Project Report ATC-12

# A Comparison of Immunity to Garbling for Three Candidate Modulation Schemes for DABS

D.A. Shnidman

14 August 1972

# **Lincoln Laboratory**

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Lexington, Massachusetts



Prepared for the Federal Aviation Administration, Washington, D.C. 20591.

This document is available to the public through the National Technical Information Service, Springfield, VA 22161

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

## TABLE OF CONTENTS

.

 $\hat{\gamma}$ 

ŝ

| <u>Section</u> |                                         | Page |
|----------------|-----------------------------------------|------|
|                |                                         |      |
| 1.             | INTRODUCTION                            | 1    |
| 2.             | INCOHERENT PAM                          | 3    |
| 3.             | DPSK                                    | 8    |
| 4.             | INCOHERENT FSK                          | 14   |
| 5.             | P <sub>e</sub> /bit vs E/N <sub>0</sub> | 23   |
| 6.             | CONCLUSIONS                             | 24   |
| Appendix       |                                         |      |
| Α.             | THE OPTIMUM DPSK RECEIVER               | 30   |
| REFERENCE      | S                                       | 34   |

#### 1. INTRODUCTION

s

One of the major issues in the development of a Discrete Address Beacon System (DABS) for surveillance of air traffic is that of compatibility with the present surveillance system, the Air Traffic Control Radar Beacon System (ATCRBS) which operates on separate uplink and downlink frequencies of 1030 and 1090 MHz, respectively. Since the aircraft population will take years to convert from ATCRBS to DABS transponders, there will be a significant period of time in which DABS and ATCRBS will have to co-exist. It is desirable to build ATCRBS capability into both airborne and ground DABS equipment to accommodate a gradual evolution to a DABS. It is thus reasonable to investigate the possibility of DABS use of the ATCRBS frequencies in order to allow maximum sharing of both airborne and ground equipment for design economy.

The problem that is investigated in this report is the sensitivity of candidate DABS modulation systems to interference, either from ATCRBS or DABS transmissions, or as is likely to arise from multipath reflections. We are particularly interested in assessing the question of sensitivity of DABS operation on ATCRBS frequencies. Hence, the performance of DABS candidate modulations are analyzed for three types of environment:

- (1) Additive gaussian noise.
- (2) DABS-like interfering waveforms with gaussian noise.
- (3) ATCRBS interference with gaussian noise.

The three modulation schemes that are analyzed are pulse amplitude modulation on-off keyed (PAM), differential phase shift keying (DPSK), and frequency shift

keying (FSK). The performance of these three modulation systems is compared on the basis of probability of error per bit,  $P_e/bit$  as a function of signal-tonoise and interference-to-signal ratios.

Ultimately, it is the reliability of coded message blocks which is of interest, but the calculation of  $P_e$ /bit is a necessary first step in obtaining message reliability. In this report, analytical expressions are obtained for the maximum likelihood demodulations [1] followed by the optimum decision strategy (the minimum error rate decision strategy). A familiarity with the papers by Arthurs and Dym [2] and Stein [3] is assummed.

At this point, we introduce the following useful identity and notation: IDENTITY

$$\cos(\omega t + \alpha) + \rho \cos(\omega t + \beta) = \sqrt{1 + 2\rho \cos\theta + \rho^2} \cos(\omega t + \phi) , \quad (1)$$

where

$$\theta = \beta - \alpha \quad \text{and} \quad \phi = \tan^{-1} \frac{\sin \alpha + \rho \sin \beta}{\cos \alpha + \rho \cos \beta}$$
 (2)

If  $\beta$  and  $\alpha$  are uniformly distributed  $-\pi$  to  $\pi$ , then  $\theta$  and  $\phi$  are also uniformly distributed  $-\pi$  to  $\pi$ .

### NOTATION

 $\rho^2$  is the ratio of the interfering pulse energy to the signal energy

T is the pulse duration

 $\rm N_{\rm O}/2$  is the double sided white noise spectral density

$$R_{+}(\theta) = \sqrt{\frac{2E}{N_{0}} (1 + 2 \rho \cos \theta + \rho^{2})} , \qquad (3)$$

and

$$R_{-}(\theta) = \sqrt{\frac{2E}{N_{0}} (1 - 2 \rho \cos \theta + \rho^{2})}$$
 (4)

### 2. INCOHERENT PAM

The first modulation scheme considered is incoherent PAM. If we assume that the interfering pulse completely overlaps the information pulse, then the waveform at the input to the receiver is, for a peak power limited signal,

$$r(t) = \sqrt{\frac{2E}{T}} [c_1 \cos(\omega t + \alpha) + c_2 \rho \cos(\omega t + \beta)] + n(t)$$

$$= \sqrt{\frac{2E}{T}} (c_1^2 + 2c_1 c_2 \rho \cos \theta + c_2^2 \rho^2) \cos(\omega t + \phi) + n(t),$$
(5)

where  $c_1$  and  $c_2$  are each either 0 or 1.

This received signal is demodulated using the maximum likelihood estimate [1] to obtain

$$x = \int_{0}^{T} r(t) \sqrt{\frac{2}{T}} \cos \omega t \, dt ,$$
  
=  $\sqrt{E[c_1^2 + 2c_1c_2 \rho \cos \theta + c_2^2 \rho^2]} \cos \phi + n_1 ,$  (6a)

and

-5

3

$$y = \int_{0}^{T} r(t) \sqrt{\frac{2}{T}} \sin \omega t \, dt$$
  
=  $-\sqrt{E[c_1^2 + 2c_1c_2 \rho \cos \theta + c_2^2 \rho^2]} \sin \phi + n_2$ , (6b)

where  $n_1^{}$  and  $n_2^{}$  are independent zero mean gaussian random variables with variance  $N_0^{}/2$  so that (see Ref. 2, p. 354 Eq. (93)  $\,$  )

$$p(x,y|\theta) = \frac{1}{2\pi(N_0/2)} e^{-\frac{1}{2} \left\{ \frac{x^2 + y^2 + E[c_1^2 + 2c_1c_2 \rho \cos \theta + c_2^2 \rho^2]}{N_0/2} \right\}}{I_0(\sqrt{\frac{x^2 + y^2}{\sqrt{E[c_1^2 + 2c_1c_2 \rho \cos \theta + c_2^2 \rho^2]}}})$$
(7)

Using the change of variables

$$x = v \sqrt{\frac{N_0}{2}} \cos \gamma, y = v \sqrt{\frac{N_0}{2}} \sin \gamma$$

,

and the fact that  $\boldsymbol{\theta}$  is uniformly distributed then we obtain

$$p(\mathbf{v},\gamma,\theta) = \frac{1}{4\pi^{2}} \mathbf{v} e^{-\frac{1}{2} \left[ \mathbf{v}^{2} + \frac{2E}{N_{0}} \left[ c_{1}^{2} + 2c_{1}c_{2}\rho \cos \theta + c_{2}^{2}\rho^{2} \right] \right]}$$

$$\times I_{0} \left( \mathbf{v} \sqrt{\frac{2E}{N_{0}} \left( c_{1}^{2} + 2c_{1}c_{2}\rho \cos \theta + c_{2}^{2}\rho^{2} \right)} \right). \tag{8}$$

 $p(v|\rho)$  is obtained from (8) simply by integrating from  $-\pi$  to  $\pi$  on  $\gamma$  and  $\theta$ . The optimum receiver is determined from the likelihood ratio

$$\Lambda(\mathbf{v} \mid \rho) = \frac{P(\mathbf{v} \mid H_{1}, \rho)}{P(\mathbf{v} \mid H_{0}, \rho)}$$

:

where  $H_0$  is the hypothesis of a space  $(c_1 = 0)$  and  $H_1$  is the hypothesis of a mark  $(c_1 = 1)$ . Each hypothesis is equally likely. The likelihood ratio is therefore

$$\frac{\Lambda(v|\rho) =}{e^{-\frac{E}{N_{0}}} I_{0}\left(v\sqrt{\frac{2E}{N_{0}}}\right)P_{20} + e^{-\frac{E}{N_{0}}(1+\rho^{2})} \pi e^{-\frac{2E}{N_{0}}\rho\cos\theta} I_{0}\left(vR_{+}(\theta)\right) d\theta P_{21}}{\frac{1}{2\pi}\int_{-\pi}^{\pi}e^{-\rho\frac{E}{N_{0}}} I_{0}\left(v\sqrt{\frac{2E}{N_{0}}}\right)P_{21}},$$

$$\frac{P_{20} + e^{-\rho\frac{E}{N_{0}}} I_{0}\left(v\sqrt{\frac{2E}{N_{0}}}\right)P_{21}}{(9)}$$

where  $R_{+}(\theta)$  has been defined in (3),  $P_{20}$  is the probability that  $c_2=0$ , and  $P_{21}=1-P_{20}$ . To determine the optimum threshold level for v, we solve

$$\Lambda(v|\rho) = 1$$
,

or equivalently solve for the roots,  $\boldsymbol{v}_{0}^{},$  of the equation

$$f(v) = e^{-\frac{E}{N_{0}}} I_{0} \left( v \sqrt{\frac{2E}{N_{0}}} \right) P_{20}$$

$$+ e^{-\frac{E}{N_{0}}} (1 + \rho^{2}) \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-\frac{2E}{N_{0}}\rho \cos \theta} I_{0} \left( v R_{+}(\theta) \right) d\theta P_{21}$$

$$- P_{20} - e^{-\rho^{2} \frac{E}{N_{0}}} I_{0} \left( v \rho \sqrt{\frac{2E}{N_{0}}} \right) P_{21} = 0 \quad .$$
(10)

 $v_0$  is therefore the optimum threshold level for the receiver in an interference environment. When  $P_{20}=1$  (i.e.,  $P_{21}=0$ ) then an excellent approximation to the solution of (10) is (Schwartz, Bennett, and Stein [4] Eq. 7-4-14)

$$v_0 \approx \sqrt{\frac{E}{2N_0} + 1} \quad . \tag{11}$$

When there is interference  $(P_{21}\neq 0)$  then (11) no longer approximates the optimum threshold level but  $P_e$  is far more sensitive to the parameter  $\rho$  than to  $v_0$ .

It is useful to introduce Marcum's Q function [5] defined by the equation

$$Q(\lambda,\beta) \doteq \int_{\beta}^{\infty} v e^{-\frac{1}{2}(v^2 + \lambda^2)} I_0(\lambda v) dv . \qquad (12)$$

The  $\mathbf{P}_{\mathbf{e}}$  for the four possible cases are determined as follows:

(i) 
$$c_1 = 0, c_2 = 0$$
  
 $p_i(v) = v e^{-v^2/2}$  (13)

$$P_{e,i} = \int_{v_0}^{\infty} p_i(v) dv = e^{-v_0^2/2} = Q(0,v_0)$$
(14)

(ii) 
$$c_1 = 1, c_2 = 0$$
  
 $p_{ii}(v) = v e^{-\frac{1}{2}\left(v^2 + \frac{2E}{N_0}\right)} I_0\left(v\sqrt{\frac{2E}{N_0}}\right)$ 
(15)  
 $P_{v_0} = \int_{-\infty}^{0} p_{v_0}(v) dv = 1 - 0\left(\sqrt{\frac{2E}{N_0}}, v_0\right)$ 
(16)

$$P_{e,ii} = \int_{0}^{\infty} p_{ii}(v) dv = 1 - Q\left(\sqrt{\frac{2E}{N_0}}, v_0\right)$$
(16)

(iii) 
$$c_1 = 0, c_2 = 1$$
  
 $p_{iii}(v) = v e^{-\frac{1}{2}\left(v^2 + \rho^2 \frac{2E}{N_0}\right)} I_0\left(v \rho \sqrt{\frac{2E}{N_0}}\right)$  (17)  
 $P_{e,iii} = \int_{v_0}^{\infty} p_{iii}(v) dv = Q\left(\rho \sqrt{\frac{2E}{N_0}}, v_0\right)$  (18)

and finally

э

2

(iv) 
$$c_1 = 1, c_2 = 1$$
  
 $\pi - \frac{1}{2} [v^2 + R_+(\theta)]$   
 $p_{iv}(v) = \frac{1}{2\pi} \int_{-\pi}^{\pi} v e I_0(v R_+(\theta)) d\theta$ , (19)

$$P_{e,iv} = \int_{0}^{v_{0}} p_{iv}(v) dv = 1 - \frac{1}{2\pi} \int_{-\pi}^{\pi} Q(R_{+}(\theta), v_{0}) d\theta .$$
 (20)

In the case of DABS-like interference due to multipath or a second DABS interrogator, the probabilities of each of the above cases is equally likely, so

$$P_{e}/\text{bit} = \frac{1}{4} \left[ e^{-\frac{v_{0}^{2}}{2}} + 1 - Q\left(\sqrt{\frac{2E}{N_{0}}}, v_{0}\right) + Q\left(\rho\sqrt{\frac{2E}{N_{0}}}, v_{0}\right) + 1 - \frac{1}{2\pi} \int_{-\pi}^{\pi} Q(R_{+}(\theta), v_{0}) d\theta \right].$$
(21)

For ATCRBS interference, we shall consider a slightly different quantity, namely, the average  $P_e/garbled$  bit,  $P_{eg}$ . This is just the average of case (iii) and case (iv),

$$P_{eg} = \frac{1}{2} \left[ Q \left( \rho \sqrt{\frac{2E}{N_0}}, v_0 \right) + 1 - \frac{1}{2\pi} \int_{-\pi}^{\pi} Q(R_+(\theta), v_0) d\theta \right] .$$
 (22)

#### 3. DPSK

The  $k^{th}$  received waveform for DPSK modulation, assuming complete overlap of the interfering signal, is of the form

$$r_{k}(t) = \sqrt{\frac{2E}{T}} \left[ \cos(\omega t + \alpha_{k}) + c_{k} \rho \cos(\omega t + \beta_{k}) \right] + n(t)$$
$$= \sqrt{\frac{2E}{T}} \left[ 1 + 2c_{k} \rho \cos(\omega t + c_{k}^{2}) \rho^{2} \right] \cos(\omega t + \phi_{k}) + n(t), \quad (23)$$

where  $c_k = 0$  or 1. The maximum-likelihood estimate demodulation [1] yields from (6a) and (6b)

$$x_{k} = \sqrt{E(1 + 2 c_{k} \cos \theta_{k} + c_{k}^{2} \rho^{2}) \cos \phi_{k} + n_{xk}},$$
 (24a)

$$y_{k} = -\sqrt{E(1 + 2c_{k}\cos\theta_{k} + c_{k}^{2}\rho^{2})}\sin k + n_{yk}$$
, (24b)

where  $n_{xk}$  and  $n_{yk}$  are independent zero mean gaussian random variables with variance  $N_0/2$ . The optimum decision criterion, as determined in Appendix A, is simply to compare the angles of  $(x_{k-1}, y_{k-1})$  and  $(x_k, y_k)$  and if their difference is less than  $\pi/2$ , decide that the two transmitted phases,  $\alpha_{k-1}$  and  $\alpha_k$ , were the same; otherwise, decide that  $\alpha_{k-1}$  and  $\alpha_k$  differ by  $\pi$  radians.

From a symmetry argument, it can be seen that the  $P_e/bit$  can be calculated from the particular case where  $\alpha_{k-1} = \alpha_k$ . There are three situations which must be considered:

(i) 
$$c_{k-1} = c_k = 1$$
 and  $\beta_{k-1} = \beta_k$   
(ii)  $c_{k-1} = c_k = 1$  and  $\beta_{k-1} \neq \beta_k$   
(iii)  $c_{k-1} = 0$ ,  $c_k = 1$  or  $c_{k-1} = 1$ ,  $c_k = 0$ .

We now obtain the  $P_{\rho}$  for each as follows:

Case (i) For this case, the P<sub>e</sub> is the same as derived in Arthurs and Dym [2] or Stein [3] except that signal-to-noise ratio is replaced by  $R^2_+(\theta)$  and an averaging is taken with respect to  $\theta$  (see Figure 1(a)).

$$P_{e,i} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} e^{-\frac{E}{N_0}(1 + 2\rho \cos\theta + \rho^2)} d\theta$$

$$= \frac{1}{2} e^{-\frac{E}{N_0} (1 + \rho^2)} I_0 \left( 2\rho \frac{E}{N_0} \right) .$$
 (25)

Case (ii) In this case, the derivation of  $P_e$  is somewhat complicated since we have  $\beta_{k-1} = \beta_k \pm \pi$ . The pertinent figure is Figure 1(b). For a given value of  $\phi_k$  and  $\theta_k$ , the  $P_e$  is the probability that the projection of the additive gaussian noise along the reference phase axis is greater than d (see Figure 1(b)), that is,

$$P(error|\phi_k,\theta_k) = \frac{1}{\sqrt{2\pi}} \int_{R_-(\theta_k)}^{\infty} \frac{e^{-x^2/2}}{\cos(\phi_k + \psi_1 + \psi_2)} dx , \quad (26)$$

where

$$\psi_{1} = \tan^{-1} \frac{\rho \sin \theta_{k}}{1 + \rho \cos \theta_{k}} , \qquad (27a)$$

and

$$\psi_2 \tan^{-1} \frac{\rho \sin \theta_k}{1 - \rho \cos \theta_k} \quad . \tag{27b}$$



:

۰.



Fig. 1. DPSK, signal with energy E, jamming with energy  $\rho^2 E$ .

Rather than trying to simplify this equation, we can turn to the results of Stein [3,4] where he derives the error expression which corresponds to

$$P(error|\theta_k) = \frac{1}{2} [1 - Q(\sqrt{b}, \sqrt{a}) + Q(\sqrt{a}, \sqrt{b})],$$
 (28)

where

•

$$\begin{vmatrix} a \\ b \end{vmatrix} = \frac{1}{2} \left\{ \frac{R_{+}^{2}(\theta_{k}) + R_{-}^{2}(\theta_{k})}{2} + R_{+}(\theta_{k}) R_{-}(\theta_{k}) \cos(\psi_{1} + \psi_{2}) \right\} , \qquad (29)$$

where the minus sign corresponds to a and the plus to b. We obtain for the cosine

$$\cos(\psi_{1} + \psi_{2}) = \frac{R_{+}^{2}(\theta_{k}) + R_{-}^{2}(\theta_{k}) - 4\rho^{2}E/N_{o}}{2R_{+}(\theta_{k})R_{-}(\theta_{k})}, \qquad (30)$$

which yields

$$a = \frac{2\rho^2 E}{N_0}$$
 and  $b = \frac{2E}{N_0}$  (31)

The P(error  $|\theta_k$ ) is independent of  $\theta_k$ , so P<sub>e,ii</sub> becomes

$$P_{e,ii} = \frac{1}{2} \left[ 1 - Q \left( \sqrt{\frac{2E}{N_0}}, \rho \sqrt{\frac{2E}{N_0}} \right) + Q \left( \rho \sqrt{\frac{2E}{N_0}}, \sqrt{\frac{2E}{N_0}} \right) \right] , \qquad (32)$$

which together with (25) yields for DABS-like interference

$$P_{e} = \frac{1}{4} \left[ 1 - Q\left(\sqrt{\frac{2E}{N_{0}}}, \rho\sqrt{\frac{2E}{N_{0}}}\right) + Q\left(\rho\sqrt{\frac{2E}{N_{0}}}, \sqrt{\frac{2E}{N_{0}}}\right) + e^{-\frac{E}{N_{0}}(1 + \rho^{2})} I_{0}\left(2\rho\frac{E}{N_{0}}\right) \right].$$
(33)

Case (iii) Since it is irrelevent which pulse is used for the reference signal and which for the information signal, we can assume that  $c_k = 0$ , and  $c_{k-1} = 1$ . For this situation

$$\psi_2 = 0$$
 and  $\cos \psi_1 = \frac{\sqrt{E}(1 + \rho \cos \theta_k)}{R_+(\theta_k)}$ ,

so that a and b become

$$a = \frac{E^2}{2N_0}$$
 and  $b = \frac{E(4 + 4\rho \cos\theta_k + \rho^2)}{2N_0}$ ,

yielding

$$P_{e,iii} = \frac{1}{2} \left[ 1 - \frac{1}{2\pi} \int_{-\pi}^{\pi} Q \left( \sqrt{\frac{E(4 + 4\rho \cos \theta + \rho^2)}{2N_0}}, \rho \sqrt{\frac{E}{2N_0}} \right) d\theta + \frac{1}{2\pi} \int_{-\pi}^{\pi} Q \left( \rho \sqrt{\frac{E}{2N_0}}, \sqrt{\frac{E(4 + 4\rho \cos \theta + \rho^2)}{2N_0}} \right) d\theta \right]$$
(34)

The optimum decision criterion derived in Appendix A is not optimum for ATCRBS interference. In the case of two adjacent pulses garbled by a single ATCRBS pulse, we always have  $\beta_{k-1} = \beta_k$  whereas for the situation in Appendix A, this is true only half the time while  $\beta_{k-1} = \beta_k \pm \pi$  is true the other half.

#### 4. INCOHERENT FSK

Third and finally, we consider incoherent FSK. We must differentiate between DABS-like interference and ATCRBS interference, since for the former the interfering signal will be at one of the two pertinent FSK frequencies while for the latter it will be at the ATCRBS frequency. We consider first DABS-like interference. The received signal is of the form

$$r_{k}(t) = \sqrt{\frac{2E}{T}} \left[ \cos(\omega_{k}t + \alpha_{k}) + \rho c \cos(\omega_{1}t + \beta) + \rho(1 - c) \cos(\omega_{2}t + \beta) \right]$$

$$k = 1,2 \qquad (35)$$

where c = 0 on 1 depending on whether the interfering signal is of frequency  $\omega_2$  or  $\omega_1$ . We may assume for purposes of calculating the P<sub>e</sub> that k = 1. The maximum likelihood estimate demodulator [1] yields from (6a) and (6b)

$$x_{1} = \sqrt{E(1 + 2 c \rho \cos \theta + c^{2} \rho^{2})} \cos \phi_{1} + n_{x1}$$
(36a)

$$y_{1} = -\sqrt{E(1 + 2 c \rho \cos \theta + c^{2} \rho^{2})} \sin \phi_{1} + n_{y1}$$
 (36b)

 $x_2 = \rho(1 - c) \sqrt{E} \cos \phi_2 + n_{x2}$ , (37a)

$$y_2 = -\rho(1 - c) \sqrt{E} \sin \phi_2 + n_{y2}$$
, (37b)

where it has been assumed that  $\omega_1$  and  $\omega_2$  are chosen so that no crosstalk exists and that  $n_{xk}$  and  $n_{yk}$  are independent zero mean gaussian random variables with variance  $N_0/2$ . If we let

$$x_k = v_k \sqrt{\frac{N_0}{2}} \cos \gamma_k$$
 and  $y_k = v_k \sqrt{\frac{N_0}{2}} \sin \gamma_k$ ,

then the probability density function of  $v_k$  is (see Arthurs and Dym [2], p. 356)

$$p(v_{1}|\theta) = v_{1} e^{-\frac{1}{2} \left[ v_{1}^{2} + \frac{2E}{N_{0}} \left( 1 + 2 c \rho \cos \theta + c^{2} \rho^{2} \right) \right]}$$

$$\times I_{0} \left( v_{1} \sqrt{\frac{2E}{N_{0}} \left( 1 + 2 c \rho \cos \theta + c^{2} \rho^{2} \right)} \right),$$
(38)

and

$$p(v_2) = v_2 e^{-\frac{1}{2} \left[ v_2^2 + \rho^2 \frac{2E}{N_0} (1 - c)^2 \right]} I_0 \left( v_2 \rho \sqrt{\frac{2E}{N_0}} [1 - c] \right) , \qquad (39)$$

where  $\theta$  is uniformly distributed. The joint density function of  $v_1$  and  $v_2$ , given hypothesis  $H_1$ , that frequency  $\omega_1$  was transmitted, is

15

and

$$p(v_{1}, v_{2}|c, \rho, H_{1}) = -\frac{1}{2} \left[ v_{1}^{2} + \frac{2E}{N_{0}} (1 + c^{2}\rho^{2}) \right] \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-\frac{2E}{N_{0}}\rho c \cos\theta} I_{0} \left( v_{1} \sqrt{\frac{2E}{N_{0}} (1 + 2 c \rho \cos\theta + c^{2}\rho^{2})} \right) d\theta$$

$$= -\frac{1}{2} \left[ v_{2}^{2} + \rho^{2} \frac{2E}{N_{0}} (1 - c)^{2} \right] I_{0} \left( v_{2}\rho \sqrt{\frac{2E}{N_{0}}} [1 - c] \right) . \qquad (40)$$

The joint density function of  $v_1$  and  $v_2$ , given  $H_2$ , is identical to (40) except that  $v_1$  and  $v_2$  are interchanged and c is replaced by 1 - c.

The optimum decision criterion is determined from the likelihood ratio,  $\Lambda(\rho)$ , which, for the case where the two values of c are equally probably, is

$$\Lambda(\rho) = \frac{p(v_1, v_2 | 0, \rho, H_2) + p(v_1, v_2 | 1, \rho, H_2)}{p(v_1, v_2 | 0, \rho, H_1) + p(v_1, v_2 | 1, \rho, H_1)}$$
(41)

We define F(a,b) by

$$F(a,b) = I_0\left(a\sqrt{\frac{2E}{N_0}}\right) I_0\left(b\rho\sqrt{\frac{2E}{N_0}}\right)$$

$$+ e^{-\rho^2 \frac{E}{N_0}} \frac{1}{2\pi} \int_{-\pi}^{\pi} I_0\left(a\sqrt{\frac{2E}{N_0}}(1+2\rho\cos\theta+\rho^2)\right) e^{-\rho\frac{2E}{N_0}\cos\theta} d\theta$$

$$d\theta$$

then,  $\Lambda(\rho)$  can be expressed in terms of  $F(v_1, v_2)$  by

$$\Lambda(\rho) = \frac{F(v_2, v_1)}{F(v_1, v_2)}$$
 (42)

Clearly for  $v_2 = v_1$ , we have

 $\Lambda(\rho) = 1. \tag{43}$ 

Since  $I_0(x)$  is monotonic increasing in x, then with  $\rho \le 1$ , we have for  $v_2 > v_1$  that  $\Lambda(\rho) > 1$  and for  $v_2 < v_1$  that  $\Lambda(\rho) < 1$  so that

 $v_2 > v_1$  choose hypothesis  $H_2$  $v_2 < v_1$  choose hypothesis  $H_1$ 

is the optimum receiver for equally likely hypothesis.

The  $P_e$  is calculated from

$$P_{e} = \int_{0}^{\infty} p (v_{2} > v_{1} | H_{1}) dv_{1} .$$
 (44)

Using (40), we have two cases

Case (i), c = 1

,

$$P_{e,1} = \frac{1}{2\pi} \int_{-\pi}^{\pi} v_{1} e^{-\frac{1}{2} \left[ v_{1}^{2} + \frac{2E}{N_{0}} (1 + 2\rho \cos \theta + \rho^{2}) \right]} I_{0} \left( v_{1} \sqrt{\frac{2E}{N_{0}} (1 + 2\rho \cos \theta + \rho^{2})} \right) d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \int_{0}^{v_{1}} v_{1} e^{-\frac{1}{2} \left[ v_{1}^{2} + \frac{2E}{N_{0}} (1 + 2\rho \cos \theta + \rho^{2}) \right]} I_{0} \left( v_{1} \sqrt{\frac{2E}{N_{0}} (1 + 2\rho \cos \theta + \rho^{2})} \right) e^{-\frac{v_{1}^{2}}{2}} dv_{1} d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} \int_{0}^{\infty} u e^{-\frac{1}{2} \left[ u^{2} + \frac{2E}{N_{0}} (1 + 2\rho \cos \theta + \rho^{2}) \right]} I_{0} \left( u \sqrt{\frac{E}{N_{0}} (1 + 2\rho \cos \theta + \rho^{2})} \right) du d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} e^{-\frac{E}{2N_{0}}} (1 + 2\rho \cos \theta + \rho^{2}) d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} e^{-\frac{E}{2N_{0}}} (1 + 2\rho \cos \theta + \rho^{2}) d\theta$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1}{2} e^{-\frac{E}{2N_{0}}} (1 + 2\rho \cos \theta + \rho^{2}) d\theta$$

$$(45)$$

Case (ii), c = 0

.

$$P_{e,ii} = \int_{0}^{\infty} v_{1} e^{-\frac{1}{2} \left[ v_{1}^{2} + \frac{2E}{N_{0}} \right]} I_{0} \left( v_{1} \sqrt{\frac{2E}{N_{0}}} \right) \int_{v_{1}}^{\infty} v_{2} e^{-\frac{1}{2} \left( v_{2}^{2} + \rho^{2} \frac{2E}{N_{0}} \right)} I_{0} \left( v_{2} \rho \sqrt{\frac{2E}{N_{0}}} \right) dv_{2} dv_{1}$$

$$= \int_{0}^{\infty} v_{1} e^{-\left(\frac{1}{2} v_{1}^{2} + \frac{2E}{N_{0}}\right)} I_{0} \left( v_{1} \sqrt{\frac{2E}{N_{0}}} \right) Q \left( \rho \sqrt{\frac{2E}{N_{0}}}, v_{1} \right) dv_{1} .$$
(46)

From Appendix A of Schwartz, Bennett, and Stein, [4] we have the result that (46) is equivalent to

$$P_{e,ii} = \frac{1}{2} \left[ 1 - Q\left(\sqrt{\frac{E}{N_0}}, \rho\sqrt{\frac{E}{N_0}}\right) + Q\left(\rho\sqrt{\frac{E}{N_0}}, \sqrt{\frac{E}{N_0}}\right) \right].$$
(47)

The  $P_e$  for DABS-like interference is therefore,

$$P_{e} = \frac{1}{4} \left[ 1 - Q\left(\sqrt{\frac{E}{N_{0}}}, \rho\sqrt{\frac{E}{N_{0}}}\right) + Q\left(\rho\sqrt{\frac{E}{N_{0}}}, \sqrt{\frac{E}{N_{0}}}\right) + e^{-\frac{E}{2N_{0}}(1 + \rho^{2})} I_{0}\left(\rho\frac{E}{N_{0}}\right) \right] .$$
(48)

As mentioned above, ATCRBS interference is different from the DABS-like interference mainly because it occurs at frequencies other than  $\omega_1$  and  $\omega_2$ . In this case, the received waveform is of the form, assuming frequency  $\omega_1$  is transmitted,

$$r(t) = \sqrt{\frac{2E}{T}} \cos(\omega_1 t + \alpha) + \rho \sqrt{\frac{2E}{T}} \cos(\omega t + \beta) + n(t) , \qquad (49)$$

where  $\omega$  is the frequency of the interfering signal. Demodulating by means of (6a) and (6b), we obtain

$$x_{1} = \sqrt{E} \cos \alpha + \rho \sqrt{E} (c_{1} \cos \beta - d_{1} \sin \beta) + n_{x1}, \qquad (50a)$$

$$y_1 = -\sqrt{E} \sin \alpha - \rho \sqrt{E(c_1 \sin \beta + d_1 \cos \beta)} + n_{y_1}$$
, (50b)

and

5

$$x_2 = \rho \sqrt{E} (c_2 \cos \beta - d_2 \sin \beta) + n_{\chi 2},$$
 (51a)

$$y_2 = -\rho \sqrt{E} (c_2 \sin \beta + d_2 \cos \beta) + n_{y2},$$
 (51b)

where

$$c_{k} = \frac{\sin(\omega - \omega_{k}) T}{(\omega - \omega_{k}) T} , \qquad (52a)$$

$$d_{k} = \frac{1 - \cos(\omega - \omega_{k}) T}{(\omega - \omega_{k}) T} , \qquad (52b)$$

and  $n_{\chi k}^{},\;n_{\chi k}^{}$  are independent zero mean gaussian random variables with variance  $N_0^{}/2.$ 

The joint probability of  $\boldsymbol{x}_l$  and  $\boldsymbol{y}_l$  given  $\boldsymbol{\beta}$  is

$$p(x_{1},y_{1}|\beta) = \frac{1}{\pi N_{0}} e^{-\frac{1}{N} \left[ x_{1}^{2} + y_{1}^{2} - 2\rho \sqrt{E} (x_{1}a - y_{1}b) + E(1 + \rho^{2} \epsilon_{1}) \right]}$$

$$\times I_{0} \left( \frac{\sqrt{x_{1}^{2} + y_{1}^{2} - 2\rho \sqrt{E} (x_{1}a - y_{1}b) + \rho^{2} E \epsilon_{1}}}{\sqrt{N_{0}/2}} \right), \quad (53)$$

where

ŝ

$$a = c_1 \cos \beta - d_1 \sin \beta, \qquad (54a)$$

$$b = c_1 \sin \beta + d_1 \cos \beta, \qquad (54b)$$

and

$$\varepsilon_{k} = c_{k}^{2} + d_{k}^{2} = \frac{2[1 - \cos(\omega - \omega_{k}) T]}{(\omega - \omega_{k})^{2} T^{2}}$$
 (55)

 $2\rho \sqrt{E} (x_1 a - y_1 b)$ ,

is negligible relative to the term

$$x_1^2 + y_1^2 + \rho^2 E \epsilon_1$$
,

and drop the former in the  ${\rm I}_{0}$  term. We therefore, obtain

$$p(x_{1},y_{1}|\beta) \approx \frac{1}{\pi N_{0}} e^{-\frac{1}{N_{0}} \left\{ x_{1}^{2} + y_{1}^{2} - 2\rho \sqrt{E}(x_{1}a - y_{1}b) + E[1 + \rho^{2} \epsilon_{1}] \right\}}$$

$$x I_{0} \left( \frac{\sqrt{x_{1}^{2} + y_{1}^{2} + \rho^{2} E \epsilon_{1}} \sqrt{E}}{\sqrt{N_{0}/2}} \right).$$
(56)

Since  $\beta$  is uniformly distributed, we further obtain  $\uparrow$ 

$$p(x_{1},y_{1}) \approx \frac{1}{\pi N_{0}} e^{-\frac{1}{N_{0}} \left[ x_{1}^{2} + y_{1}^{2} + E(1 + \rho^{2} \epsilon_{1}) \right]}$$

$$x I_{0} \left( \sqrt{x_{1}^{2} + y_{1}^{2}} \rho \sqrt{\frac{\epsilon_{1}^{2}E}{N_{0}}} \right) I_{0} \left( \sqrt{x_{1}^{2} + y_{1}^{2} + \rho^{2} E \epsilon_{1}} \sqrt{\frac{2E}{N_{0}}} \right) .$$
(57)

Now, we let

3

$$x_k = v_k \sqrt{\frac{N_0}{2}} \cos \gamma_k$$
 and  $y_k = v_k \sqrt{\frac{N_0}{2}} \sin \gamma_k$ ,

substitute for  $x_1$  and  $y_1$  in (57), and integrate out  $\gamma_1$ 

$$p(v_{1}) \approx v_{1} e^{-\frac{1}{2} \left[ N_{1}^{2} + \frac{2E}{N_{0}} (1 + \rho^{2} \epsilon_{1}) \right]} I_{0} \left( v_{1} \rho \sqrt{\frac{2E}{N_{0}}} \epsilon_{1} \right) I_{0} \left( \sqrt{N_{1}^{2} + \rho^{2} E \epsilon_{1}} \sqrt{\frac{2E}{N_{0}}} \right)$$
(58)

Similarly, the density of  $\boldsymbol{v}_2$  is derived

$$p(v_{2}) = v_{2} e^{-\frac{1}{2}\left(v_{2}^{2} + \frac{2E}{N_{0}} \rho^{2} \epsilon_{2}\right)} I_{0}\left(v_{2} \rho \sqrt{\frac{2E}{N_{0}}} \epsilon_{2}\right) .$$
 (59)

The probability of error, p<sub>e,iii</sub>, is

$$P_{e,iii} = \int_{0}^{\infty} \int_{v_1}^{\infty} p(v_2 > v_1) dv_2 dv_1$$

$$= \int_{0}^{\infty} \int_{v_1}^{\infty} p(v_2) p(v_1) dv_2 dv_1 \qquad (60)$$

$$\approx \int_{0}^{\infty} v_1 e^{-\frac{1}{2} \left( v^2 + \frac{2E}{N_0} \{1 + \rho^2 \varepsilon_1\} \right)} I_0 \left( \sqrt{v^2 + \rho E \varepsilon_1} \sqrt{\frac{2E}{N_0}} \right)$$

$$x \ Q\left(\rho \sqrt{\frac{2E}{N_0}} \ \varepsilon_2, \nu\right) d\nu$$

5. P<sub>e</sub>/bit vs E/N<sub>0</sub>

In the case of DABS-like interference,  $P_e/bit$  has been calculated for a range of  $E/N_0$  for each of the modulation schemes. Two values for the PAM parameter,  $v_0$ , in (21) have been used. One of the values is simple

$$v_0 = \sqrt{\frac{E}{2N_0}}$$
,

and the other is the optimum  $v_0$  obtained by solving (10) with  $P_{20}=P_{21}=\frac{1}{2}$ . The results are presented in Figure 2. Two values of  $\rho$  are used, namely  $\rho=0$  and  $\rho=0.2$ . It is seen that PAM is affected to a significantly greater degree than the other two modulation techniques. Using the optimum value for  $v_0$  does not significantly improve the results obtained using

$$v_0 = \sqrt{\frac{E}{2N_0}}$$

Figures 3 and 4 show curves of  $P_e/bit$  vs  $\rho$  with  $E/N_0 = 16$  dB and 24.77 dB, respectively, for all three modulation schemes. In Figure 5 is plotted  $E/N_0$ vs  $\rho$  necessary to achieve a  $P_e$  of  $10^{-3}$ . We note that there is a gap between the PAM curve and the other two curves. This gap persists for different values of  $E/N_0$ . If the probability of  $\rho$  being in the range of the gap is significant, then there is a distinct advantage of DPSK or FSK to PAM.

#### 6. CONCLUSIONS

3

In the above results, the maximum-likelihood estimation demodulator [1] and optimum decision criterion in an interference environment has been used. A comparison of the modulation techniques shows the optimum PAM scheme to be significantly more vulnerable to interference than the other two schemes. However, PAM cannot be summarily dismissed because of the many other aspects of the DABS link characteristics. The fixed threshold PAM-demodulators usually referred to with reference to low cost, exhibit approximately 8 dB poorer



2

2

۰.

-

Fig. 2.  $P_e vs E/N_0$  for  $\rho = 0.0$  and  $\rho = 0.2$ .



Fig. 3.  $P_{e} vs \rho$  for  $E/N_{0} = 16.02 dB$ .



Fig. 4.  $P_{e} vs \rho$  for  $E/N_{0} = 24.77 dB$ .



Fig. 5. Signal-to-noise ratio,  $E/N_0$ , necessary to maintain  $P_e = 10^{-3}$  vs  $\rho$ .

signal-to-noise ratio performance than the optimum receiver analyzed here. FSK utilizes more bandwidth per bit than either PAM or DPSK, and transmitters are not easily implemented.

DPSK clearly has a performance advantage over both PAM and FSK from a theoretical point of view but it remains to be seen how economically it can be implemented.

The  $P_e/bit$  expressions developed here can now be used to determine  $P_e/message$ block in ATCRBS or DABS interference. Assumptions must be made as to bit rate, message length, and interference model. For each set of assumed conditions, a  $P_e/block$  can be determined.

#### APPENDIX A

### THE OPTIMUM DPSK RECEIVER

The details of determining the optimum DPSK receiver are presented here. We begin with the joint density of  $v_i$  and  $\phi_i$ , given by A & D, Eq. 74, p. 351

$$p(\phi_{i}, v_{i} | \rho, \theta) = \frac{v_{i}}{2\pi} e^{-\frac{1}{2} \{v_{i}^{2} - 2v_{i} R_{+}(\theta) \cos \phi_{i} + R_{+}^{2}(\theta)\}}$$

.

We have two equally probable situations for multipath reflection interference. In the first, the phase relationship between the two reflected pulses is the same as the relationship between the two information pulses and in the second, they differ by  $\pi$  radians. Therefore we have

$$p(\phi_{1},\phi_{2},v_{1},v_{2} | \rho,\theta,H_{0}) = \frac{1}{2} \left[ \frac{v_{1}}{2\pi} e^{-\frac{1}{2} \left\{ v_{1}^{2} - 2v_{1} R_{+}(\theta) \cos \phi_{1} + R_{+}^{2}(\theta) \right\}} \frac{v_{2}}{2\pi} e^{-\frac{1}{2} \left\{ v_{2}^{2} - 2v_{2} R_{+}(\theta) \cos \phi_{2} + R_{+}^{2}(\theta) \right\}} + \frac{v_{1}}{2\pi} e^{-\frac{1}{2} \left\{ v_{1}^{2} - 2v_{1} R_{+}(\theta) \cos \phi_{1} + R_{+}^{2}(\theta) \right\}} \frac{v_{2}}{2\pi} e^{-\frac{1}{2} \left\{ v_{2}^{2} - 2v_{2} R_{+}(\theta) \cos \phi_{2} + R_{+}^{2}(\theta) \right\}} \left[ \frac{v_{1}}{2\pi} e^{-\frac{1}{2} \left\{ v_{1}^{2} - 2v_{1} R_{+}(\theta) \cos \phi_{1} + R_{+}^{2}(\theta) \right\}} \frac{v_{2}}{2\pi} e^{-\frac{1}{2} \left\{ v_{2}^{2} - 2v_{2} R_{+}(\theta) \cos \phi_{2} + R_{+}^{2}(\theta) \right\}} \right]$$

Defining  $\triangle$  as

...

 $\Delta = \phi_2 - \phi_1$ 

we obtain

$$p(\Delta,\phi_{1},v_{1},v_{2} | \rho,\theta,H_{0})$$

$$= \frac{1}{2} \frac{v_{1}}{2\pi} e^{-\frac{1}{2} \{v_{1}^{2} - 2v_{1}R_{+}(\theta)\cos\phi_{1} + R_{+}^{2}(\theta)\}}$$

$$\times \left[\frac{v_{2}}{2\pi} e^{-\frac{1}{2} \{v_{2}^{2} - 2v_{2}R_{+}(\theta)\cos(\Delta + \phi_{1}) + R_{+}^{2}(\theta)\}} + \frac{v_{2}}{2\pi} e^{-\frac{1}{2} \{v_{2}^{2} - 2v_{2}R_{-}(\theta)\cos(\Delta + \phi_{1}) + R_{+}^{2}(\theta)\}}\right]$$

and similarly we obtain

$$p(\Delta,\phi_{1},v_{1},v_{2} | \rho,\theta,H_{1})$$

$$= \frac{1}{2} \frac{v_{1}}{2\pi} e^{-\frac{1}{2} \{v_{1}^{2} - 2v_{1} R_{+}(\theta) \cos \phi_{1} + R_{+}^{2}(\theta)\}}$$

$$x \left[ \frac{v_{2}}{2\pi} e^{-\frac{1}{2} \{v_{2}^{2} + 2v_{2} R_{+}(\theta) \cos(\Delta + \phi_{1}) + R_{+}^{2}(\theta)\}} + \frac{v_{2}}{2\pi} e^{-\frac{1}{2} \{v_{2}^{2} + 2v_{2} R_{-}(\theta) \cos(\Delta + \phi_{1}) + R_{-}^{2}(\theta)\}} \right]$$

The likelihood ratio  $_{\Lambda}$  (  $_{\Lambda},$   $v_{1}^{},$   $v_{2}^{},$   $_{\rho}) is$ 

$$\begin{split} &\Lambda(\Delta, \mathbf{v}_{1}, \mathbf{v}_{2}, \rho) \\ & \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{-\frac{1}{2} \left\{ R_{+}^{2}(\theta) - 2\mathbf{v}_{1} R_{+}(\theta) \cos \phi_{1} \right\} \left[ e^{-\frac{1}{2} \left\{ R_{+}^{2}(\theta) + 2\mathbf{v}_{2} R_{+}(\theta) (\cos \Delta \cos \phi_{1} - \sin \Delta \sin \phi_{1}) \right\} \right]} \\ & + e^{-\frac{1}{2} \left\{ R_{-}^{2}(\theta) + 2\mathbf{v}_{2} R_{-}(\theta) (\cos \Delta \cos \phi_{1} - \sin \Delta \sin \phi_{1}) \right\} \right] d\phi_{1} d\theta} \\ & = \frac{1}{2} \left\{ \frac{\pi}{2} \left\{ R_{+}^{2}(\theta) - 2\mathbf{v}_{1} R_{+}(\theta) \cos \phi_{1} \right\} \left[ e^{-\frac{1}{2} \left\{ R_{+}^{2}(\theta) + 2\mathbf{v}_{2} R_{+}(\theta) \left[ \cos(\Delta + \pi) \cos \phi_{1} - \sin \Delta \sin \phi_{1} \right] \right\} \right]} \right] \\ & + e^{-\frac{1}{2} \left\{ R_{-}^{2}(\theta) + 2\mathbf{v}_{2} R_{-}(\theta) \left[ \cos(\Delta + \pi) \cos \phi_{1} - \sin \Delta \sin \phi_{1} \right] \right\} \right]} d\phi_{1} d\theta \end{split}$$

where in the denominator we have used the following:

 $sin(\Delta + \pi) sin_{\phi} = sin_{\Delta} sin(-\phi)$ 

and replaced  $-\phi$  by  $\phi_1$ .

We see that when  $-\pi/2 < \Delta < \pi/2$  then  $\cos \Delta$  is greater than zero and  $\cos (\Delta + \pi)$  less than zero so  $\Lambda < 1$  while for  $\Delta > \pi/2$  or  $\Delta < -\pi/2 \cos \Delta < 1$  and  $\cos (\Delta + \pi) > 1$  so that  $\Lambda > 1$  independent of  $v_1$ ,  $v_2$ ,  $R_+$  and  $R_-$ .

In the case of ATCRBS interference where only a single pulse is interfered with, we have

$$\begin{split} & p(\Delta,\phi_{1},v_{1},v_{2} \mid \rho,\theta,H_{0}) \\ &= \frac{v_{1}}{2\pi} e^{-\frac{1}{2} \{v_{1}^{2} - 2v_{1}R_{+}(\theta) + R_{+}^{2}(\theta)\}v_{2}} \frac{1}{2\pi} e^{-\frac{1}{2} \{v_{2}^{2} - 2v_{2}\sqrt{\frac{E}{N_{0}}} \cos(\Delta + \phi_{1}) + \frac{E}{N_{0}}\}} \\ & \text{and becomes} \\ & \Lambda(\Delta,v_{2}) = \\ & \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{-\frac{1}{2} \{R_{+}^{2}(\theta) - 2v_{1}R_{+}(\theta)\cos\phi\}} \frac{1}{d\theta} \left[ e^{-\frac{1}{2} \{\frac{E}{N_{0}} + 2v_{2}\sqrt{\frac{E}{N_{0}}} (\cos\Delta \cos\phi_{1} - \sin\Delta \sin\phi_{1})\}} \right] d\phi_{1} \end{split}$$

$$\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} e^{-\frac{1}{2}\left\{R_{+}^{2}(\theta)-2v_{1}R_{+}(\theta)\cos\phi_{1}\right\}} d\theta \left[e^{-\frac{1}{2}\left\{\frac{E}{N_{0}}+2v_{2}\sqrt{\frac{E}{N_{0}}}(\cos(\Delta+\pi)\cos\phi_{1}-\sin\Delta\sin\phi_{1})\right\}}\right] d\phi_{1}$$

The receiver is the same as before.

:

#### REFERENCES

- 1. Stiffler, J.J., <u>Theory of Synchronous Communications</u>, Prentice-Hall, Englewood Cliffs, N. J., 1971.
- 2. Arthurs, E. and Dym, H. "On the Optimum Detection of Digital Signals in the Presence of White Gaussian Noise - A Geometric Interpretation and Study of Three Basic Data Transmission Systems," IRE Transactions on Communication Systems, CS-10, Dec. 1962, p. 336-372.
- 3. Stein, Seymour, "Unified Analysis of Certain Coherent and Noncoherent Binary Communications Systems," <u>IEEE Transactions on Information Theory</u>, IT-10, Jan. 1964, pp. 43-51.
- 4. Schwartz, Mischa, Bennett, William R., and Stein, Seymour, <u>Communication</u> Systems and Techniques, McGraw-Hill, Inc., N.Y., 1965.
- 5. Marcum, J.I., "Tables of the Q-Function," Rand Corporation, Res. Memo. RM-399, Jan. 1950.

D4-007 TECHNICAL REPORT STANDARD TITLE PAGE

| <ul> <li>FAA-RD-72- 84</li> <li>4. Title and Subtitle <ul> <li>A Comparison of Immunity to G</li> <li>Modulation Schemes for DABS</li> </ul> </li> <li><sup>7</sup> Author(s) <ul> <li>D.A. Shnidman</li> </ul> </li> <li>9. Performing Organization Name and Address <ul> <li>Massachusetts Institute of Tellincoln Laboratory</li> <li>P.O. Box 73 <ul> <li>Lexington, Massachusetts 0217</li> </ul> </li> <li>12. Sponsoring Agency Name and Address <ul> <li>Department of Transportation</li> <li>Federal Aviation Administration</li> <li>Federal Aviation Administration</li> <li>Systems Research and Developmentation, D.C. 20591</li> </ul> </li> <li>15. Supplementary Notes <ul> <li>The work reported in this doct research operated by Massachuse</li> </ul> </li> </ul></li></ul> | arbling for T<br>cchnology<br>3<br>on<br>ent Service | hree Candidate                            | <ul> <li>Report Date</li> <li><u>14 August 1972</u></li> <li>Performing Organizat</li> <li>Performing Organizat</li> <li>ATC-12</li> <li>Work Unit No.</li> <li>Proj. No. 034</li> <li>Contract or Grant No.</li> <li>DOT-FA72WA1-20</li> <li>Type of Report and I</li> <li>Project Report</li> </ul> | tion Code<br>tion Report No.<br>-241-012<br>o. IAG<br>61<br>Period Covered<br>t |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| <ul> <li>4. Title and Subtitle <ul> <li>A Comparison of Immunity to G</li> <li>Modulation Schemes for DABS</li> </ul> </li> <li>7. Author(s) <ul> <li>D.A. Shnidman</li> </ul> </li> <li>9. Performing Organization Name and Address <ul> <li>Massachusetts Institute of Tellincoln Laboratory</li> <li>P.O. Box 73 <ul> <li>Lexington, Massachusetts 0217</li> </ul> </li> <li>12. Sponsoring Agency Name and Address <ul> <li>Department of Transportation</li> <li>Federal Aviation Administration</li> <li>Systems Research and Developmed</li> <li>Washington, D.C. 20591</li> </ul> </li> <li>15. Supplementary Notes <ul> <li>The work reported in this doctor research operated by Massachuse</li> </ul> </li> </ul></li></ul>                                                           | echnology<br>3<br>on<br>ent Service                  | hree Candidate                            | <ul> <li>Report Date</li> <li><u>14 August 1972</u></li> <li>Performing Organizat</li> <li>Performing Organizat</li> <li>ATC-12</li> <li>Work Unit No.<br/>Proj. No. 034</li> <li>Contract or Grant No.<br/>DOT-FA72WA1-20</li> <li>Type of Report and I<br/>Project Report</li> </ul>                | tion Code<br>tion Report No.<br>-241-012<br>o. IAG<br>61<br>Period Covered<br>t |
| <ul> <li>A Comparison of Immunity to G<br/>Modulation Schemes for DABS</li> <li>7. Author(s)<br/>D.A. Shnidman</li> <li>9. Performing Organization Name and Address<br/>Massachusetts Institute of Ter<br/>Lincoln Laboratory<br/>P.O. Box 73<br/>Lexington, Massachusetts 0217</li> <li>12. Sponsoring Agency Name and Address<br/>Department of Transportation<br/>Federal Aviation Administration<br/>Systems Research and Developme<br/>Washington, D.C. 20591</li> <li>15. Supplementary Notes<br/>The work reported in this docu<br/>research operated by Massachuse<br/>Elocae 70 C 0220</li> </ul>                                                                                                                                                                                       | echnology<br>3<br>on<br>ent Service                  | hree Candidate                            | <ol> <li>Report Date</li> <li>14 August 1972</li> <li>Performing Organizat</li> <li>Performing Organizat</li> <li>ATC-12</li> <li>Work Unit No.</li> <li>Proj. No. 034</li> <li>Contract or Grant No.</li> <li>DOT-FA72WA1-20</li> <li>Type of Report and I<br/>Project Report</li> </ol>             | tion Code<br>ion Report No.<br>-241-012<br>o. IAG<br>61<br>Period Covered<br>t  |
| Modulation Schemes for DABS<br>7 Author(s)<br>D.A. Shnidman<br>9. Performing Organization Name and Address<br>Massachusetts Institute of Ter-<br>Lincoln Laboratory<br>P.O. Box 73<br>Lexington, Massachusetts 0217<br>12. Sponsoring Agency Name and Address<br>Department of Transportation<br>Federal Aviation Administration<br>Systems Research and Development<br>Washington, D.C. 20591<br>15. Supplementary Notes<br>The work reported in this docu<br>research operated by Massachus                                                                                                                                                                                                                                                                                                    | chnology<br>3<br>on<br>went Service                  | 1<br>1<br>1<br>1                          | <ul> <li>14 August 1972</li> <li>Performing Organizat</li> <li>Performing Organizat</li> <li>ATC-12</li> <li>Work Unit No.<br/>Proj. No. 034</li> <li>Contract or Grant No.<br/>DOT-FA72WA1-20</li> <li>Type of Report and I<br/>Project Report</li> </ul>                                            | tion Code<br>ion Report No.<br>-241-012<br>o. IAG<br>61<br>Period Covered<br>t  |
| <ul> <li>7 Author(s)</li> <li>D.A. Shnidman</li> <li>9. Performing Organization Name and Address<br/>Massachusetts Institute of Ter<br/>Lincoln Laboratory</li> <li>P.O. Box 73<br/>Lexington, Massachusetts 0217.</li> <li>12. Sponsoring Agency Name and Address<br/>Department of Transportation<br/>Federal Aviation Administration<br/>Systems Research and Developme<br/>Washington, D.C. 20591</li> <li>15. Supplementary Notes<br/>The work reported in this doct<br/>research operated by Massachus</li> </ul>                                                                                                                                                                                                                                                                          | on<br>ent Service                                    | 8<br>1<br>1                               | <ul> <li>Performing Organizat</li> <li>ATC-12</li> <li>0. Work Unit No.<br/>Proj. No. 034</li> <li>1. Contract or Grant No.<br/>DOT-FA72WA1-20</li> <li>3. Type of Report and I<br/>Project Report</li> </ul>                                                                                         | -241-012<br>-241-012<br>. IAG<br>61<br>Period Covered<br>t                      |
| <ul> <li>Author(s)</li> <li>D.A. Shnidman</li> <li>Performing Organization Name and Address<br/>Massachusetts Institute of Ter<br/>Lincoln Laboratory</li> <li>P.O. Box 73<br/>Lexington, Massachusetts 0217</li> <li>Sponsoring Agency Name and Address</li> <li>Department of Transportation<br/>Federal Aviation Administration<br/>Systems Research and Developme<br/>Washington, D.C. 20591</li> <li>Supplementary Notes</li> <li>The work reported in this doct<br/>research operated by Massachus</li> </ul>                                                                                                                                                                                                                                                                              | chnology<br>3<br>on<br>ent Service                   | 1                                         | <ul> <li>Performing Organizat<br/>ATC-12</li> <li>Work Unit No.<br/>Proj. No. 034</li> <li>Contract or Grant No<br/>DOT-FA72WA1-20</li> <li>Type of Report and I<br/>Project Report</li> </ul>                                                                                                        | -241-012<br>o. IAG<br>61<br>Period Covered<br>t                                 |
| <ul> <li>9. Performing Organization Name and Address<br/>Massachusetts Institute of Ter<br/>Lincoln Laboratory</li> <li>P.O. Box 73<br/>Lexington, Massachusetts 0217</li> <li>12. Sponsoring Agency Name and Address<br/>Department of Transportation<br/>Federal Aviation Administration<br/>Systems Research and Developme<br/>Washington, D.C. 20591</li> <li>15. Supplementary Notes<br/>The work reported in this doct<br/>research operated by Massachus</li> </ul>                                                                                                                                                                                                                                                                                                                       | on<br>Service                                        | 1                                         | ATC-12<br>O. Work Unit No.<br>Proj. No. 034<br>1. Contract or Grant No.<br>DOT-FA72WA1-20<br>3. Type of Report and D<br>Project Report                                                                                                                                                                | -241-012<br>o. IAG<br>61<br>Period Covered<br>t                                 |
| <ul> <li>9. Performing Organization Name and Address<br/>Massachusetts Institute of Tel<br/>Lincoln Laboratory</li> <li>P.O. Box 73<br/>Lexington, Massachusetts 0217</li> <li>12. Sponsoring Agency Name and Address</li> <li>Department of Transportation<br/>Federal Aviation Administration<br/>Systems Research and Developme<br/>Washington, D.C. 20591</li> <li>15. Supplementary Notes<br/>The work reported in this doct<br/>research operated by Massachus</li> </ul>                                                                                                                                                                                                                                                                                                                  | on<br>Service                                        | 1                                         | <ol> <li>Work Unit No.<br/>Proj. No. 034</li> <li>Contract or Grant No.<br/>DOT-FA72WA1-20</li> <li>Type of Report and I<br/>Project Report</li> </ol>                                                                                                                                                | -241-012<br>o. IAG<br>61<br>Period Covered<br>t                                 |
| <ul> <li>9. Performing Organization Name and Address<br/>Massachusetts Institute of Te<br/>Lincoln Laboratory</li> <li>P.O. Box 73<br/>Lexington, Massachusetts 0217</li> <li>12. Sponsoring Agency Name and Address<br/>Department of Transportation<br/>Federal Aviation Administration<br/>Systems Research and Developme<br/>Washington, D.C. 20591</li> <li>15. Supplementary Notes<br/>The work reported in this doct<br/>research operated by Massachus</li> </ul>                                                                                                                                                                                                                                                                                                                        | on<br>Service                                        | י<br>ד<br>ד                               | <ul> <li>Work Unit No.</li> <li>Proj. No. 034</li> <li>Contract or Grant No.</li> <li>DOT-FA72WA1-20</li> <li>Type of Report and I</li> <li>Project Report</li> </ul>                                                                                                                                 | -241-012<br>•. IAG<br>61<br>Period Covered<br>t                                 |
| Lincoln Laboratory<br>P.O. Box 73<br>Lexington, Massachusetts 0217<br><sup>12.</sup> Sponsoring Agency Name and Address<br>Department of Transportation<br>Federal Aviation Administration<br>Systems Research and Development<br>Washington, D.C. 20591<br><sup>15.</sup> Supplementary Notes<br>The work reported in this docu<br>research operated by Massachus<br>Elocar of Constant                                                                                                                                                                                                                                                                                                                                                                                                         | 3<br>on<br>went Service                              |                                           | 1. Contract or Grant No.<br>DOT-FA72WA1-20<br>3. Type of Report and I<br>Project Report                                                                                                                                                                                                               | o. IAG<br>61<br>Period Covered<br>t                                             |
| P.O. Box 73<br>Lexington, Massachusetts 0217<br>12. Sponsoring Agency Name and Address<br>Department of Transportation<br>Federal Aviation Administration<br>Systems Research and Development<br>Washington, D.C. 20591<br>15. Supplementary Notes<br>The work reported in this doct<br>research operated by Massachus                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on<br>Went Service                                   | <b>1</b>                                  | DOT-FA72WA1-20<br>3. Type of Report and D<br>Project Report                                                                                                                                                                                                                                           | 61<br>Period Covered<br>t                                                       |
| Lexington, Massachusetts 0217<br>12. Sponsoring Agency Name and Address<br>Department of Transportation<br>Federal Aviation Administration<br>Systems Research and Development<br>Washington, D.C. 20591<br>15. Supplementary Notes<br>The work reported in this docu<br>research operated by Massachus<br>Elocae 70 c 0220                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3<br>on<br>Went Service                              |                                           | 3. Type of Report and I<br>Project Repor                                                                                                                                                                                                                                                              | Period Covered<br>t                                                             |
| <ol> <li>Sponsoring Agency Name and Address</li> <li>Department of Transportation</li> <li>Federal Aviation Administration</li> <li>Systems Research and Developm</li> <li>Washington, D.C. 20591</li> <li>Supplementary Notes</li> <li>The work reported in this doct research operated by Massachus</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on<br>ent Service                                    |                                           | Project Repor                                                                                                                                                                                                                                                                                         | t                                                                               |
| Department of Transportation<br>Federal Aviation Administration<br>Systems Research and Developm<br>Washington, D.C. 20591<br><sup>15. Supplementary Notes</sup><br>The work reported in this doct<br>research operated by Massachus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on<br>ent Service                                    |                                           | -                                                                                                                                                                                                                                                                                                     |                                                                                 |
| Federal Aviation Administrati<br>Systems Research and Developm<br>Washington, D.C. 20591<br><sup>15.</sup> Supplementary Notes<br>The work reported in this docu<br>research operated by Massachus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on<br>ent Service                                    |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
| Washington, D.C. 20591<br><sup>15.</sup> Supplementary Notes<br>The work reported in this doce<br>research operated by Massachus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ent Service                                          |                                           | 4 Canada - 4                                                                                                                                                                                                                                                                                          | Co do                                                                           |
| 15. Supplementary Notes<br>The work reported in this docu<br>research operated by Massachus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                                           | sponsoring Agency (                                                                                                                                                                                                                                                                                   | -04                                                                             |
| The work reported in this doc<br>research operated by Massachus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      | ·                                         |                                                                                                                                                                                                                                                                                                       |                                                                                 |
| research operated by Massachu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ument was per                                        | formed at Lincolr                         | Laboratory, a                                                                                                                                                                                                                                                                                         | center for                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | setts Institu                                        | te of Technology                          | under Air Force                                                                                                                                                                                                                                                                                       | e Contract                                                                      |
| FI9028-/U-L-U23U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
| 16. Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
| The performance of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hree candidat                                        | e modulation sche                         | emes for DABS i                                                                                                                                                                                                                                                                                       | s analyzed                                                                      |
| in this report and a comparison                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on on the bas                                        | is of probability                         | of error per                                                                                                                                                                                                                                                                                          | bit is made.                                                                    |
| line three types of modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | are PAM, DPS                                         | K, and FSK. The<br>noise ratio DPS        | results snow the show the second FSK have                                                                                                                                                                                                                                                             | nat, at a<br>a lower                                                            |
| P /bit than PAM and this diff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | erence is signate                                    | nificant in most                          | cases. In add                                                                                                                                                                                                                                                                                         | ition to                                                                        |
| P <sup>e</sup> /bit, however, the choice o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | f modulation                                         | and message forma                         | t depends on t                                                                                                                                                                                                                                                                                        | he capacity                                                                     |
| required, bandwidth occupancy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , and cost of                                        | implementation.                           | This list con                                                                                                                                                                                                                                                                                         | sideration is                                                                   |
| especially important with reg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ard to the tr                                        | ansponder.                                |                                                                                                                                                                                                                                                                                                       |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
| 11. Key Words<br>Intenformanca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      | 18. Distribution Statemer                 | unlimited Bo                                                                                                                                                                                                                                                                                          | cument may be                                                                   |
| Garbling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | released to the National Technical Information       |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
| DABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      | Service, Springfield. Virginia 22151. for |                                                                                                                                                                                                                                                                                                       |                                                                                 |
| Modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | sale to the publ                          | ic.                                                                                                                                                                                                                                                                                                   | -                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |
| 19. Security Classif. (of this report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20. Security Class                                   | if. (of this page)                        | 21. No. of Pages                                                                                                                                                                                                                                                                                      | 22. Price                                                                       |
| Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unclassifie                                          | d                                         | 38                                                                                                                                                                                                                                                                                                    | 0.00 110                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                      |                                           |                                                                                                                                                                                                                                                                                                       |                                                                                 |

. \*

2

۰.