

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

FAA-RD-74-162

Project Report
ATC-40

DABS Uplink Encoder

J.R. Samson

4 March 1975

Prepared for the Federal Aviation Administration,

Washington, D.C. 20591

This document is available to the public through
the National Technical Information Service,

Springfield, VA 22161

This document is disseminated under the sponsorship of the Department
of Transportation in the interest of information exchange. The United
States Government assumes no liability for its contents or use thereof.

ERRATA SHEET

DABS UPLINK ENCODER

PROJECT REPORT ATC-40 (FAA -RD-74-16Z)

Dated 4 March 1975

On page26 “the 29th “row in Table II should read:

56 Bitl12 Bit 1 ...2 3 4 5 “6 7 8 9 10 11 12 13 14 15 ;16”17 18 19.20 21 22 23 24:::

17 73 11111 ” 001...000 100”OOO””” O””l””” 001 Oo

instead “of:
:“””

17 73 11111001’’0001 0000” 00””1000”0” 0

Please make this change in the above-designated report.

7 April 1976 ~blications Office
M, I. T. Lincoln Laboratory
P. O. BOX 73
Lexington, Massachusetts 02173

Technical Report Documentation Page
1. Report No. 2. Government Accession No. 3. Recipient's Cotolog No.

FAA-RD-74-l62

4. Titl. ond Subtitle 5. Report Dote

4 March 1975
DABS Uplink Encoder 6. Performing Orgonizotion Code

7. Author(s) 8. Performing Organi zation Report No.

J.R. Samson ATC-40

Project Report

11. Contract or Grant No.

IAG-DOT-FA72WAI-261

10. Work Unit No. (TRAIS) 45364
Project No. 034-24l-{)12

14. Sponsoring Agency Code

9. Performing Organi zation Nome and Address

Massachusetts lnstitute of Technology
Lincoln Laboratory
P.O. Box 73
Lexington, Massachusetts 02173

12. Sponsoring Agency Nome ond Addre ..

Department of Transportation
Federal Aviation Administration
Systems Research and Development Service
Washington, D. C. 20591

13. Type of Report and Period Covered
r---:-;::--::----:---:-:-----;-:---:-7"""---------------1

15. Supplementary Notes

The work reported in this document was performed at Lincoln Laboratory, a center for research operated
by Massachusetts lnstitute of Technology under Air Force Contract F19628-73-C-{)002.

16. Abstract

This report explains the operation of the DABS uplink encoder and provides information
useful in diagnosing its performance. Several techniques which may be useful in analyzing
encoder operation are presented. One technique involves only the use of address-parity tables
and modulo-2 addition. The address-parity tables included are based upon the encoding poly
nomial prescribed in "Provisional Signal Formats for the Discrete Address Beacon System,"
Lincoln Laboratory Project Report ATC-30 Rev. 1, dated 25 April 1974.

The error detection and correction properties of polynOmial encoding schemes are not
the subject of this report.

17. Key Words 18. Distribution Statement

DABS
Error Protection
Parity Check Coding
Data Transmission

Encoder
Decoder

Document is available to the public through
the National Technical Information Service,
Springfield, Virginia 22151

19. Security Clossif. (of this r"port) 20. Security Clallif. (of this poge) 21. No. of Pages 22. Price

Unclassified Unclassified 46

Form DOT F 1700.7 IH -721 Rcrroduct ion of comr1l>tcd rage autilori zed

Section

1

2

3

4

5

6

7

TABLE OF CONTENTS

INTRODUCTION

GENERAL

2. 1 Terminology and Approach
2. 2 Encoding.
2. 3 Decoding,
2.4 The DABS Up!ipk Encoder

POLYNOMIAJ.., NOTATION AND ARITHMETIC
OPERATIONS

COMPUTING TH~ ADDRESS/PARITY USING
ALGEBRAIC POLYNOMIALS

COMPUTING THE ADDRESS/PARITY BITS FROM
TABLES

BASIC TEST PATTERN~

6. 1 Address (Polynomial) Test
6.2 Parity Test
6. 3 Address -Parity Overlay Test

GENERAL APPLICATION TO ENCODERS
DECODERS

Page No.

1

3

3
5
5
7

12

16

23

33

33
34
36

38

Acknowledgment

References .

III

41

42

Figure

1

2

3

4

5

6

7

8

9

10

11

Table

I

II

LIST OF ILLUSTRATIONS

Segmentation of DABS Interrogation Data Block.

Effective Decomposition of DABS Uplink Encoder
Decoder Processing

DABS Uplink Encode r

Polynomial Division Corresponding to Division of
Binary Sequences, 10011001 Divided by 11000001

Example: Computation of Parity Output Sequence
Using Polynomial Division

Example: Computation of Encoded Address Output
Sequence Using Polynomial Multiplication

Example: Encoded Address, Parity and Address/
Parity Generated by DABS-type Uplink Encoder.

Example: Encoded Address, Parity and Address/
Parity Generated by DABS Uplink Encoder

Encoded Address, Parity and Address/Parity Output
Sequences from Example illustrated in Fig. 8, Shown
with Expanded Time Scale

Three Basic Test Patterns for DABS Uplink
Encoder .

DABS Downlink Decoder

LIST OF TABLES

ENCODED ADDRESS

PARITY .

lV

Page No.

3

6

8

15

18

19

21

29

30

35

40

24

25,26

SECTION 1

INTRODUC TION

This report describes the functional operation and construction of the

DABS [Ref.l] uplink encoder, and provides a basis for analyzing uplink encoder

operation. The explanation presented is based on a detailed examination of

encoder operation, noting its linearity and its basic operations of division,

multiplication, and addition. Although only uplink encoder processing is

treated directly in this report, many of the ideas can be extended to the

other encoding/decoding processing steps in the DABS uplink/downlink cycle.

Particular emphasis is given to the development of techniques and

basic test patterns useful in checking for proper encoder operation. Two

techniques are discussed in detail, one of which involves the use of address

parity tables and requires only modulo-2 addition to compute the correct

encoded output for any data block input.

This report is divided into five major parts. The first section

presents a general discussion of the processes involved in the DABS uplink

encoder/decoder operation. The second section develops a standard method

of representing binary sequences as algebraic polynomials and illustrates

the algebraic manipulation of these polynomials which will be useful in

"analyzing" encoder operation. An example is presented in the third section

illustrating how the notation and manipulations discussed in the previous

section are applied to a DABS-type uplink encoder. The fourth section

presents a procedure by which anyone armed with a set of address-parity

tables and a knowledge of modulo-2 addition can compute the address/parity

output for any data block sequence. The address-parity tables for the DABS

~

uplink encoder, using the encoding polynomial prescribed in ATe-30 Rev. 1,

"Provisional Si.gnal Formats for the Discrete Address Beacon System" [Ref. 2],

are included in this section. An explanation of how the tables are prepared

is also given. The fifth section pres ents three basic tests which can be

performed on any DABS-type encoder to indicate whether it is functioning

properly.

2

I-

SECTION 2

GENERAL

2. 1 TER;,11INOLOGY AND APPROACI{

A DABS interrogation data block consists of three segments: the sync

burst, the information field, and the address or address/parity field. This

segmentation of the clear text data block, prior to encoding, is illustrated

in Fig. I-a belo'v.

encoding proccs s.

Figure l-b illustrates the segmentation following the

-, ATC-40(1) L
3 bit

sync burst

I)2 or 88 bit

I information field

24 bit

address field

a) clear text data block

3 bit I
sync burst \

32 or 88 bit

information field

b) encoded data block

24 bit

address/parity field

. Fig. 1. Segmentation of DABS Interrogation Data Block•

The first') bits in the uplink data block form the sync burst, a

o - 1 - 0 transmission in which the "1" in the 2nd bit is designated as the

sync phase reversal. This sync phase reversal is used to 1) synchronize

the transponder's airborne clock, and 2) provide an absolute reference for

3

the timing of transponder replies following the receipt of a valid interrogation.

Since the sync burst bits have no effect on the encoding process, they will

not be discussed further.

The remaining data block segments will be jointly referred to in this

report as the "info/address block" or the limes sage block". The key to under

standing encoder-decoder processing is the resolution of the processing into

superposable operations. (The encoding and decoding mechanisms are linear

processes, so that the application of the principle of superposition is valid.)

The address/parity field output of the DABS uplink encoder can be considered

as the superposition (a modulo-2 sum, symbolized by G)) of the outputs of two

distinct processing steps. These two outputs are designated: l) parity, and

2) encoded address; and the resultant address/parity field output can be

expressed as:

address/parity =parity Q) encoded address

where the summing is done on a bit by bit basis.

The parity is generated solely from the content of the information

field. It is actually the final remainder following the "division" of the informa

tion fiela bit sequence by the bit sequence corresponding to the encoding poly

nomial.

The encoded address is generated solely from the content of the

address field by the " multiplication" of the clear text address bit sequence

by the sequence corresponding to the encoding polynomial.

In this analysis, the encoding process is explained as if it were two

separate operations: multiplication, to yield the encoded address, and

4

division to yield parity. There is no interaction between the two processes

until the results are superposed to yield address/parity. These operations

take place, of course, in the encoding mechanism on a bit by bit basis, and

while it is difficult to separate the operations as they are occurring simultane-

ously, it is very helpful to be able to analyze them independently.

Figure 2 illustrates an effective decomposition of DABS uplink

encoder/decoder processing.

2. 2 ENCODING

Starting with the first bit of the information field, the encoder performs

a division operation which continually generates and "stores" the quotient

(and indirectly a remainder) as each bit of the information field is clocked

into the encoder. The remainder used in the computation of address/parity

is the final remainder after the last bit of the information field has entered

::::
the encoder. During this division process, the clear text (unencoded data)

information field has been transmitted (Fig. 2-a).

Starting with the first bit of the address field, the encoder performs

a multiplication operation generating the encoded address. As the encoded

address is computed, the parity is added (modulo-2) and the combined

address/parity transmitted (Fig. 2-b).

2.3 DECODING

As the clear text information field is received, it is simultaneously

;:'This is a convenient way to think of the parity generating process, although
the final remainder is actually computed during the encoding of the address
field. This remainder has been "stored within the encoding mechanism" as the
quotient of a division process, which, as it is clocked out of the encoder does
yield the parity sequence.

5

-, ATC-40(2) 1_
clear text information
field to modulating

r--------------------.........- circuitry
polynomial

information
field

Encoder
(-;-)

generates and stores
parity within encoding

f------- - mechani s m

a) encoder processing during information field

final parity computed from
information field-------....,

polynomial

address
field Encoder

(X)

address/parity
to modulating

f------+-I._ ci rcuitry

encoded addre'ss

b) encoder processing during address field

rates and stores
ty within encoding
hanism

received signal for data
processing, clear text
information field.-

mation

POrnomial

Id
Decoder

gene

(-:-)
pari
mec

infor
fie

c) decoder processing during information field

final parity computed from information field

polynomial

~--\+-""-iDecoder I__-+-_--" clear text address
(~.;.)

I
address/parity!

I
I

encoded address
1 -

d) decoder processing during address/parity field

Fig. 2. Effective Decomposition of DABS
Uplink Encoder -Decoder Processing.

6

fed to the next stage of data processing and to the decoder. The decoder

performs a division operation which generates and stores the parity (Fig. 2-c),

in the same manner as the encoding process. As the address/parity field is

received, the parity is subtracted (still a modulo-2 addition) yielding the

encoded addres s. The decoder performs a division operation on the encoded

address which should yield a clear text address (Fig. 2-d).

The transponder will compare the decoded address with its assigned

addres s and respond only if they agree. Incorrect parity or decoded addres s

(caused by interference), or just the wrong address (indicating that the inter

rogation was not meant for this transponder) will be flagged and the interroga

tion ignored by the transponder. This encoding-decoding processing markedly

increases the reliability of the discretely addressable transponder system,

since the probability of an undetected error in received information or addres s

has been made extremely low.

2. 4 THE DABS UPLINK ENCODER

The DABS encoder consists of a 24 bit shift register, parity checkers

(EXCLUSIVE OR gates connected in tandem), and steering logic as shown in

Fig. 3. The shift registe r outputs are tapped in sequence according to the

encoding polynomial, and fed into the parity checkers. The input line marked

"a" controls the steering logic which alters the processing operations performed

on different portions of the data block. At the start of the encoding process,

the shift register must be initialized to "0". (Note: If the initialization has

been done prior to the sync burst bits, provision must be made to ensure that

the sync burst bits have not entered the encoder, or that the encoder has been

7

LiiC-40(3) L

initial contents of registers = 0

encoded
mes sage block

/' ". . . . fg \
\ r J
"

I

>4-Jf~~,~ >@o G

L-------f---OD-L
,D

I

> ~
" a "

>---------4__-----__-
info/addres s block

(message block)

{

fl0" for address fiel
"a" = "1" for information

field

OJ

gi = polynomial coefficients ={o, I}
~10Ck interval delay

......
_--....:/~ c5 gr = 1 (always)

go = 1

r = 24

Fig. 3. DABS Uplink Encoder.

re-initialized prior to the 1st bit of the information field.)

During the entry of the information field, the "a" line is held at a

logical "1" level. This puts the encoder into the configuration:

)

--""",»f +1------1.

<

output

which 1) allows the information field to enter the encoder serially, 2) causes

45
1

il-1Putl--~~cb--4,---~

the output of the last parity checker to be fed back into the input of the shift

register, and 3) passes the information field (clear text) to the modulating

circuitry. In this feedback configuration, the encoder performs its "division"

ope ra tion on the incoming information field sequence. Mter the last bit of

the information field is clocked into the encoder, the sequence needed to

compute the final remainder (parity) is stored in the shift register. This

sequence is actually the last 24 bits of the quotient generated by the division

operaticn. The iinrtl parity bits are not computed until they are output at the

proper time in the address/parity field.

After the last bit of the information field has entered the encoder, the

"a-line" is switched to a logical "0" state. This puts the encoder into the

configuration:

9

input

REGISTERS WITH STORED QUOTIENT

output

Now consider the ·.tction of the reconfigured encoder upon inputting the address

field. If we as :"ume for a moment that the information field was all 0' s,

yielding all 0 parity, the encoder will perform its multiplication operation

on the incoming address sequence and yield simply the encoded address

m,tput sequence. However, since the encoder is a linear processor, the

parity generated by the stored quotient will be added to the encoded address

(modulo-2 a.ddition dictated by the EXCLUSIVE OR gates) to yield the address/

parity output. This addition process is performed on a bit by bit basis, as

the encoded address and final parity bits are simultaneously computed. As

far as the generation 01 address/parity is concerned, one could view the

operation as pntirely rnultiplication - considering the encoded address as

the forced solution due to the address input, and the parity as the natural

solution due to the initial conditions stored in the register at the time the

solution starts (at the first address bit). The net response of this linear

system is the forced solution plus the natural solution.

The encoder multiplication process may be recognized by clocking

a non-zero bit through the shift register and parity checkers. For a single

non-zero bit appearing at the input to the encoder in the no-feedback configura

tion, the encoder will generate an output sequence over the next 24

10

clock periods which corresponds to the coefficient pattern of the encoding

polynomial. In essence, this single bit sequence has been multiplied by the

sequence corresponding to the encoding polynomial. In a similar manner,

the division process may also be recognized. For a single non-zero bit

appearing at the input to the encoder in the feedback configuration, the

shift register will contain the most recent 24 bits of the computed quotient

over subsequent clock periods. In this case, the quotient results from the

division of this single bit sequence by the sequence corresponding to the

encoding polynomial.

Note: Clocking an entire data block through the shift register and

parity checkers (switching the operating configuration appropriately) will

yield the required address/parity. This technique may be useful in analyzing

encoder operation.

11

SECTION 3

POLYNOMIAL NOTATION AND ARITHMETIC OPERATIONS

Bit sequences may be conveniently represented by the algebraic

polynomial. The basic arithmetic associated with multiplying and dividing

polynomials may be used (i. e., multiplication is performed on a term by

term basis, where xi. x j =x i +j), but the encoding mechanism dictates that

any addition (or subt:raction) operations be performed in modulo-2 arithmetic. ':'

The manipulations presented in this section correspond to the processes

taking place in the encoder.

The algebraic polynomial in the variable x is expressed as a sum of

increasing powers of x, with the degree of the polynomial specified as the

highest power of x in the expres sion. The power of x indicates the bit position

(delay) relative to the start of the sequence, and the coefficient of each power

of x corresponds to the state of the bit (either 0 or l).

For example, consider two 8-bit sequences:

sequence@ 1 0 0 1 1 0 0 1

and sequence<!V 1 1 0 0 0 0 0 1

~:~ modulo- 2 arithmetic is provided by the EXCL USIVE OR function t° ® 0=0, 0 0 1=1, 1 ® 0=1, and 1 c±) 1=0

12

These two sequences may be represented as ':':

sequence@)

sequenceQ?)

1 + Ox + Ox
2

+ 1x 3 + 1x
4

+ Ox5 + Ox6 + 1x 7
- -

1 + 1x + Ox
2

+ Ox3 + Ox
4

+ Ox5 + Ox6 + 1x 7

x

3 4 7 7or more concisely as 1+x +x +x and 1 +x+x respectively.

The power of x notation is a convenient bookkeeping procedure which keeps

the sequences in proper time order; each unit increase in the power of x

corresponds to 1 bit position delay from the start of the sequence.

The multiplication of polynomials representing these sequences is

illustrated below:

1 + x 3 + x
4

+ x 7

1 + x + x
7

1 + x 3 + x
4

+ x 7

+ x
4

+ x 5 + x
8

The output sequence corresponding to this multiplication would be

1 1 0 1 0 1 0 0 1 0 1 1 0 0 1, but normally if we multiply two 8-bit

sequences, we probably desire (or are restricted to) an 8-bit output. This

requires selective truncation of the total output sequence indicated above.

Truncating after the 8th bit would yield the output sequence 1 1 0 1 0 1 0 0,

the desired result.

':' Coding theorists prefer to represent the 1st bit by the highest power of x - it
seemed more advantageous to represent it as the lowest power of x. The
results are the same in either case.

13

Division is handled similarly, with the exception that the subtraction

to generate the partial remainders is still a modulo-2 addition. The division

of sequence ® by sequence ® is illustrated in Fig. 4. The algebraic quotient,

truncated to the first 8 terms, would yield a sequence III 0 1 IlL We

may be interested in a particular remainder after a certain number of divisions.

Take for example, the remainder after two divisions (point A in Fig. 3). If

we are still interested in the first 8 terms, we might consider the remainder

sequence 0 0 1 1 I 0 0 O. The power of x in the quotient indicates how

many terms (bit position delay-wise from the start of the sequence) the division

has progressed, i. e., a term x
4

indicates that the division has covered the

first 5 bits in the sequence.

One item to keep in mind when working with these polynomial repre

sentations is that the sequences start with the term x
O

(= 1), i. e., the term

x 7 corresponds to the 8th bit in the sequence.

In the next section, this method is applied to the computation of the

address/parity output of a DABS-type uplink encoder.

14

pt.

l ATC-40(4) L

1 +X 3 tX
4

tX7

ItX tX7

A~ X
2
tx3tX

4
tX

S

X
2
tX3tX9

X
4

tX
8

tX9

X
4

tX5 tX11

X5 tXStX9tXll

X5 tX
6

tX
12

X6tX8tX9tXlltX12

X
6
tX7 tX13

X7tX8tX9tXlltX12tXl3

X7 tX8 tX14

X9 t

Fig. 4. Polynomial Division Corresponding to Division
of Binary Sequences, 10011001 Divided by 11000001.

15

SECTION 4

COMPUTING THE ADDRESS/PARITY USING ALGEBRAIC POLYNOMIALS

The use of algebraic polynomials to compute the address/parity output

-"
of a DABS-type uplink encoder'" is illustrated in this section. An example is

worked out for a 56-bit message block using 1 + x
6 + x

12 + x
24

as the encoding

polynomiaL

The computation of address/parity is performed in three steps:

1) computation of parity, 2) computation of encoded address, and 3) super-

position of the results of the first two steps.

In order to compute the parity, the polynomial representing the informa-

tion sequence is divided by the encoding polynomiaL The division is continued

until it has progres sed through the 32 bits of the information field (88 bits for

a 112-bit message block). The stopping point is recognized when the quotient

first shows a term x Y in which y .~ 32. (or 88). The remainder prior to this last

division corresponds to the required parity.

This computation is illustrated in Fig. 5 for an information field sequence

10000000001100000000000000001000, represented by the polynomial

':'In order to illustrate the procedure, an encoding polynomial with fewer non-zero
coefficients than the actual DABS polynomial is assumed. The encoder processing
is the same and the computational procedure can be applied to the encoder using
the full DABS polynomiaL

16

1 + xl a + xll + x
28

. The polynomial representing the parity, x 34 + x 40 + x 42

+ x
53

, corresponds to an output sequence 001000001010000000000100 in the

address/parity field.

In order to compute the encoded address, the polynomial representing

the address sequence is multiplied by the encoding polynomial, and the resulting

polynomial truncated after the x 23 te rm, This computation is illustrated in

Fig. 6 for an address field sequence 110000000000000100000000, represented

by the polynomial 1 + x + xIS. The polynomial representing the encoded address,

6 7 12 13 15 21
1 + x + x + x + x + x + x + x ,corresponds to the sequence

110000110000110100000100 in the address/parity field,

Note: The encoded address was computed using a "base-line" address, i. e, ,

as if the address (and hence the resultant encoded address) started at bit #1.

To shift the baseline address to its proper position in a 56-bit message block,

the base-line address polynomial has to be multiplied by the term x 32 (and

likewise by x
88

for a 112-bit message block). However, this would simply

multiply the encoded address output polynomial by the same term. The output

sequence in the address/parity field is the same in either case. The base-line

computation is sufficient, as long as we remember to shift the encoded address

output into the correct address/parity field. For the 56-bit message block

in this example, the encoded address polynomial corresponding to the correct

. . . 32 33 38 39 44 45 47 53address/par1ty f1eld 1S x + X + X + X + X + X + X + X •

17

Stop Division

X
34

l ATC-40(5) L

......
00

Encoding
Polynomial

1 +Xl 0+Xll +X28"""":--Z-Polynomial Representing Information
1+X6 +X12+X24 Field Sequence

X6+XIO+XII+XlZ+xZ4+XZ8

X
6

+X
12

+X
18

+X
30

XIO+XII+XI8+X24+X28+X30

XlO+X16+X22+X34

Xll+XI6+XI8+XZZ+XZ4+XZ8+X30+X34

xU +X17 +X23 +X35

X 16+X 17 +XI8 +X22 +XZ3 +XZ4+X28+X30+X34+X35

X 16+X22+X28+X40
X l7 +X 1 8 +X 2 =-3-+-X....,Z,....,4r-+-X....,3"..,O......+-X..........3"T4-+-X...,,3'"""5-+-X-4'T10..--------

X
17

+X
23

+X
29

+X
4l

X18+X24+X29+X30+X34+X35+X40+X4l

X18+X24+X30+X42

X29+X34+X35+X40+X41+X4Z

X 29 +X35+X4l+X53

... Parity Output Sequence == 000000000100

---------------..----------~
address/parity field

Fig. 5. Example: Computation of Parity Output
Sequence Using Polynomial Division.

l ATC-40(6) L

1 + X + X15_........------Address

1 + X 6 + X 12 + X 2:..;j.,...... Encoding Polynomial

1 + X + X 15

+ X
6

+ X 7 + X 2l

+X12+X13+X27

+ X
24

+ X
25

+ X
39

110000110000110100000100--- ~---------.-/
address/parity field

Note: This computation was performed on a "base-line" address,
i. e., as if the address started with bit #1. This yielded an encoded
address output which also started at bit #1. The address actually
starts at bit #33 of a 56 bit message block and at bit #89 of a 112 bit
message block, and so does the encoded address. The base-line compu
tation simply has to be shifted up into the correct address/parity field.

Fig. 6. Example: Computation of Encoded Addres s
Output Sequence Using Polynomial Multiplication.

19

In order to compute the addres s/parity, the polynomials corresponding

to parity and encoded addres s are combined by the modulo-2 addition of terms

with common powers of x (i. e., terms that correspond to the same position

in the two sequences). Thus, the polynomial corresponding to address/parity

. 32 + 33 + 34 + 38 + 39 + 40 + 42 + 44 -t 45 + 47 .
IS x X X X X X X X - X x, representIng

sequence 111000111010110100000000. (Note: This output sequence could have

been obtained from a modulo-2 addition of the parity and encoded address

sequences, without reverting to the polynomial representations.)

Figure 7 illustrates the results of this example as generated by the

uplink encoder in the portable DABS Interrogator Simulator which was set up

with the example polynomial. The waveforms are the detected RF uplink

transmis sions. The downward "spikes" within the DABS data block envelope

-,-
correspond to phase changes generated by l's in the DPSK modulation. -,' The

photographs show the input-output relationships for the three steps in the

computation, and verify the hand-computed sequences for parity, encoded

address, and address/parity. The triangle on each photograph indicates the

33rd bit of the message block or the 1st bit of address/parity. At a 4-Megabit/sec

rate, there are 8 bits per vertical division (2fJ. sec/vertical division).

Hand-computation of the address/parity output is laborious, particularly

';'In DABS uplink interrogations, the data block is transmitted using DPSK
(Differential Phase Shift Keying) Modulation. This modulation scheme uses
the convention that a "1'1 for any bit generates a 180

0
phase reversal in the

carrier for that bit, a 1'0" produces no phase reversal. Due to finite system
bandwidth limitations, variations in carrier amplitude accompany each phase
reversal. Envelope detection can discern these amplitude variations, providing
a convenient display of the DPSK modulation.

20

-, ATC-40(7) 1_

Clear Text Address:
(w/all 0 information field)

Encoded Address:

a) Input Address Only Encoded Address

Information Field:
(w/all 0 address field)

Parity:

b) Input Information Field Only Parity

Information Field
Plus Clear Text Address:

Address/Parity:

Parity:

Encoded Address:

c) Input Information Plus Address Address/Parity

Fig. 7. Example: Encoded'Address, Parity, and Address/
Parity Generated by DABS-type Uplink Encoder.

. 6 12 24(Fblynomlal = 1 + x + x + x .)

21

for an info/address block and/or an encoding polynomial with many non-zero

bits. In the next section, a simple method for computing address/parity, in

which all the "difficult" work has been done, is presented.

22

SECTION 5

COMPUTING THE ADDRESS/PARITY BITS FROM TABLES

In the previous sections it was shown how resolving the encoding

process into two distinct operations and then superposing the results siITlplifies

the solution to (and understanding of) the probleITl of cOITlputing address/parity.

The superposition aspect of the encoding operation ITlay be further exploited

by generating a set of tables which perITlit siITlple calculation of address/parity.

The first part of the procedure is to cOITlpute the contribution to

address/parity due to each bit in the info/address block acting individually.

Superposition then says that if the contribution of each individual bit is known,

the address/parity due to the inforITlation field and address field input sequences

ITlay be cOITlputed by adding the results due each bit in the input acting individually.

The tables provide the required output sequences.

The address and parity output sequences corresponding to the encoding

':~
polynoITlial prescribed in Reference 2 are given in Tables I and II respectively.

In order to use the tables, one siITlply perforITls a ITlodulo-2 addition of the

;;;The encoding polynoITlial prescribed in Reference 2 has the forITl:

g(x) =

i = 24

L
i = 0

) 1 for i = 0 through 12, 14, 21 and 24

t 0 otherwise

23

TABLE I

ENCODED ADDRESS' (ADDRESS/PARITY OUTPUT SE~UENCES

DUE TO A "I" IN EACH BIT OF ADDRESS)

Clear Text
Addres s Bit Address/Parity Bit Numbers
Numbers

9 I Q " I 1 2 13 J • /5 16 17 I 8 19 20 21 22 23 2.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0
2 0 1 1 1 1 1 1 1 1 1 1] 1 1 0 1 0 0 0 0 0 0 1 0
3 0 0 1 1] 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1
4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0
5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0
6 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0
7 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0
8 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0
9 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0

10 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
11 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
12 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 0 0 0 0 0 0 0 0 0 a 0 1 1 1 1 1 1 1 1 1 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
20 1 1 1 1 1
21 0 1 1 1 1
22 0 1 1 1
23 a 0 1 1
24 0 1

':'On1y for DABS uplink encoder using polynomial prescribed in Refe re nee 2.

Note: The 1st bit in the address or address/parity field is the 33rd (89th)
bit of the message block for a 56 (112) bit mes sage,

24

TABLE II

PARITY' 1-'\ OORESS/PARITY OCTPlTT SEQCE:-\CES DeE TO
A "1" I); EACH BIT OF INFORMA TION FIE LD)

Infornlation
Field Bit Address/Parity Bit Numbers
:'-Jumbers ..

56 Bit l.. 12 Bit
,] J • ; 6 7 8 9 10 II I] I J IA I; , 6 J7 IS 19 20 1 : 22 2 J 24

1 a I) 1 1 1 I) a 1 I) I) 1 1 0 1 I) 1 1 1 1 I) 1 a 1 I)

2 0 0 a 1 1 1 a a 1 () I) 1 1 I) 1 I) 1 1 1 1 ') 1 I) 1
3 1 1 1 1 0 0 0 1 1 I) 1 1 0 1 1 1 ') 1 1 1 1 1 1 1
4 ') 1 1 1 1 0 0 0 1 1 I) 1 1 !) 1 1 1 !) 1 1 1 1 1 1
5 1 1 0 I) !) !) 1 1 1 0 a 1 ') 1 1 1 1 1 !) 1 1 I) 1 1

~
6 1 0 !) 1 1 1 1 I) ') I) 1 1 0 a () 1 1 1 1 I) 1 I) ') 1
7 1 () 1 1 ') ') a ') 1 1 1 I) I) I) 1 I) 1 1 1 1 ') I)) ')

8 I) 1 () 1 1 a 0 !) I) 1 1 1 0 I) I) 1 0 1 1 1 1 I) I) I)

9 ') () 1 ') 1 1 () ') 0 !) 1 1 1 () !) a 1 ') 1 1 1 1 ') !)

10 0 a a 1 r) 1 1 !) ') !) I) 1 1 1 ') ') ') 1 ') 1 1 1 1 f)

11 0 J a ') 1 !) 1 1 !) a 0 I) 1 1 1 I) !) !) 1 ') 1 1 1 1
12 1 1 1 1 1 !) 1 ') I) 1 1 1 1 1 a 1 ') !) !) 1 I) ') 1 1
1 '3 1 !) I) a a ') 1 I) 1 1 I) !) !) 1 !) ') 1 a I) !) 1 1 ') 1
14 1 ') 1 1 1 1 1 0 1 () I) 1 1 a 0 ') a 1 I) !) I) ') 1 ()

1 5 a 1 0 1 1 1 1 1 !) 1 I) I) 1 1 a !) 0 ') 1 !) ') !) ') 1
1 (; 1 1 !) 1 I) a !) () !) 1 I) 1 1 1 !) I) I) I) ') 1 I) 1 ') ')

17 !) 1 1 ') 1 !) ') !) ') ') 1 ') 1 1 1 !) I) 0 0 ') 1 I) 1 ')

18 ') ') 1 1 I) 1 ') !) I) I) ') 1 I) 1 1 1 ') () 0 ') ') 1 ') 1
19 1 1 1 I) I) 1 I) 1 1 1 1 1 !) I) 0 1 1 I) ') ') ') 1 1 0
20 !) 1 1 1 I) 0 1 !) 1 1 1 1 1 I) 0 I) 1 1 I) !) ') ') 1 1
21 1 1 I) 0 0 1 1 I) 1 () !) I) 0 1 1 ') !) 1 1 ') I) 1 ') 1
22 1 I) 0 1 1 1 I) ') 1 0 1 1 1 !) ') 1 ') ') 1 1 ') 1 1 ')

23 I) 1 !) ') 1 1 1 !) () 1 ') 1 1 1 I) !) 1 I) I) 1 1 ') 1 1
24 1 1 I) 1 1 ') !) I) 1 1 I) 1 !) 1 ') 0 !) 1 ') !) 1 ') I) 1
),- 1 ') 0 1 I) I) 1 1 1 !) I) 1 I) I) I) 0 ') 0 1 f) f) f) I) ')~:J

26 I) 1 J 0 1 I) !) 1 1 1 0 I) 1 !) 0 I) I) 0 I) 1 !) ')) ')

27 0 a 1 0 a 1 a 0 1 1 1 () 0 1 I) 0 ') !) f) f) 1 f) 'J 'J
28 0 0 I) 1 I) I) 1 0 0 1 1 1 a I) 1 I) I) 0 I) I) f) 1 I) 'J
29 I) 0 0 I) 1 I) I) 1 0 ') 1 1 1 ') ') 1 I) 0 !)) 'J ') 1 I)

30 ') I) I) I) ') 1 a 0 1 a 0 1 1 1 ') I) 1 0 a ') I) ') I) 1
31 1 1 1 1 1 1 a 1 1 J 1 1 :) 1 0 0 0 1 I) 'J 'J 1 ') ')

32 ') 1 1 1 1 1 1 a 1 1 0 1 1 () 1 I) 0 a 1 ') I) ') 1 ')

33 ') 0 1 1 1 1 1 1 I) 1 1 I) 1 1 ') 1 I) 0 ') 1 ') I) ') 1
34 1 1 1 0 I) 0 I) I) I) 1 I) ') 1 1 'J ') 1 'J ') 'J 1 1 'J !)

35 0 1 1 1 I) a 0 0 ') ') 1 !) I) 1 1 0 I) 1 ') ,') ') 1 1 'J
36 () 'J 1 1 1 0 0 0 'J 0 'J 1 I) 0 1 1 0 ') 1 I) I) I) 1 1
37 1 1 1 a ') 0 1 1 1 1 1 1 0 a 1 1 1 I) ') 1 'J 1 J 1
38 1 I) 0 0 1 1 1 a I) I) a 0 I) I) 1 1 1 1 I) I) 1 1 1 ')

39 I) 1 I) !) ') 1 1 1 !) 0 I) ') I) !) !) 1 1 1 1) J 1 1 1
40 1 1 I) 1 1 1 ') 'J 'J 1 1 1 1 I) 1 J 1 1 1 1 J 1 1 1
41 1 I) 0 1 ') a I) 1 1 1 I) 0 () 1 1 1 I) 1 1 1 1 1 1 1
42 1 0 1 1 0 1 1 1 0 I) 0 1 1 0 I) 1 1 J 1 1 1 J 1 1
43 1 I) 1 0 0 1 I) I) a 1 1 1 !) 1 1 I) 1 1 J 1 1 0 l 1
44 1 ') 1 I) 1 1 J 1 1 1 0 I) I) oJ ') 1 I) 1 1 -:) 1 ') J 'J

-continuca-

)-
~:J

Only fel]" D..\ES enco,:er (l:plink or downlink) using po1ynon-.ial prescr:bed in
:<L' ie re:1ce ~.

TABLE n (Continued)

InforITla ~ion
Field Bit

Address/Parity Bit NUITlbers
NUITlbers

I ~

56 Bit 112 Bi.t 3 • \ 6 , 8 " ;0 11 " , " I. 15 16 17 18 19 20 21 22 13 2"

45 0 1 f) 1 r) 1 1 0 1 1 1 0 () 0 0 0 1 0 1 1 () 1 0 0
46 0 r) 1 () 1 IJ 1 1 0 1 1 1 0 0 0 0 0 1 I) 1 1 0 1 0
47 0 f) f) 1 () 1 () 1 1 0 1 1 1 0 0 f) () 0 1 f) 1 1 0 1L

48 1 1 1 1. () 1 () 1 0 0 1 () 0 1 1 0 0 () f) 1 () 0 1 0
4Q 0 1 1 1 1 0 1 ,', 1 '} ') 1 () I} 1 1 0 0 0 0 1 0 0 1
50 1 1 () i) 0 () 1 ') 1 :) 1 1 l) 0 1 1 1 0 0 I) 0 0 0 0
51 0 1 1 IJ r) ') f) 1 I) 1. ,,) 1 1 0 C) 1 1 1 0 0 () 0 0 I)

52 () !) 1 1 () 0 ') 0 1 ') 1 J1 1 1 0 0 1 1 1 I) 0 0 ') 0
53 0) !) ') 1 1 ,) '} ') I) 1 !) 1 () 1 1 0 () 1 1 1 0 I) 0 0
54 0 !) !) () 1 1 () ') 1) !) 1 0 1 0 1 1 () 0 1 1 1 0 0 0
55 !) 0 C) n ') 1 1 () !) !) !) 1 r) 1 n 1 1 () 0 1 1 1 () ')

56 ') () () 0 !)) 1 1 !) () I) () 1 () 1 0 1 1 0 r) 1 1 1 ()".
1 .:;'" -, ') 0 0 r) ()) 1 1 () 0 0 ') 1 0 1 0 1 1 !) ') 1 1 1. I ',)

2 58 1 1 1 1 1 1 1 1 f) I) 1 1 1 ') 0 0 1 I) 1 1 0 1 1 1
3 59 1 0 0 ') !) 0 () () 0 1 1 0 ') 1 1 () 0 1 0 1 1 1 1 1
4 GO 1 0 1 1 1 1 1 1 1 1 0 !) 1 0 f) 1 () () 1 () 1 () 1 1
5 61 1 0 1 0 ') 0 !) 0 ') ') ') 1 1 1 1 0 1 () () 1 () () 0 1
6 62 1 0 1 J 1 1 1 1 1 1 1 1 f) 1 ') 1 0 1 f) f) 1 1 () 0
7 6') 0 1 0 1 0 1 1 1 1 1 1 1 1 :) 1 0 1 0 1 0 () 1 1 0.J

8 64 () 0 1 0 1 0 1 1 1 1 1 1 1 1 0 1 () 1 0 1 () () 1 1
9 65 1 1 1 0 1 0 1 0 0 0 IJ 0 0 1 0 !) 1 0 1 f) 1 1 0 1

10 66 1 0 !) () 1 0 1 0 1 1 1 1 1 0 I} I} f) 1 0 1 0 0 1 0
11 67 0 1 0 0 0 1 0 1 0 1 1 1 1 1 f) f) f) () 1 0 1 0 I) 1
12 68 1 1 0 1 1 1 0 1 !) 1 0 0 0 1 0 0 !) 0 f) 1 () 0 0 ()

13 69 ') 1 1 0 1 1 1 f) 1 0 1 !) 0 0 1 0 () 0 0 f) 1 0 () 0
14 70 !) () 1 1 f) 1 1 1 0 1 0 1 0 0 0 1 () 0 0 0 !) 1 0 0
15 71 Q 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1 0
16 72 f) Q 0 () 1 1 0 1 1 1 0 1 0 1 f) 0 0 1 0 0 !) I) 0 1
17 73 1 1 1 1 1 0 0 1 0 !) 0 1 0 f) 0 0 0 0 1 0 f) 1 0 0
18 74 0 1 1 1 1

,
!) 0 1 0 0 !) 1 () 0 0 0 () 0 1 0 !) 1 0.J..

19 75 0 0 1 1 1 1 1 f) f) 1 0 !) f) 1 0 0 0 0 0 0 1 () f) 1
20 76 1 1 1 ') f) !) 0 0 1 1 () 1 1 0 0 0 0 0 0 () 0 0 f) 0
21 77 0 1 1 1 0 0 I) '1 !) 1 1 !) 1 1 0 I) 0 0 I) () 0 () 0 f)

22 78 0 ') 1 1 1 f) 0 I) f) !) 1 1 0 1 1 0 0 0 f) () I) I) I) 0
23 79 !) 0 0 1 1 1 0 () I) !) 0 1 1 0 1 1 0 f) () () 0 I) 0 0
24 80 0 0 0 0 1 1 1 0 0 0 I) !) 1 1 f) 1 1 0 I) () 0 f) 0 0
25 81 0 0 0 0 0 1 1 1 'J () () !) I) 1 1 0 1 1 0 I) I) () 0 0
26 82 0 0 () 0 !) ') 1 1 1 () ') 0 0 0 1 1 I) 1 1 !) ') I) 0 0
27 83 0 () I) 0 0 0 0 1 1 1 I) 0 ') 0 0 1 1 Cl 1 1 0 0 0 0
28 84 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1 ') 0 0
29 85 0 () I} 0 n 0 () I) !) 1 1 1 I) I) I) I) !) 1 1 I) 1 1 0 0
30 86 0 0 0 0 0 0 0 0 0 () 1 1 1 0 0 I) 0 0 1 1 0 1 1 0
31 87 0 0 0 0 0 0 0 0 () 0 0 1 1 1 0 0 0 0 0 1 1 0 1 1
32 88 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 !) 1

2t)

output sequences due to each "I" bit in the info/address block. The modu1o-2

addition corresponds to the EXCLUSIVE OR function for a many-variable

input, i. e., if all the inputs are "0" - the output is "0", if the number of "I' s II

in the input is odd - the output is 1'1 ' t, and if the number of "1' s" in the input

is even - the output is "0"; there is no carry.

The procedure is best illustrated by an example. Consider the

following input sequence (clear text) for a 56 bit info/address block:

11 OOOOOO} 00001 01,,00000000) 0001 000

------ ~ -----
information bit

sequence

10010000)100000~0000000l--
address bit

sequence

First, compute the output parity sequence generated by the information

bits. From the Parity Table (Table II) find the appropriate output sequence

corresponding to each "1" in the information field. Modu1o-2 addition of these

sequences yields the output parity sequence:

from 1st bit
from 2nd bit
from 9th bit
from 14th bit
from 16th bit
from 25th bit

® from 29th bit

output parity
sequence

o 0 0 a 000 1 100 0 a 1 0 1 0 1 1 001 1 1
1 1 1 1 1 1 1 1 001 1 1 000 1 011 0 1 1 1
1 1 101 0 1 000 0 0 0 1 001 0 1 0 1 1 0 1
001 1 0 1 1 1 0 1 0 1 0 0 0 1 000 0 0 1 0 0
o 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 1
o 0 0 0 0 1 1 1 0 0 0 0 0 1 101 100 0 000
o 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 101 100

0010100 1 0 1 001 0 1 0 1 001 0 1 °0

Note: The modulo-2 addition is performed on each column of bits, all O's - 0,

evennumberof1's - 0, oddnumerof1's - 1, and there is no carry. (This

is equivalent to performing a multiple-input EXCLUSIVE OR function on each

column.)

27

Next compute the encoded address sequence generated by the address

bits. From the address table find the appropriate output sequence correspond-

ing to each "1" in the address field. Modulo-2 addition of these sequences

yields the encoded address sequence.

from 1st bit
from 4th bit
from 9th bit
from 10th bito from 24th bit

encoded address
sequence

1 1 1 1 1 1 1 1 1 1 1 1 101 0 0 0 0 001 0 0
00011111J 111111101000000
000000001111111111111010
o 0 0 0 0 0 0 0 0 1 1 1 1 1 1 III 1 1 1 101
o 0 a 0 0 0 0 0 0 0 0 0 0 000 0 0 0 0 0 001

III 0 a 0 0 0 1 0 0 0 0 1 0 1 0 1 000 010

Modulo-2 addition of the output parity sequence and the encoded address

sequence yields the resultant address/parity sequence:

parity
enc. address

0010100 1 0 1 001 0 1 0 1 001 0 1 0 0
I 1 100 000 1 0 0 0 0 I 0 1 0 I 0 0 001 0

addre s s /parity 1 1 0 0 1 0 0 1 1 1 0 0 1 1 1 I I 1 0 I 0 1 1 0

Note: The modu1o-2 additions could have been done in one step; it was broken

down into three steps to emphasize the use of the two tables corresponding to

the separation in processing that the encoder performs on the two segments

of the input.

This example is graphically illustrated in Figs. 8 & 9. The photographs

in these figures illustrate: I) the contribution to address/parity due to the

information field alone (parity), 2) the contribution due to the address field

(encoded addres s), and 3) the resultant addres s/parity generated by the uplink

encoder in the portable DABS Interrogator Simulator. The waveforms are

detected uplink transmissions fronl. the simulator. The downward "spikes"

28

l ATC-40(8) L

Clear Text Address:
(w/all 0 information field)

Encoded Address:

a) Input Address Only ----......_ Encoded Address

Information Field:
(w/all 0 address field)

Parity:

b) Input Information Field Only -----:....~ Parity

Information Field
Plus Clear Text Address:

Addre s s /Parity:

I
Parity:

Encoded Address:

c) Input Information Plus Address -....,..-Address/Parity

Fig. 8. Example: Encoded Address, Parity, and
Address /Parity Generated by DABS Uplink Encoder.

(Polynomial: As specified in Reference 1, ''Provisional
Signal Formats for the Discrete Address Beacon System
Rev. 1 ".)

29

l ATC-40(9) L

Encoded Address:

Parity:

Address/Parity:

Fig. 9. Encoded Address, Parity, and Address /Parity Output Sequences
from Example Illustrated in Fig. 8, Shown with Expanded Time Scale.

30

~ I

within the DABS data block envelope correspond to the DPSK bits. In these

transnlis sions the sync phase reversal was not transmitted; if it had been

transmitted it would not have affected the address/parity output. The triangle

superimposed on the photographs indicates the 33rd bit of the info/address block

or the 1st bit of address/parity for a 56-bit message sequence.

Tables I and II were generated using the encoding polynomial prescribed

in Reference Z. The sequences listed in the tables were worked out by hand

and verified with a working encoder, The address table is filled by multiplying

the polynomial corresponding to the clear text address sequence by the encoding

polynomial, and truncating after the 24th bit. The parity table is filled by

dividing the info~rnation sequence polynomial by the encoding polynomial and

taking the last 24 bits of the remainder as the parity sequence, These algebraic

rnanipulc tions have been illustrated in the previous section, and one can use

this procedure to II figure out the addres s/parity for a particular example,

Of 2) generate a set of address/parity tables corresponding to a different

encoding polynomial,

The task of computing a new set of tables is not as formidable as it may

seem. Actually the entire set of tables was generated with only one polynomial

multiplication and one polynomial division. (Of course if one has an operating

encoder, it car: do the work for you.)

For the address table: The polynomial representing the clear text

address used in the polynomial multiplication is a(x) = 1 (first bit of address

is a "1", all of the rest are "0"). The resultant output for the encoded address

sequence is simply the sequence corresponding to the coefficients of the encoding

31

polynomial. This multiplication yields the top row of the table. Consider

next what the result would be given a "1" in only the second address bit.

The basic multiplication is still the same, only the output is shifted one bit

in sequence due to the one-bit shift in the address input (another aspect of the

linearity of the encooer, delayed input produces delayed output). This result

yields the 2nd row in the table. Similarly the table is filled up for all 24

address bits taken one at a tim.e.

For the parity table: The polynomial representing the information

sequence used in generating the parity table is

i(x) = 1

Dividing this polynomial by the encoding polynomial until the quotient shows

the 89th bit of output has been computed, the last remainder prior to this

division is the parity sequence corresponding to the first bit of the informa

tion sequence. Working backwards up through the division, the partial re

mainders provide the other sequence s for the table.

It may be noted that the parity due to the last 32 bits of the 88-bit

information sequence is identical to the parity for the 32-bit information

sequence for a short message. A little thought should convince the reader

that these parity sequences corresponding to the last 32 bits of an 88-bit

information sequence are the partial remainders that would be obtained if

the division had been stopped following the appearance of the 33rd bit in the

quotient corresponding to a short me ssage block.

32

SECTION 6

BASIC TEST PATTERNS

The test patterns presented in this section were designed to check

the DABS uplink encoders used in the portable DABS Interrogator Simulators.

The bit assignments agree with the proposed DABS uplink format specifications.

In the following tests, the sync burst bits are not discussed since they have no

bearing on the encoded output.

6.1 ADDRESS (POLYNOMIAL) TEST

The address polynomial test is useful to check, 1) that the encoder is

performing the basic multiplication properly, 2) that the polynomial has been

entered correctly into the encoder, and 3) that the encoder has switched from

information field processing to address processing at the proper time.

Info/Address Block Input:

Information Field: all 0' s

Addres s Field: 1

D's

33

56-Bit Block

Bit Nos.

1 through 32

33

34 through 56

112-Bit Block

Bit Nos.

1 through 88

89

90 through 112

so that the data block input sequence is:

00000000..... 000000100000000000000000000000

The corresponding address/parity output should be:

00000000..... 000000111111111111101000000100.

It should he noted that the address/parity output sequence is the
,','.'coefficient pattern of the encoding polynomial.

The input-encoded output relationships for this test are graphically

illustra t ed in Fig. 10. The Figure shows the detected DPSK bits in the

DABS data block envelope for this 56-bit message. The downward "spikes"

are the detected reversals in the carrier phase, i. e., a 1'1" for that DPSK

bit. This input-output relationship corresponds to the most elementary form

of "multiplication" in the encoding mechanism.

6.2 PARITY TEST

This test checks the generation of parity output from the encoder.

Info/Address Block Input:

Information Field:

Address Field:

D's

l's

0

1

DIS

I

O's

all D's

56-Bit Block
Bit Nos.

1-8

9-21

22

23

24-29

30

31-32

33-56

112-Bit Block
Bit Nos.

1-64

65-77

78

79

80-85

86

87-88

89 -11 2

':'Th~s is the coefficient pattern of the polynomial except for the term corresponding
to x 4 - a 24th degree polynomial has 25 terms; since there is only room for
24 bits in the address/parity output, the last coefficient would come out as the
"25th" address bit - except that the transmission of the data block ends after
the 24th bit.

34

l ATC-40(10) L

Input:

Address/Parity Output:

•
a) Address (polynomial) Test

Input:

Address/Parity Output:

b) Parity Test

Input

Address/Parity Output:

Parity:
(from Parity Test)

Encoded Address:
(from Address Test)

c) Address-Parity Overlay Test

Fig. 10. Three Basic Test Patterns for DABS Uplink Encoder.

35

It may be noted that tJ:e last 24 bits of the information field are the coefficients

of the first 24 terms of the encoding polynomial.

The data block input sequence is:

.... 000111111111111101000000100000000000000000000000000

and the encoded output sequence is:

.... 000111111111111101000000100 100000000000000000000000

-'.','
This input-output relationship corresponds to elementary division

in the encoding mechanism, where the parity output is the "remainder" after

the division process.

The input-output relationship for this test is also illustrated in Fig. 10.

6.3 ADDRESS-PARITY OVERLAY TEST

Since the encoding process is a linear operation, the principle of super-

position must hold. Thus the results of the two previous tests must superpose

(overlay) directly. The overlay process is a modu1o-2 addition on a bit by bit

basis (i. e., OG)O = 0, O(±)l =1, 1 (±)O =1, and 1 (±)1 = 0 (no carry). Now if the

testing sequences used in the first two tests are simultaneously input to the

encoder, the new net input sequence is:

...... 000111111111111101000000100100000000000000000000000

Addition of the output sequence due to the parity test alone to the output due to

the address test alone, yields the address/parity sequence:

';'This sequence yields one non-zero bit of parity. If we had input the entire
25 terms of the polynomial, starting in bit 8 (or 64), then parity would be all
zeros (no remainder). This leads to the possibly confusing conclusions:
1) it's working perfectly, or 2) it's not working at alL

36

(parity) ... 000111111111111101000000100100000000000000000000000

(adclres s) 8) ... 000000000000000000000000000 1111111111111 01000000100

Address/Parity 000111111111111101000000100 011111111111101000000100

Note: Bit No. 33 = 0, since 1 CB 1 = O. The input-output relationships for this

test are illustrated in Fig. 10.

If the DABS encoder passes these three tests, it is functioning

-'',-
properly.

Two additional checks should be made to ensurE: that the parity genera-

tion starts with the 1st bit of the data block: 1) setting only bit no. 1 equal to

a "I", the encoded output should be:

1000000 0000 00111 001 0011 01 01111 01 01 0

fo r a lIZ-bit data block, and

1000000 0000 000000011 00001 01 011 00111

for d 56-bit data block (taken from Table II); and Z) the presence or absence

of a Ill" in any of the sync burst bits should not affect the encoder output.

With the address/parity tables in the preceding section, the user should

be able to generate his own test patterns. Experience has shown: l) working

with the simplest (fewest l' s) input sequence and polynomial expression yields

the best aid in debugging a faulty encoder, and Z) with the DABS encoder, it

is helpful to look at the generation of parity separately from the generation

of encoded address,

':'This statement is implementation sensitive, e. g., the encoder may work with
a polynon,ial having an even number of non-zero coefficients, and may not work
with a polynomial having an odd nunlber of non-zero coefficients, depending
on what the designer did with the parity check inputs corresponding to the non
zero coefficients. In the latter case, an inversion of the output of the last
parity checker will provide a quick remedy for the situation.

37

SECTION 7

GENERAL APPLICATION TO ENCODERS-DECODERS

The results presented in the previous sections are applicable to other

po]vnonlial encoders and decoders. Particularly significant is the technique

of resolving the encoding process into superposable operations. With knowl

edge of the basic operations the particular encoder or decoder can perform,

the results presented here (including the use of address-parity tables) can

he applied.

The DABS encoding system employed in both the uplink and downlink

is designed according to the same functional block diagram (Fig. 3). Specific

operation is deternlined only by the control states of the steering logic. (Thus

the transponder circuitry used to decode the uplink can also be used to encode

the downUnk.)

The techniques and TABLES presented in Sections 4 and 5 can be used

accordingly in the other three cases:

Uplink Decode - The decoder is set into the feedback configuration

which 'Idivides" throughout the entire message block, first to compute the

parity, second to obtain the unencoded address.

38

,',

Downlink Encode"'- During the information field, the encoder "divides"

to generate the parity hits just as in the uplink encoder. Starting with the

first bit of the address, instead of feeding the address into the shift register,

the input of the shift register is held at a logical "0". This has the effect of

adding the parity to the clear text address rather than to the encoded address.

(Table II can be used directly, but the encoded address table (Table I) is not

used at all.)

Downlink Decode - During the information field, the decoder "divides"

to generate the parity bits. Starting with the 1st bit of address/parity, the

input of the shift register is held at logical "0". The parity is added to

address/parity yielding the clear text address. Note: In practice, the imple-

mentation of the downlink decoder is slightly different, but operationally

equivalent to this description. This alternate realization is shown in Figure 11.

It should be pointed out that this realization corresponds more closely to the

nwchanical manipulations of a hand computed division. With this realization,

the division does not start until the first bit of data reaches the end of the

shift rcgider (2.4 clock counts), where it is multiplied by the polynomial

coefficients and fed back into the shift register string as a modulo-Z subtrac-

tion from the previous dividend. Following the 56th or llZth clock, the out-

puts of the shift re giste r contain the de coded add re s s bits.

::'The downlink uses pulse position modulation (PPM) and does not contain a
sync burst field in the reply data block (see Reference 1). The encoder-decoder
operation is independent of modulation type and the presence of any sync burst
bits.

39

A
r

Initial cortents of Registers Ai == 0
A

r - 1

l ATC-40(IIlL

Al

Input
data
block

I--------f

l------~-----f

I-clock interval delay register

-

gi ::: polynomial coefficients::: (0, 1)
gf::: 1 r == 24

At end of decoding process, registers
contain decoded addre s s bits A 1 through
A

Z4

Fig. 11. DABS downlink decode r.

ACKNOWLEDGMENT

I wish to express my appreciation to J. Russell Johnson, colleague

at Lincoln Laboratory, for providing initial insight into the theory of operation

of tI,e encoding Dlechanism. He is also responsible for suggesting basic

test patterns which have proven to be valuable in checking encoders for

proper operation [Ref. 3].

J. Samson

41

REFERENCES

[1] P. R. Drouilhet, "DABS: A System Description, " Project Report
ATC-42, Lincoln Laboratory, M.1. T. (18 November 1974)
FAA - RD - 7 4- 189.

[2] P. R. Drouilhet, "Provisional Signal Formats for the Discrete Address
Beacon System (Revision 1), " Project Report A TC - 30, Revision I,
Lincoln Laboratory, M.L T. (25 April 1974) FAA-RD-74-62.

[3] J. Russel Johnson, private communication (February 1974).

42

