZ, 3:00Z, 6:00Z, etc. It generates both a current analysis and three-and
six-hour forecasrts. The timeliness ofMAPS generation is an important issue. The MAPS computa­
tion is delayed byFSL about 90 minutes in order to allow for all the input data to come in. Once the
calculation is stmred it takes about 30 minutes to generate the current analysis and about 30 minutes
more for each oftbethree-hour forecast and six-hourforecast. Thus, the MAPS analysis is notready
until about two hours after the effective time, while the three-hour forecast is ready about 30 minutes
before the effective time. Figure 6 illustrates this process for the example cycle times of 12Z and
15Z

MAPS is available in three-hour increments, but the partofT-LAPS that uses MAPS dataoper­
ates on a 30 minute cycle. To get around this difficulty, a synthetic MAPS data set is constructed at
the desired timeby interpolatingbetween two MAPS data sets. The MAPS analysis arrives well after
it is first needed, so the 3 hour and 6 hour forecasts are used. Thus to construct a synthetic MAPS
analysis for the time 16:00Z, the 12:00Z 3 hour forecast and the 12:00Z 6 hour forecast would be
interpolated. The 15:00Zcurrent analysis and the 15:00Z 3 hour forecast wouldcover the same time
period and woukl also suffice to construct a synthetic 16:ooZ dataset, but those datasets would be
not available in time for T-LAPS to use them in real-time. Figure 7 illustrates this choice; MAPS
data from either the 12Z or 15Z cycle could be used to interpolate to 16Z, but Figure 6 shows that
the 15Z data is not available until later.

MAPS data was obtained from FSL in Boulder, Colorado via standard telephone lines. In its
original form, MAPS has a different product set and a different vertical coordinate system than does
LAPS or T-LAPS. The FSL LAPS group performed the necessary translations and made the results
available for dial-up transfer. MAPS subsets (6 by 6 horizontal grid points by 21 vertical layers) that
covered the centralFlorida region were downloaded. FSL extracted the central Florida subset from
full MAPS and encoded the data in LAPS format. There were two dial-ups every three hours: once
to get the three-bour forecast fIle and once to get the six-hour forecast fIle. Two separate dial-ups
were used because the three-hour forecast flie was often needed before the six-hour forecast fIle
was available. TIte actual time the files were ready was somewhat variable, depending on the state
of the FSL computers. The dial-up software had to be configured to retry multiple times in case the
files were not ready on the first attempt.
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r- 12Z current ana.lysis r- 15Z current analysis
I I
I r- 12Z 3 hour forecast I r- 15Z 3 hour fcst
I I
I I I I
I I r- 12Z 6 hour fcst I I r- 15Z 6 hour fcst
I I I I
I I I I I I
I I I I I I
I I I I I I

j I I I I I I I
12 13 14 15 16 17 18 19

Figure 6. Example ofMAPS availability times.

r- 12Z current analysis r- 15Z current analysis
I I
I li-12Z 3 hour forecast r- 15Z 3 hour festI
I I
I Ir- 12Z 6 hour fest
I II
I II II
I II \I
I II II
I I I I I I I I

12 13 14 15 16 17 18 19

Figure 7. Example ofMAPS valid times.

The communications protocol used was Kennit. The files were about 200k bytes in size and
could be downloaded in about 2 minutes each. These files were formatted in a space-inefficientman­
ner, and so the data compression built into the Kennit protocol was able to effectively double the
transfer rate. Kermit worked very well. There were almost no problems with dropped connections
or garbled data. There were problems, however, when the requested MAPS file was not available
at FSL when the Kermit connection was established. In that situation, Kennit would abort without
going through its normal logout procedure. This in tum, would "freeze" the software at the FSL end
for about two hours until the FSL software automatically reinitialized itself. The problem was finally
solved by making a small modification to the Kermit software so that it would go through its normal
logout procedure even when a requested file was not found. After this problem was solved, the only
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times that MAPS data was not successfully downloaded were when FSL did not generate our MAPS
files. This occurred only when the FSL computers were down (e.g., power failure at FSL or monthly
maintenance) or when FSL was extremely late in generating the MAPS files.

3.2. Surface Station Data

Surface station data were obtained by telephone from a NASA facility at Cape Canaveral. The
NASA facility has a data feed that brought them surface station data for the entire continental United
States. For T-LAPS use, NASA pulled out a central Florida subset ofthe data. There were 19 surface
stations in or near the T-LAPS domain. Most ofthe stations were SAOs, which is a system ofmanual
observations with reports roughly every hour. Two of the stations were Automated Weather Observ­
ing Stations (AWOS) [NOAA-NWS, 1979], which report results about every 20 minutes.

In Figure 8, the solid dots show the locations of the surface stations. Note that some of the sta­
tions were actually outside of the T-LAPS domain. Station data from stations outside the domain
were incorporated into the wind analysis by adjusting the station location information. The hollow
diamonds show the adjusted locations that were supplied to the wind analysis in place of the real
locations outside the domain. The locations of four stations in the Tampa Bay area to the west and
one station to the north were adjusted this way.

NASA was dialed every 15 minutes to get the latest data; however, most of the surface stations
reported results only once an hour. The data came over the line as simple text which was captured
in a log file. Utilities were written to reformat it into the format required by the wind analysis pro­
gram. The connection speed was only 2400 baud, but the size of the data was quite small - a few
thousand characters of text - so transfer time was only one or two minutes.

Occasionally there were problems getting through because of third parties accessing the same
modem at NASA. Because of internal constraints, NASA was unable to install an extra modem. To
deal with this problem, the modem software was designed to simply wait a few minutes and re-dial.
This generally worked well, but sometimes the data would not be available in time for the next
T-LAPS cycle.

3.3. ACARS Data

The ACARS is a system for downlinking reports of meteorological information such as wind
speed and direction from commercial aircraft. What was actually used was a subset of the ACARS
data known as MDCRS [Dey, et al., 1991; Martin, et al., 1993]. A problem with ACARS data is that
there is built-in latency in the system. The ACARS-equipped aircraft take measurements every 7.5
minutes, but the reports are bundled into groups ofsix and transmitted every 45 minutes. This means
that the latency of any given ACARS report could be anywhere from 0 to 38 minutes. During the
period August 17 to August 31, United Airlines had its ACARS-equipped planes provide reports
every 2000 feet ofelevation while either ascending from or descending to the Orlando Airport. This
practice had the double benefit of providing vertical soundings near the allport and reducing data
latency.

ACARS data was obtained from the commercial service provider, ARINC. It was a telephone
connection using a Trellis modem and X.25 protocol software. A call was placed every 15 minutes
to retrieve data. A data window of 90 minutes was specified, meaning that ACARS reports up to 90
minutes old were downloaded. We were able to re-use software that already existed at Lincoln to
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Figure 8. Surface station locations.

control the modem and request our data. The data came in the Binary Universal Form for the Repre­
sentation of Meteorological Data (BUFR) format, so we had to write a utility to translate BUFR to
the simple text-based format that T-LAPS used for pilot reports. The ACARS ingest was quite reli­
able.

3.4. LLWAS Data

The LLWAS [Wilson and Grarnzow, 1991] is a network ofground-based anemometers that are
clustered around the runways of an airport. From the perspective ofT-LAPS, LLWAS data comes
at a very high update rate (10 seconds) and is quite dense spatially. Figure 9 shows how the LLWAS
stations are arranged around the Orlando Airport runways.
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Figure 9. Orlando runways and LLWAS stations.

LLWAS data were ingested using facilities already present at the FL-2C site. Data were made
available to application programs via the group standard server-client communications package.
Time-averaged LLWAS data from the 15 LLWAS stations in and around the Orlando airport were
collected and put in aT-LAPS compatible file format by the LLWAS data input program. The wind
analysis program cannot make effective use ofobservations that map to the same grid point and all
the LLWAS stations map to the same 10 km grid point. Therefore, for the 10 km wind analysis, data
from all the LLWAS stations were averaged to a single value and written out as a single synthetic
station. The individual LLWAS station data were used by the 2 km wind analysis.

The LLWAS data input program updated the data files every 10 seconds, keeping up with the
inherent update rate ofLLWAS. Every five minutes, when the T-LAPS wind analysis was run, the
latest LLWAS data file was combined with the latest surface station data into a single ground station
data file that could be read by the wind analysis. The LLWAS data ingest was very reliable. The
LLWAS had to be turned on before T-LAPS started; otherwise the LLWAS data input program
would time out and abort. A future enhancement is to modify the LLWAS data input program to keep
on trying instead of timing out; this will ensure that T-LAPS will get LLWAS data whenever it is
available.

3.5. Radar Data

Radar data were ingested using facilities already present at the FL-2C site. Radar data were
broadcast into a special Ethernet - the "base-data" Ethernet - dedicated to this purpose. Any ma­
chine that needed to read raw radar data had to be connected to this special Ethernet. A second Ether-
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net was present at site for more routine communication between machines. A third Ethernet was
installed to handle NEXRAD data. Lincoln has an extensive library of software to assist in the task
of reading this data. One package - server-client- pulls the raw data off the Ethernet. A second soft­
ware package assembles the raw data into radials and further assembles the radials into tilts. Applica­
tion programs then deal with these tilts of data and do not have to worry about the low-level details
of accessing the data.

Weather radar data comes from the radar in a polar coordinate system. Every radar data value,
sometimes called a range gate, is indexed by azimuth angle, elevation angle, and range from the ra­
dar. A single sweep of the radar at a constant elevation angle is called a tilt. Weather radars usually
iterate over a fIxed pattern of tilts at various elevation angles. A collection of all the tilts in a single
scanning pattern is known as a volume scan. To be usable by the wind analysis this data must be
re-mapped from its original polar coordinate system into the gridded Cartesian coordinate system
used by T-LAPS. This process is known as resampling.

The T-LAPS update rate of five minutes was chosen because that is the approximate time it
takes for a TDWR to complete a full volume scan. However, the TDWR scanning pattern canchange
and the exact time for a volume scan varies somewhat. Moreover, the NEXRAD has its own scanning
patterns with timings that differ from the TDWR's. Since T-LAPS runs on its own rigid five minute
cycle, there are synchronization problems.

One approach would have been to write a resampled radar fIle out every time a radar finished
a complete volume scan and have the Analysis module pick the most recent radar file every time
it ran. This is the strategy used in LAPS as run by FSL. This approach has the advantage ofsimplicity,
but it has the disadvantage of the radar data used by T-LAPS possibly being several minutes old.
Since exploiting the radar's rapid update rate is part of the rationale for T-LAPS, it was decided that
this was unacceptable. A better solution was made possible by the fact that radar data is not made
up of indivisible volume scans; rather, it is made up of a continuous sequence of tilts. Moreover, the
division between volume scans is fairly arbitrary and there was no inherent reason that a selection
of tilts that crossed a volume scan boundary could not be used. Therefore, the approach used by
T-LAPS was to construct a synthetic volume scan from the most recent tilts. This ensures that
T-LAPS is using the most up-to-date radar data possible.

The resampler was split into two parts. The fIrst part was the tilt resampler. This was a totally
data-driven piece of software that resampled the tilts as they were read off the base-data Ethernet.
This was similar to how other group applications worked, so this was the part of the resampler that
was built out of pre-existing group software. The polar tilts were resampled into 2-D grids that
match the grids used by the 2 km and 10 km analysis programs. The resulting data was then written
out, each tilt in its own file, to a resampler working directory. The second part of the resampler was
the volume resampler. The volume resampler was activated every five minutes under the control of
the driver. When the volume resampler was activated, it looked in the resampler working directory
for the most recent set of tilt files. The contents of the tilt files were then combined vertically and
the final 3-D radar file was written out in T-LAPS sparse gridded format.

The tilt resampler was based on a median filter. ForT-LAPS it was thought quite important that
the radar data be relatively free of contamination from noise and other artifacts, and median fIlters
are good at removing outliers. A I km by 1 km median filter was applied to the radar tilt to produce
a smoothed tilt. It is simpler to use a median filter that has a fIxed width in radials, but the narrowing
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ofradials near the radar means that the spatial width of the filter would be very small near the radar.
Instead, a more complex filter that used a variable number of radials in order to maintain a constant
spatial filter width was used. With median filters, computation speed can be an important consider­
ation. The sorting operation used in a median filter can be extremely expensive if done naively. To
address this problem, a sliding window approach was used which takes advantage of the fact that
the set of points to be sorted does not change very much between adjacent radar range gates. The
median filter also allowed for the filling in of some missing values if there were a sufficient number
of neighboring points around the missing value. The mapping to a 2-D grid was done by a simple
lookup algorithm. For each grid point in the 2-D grid, the value of the closest point in the smoothed
polar tilt was used as the value of the grid point. This lookup process was repeated twice: once for
the 2 km grid and once for the 10 km grid.

The main work of the resampler was done by the tilt resampler. However, the T-LAPS Analysis
module expected its radar data to be in the form ofa single 3-D grid, with the vertical axis in pressure
coordinates. The function of the volume resampler was to combine the individual tilt files into a
single 3-D grid. When the volume resampler was activated by the driver, it picked out the set ofmost
recent tilts. Among the tilts with the same elevation angle, the most recent one was kept and the rest
were discarded. All tilts older than 10 minutes were discarded. For each grid point in a tilt, the height
could be calculated easily from the elevation angle and the range to the radar. After the height in
meters was computed, it was converted to a height in pressure coordinates - millibars - using stan­
dard height/pressure conversion equations. This introduced a slight inaccuracy into the calculations
because the actual pressure levels as represented by the MAPS files would not necessarily exactly
match the standard height/pressure conversion. However, the difference was small and not consid­
ered important. In this manner, all the points in the working set of tilts were projected into 3-D space.
Limited vertical extrapolation and interpolation were used to obtain values at the T-LAPS vertical
coordinate levels.

3.5.1. TDWR

Facilities for ingesting TDWR datahad already been in place at the Kissimmee FL-2C site since
the site was established in 1990. Nothing needed to be added for the T-LAPS project other than the
T-LAPS computers. The TDWR data came to T-LAPS with velocity unfolding, range obscuration
editing, and point-target editing already done using standard TDWR algorithms. The data was not
edited for signal to noise ratio (SIN), but a SIN product was available, so low-signal data points were
edited out using a SIN threshold of 0 db.

FL-2C is sited near the Orlando airport - the center of the T-LAPS domain - and the size of
the T-LAPS domain was chosen with the TDWR scanning range in mind, so the T-LAPS domain
is a good match with the scanning area of FL-2C. Thus, the resampler needed to process all of each
TDWR tilt, putting quite a strain on the available computer resources. For both algorithmic reasons
and to provide extra time to resample NEXRAD data, TDWR tilts over 45 degrees elevation were
not resampled. Due to computer capacity restrictions, reflectivity was resampled only on the low­
angle tilts. Reflectivity information was not used by the analysis system, so the low-angle reflectiv­
ity tilts were resampled solely for display purposes. Figure 10 shows the relationship between
FL-2C, the Orlando airport, and the rest of the T-LAPS domain. The Orlando airport runways are
represented by the short vertical lines in the center of the figure. The location of FL-2C is shown
by the dot just south of the airport.
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Figure 10. T-LAPS domain showing radars.

3.5.2. NEXRAD

NEXRAD/WSR-88D data was brought into the FL-2C site using a Tl leased line from the
NEXRAD site in Melbourne, Florida. This was a new installation for the summerof 1992. To distrib­
ute the NEXRAD data to the machines at the site, a second base-data Ethernet - the third Ethernet
overall - was installed at site. Application software accessed NEXRAD data in exactly the same
manner as TDWR data, except that the relevant machine had to be connected to the new Ethernet.

As with the lDWR, tilts ofelevation higher than 45 degrees were discarded and the reflectivity
product was resampled only for low-angle tilts. The NEXRAD data were edited for range obscura­
tion, but not for velocity unfolding. The large NEXRAD Nyquist interval (26 mls) and the scarcity
ofsevere weather during the summertime in Florida (hurricane Andrew notwithstanding) meant that
velocity folding was rarely a problem. NEXRAD data was edited for SIN by the NEXRAD comput-
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er. The exact value of the threshold is a variable site parameter. The NEXRAD data does not come
with a SIN product, so it was impossible to re-edit using a higher SIN threshold.

The NEXRAD is sited near the eastern coast of Florida, to the south of Orlando. It is is a few
kilometers off the eastern edge of the 2 kIn domain but is within the 10 kIn domain. Its location is
shown in Figure 10 by the dot just outside the eastern edge of the 2 kIn domain. The NEXRAD has
a scanning range of 230 kIn for velocity and 460 kIn for reflectivity. Therefore, the total NEXRAD
scanning area is much larger than either T-LAPS domain. For reasons of speed, it was important
to avoid median filtering an entire NEXRAD tilt. The NEXRAD tilt resampler is designed to median
filter only the portion of the tilt that falls within the T-LAPS domain. Because of this screening, and
because the NEXRAD range gate resolution is coarser than IDWR, the NEXRAD resampler was
much faster than the TDWR resampler. This was important because the TDWR resampler alone took
up much of the capacity of the resampling machine.
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4. MAIN ANALYSIS PROGRAMS

The two sub-components of the Analysis Module, the wind analysis package and the balance
package, were both built out of code that was originally written at FSL. This section will describe
the porting process of moving the code from the FSL system to the Lincoln Laboratory computing
environment and document the changes that were made to the original FSL code. The changes can
be classified into two categories. The first category is the porting changes needed to get the FSL
software to work in the Lincoln computer environment. The second category is the algorithm
changes needed to make the system work better in the T-LAPS context.

4.1. Porting the FSL Software.

The FSL computing environment that was used to develop the LAPS code was based on VAX!
VMS computer systems. The source code was written in Fortran 77, with heavy use of VMS exten­
sions. Rewriting the code to conform with the Fortran 77 standard would have been a very large task.
In addition to the Fortran extensions, the code made assumptions about the surrounding VMS envi­
ronment. File names of both data files and "include" files used VMS syntax. VMS library routines
and VMS system calls were used for some aspects offile handling, and VMS system calls were used
to keep track of time stamps. The difficulty of the job was somewhat alleviated by the fact that the
code was a modest 30,000 lines long (including comments) and the really essential code was only
about 15,000 lines long.

The target computing environment was a network of Sun workstations running SunOS 4.1.1.
SunOS is adescendent ofBerkeley Unix. The Suns were equipped with a Fortran 77 compiler which
- fortunately - accepted many of the VMS Fortran extensions. However, none of the VMS system
calls were supported, and Unix pathname syntax is quite different from VMS pathname syntax.
SunOS comes with the usual Unix suite of utilities for manipulating text files; some of these tools
were used to semi-automate the porting process.

A complicating factor of the porting task was that the code was a moving target. While the port­
ing task was underway, FSL was adding upgrades to the code, especially to the wind package. Sched­
uling pressure and the fact that Lincoln Laboratory was actively involved in designing and testing
some of the upgrades precluded the option ofwaiting until FSL was finished with their changes and
porting the code once. Therefore, the porting procedure had to be carefully designed to be repeatable
so that new changes to the code could be brought across with little effort.

The most important part of the strategy was to make portability changes to the LAPS software
and then send these changes back to FSL for them to incorporate in their code base. As this process
continued, the code set being maintained by Lincoln Laboratory and FSL grew more similar to one
another, which eased the task of integrating new code. A key element of this strategy was the active
cooperation ofFSL. FSL was always very quick to respond and was usually quite receptive to Lin­
coln's request for code changes. FSL had their own long-range plans to move the LAPS code to
Unix, so they also benefited from this cooperative effort.

A semi-automatedprocedure was worked out for handling upgrades to the LAPS code. The first
step was to save unmodified copies of the original FSL source code in a special directory. After edit­
ing the files in the regular working directory, the Unix dif f utility was used to automatically record
all differences between the new Lincoln Laboratory version and the original FSL version and save
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them to a "diff' file. This had a useful bookkeeping function because the set of "diff" files made up
a complete record of all departures from the FSL code. When a new version of a file was received
from FSL, the Unix utility patch was used to quickly re-insert the Lincoln Laboratory changes
as recorded in the "diff' file back into the FSL file to produce a new Lincoln version. As long as
the Lincoln changes and the FSL changes were independent, all was well. However, if Lincoln and
FSL had modified the same lines of code in a file, a conflict would arise that patch would not be
able to resolve automatically. In these cases, the conflict was resolved either manually or with the
help of the Unix Revision Control System (RCS) program, merge.

4.2. Specific Porting Changes

4.2.1. Pathnames

The most pervasive problem was the difference between VMS pathnames and UNIX path­
names. The pathnames differed due to differences in pathname syntax between the two operating
systems as well as the different organization of the FSL and Lincoln Laboratory systems. The prob­
lem could be divided into two categories. The first was the problem of the "include" pathnames em­
bedded in the source code. The second involved the pathnames that the system used when reading
or writing data files.

Solving the problem of the "include" pathnames was the easier of the two problems. Because
of the inherent nature of"include" files, the names of files were static and there was no manipulation
of the files at run time. A simple 5 ed script was used to remove all VMS directory information from
the VMS pathnames that were in the code. The pathnames that were left were now valid UNIX path­
names, albeit without any directory information. Since the ported FSL code was placed in only in
a small number of source directories it was a simple matter to copy the proper "include" files into
the directories where they were needed.

A much more difficult problem was dealing with the pathnames that the system used when read­
ing or writing data files. The procedure described above was a partial solution, but it left us with a
system able to read and write data files only out of the current working directory. Moreover, there
was still some FSL code in the system that manipulated pathnames based on VMS rules. It was con­
sidered desirable to be able to specify the data directories at run time from the command line, so
additional functionality had to be added. FSL already had a routine that returned a directory based
on a file name's type extension - geCdirectory - so that, for instance, the radar data files could be
put in a different directory from the surface station files or the ACARS files. This was very useful
to FSL because of the way their system was organized, but the manner in which the directory names
were embedded directly in the code made the routine too inflexible for the Lincoln Laboratory com­
puting environment. It was fairly simple to re-write get_directory so that it used directories speci­
fied on the command line. However, geCdirectory had not been used uniformly in the FSL code
- some sections of the system relied on hardcoded directory names - and it was quite a bit of work
to made sure that get_directory was being used in all possible places. Additionally, some routines
that manipulated pathnames had to be carefully re-written so that they worked with either Unix or
VMS pathname syntax. For example, a routine to separate out the directory component of a path­
name had to look for both the "]" character for VMS and the "/" character for Unix. Of course, com­
pletely separate routines could have been written, but it was desirable to keep the Unix version and
VMS version as similar as possible.
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4.2.2. Logical vs. Integer Variables

The most difficult problems were caused by confusion between logical variables and integer
variables. Many Fortran dialects are fairly permissive about assigning logical values to integervari­
ables, but the practice is non-standard and not portable between machines. The exact value of some
expressions depends on the details of the machine representation oflogical values. Testing exposed
several coding practices that apparently worked on a VAX/VMS system but did not work on Suns.
For example, the following code compiles and runs without error messages or warning messages,
but it prints "A" and "B" when run on a Sun. This is not an error on Sun's part because the use of
an integer variable in a logical expression is not standard Fortran.

integer i
i = 1
if (.not. i) print *, 'A'
if (i) print *, 'B'

These problems were difficult to fmd initially, because of the lack ofany obvious indicator that
anything was amiss. The FSL code had a consistent pattern ofapplying logical tests to integer status
variables. After the problem was identified, it was a simple, although rather tedious, task to search
all the FSL code for expressions of this nature.

4.2.3. VMS Time Representation

Both Unix and VMS have a method of representing time as a single integer that is the number
of seconds since a fixed reference date. Unfortunately, Unix uses January 1, 1970 as its reference
date, while VMS uses January 1, 1960 as its reference date. To complicate matters, the FSL code
used VMS library routines to help manipulate times and to generate ASCII representations of times.
Unix library routines could not be used as replacements partially because ofthe reference time prob­
lem and partially because the Unix library routines were not portable to the VMS system. To deal
with this problem, a set of portable Fortran routines were developed that performed all the needed
time/date manipulations without any system calls. The work was facilitated by adapting routines that
had already been written for the FSL Unix version of the balance package (see section 4.4).

4.3. Wind Analysis Package

While the porting project was underway, FSL modified the wind package to implement the mul­
ti-single Doppler algorithm described briefly in section 2.2.1. That was the biggest single change,
but there were quite a few smaller changes that had to be made in order to adapt the LAPS wind
analysis code to the requirements of the T-LAPS system. The real difference between the 2 km wind
analysis and its LAPS predecessor is the central role ofradar data in the T-LAPS version. The really
obvious changes to the software - the smaller domain size, the finer resolution, and the faster update
rate - are all reflections of characteristics of the main TDWR data source. Moreover, there were a
number of smaller changes made to the software to adapt it to the demands of the T-LAPS environ­
ment. Some changes had to be made simply to adapt the system to the gigantic number of observa­
tions that a weather radar can produce.

4.3.1. Processing of Radar Data

There were several relatively minor changes regarding the handling of radar data. Data from
the TDWR comes to T-LAPS already velocity unfolded, but this is not true of the data from the
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Mile-High radar - FSL's source of radar data. NEXRAD did not come to T-LAPS unfolded, but
as mentioned previously, velocity folding was rarely a problem. Thus, T-LAPS was able to be less
strict about radar data quality control than was the original FSL system.

The original FSL code applied a quality control check on the radar observations by comparing
them against the background field. Where there was a radar observation, the radial component of
the background field with respect to the radar was computed. If the difference was greater than a
threshold, the the radar observation was discarded. The original FSL threshold was 12 mls. In
T-LAPS '92 the threshold was increased to 20 mls.

The original FSL code attempted to velocity unfold the Doppler data by comparing it against
vertical profiler data. If there was no profiler data, then all the radar data would be thrown out. As
T-LAPS was not using any profiler data, this obviously had to be changed so that radar data could
be used. The change was not difficult because there was a pre--existing parameter in the code that
disabled the profiler dependency. FSL changed the '93 version of LAPS so that the output of the
first Barnes pass is used for velocity unfolding instead of profiler data. This is much more general
because the first Barnes pass combines all vector observations, including profiler data if available,
instead of just profiler data alone.

Due to the computational demands of interpolating large numbers of radar observations, the
LAPS wind analysis adopts a strategy of deliberately throwing some of the radar data away. When
there is a large amount of radar data on a level, the wind analysis throws out three out of every four
radar observations. Special care is taken to retain isolated observations. Ifthere were only a few radar
observations on the level, then the radar observations were not thinned out. The original FSL thresh­
old was 150 radar observations. In T-LAPS the threshold was raised to 400. An important conse­
quence of the increased limit was that radar data was never discarded in the 19 by 19 10kIn T-LAPS
wind analysis because there were only 361 grid points per level.

4.3.2. Barnes Interpolation

In the original 61 by 61 10 km LAPS wind analysis, the output of a TDWR would fill only a
relatively small portion ofthe overall grid. This still could be several hundred observations per layer,
which was much larger than the number of observations from other data sources. In the 19 by 19
10 km T-LAPS wind analysis, the picture was similar; there were never more than a few hundred
radar observations per layer. At the 2 kIn grid scale, the picture changes dramatically. By design,
the radar data had the potential (depending on the amount of significant weather) to fill almost the
entire grid with observations. The maximum number ofobservations per layer rose to several thou­
sand. Even after the radar data were thinned, there could be nearly a thousand observations per layer.
The maximum number of radar observations from a single radar in one volume scan was observed
to be in excess of twenty thousand. Due to this load, the Barnes interpolation had to be reworked
to make it more computationally efficient. All the changes to the Barnes interpolation described be­
low were adopted by FSL.

The original FSL implementation ofBarnes interpolation placed all the observations for all lay­
ers into a single temporary array that could hold up to five thousand observations. If the five thou­
sand limit was exceeded, the interpolation routine would abort and the fmal result would be a field
of zeros. The Barnes routine was changed to work on a purely layer-by-layer basis. The temporary
array in question now only had to hold the observations for a single layer at a time. The new array
size was set at four thousand so that it would be guaranteed to be larger than 61 x 61, the maximum
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possible number of observations per layer (multiple observations per grid point are not allowed).
An additional benefit of this change to the Barnes routine is that the code can now be run more effi­
ciently on a parallel computer.

The execution speed of the wind analysis was heavily dependent on the speed of the Barnes in­
terpolation. The speed of the Barnes interpolation was roughly proportional to the total number of
observations. During average conditions with little weather and few radar observations, the Barnes
interpolation was very fast. When there was lots of significant weather in the Orlando area and thus
many radar observations, the speed of the Barnes interpolation slowed dramatically to the point
where the time to calculate the 2 krn wind analysis exceeded· the five-minute cycle time. Two
changes were made to the Barnes routine to speed it up. Initially, the u and v components of the wind
field were being computed separately. This helped make the Barnes routine more general- it could
be used to interpolate a scalar field such as pressure or temperature - but it wasted time when calcu­
lating winds because the calculation of internal interpolation weights was always identical for u and
v. Whenever there was a u observation, there was always a v observation, and vice versa. Thus, for
any target grid point, the weights associated with interpolating a u value were always identical to
the weights associated with interpolating a v value. The code was changed so that the u and v passes
were combined into a single pass with a single interpolation weights calculation. This change made
Barnes take about 70 percent of the time it did previously for cases with large numbers of observa­
tions. A second change was to eliminate a call to the Fortran intrinsic function nint in the inner
loop ofthe code. The compiler was not able to fully translate the call into direct machine instructions,
so there was a function call to support the subroutine in the inner loop. Additionally, the nint rou­
tine had more generality than was needed - it was not able to take advantage of the fact that, given
the way the call was used in the interpolation routine, its argument was always positive. The nint
call was replaced with an expression that used Fortran implicit conversion rules. This was compiled
into a single machine truncate instruction. All told, the speed of the Barnes interpolation routine was
more than doubled and the overall speed of the wind analysis was approximately doubled for high­
load cases.

There was another change to the Barnes interpolation routine that was unrelated to the speed
enhancements described above. As described later in Section 5, the driver took over the role of inter­
polating MAPS data. A quirk of the Barnes code as originally written was that it used some data
structures that were tied to the exact details of how MAPS was handled by the wind analysis. This
meant that the Barnes interpolation was inadvertently changed whenever the treatment of MAPS
data changed. This was obviously undesirable, so the Barnes interpolation code was modified so that
its data structures were independent of any MAPS-related data structures.

4.3.3. Miscellaneous Changes

The original FSL winds package discarded ACARS observations that were older than 60 min­
utes. The size of the T-LAPS domain (180 krn by 180 krn) was considerably smaller than the size
of the Denver LAPS domain (600 km by 600 km), so T-LAPS received fewer ACARS reports than
did LAPS. Since ACARS observations were the only observations that provided data above where
the radars could see, the time window was extended to 90 minutes for T-LAPS. Additionally, the
time windowing functionality was moved out of the wind analysis code and moved into the driver.
The driver also handled the time windowing for some of the other data sources, such as surface sta­
tions, so the change centralized the time windowing functionality.
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The original FSL winds package calculated the "time tendencies" of the MAPS data by compar­
ing the two MAPS datasets nearest in time to the current time and computing the rate ofchange over
time. The resulting MAPS time tendencies were then used to adjust the ACARS reports, because
the ACARS reports could be relatively old. The structure of the T-LAPS system, with the driver
doing all the manipulation of the MAPS files, made it somewhat inconvenient to implement this
functionality in T-LAPS. The adjusting of ACARS reports was thought to be a somewhat exper­
imental technique that was not necessary for T-LAPS '92. The code that attempted to read in MAPS
files to compute the time tendency field was disabled and the time tendency field was set to zero.
This had the effect of no longer adjusting the ACARS observations without requiring large code
changes.

After the horizontal u,v winds were computed, the original FSL winds package then attempted
to compute a vertical motion field. This was done by estimating the convergence/divergence in the
horizontal winds and adding in a terrain forcing component. T-LAPS did not make use of the verti­
cal motion product and writing it out took a large amount of space in the winds output file. The u,
the v, and the w (vertical motion) products all took up an equal amount on space, so omitting w made
the wind output files 33 percent smaller. This change also saved a small amount of compute time,
although that was not a major consideration.

After the primary wind analysis was performed, several secondary wind products were calcu­
lated by the original FSL winds package. Radar reflectivity information was read in and used to
create several products. A map of the heights of reflectivity maximums was created. The winds be­
tween the surface and 300 mb were averaged to create a mean winds product. A simple storm track­
ing algorithm was then used to adjust the mean winds. A map of maximum reflectivity was created
and then the reflectivities were advected using mean winds to produce a forecast. None of these out­
puts were important for T-LAPS '92, so all of these calculations were deleted from the T-LAPS
version of the wind package.

4.4. Balance Package

When the T-LAPS project began, FSL had already ported an older version of their balance
package to a Stardent running Unix. The Stardent version of the balance package proved to be rela­
tively easy to port to our target Suns. It was a self-contained package that came complete with its
own set of utility routines. The most up-to-date version of the balance package, however, was writ­
ten for VMS and had not been ported to the Stardent or any other Unix machines. Fortunately, the
code that implemented the balance package core algorithm was only a few thousand lines of code
long and it contained relatively few VMS dependencies. The port of the new version to the target
Suns was not difficult because the new code that implemented the balance algorithm was successful­
ly mated with the utility package that had been provided with the Stardent version. It also helped
that the FSL balance package underwent no changes in the time period preceding the 1992 deploy­
ment.

No changes were made to the balance package to add any important functionality. There were
a number ofsmall changes made to adapt the system to the T-LAPS environment. Most importantly,
the code assumed a 61 by 61 grid, while the 10 km T-LAPS analysis used a 19 by 19 grid. It was
also desirable to be able to continue to use the code in 61 by 61 mode in order to compare outputs
with FSL. This was not terribly difficult, but the code had not originally been written to support mul­
tiple grid dimensions simultaneously. A few minor changes were made to adapt the system to run-
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ning on a 30-minute cycle instead of a one-hour cycle. The code also had to be altered to adapt to
the absence of expected data sources that were not generated by the T-LAPS system. The balance
package expected two different estimates of the vertical component of wind motion. One estimate
was derived from the national MAPS grid; the other was calculated by a cloud analysis module that
is a part of FSL's LAPS. By default, the balance package would abort if neither of these data fields
were present, so balance was modified so that it did not abort, and zeroed out the vertical motion
field instead. The balance package relied on a surface pressure field to locate its lower boundary
conditions in pressure coordinates. The surface pressure field is calculated by the LAPS surface
analysis package, which was not used, so code was added to the balance package in order to fill the
surface pressure field with a constant 1000 millibars. Since each LAPS vertical layer was 50 milli­
bars thick and surface pressures would not be be expected to vary much over the Orlando domain,
this was a reasonable assumption.

While the balance package was being tested, several bugs were found in the code, with at least
one of them serious. The Sun Fortran compiler supports array bounds checking (this feature is quite
common among Fortran compilers); the use of this feature allowed the detection of several array
bounds overflow bugs in the FSL code. In several places in the code, invalid data was being accessed
and used in the algorithm. This was less catastrophic than it sounds; the balance package usually
produced plausible looking output. When FSL fixed the balance package bugs in their own code,
a before/after test showed differences of up to 5 meters/sec in the wind values at some grid points.
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5. REAL-TIME DRIVER

The real-time driver module oversaw the operation of the T-LAPS '92 system. The driver was
the timekeeper of the system. It scheduled and coordinated the operations of other modules. The
driver was a new software module developed at Lincoln Laboratory. It was developed because the
driver used by FSL for their LAPS system was written for the VMS operating system and was de­
signed to use FSL-specific data ingest methods. Furthermore, the T-LAPS grid sizes and the
10 km/2 km cascade approach were different from the FSL LAPS system.

The driver performed the system start-up and scheduled data acquisitions, winds analyses and
product displays. The driver also prepared the data for analyses, performed data archiving, and coor­
dinated system shutdown. The design of the driver included the built-in flexibility to handle erro­
neous conditions such as missing data, late data, failed processes, empty data files, illegal file for­
mats, etc. In preparation of the backgrounds for the T-LAPS analyses, data interpolations in both
spatial and temporal domains were performed. Since the driver was responsible for coordinating
processes running on multiple machines, a simple signal file technique was employed for interpro­
cess communication.

To start operations, the driver first started up a number of independent asynchronous programs
such as the resamplers and then used the MAPS data to initialize the 10 km wind and pressure/height
backgrounds. After initialization, the driver went into an infinite loop with a cycle time of five min­
utes. During the loop, the driver had a list of events to run. It kept track of the current time and in­
voked various data collection programs at certain fixed time intervals. The T-LAPS 10 km analysis
was invoked every 30 minutes and the T-LAPS 2 km analysis was invoked every five minutes. A
valid data time-window was used to ensure that only recent data was used in the analysis. It was the
driver's responsibility to make sure that all the data was inside the valid data time-window. The driv­
er was also responsible for archiving the data files for later analysis and playback. During the five­
minute loop the driver moved the data files to the archive directory as soon as the data files were no
longer needed.

The timing requirements of the driver were not very stringent. There were no major conse­
quences if the driver fell behind in one of the 5 minute loops. The next loop would start a little late,
but it would eventually catch up. During the T-LAPS '92 demonstration, no major bottlenecks other
than the wind analysis were observed. The driver skipped the 2 km wind analysis if the processing
fell too far behind. However, the data collection portion of the program was always executed such
that later analysis and playbacks were not affected. The driver occasionally skipped the 2 km wind
analysis at the early stage of the T-LAPS '92 demonstration. After various optimizations were im­
plemented in the wind programs, the system rarely skipped the 2 km wind analysis, even under heavy
weather conditions. .

The T-LAPS '92 system was implemented on two dedicated Sun SPARCstation 2 workstations
at the FL-2C site. The two workstations were connected via the network file system (NFS). One of
the SPARCstations was dedicated to the radar resamplers. The other workstation hosted the driver,
the dial-up programs, the wind analysis packages, the balance package, and the display. Figure 11
illustrates the physical distribution of the processes of T-LAPS '92.
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Figure 11. T-LAPS processes and hosts.
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5.1. System Start Up

Shell scripts were used to start all the T-LAPS independent processes which included:

1. The TDWR resampler program

2. The NEXRAD resampler program

3. The MAPS dial-up program

4. The surface station data dial-up program

5. The ACARS dial-up program

6. The LLWAS ingest program

7. The display product server program

8. The driver program

5.2. Interpolation of Wind Analysis Background

The MAPS data from FSL was used to provide the background information for the T-LAPS
processing. As explained in section 3.1, MAPS three-hour and six-hour forecasts were interpolated
to construct the synthetic MAPS datasets for the 10km processing. The interpolation was required in
both the spatial and temporal domains.

5.2.1. Spatial Interpolation

The MAPS data received from FSL was a set of 6 by 6 horizontal grid points with 21 vertical
layers for the central Florida region. MAPS used a polar-stereographic coordinate system that was
aligned on Denver's longitude. As a result, the MAPS grid was tilted whenever the area of interest
was not at the same longitude as Denver. The spatial interpolation was performed by a bilinear inter­
polation algorithm, but the fact that the MAPS grid and T-LAPS grid were not aligned with each
other complicated some of the details. Figure 12 shows the alignment of the MAPS grid points
compared with the T-LAPS domain.

In order to make the interpolation more efficient, tables of interpolation coefficients and MAPS
grid indexes were computed beforehand. Foreach 10km grid point, the tables held the indexes ofthe
four surrounding MAPS points and the interpolation coefficients for the four MAPS points. During
real-time operations, the interpolation was done at initialization time and thereafter for each new set
of the MAPS data. The process of interpolation first read in the four index points and the interpola­
tion coefficients from the tables for each of the 10 km grid points and then added together the multi­
plied product of the weight coefficient and the value associated with the MAPS index point.

5.2.2. Temporal Interpolation

For every set ofnew MAPS data, the MAPS three-hour forecast was interpolated spatially to the
10 km grid. The difference between the three-hour forecast and the six-hour forecast was also com­
puted and spatially interpolated to the 10 km grid. Using these pairs of spatial interpolation results,
the 10 km background for any arbitrary time could be obtained by linear temporal interpolation.
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Figure 12. MAPS grid points.

5.2.3. Height Adjustment

The MAPS subset used by T-LAPS '92 contained the three products needed by T-LAPS: u
winds, v winds and heights. Each MAPS layer was 50 millibars apart. The heights field gave the
altitude ofeach pressure layer. The spatial and temporal interpolations were performed on all three of
the MAPS products. The T-LAPS system used the pressure reading of the MCO surface station lo­
cated in Orlando, Florida to fine tune the interpolated height field. The closest 10 kIn grid point to the
MCa station was computed and the MCa height was calculated from the interpolated heightproduct
using the MCO pressure reading. The offset between the calculated MCO height and the real MCa
height was used to adjust the height product.

5.3. T-LAPS 10 km Processing

"10 kIn processing" refers to the 10 kIn analysis plus various utility programs such as data ingest
programs. The 10 kIn processing was performed every 30 minutes. Most of the surface stations were
updated hourly on the hour, so T-LAPS dialed up the NASA computer to obtain the data at five min­
utes after the hour and every 15 minutes thereafter. The 10 kIn processing was scheduled at 10 min-
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utes and 40 minutes after the hour in order to include the latest possible surface station data. A de­
tailed flowchart of the T-LAPS 10 Ian processing is shown in Figure 13.
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Figure 13. T-LAPS 10 Ian processing.
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5.3.1. 10 km Data Ingest

There were six types ofinput data used by the 10 kIn processing-MAPS data, TDWR radar data,
NEXRAD radar data, ACARS data, surface station data, and LLWAS data.

The initial dial-up for MAPS three-hour forecast data files was done at two hours and 30 min­
utes into the MAPS cycle and the initial dial-up for MAPS six-hour forecast was done at three hours
into the MAPS cycle. If the dial-up failed, the process was repeated until it was successful, as ex­
plained in section 3.1. The MAPS three-hour forecast and six-hour forecast data were interpolated
spatially and temporally, and they were used as the background for the 10 km analysis. In the case
where MAPS data was not available, a constant background ofzero winds was used (see section 5.7).

The TDWR and NEXRAD radar data were resampled to the 10 km grid. On a signal from the
driver, the latest resampled tilt files were assembled into volume data files for each 10 km cycle. The
radar resamplers had a built-in data screening function which ensured that only data less than 10
minutes old would be used.

The dial-ups for ACARS data and surface station data were done at five minutes after the hour
and every 15 minutes thereafter. There were built-in retries ifthe dial-up did not succeed. The 10 km
and the 2 km processing used the latest available ACARS data files and surface data files at the time
of processing. The ACARS data files usually arrived a few minutes before 10 km processing and
contained the aircraft reports of the most recent 90 minutes. The 10 km processing read the latest
ACARS file and used all the aircraft reports which were less than 90 minutes old. The surface station
data usually was obtained from NASA a few minutes before the 10 km processing. The LLWAS data
was updated automatically every ten seconds, so the driver simply requested the latest value. All the
surface station data of the most recent 90 minutes were combined with the 10 km LLWAS data to
form the ground station files for 10 km processing.

5.3.2. T-LAPS 10 km Analysis

The 10 km analysis consisted of two parts. First, the 10km wind analysis was performed to pro­
duce the gridded 3-D wind file, then the 10 km balance package was executed to adjust the pressure
and wind fields and produce the balanced 3-D wind product.

5.4. T-LAPS 2 km Processing

The 2km processing was performed in five-minute intervals on the hour and every five minutes
thereafter. At 10 and 40 minutes after the hour, the 10 km processing was performed first, and the
2 km processing was delayed until the 10 km processing ended in order to use the latest 10km results
as the background for the 2km processing. A flowchart of the T-LAPS 2 krn processing is shown in
Figure 14.

5.4.1. 2 km Data Ingest

Five types ofdata were used by the T-LAPS 2 km processing - T-LAPS 10 km results, TDWR
radar data, NEXRAD radar data, surface station data, and LLWAS data. The ACARS data was not
used because of the long time latency of the data.

The balanced 3-D wind products generated by the T-LAPS 10 km analyses were interpolated
spatially to the 2 km grid and used as the background for the 2 km processing. There was no temporal
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Figure 14. T-LAPS 2 km processing.

ground data

interpolation. The 2 kIn background remained unchanged for 30 minutes until the next 10 kIn analy­
sis.

The TDWR and the NEXRAD radar tilt data were resampled to the 2 kIn grid in the same fash­
ion as with the T-LAPS 10 kIn analysis. The latest resampled tilt files were assembled into the vol­
ume data files for each T-LAPS 2 km cycle.

The LLWAS data input program updated the temporally averaged individual-station T-LAPS
2 kIn LLWAS file every 10 seconds. The surface station data of the past 25 minutes were combined
with the latest LLWAS data to form the ground station data file.
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5.4.2. T-LAPS 2 km Analysis and Display

The 2 Ian wind analysis was perfonned for each T-LAPS 2 Ian processing cycle. As mentioned
in the beginning of this section, the driver would bypass the 2 km analysis if the system was falling
too far behind schedule. However, this situation rarely occurred. At the end of the T-LAPS 2 Ian
analysis, the display package was notified to display the newly created T-LAPS 2 Ian 3-D wind
product. The details of the display package are discussed in section 6.

5.5. Data Archive

The driver archived important data files by moving the data files into special archive directories
at the end ofeach processing cycle. The intennediate files which were not needed for later evaluation
and playback purposes were deleted. The number of files in the working directories was kept to a
minimum for efficiency considerations. The driver also recorded the events of the real-time opera­
tions in a log file. The log files were moved to the archive directory when the T-LAPS was shut down
each night. The data files were transferred from the archive directories to magnetic tapes at the end of
the day for long-tenn storage. The details of the tape archive process are described in section 7.

5.6. Driver Communications with Independent Programs

The driver program was required to communicate with the radar resampler programs, various
dial-up programs, and the display package. Because the T-LAPS '92 system was running on multi­
ple machines (two SPARC workstations), some interprocess communication schemes, such as
shared memory semaphores, would not work. The two workstations were connected by the NFS, so
the files on both machines were accessible to programs running on either machine. The timing re­
quirements of the T-LAPS system were not very stringent, so a simple signal file interface scheme
was used as the interprocess communication method. Due to the file-based structure of the original
LAPS system, most modules of the T-LAPS system were already exchanging data files, so adding a
few signal files was not much of a burden. The driver program created different signal files to com­
municate with different programs. For example, if it was time to dial up for the ACARS data, the
driver created a specific signal file recognized by the ACARS dial-up program. The ACARS dial­
up program was constantly looking for this signal file; once it sensed the existence ofthe signal file it
deleted the signal file and started the dial-up process. Parameters also could be passed in the signal
file if needed. This approach was simple, reliable, and had the flexibility to accommodate the pro­
cesses running on multiple machines.

5.7. Missing Data Conditions

During the operational period of the T-LAPS '92 demonstration, most of the data sources were
reliable, but occasionally there were problems in acquiring some of the data. Furthennore, the opera­
tional hours of the TDWR radar were shorter than those of T-LAPS. The T-LAPS system was de­
signed with the flexibility to operate under conditions when some, or all, of the data sources were
missing. However, the quality of the analysis does degrade under these conditions. When there was a
problem in accessing the data sources, the system notified the operator by displaying a message on
the console and ringing the bell. This condition also was recorded in a log file. In case there were
problems in obtaining ACARS, LLWAS, TDWR, NEXRAD or surface station data, the
T-LAPS system continued to operate using the old data as long as the data was within the valid data­
time window. Otherwise, the T-LAPS system ignored that particular kind of data.

When the MAPS data was not available to start T-LAPS, synthetic MAPS data with zero u, v
winds and standard pressure-heights were used as the initial background to start T-LAPS. There
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were a few occasions that the MAPS data were not available in the middle of T-LAPS operations.
Under these conditions, T-LAPS continued with the previous background. As soon as MAPS data
became available again, the new MAPS background was used. A better approach is to use the
LLWAS network mean winds as the initial background and the previous 10 km result as the updated
background. This improvement was implemented in T-LAPS '93.

5.8. System Shut Down

A shell script was used to gracefully shut down the T-LAPS system. This script issued kill sig­
nals (SIGKILL, signal 9) to all the T-LAPS processes which did not need to execute their own
clean-up procedures. For those T-LAPS processes which needed to run clean-up procedures, the
software termination signal (SIGTERM, signal 15) was issued instead. The individual processes
could catch the signal and perform last minute cleaning up. The driver archived the log me and the
remaining data files of interest in the working directories before it exited.
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6. DISPLAY

The T-LAPS display provided the primary interface to the results of the T-LAPS analysis sys­
tem. An example of the interface is shown in Figure 15. The display both provided a means of eva­
luating the quality of the T-LAPS analysis and provided a vehicle for demonstrating the capabilities
of the T-LAPS analysis system. Additionally, the display in Lexington provided a means of moni­
toring the weather situation in Orlando, Florida. Due to considerations which are discussed below,
different displays were provided at different locations.

6.1. Design Considerations

Three considerations significantly affected the design of the display system. The first was the
real-time nature of the display. The second was the limited time in which to construct the display
system. The third was the requirement for remote displays combined with a limitation of9600-baud
bandwidth.

The first two considerations resulted in the decision to use the same display protocol as used
for the TDWR Geographic Situation Display (GSD). This display protocol will be described in sec­
tion 6.3. The third consideration resulted in the decision to provide limited displays at remote loca­
tions. This, combined with differing requirements at different remote locations, resulted in three dif­
ferent displays. The data provided to these displays will be discussed in the following sections.

For T-LAPS '92, no effort was made to display the results of the T-LAPS 10 kIn processing
because the 3-D wind products from the T-LAPS 2 kIn analysis were more timely and of finer reso­
lution than those of the T-LAPS 10 kIn analysis.

6.2. Display Product Server

The display product server provided the interface between the T-LAPS analysis system and the
display software. It was responsible for preparing the products for display and for transmitting the
product information to the various displays. Figure 16 depicts the relationship between the display
product server, the T-LAPS 2 kIn winds analysis, and the various displays.

6.2.1. Initialization

The display product processor was started during initialization of the T-LAPS analysis system.
This is described in section 5.1. When the display product server was first started, run-time options
were used to initialize access to the proper directories, initialize run-time parameters, and establish
the communication channels. Parameters which were likely to change due to system reconfiguration
were defined as run-time options. These included the name of the signal file to be created by the
driver, the location of the data directories, and polling parameters. Once the display product server
had been initialized, .it began polling for the file that was used to signal the availability of data for
display.

6.2.2. Data Ingest

Upon receipt of the signal file, the display product server searched in the specified directories
for the 3-D background, 3-D wind, and 3-D radar files. In general, the most recent files with the
appropriate suffixes were used. Although two 3-D radar files were used by the T-LAPS analysis
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Figure 16. Display product server processing.

module, only one radar file was transmitted to the display. Initially, only the TDWR file was trans­
mitted. Later, however, the program was changed to transmit the NEXRAD file when the TDWR
file was unavailable or empty. Processing continued in the absence of any radar meso However, the
background and wind mes were required for processing to continue.

6.2.3. Processing

Once the appropriate files were identified, the processing proceeded in three steps: obtain alti­
tude information, perform data conversion, and transmit the information. The last topic is the subject
of the next section.

As mentioned in previous sections, the native LAPS vertical coordinates are millibars. Howev­
er, for display purposes, it was desirable to display the vertical coordinates as feet above ground lev­
el. Thus, it was necessary to obtain information regarding the association between the two. This was
accomplished by taking advantage of the height field in the background file. The value of this field
was obtained for the horizontal grid point aligned with the airport reference point for each layer of
data in the file. Thus, each layer was effectively considered to be at a uniform height in feet above
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ground level. This was a sufficient approximation for purposes of the display. It should be noted that
although the layers were evenly spaced in pressure coordinates, they were not evenly spaced in alti­
tude coordinates. This was judged to be unimportant for the purposes of the T-LAPS '92 demonstra­
tion.

Once the altitude coordinates were obtained, the data was then converted from the native LAPS
format to a format recognizable by pre-existing Lincoln Laboratory software. Due to constraints
imposed by the write package for the data format, it was necessary to fIrst create fIles on disk, which
could subsequently be read and transmitted. Since it was necessary to support three different catego­
ries of display, each requiring different layers of data, one option was to create separate fIles based
on the requirements of each display. However, it was decided that this would be expensive in terms
of both disk resources and disk input/output (110). So the decision was made to produce a single fIle
which would be filtered during transmission.

During the conversion process the number of wind vectors was reduced by a factor of four by
converting only every other row and column ofdata. This had the dual benefIt ofproducing displays
which were easier to read and reducing the bandwidth requirements. Since the radar display would
suffer from a similar reduction in data, such a reduction was not performed for those data.

6.2.4. Product Serving

The last responsibility of the display product server was to transmit the prepared data to the dis­
plays. As mentioned before, there were three categories of displays: primary (FL-2C, Kissimmee,
FL), demonstration (NWS, Melbourne, FL), and monitoring (Lexington, MA). The latter two were
remote displays and thus could display only 5 of the 12 available layers of 3-D winds and only one
of the 12 available layers of 3-D radar.

The primary processing task for fIle transmission involved the creation of three valid display
fIles from each single fIle residing on the disk. The radar fIle was packaged and transmitted fIrst,
followed by the wind fIle. Each fIle was processed one record at a time. The header record was read
once. For each display category, the header was edited based on the layers to be displayed, com­
pressed, and transmitted to the appropriate client. Each subsequent record in the file was read once
and, for each display category, compressed and transmitted to the appropriate client, as needed. Once
fIle transmission was completed, the scratch files were removed and the display product server
waited for the appearance of the next signal fIle.

6.2.5. Termination

The display product server was terminated by a SIGTERM signal. Upon receipt of the termina­
tion signal, a flag was set to indicate that the process should terminate upon completion ofany active
processing. Due to an incomplete implementation of the signal handler, the display product server
occasionally failed to terminate. The problem has since been fixed.

6.3. Product Display

The product display software consisted of communications and monitoring programs as well
as the user interface. The configuration of the display system was modeled, to a large degree, on the
TDWR GSD. Figure 17 depicts the suite of programs associated with the display.

6.3.1. Initialization

During initialization a single script was used to start a suite ofprograms associated with the dis­
play. During real-time operations, this script was primarily invoked upon log in to a special display
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T-LAPS GSD
DISPLAY

Figure 17. Real-time product display.

account. It could also be invoked from the command line or from a root menu. In Lexington, this
script was invoked automatically each morning to reinitialize the display. During initialization, the
user interface was displayed with a red X overlaid on the display area. This X was removed from
the display once the fIrst 3-D winds display fIle was received.
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One program started during initialization was responsible for creating the directory structure
to be used as working directories. Another program was responsible for establishing a communica­
tions channel to the display product server, described above. The suite of programs as well as the
programs themselves, while generally the same for all locations, were to some degree site specific.
For example, the program that created a directory structure was configured to archive the display
files directly into the database for the display located in Lexington. Accordingly, no program was
necessary in Lexington to delete old display files, whereas such a program was necessary at other
locations.

6.3.2. Data Ingest

Data was ingested into the display in three steps. The actual display software read in a data file.
A separate process read information from a communications channel and generated a display file.
This intermediate process was, however, unable to read compressed data. Another process was re­
quired which read from the communications channel to the display product server and generated a
separate channel of uncompressed data which could be read by the second process.

6.3.3. Display Processing

As mentioned previously, the display system was built using the same technology as the TDWR
GSD. The base for this system was an interpreter called Weather Shell ("WxShell" in Figure 17),
which provides facilities for interactive displays and real-time communications. Additionally, using
Weather Shell provided support for multiple Sun architectures and windowing systems. Although
much ofthe display capabilities already existed in the form ofWeather Shell and its clients, addition­
al software was developed to handle the specific requirements of the T-LAPS display.

The body of the software that controlled direct interaction with the display remained invariant
from location to location. The differences among locations were supported by providing different
input panels for each location, which allowed only a selection of options valid for that location, and
by providing location-specific configuration files.

At all locations, the user was able to select between radial velocity and reflectivity displays as
well as among horizontal wind fields at selected altitudes. The user also was able to activate or deac­
tivate displays of sensors, runways, geography, landmarks, and range rings, adjust the scale of the
wind vectors, and select between two display scales. Additional options were available on selected
displays.

6.3.4. Display Termination

The display was terminated by positioning the cursor over the display window and typing 'q'.
This resulted in the termination of the display as well as all associated processes. Additionally, in
Lexington, a termination command was sent automatically each morning which had the same result.
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7. ARCHIVING

This section discusses the archiving procedures used for the T-LAPS 1992 real-time system.
The primary purpose of archiving was to support post-real-time evaluation of the T-LAPS wind
analyses. To attain this objective, raw and intermediate data were stored as well as the results of the
analysis. In this context, raw data refers to data ingested into the T-LAPS system from external
sources, as discussed in section 3. Intermediate data refers to data processed for input to the analysis
packages, as discussed in sections 3. and 5. In some cases, archiving procedures were already inplace
for some of the raw data of interest. When archiving procedures were in existence, they were not
duplicated.

There were two categories of archiving procedures. The ftrst involved storing particular fIles
from the hard disk onto a storage medium. The second involved the acquisition of data fIles via fIle
transfer. Both categories ofarchiving will be discussed below. In some cases, this storage ofinforma­
tion was redundant. The redundancy was introduced when data were needed in Lexington in a more
timely fashion than would otherwise be available.

7.1. Storage of T-LAPS Data at FL-2C

The 1992 T-LAPS system ran for up to 14 hours per day, 7 days per week. Two Sun SPARCsta­
tions at FL-2C were used for the bulk of the real-time processing. Both of these workstations were
dedicated to T-LAPS during the summer demonstration. Each of them had a 420 Mbyte disk, of
which approximately 280 Mbytes was free for use by T-LAPS. The workstations were networked
via the NFS, so fIles on the two disks were accessible to processes running on either machine.

The T-LAPS processes expected fIles to be in speciftc directories, referred to hereafter as work­
ing directories. As discussed in section 5.5., in order to minimize the number of fIles resident in any
given T-LAPS working directory at one time, fIles were moved to an archive directory periodically
during T-LAPS processing as well as at the end of T-LAPS processing. An estimate of the disk
space required to store T-LAPS related fIles during each one-hour interval is shown in Table 1. The
values in the table represent the size of the fIles at the beginning of the demonstration period. By
the end of the demonstration period, the size of the wind analysis fIles had been reduced by roughly
one third. Although compression was desirable, the LAPS balance output fIles, radar volume fIles,
and T-LAPS wind analysis output fIles, which occupied the majority of the disk space, were essen­
tially incompressible by the Unix compress utility. Because of this and the high value placed on
CPU resources, compression was not performed during operations.

The hourly total of almost 12 Mbytes per hour adds up to about 160 Mbytes over a 14-hour day.
Thus, only one day ofreal-time data could be safely stored on one workstation's disk at anyone time.
In order that site personnel were not forced to back up the archive directories after every single day
of operations, archive directories were created on both of the dedicated SPARCstations (named
TAPSI and TAPS2), as shown in Figure 18. Symbolic links (indicated in the diagram by arrows)
were used to facilitate switching between the archive directories by the T-LAPS real-time system
driver.
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Table 1.
Approximate T-LAPS Space Requirements for One Hour of Operations

Data Files Dimensions Size (Kbytes) Files per Kbytes
row x col x layer x prod Hour per Hour

2 km wind analysis 61 x61 x13x3.15 616 12 7392

10 km wind analysis 19x19x13x3.15 128 2 256

10 km balanced winds 19x19x21x4 263 2 526

Radar volume N/A 11 2x12 264

2 km radar tilt files N/A 16 2x2x12 768

10 km LLWAS N/A 1.5 2 3

2 km LLWAS N/A 1.5 12 18

SAO/AWOS N/A 5 12 60

ACARS N/A 5 6 30

MAPS 6x6x21x5 115 2x1/3 77

10 km background 19x19x21x3 197 2 394

2 km background 61x61x21x3 946 2 1892

TOTAL 11680

Figure 18. Relationship between physical disks and working space.
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7.2. Archiving to Tape at FL-2C

When the system was operating smoothly, archiving of the data generated during real-time op­
erations to tape was performed following termination ofT-LAPS processing each day. Information
relevant to this archive was logged to a file. This file was mailed to the archive administrator once
the archiving to tape was completed. A lock file in each archive directory indicated whether the data
in that directory had been archived to tape. Any directory that was not previously archived to tape
was archived at the end of the day. The lock files also were checked prior to start ofT-LAPS opera­
tions. If the lock file indicated that the data were backed up to tape, the contents of the archive direc­
tory were removed so that the directory could be reused. Ifneither archive directory had been stored
to tape, an error message was displayed. The operator was then required to archive the data to tape
before processing could proceed.

Initially, the use of File Transfer Protocol (FfP) over a pre--existing Internet Protocol (IP) net­
work link was considered to allow archiving onto storage media to be performed in Lexington. How­
ever, this was rejected due to the large volume ofdata that must be transferred and the relatively low
bandwidth and unreliability of that link. The archiving onto magnetic media was therefore per­
formed at site. It was desirable to select a storage medium that would not require supervision during
archiving. Due to the large quantity ofdata generated each day, 8 mm tape was selected as the archive
storage medium. Approximately one week of real-time data was stored on a single tape, with each
day of data stored as a separate file system. Tapes were mailed to Lexington approximately every
week.

7.3. Archiving via File Transfer

7.3.1. From External Agencies

All MAPS and surface observation files for the previous day were transferred from their origi­
nal sources (FSL and NASA, respectively) via separate cron jobs run at Lexington each night. As
discussed in section 3., transfer of MAPS data used Kermit to access the modem, and transfer of
NASA data used tip. These data transfers were deliberately redundant with the transfers performed
by the real-time system. They provided a means of getting more complete data sets and retrieving
data that may have become available too late for use in the real-time system. The latter was particu­
larly pertinent in the case of MAPS data. Performing the archiving of these data sets in this manner
also shifted some responsibility for archiving off of the real-time system driver.

Since the underlying software was largely the same as that described in section 3., it exhibited
some of the same problems. In addition, since the transfers occurred at night, there was a lapse be­
tween the time a problem occurred and the time it was noticed. However, there were few failures
and the reliability of these transfers was improved by the end of the demonstration period.

7.3.2. From the T-LAPS Real-Time System Disks

The radar tilt files for the previous day were transferred from the site to Lexington via a cron
job run from Lexington each night. These tilt files were located in the archive directories at the site
and were transferred via remote UNIX commands over the dedicated line to FL-2C. The log files
from the tape archive were also transferred at this time.

On the whole, this worked reliably. There were a few instances where tilt files were empty. Since
the same files were archived on tape and also could be retrieved the following day, this did not pres­
ent a problem.
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7.3.3. From Real-Time Data Feeds

Finally, the display files, which were transferred to Lexington for the real-time display, were
archived as they arrived. The display was started in Lexington each morning by a cron job and ran
continuously throughout the day. This worked reliably. On one occasion the space on the disk was
exhausted and some data were lost. Once this problem was addressed, there were no further prob­
lems.

7.3.4. Archiving by Others

There has been Lincoln Laboratory interest in ACARS data that pre-dates the T-LAPS project.
There was already a pre-existing facility for downloading, via dial-up, ACARS data from ARINC
to Lexington. Although it was not originally designed as aT-LAPS backup source ofdata, this facil­
ity was functionally similar to the redundant downloads of MAPS and surface station data discussed
in section 7.3.1.

Both TDWR and NEXRAD data were archived at their point of origin. TDWR data were ar­
chived at the FL-2C site by site personnel, while NEXRAD data was archived in Melbourne by
NWS personnel. Due to the size of the radar data and the existence of established group procedures
for handling radar data, the data was not stored in the actual T-LAPS database. However, the stored
radar data was still very much a part of the overall T-LAPS dataset. New versions of the resampled
radar files could be regenerated, if necessary, by running a playback version of the resampler on the
stored radar data. The resulting tilt files would then become a part of the formal T-LAPS database.

7.4. Organization of the T-LAPS Database

During the demonstration period, the data collected via the various archive procedures was col­
lected into a database on a 1.2 Gigabyte disk. Once a complete day's worth ofdata had been accumu­
lated, the entire day's data was stored on 8 mm tape. Cron jobs ran each morning to process and
organize the data transferred overnight and during the previous day. When a tape arrived from site,
the data for each day were processed and stored in the proper directory. The archive for a day was
considered complete once all of the data for that day had been processed, organized, and logged. The
collection of data into the database is depicted in Figure 19.

Once one day's worth of data were collected, there were no significant problems with organiz­
ing it and creating a tape archive. For most cases, the data were stored in the database without addi­
tional processing, other than compression. The one exception was the MAPS files obtained from
FSL. In this case it was necessary to convert from VAX binary format to Sun binary format. This
procedure was performed when the files were stored into the database.
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Figure 19. Dataflow into the T-LAPS database.



8. CONCLUSION

The T-LAPS system was installed at the FL-2C site in late July 1993. Testing the system and
fixing problems occupied the fIrst two weeks of August. The T-LAPS demonstration officially be­
gan August 14, which was only a few days after the NEXRAD data became available. After some
subtle problems that affected the quality of the output were fIxed, the system started producing high­
quality results on August 22. The system continued to run without serious incident until
September 25, when the system was shut down.

Overall, the reliability of the system was very good. After the initial testing period was com­
pleted, virtually all the ongoing problems were related to acquiring data from outside organizations.
The system was designed to be robust in the face of missing data, so the system ran without a single
outright failure during the entire demonstration period.

The T-LAPS '92 demonstration was the fIrst time that TDWR and NEXRAD data had been
used simultaneously in a single system. The T-LAPS '92 demonstration also marked the fIrst dem­
onstration of a prototype ITWS product using a wide variety of data sources. The lessons learned
will be extremely valuable as the group fields more ITWS algorithms in the future.

Most importantly, the final result of the system was a high-quality dataset that could be used
for later playback and analysis. The redundant downloading of data directly to Lexington allowed
fIlling in some stretches of missing data. The dataset has allowed both Lincoln Laboratory and FSL
to refine existing algorithms and develop new algorithms.
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2-D

3-D

ACARS

AGFS

ARINC

ASCn

AWOS

BUFR

FAA
FSL

FfP

GSD

IF

ITWS

LAPS

LLWAS

MAPS

MDCRS

NASA

NEXRAD

NFS
NOAA

NWS

RCS

SIN

SAO

T-LAPS

TATCA

TDWR

GLOSSARY

Two dimensional

Three dimensional

Aircraft Communications Addressing and Reporting System

Aviation Gridded Forecast System

Aeronautical Radio. Inc.

American Standard Code for Information Interchange

Automated Weather Observing System

Binary Universal Fonn for Representation of Meteorological Data

Federal Aviation Administration

Forecast Systems Laboratory

File Transfer Protocol

Geographic Situation Display

Internet Protocol

Integrated Terminal Weather System

Local Analysis and Prediction System

Low Level Wind Shear Alert System

Mesoscale Analysis and Prediction System

Meteorological Data Collection and Reporting System

National Aeronautics and Space Administration

Next Generation Weather Radar (WSR-88D)

Network File System

National Oceanic and Atmospheric Administration

National Weather Service

Revision Control System

Signal to Noise ratio

Surface Aviation Observation

Terminal area-Local Analysis and Prediction System

Tennmal Air Traffic Control Automation

Terminal Doppler Weather Radar
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