
 Project Report

ATC-274

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

10 June 2002

S.W. Troxel
W.L. Pughe

Prepared for the Federal Aviation Administration,
Washington, D.C. 20591

This document is available to the public through
the National Technical Information Service,

Springfi eld, Virginia 22161.

Machine Intelligent Gust Front
Algorithm for the WSP

This document is disseminated under the sponsorship of the Department of Trans-
portation in the interest of information exchange. The United States Government
assumes no liability for its contents or use thereof.

ABSTRACT

The Machine Intelligent Gust Front Algorithm (MIGFA) utilizes multi-dimensional image process-
ing and fuzzy logic techniques to identify gust fronts in Doppler radar data generated by the ASR-9
Weather Systems Processor (WSP). The algorithm generates products that support both safety and plan-
ning functions for ATC. Outputs include current and predicted locations of gust fronts, as well as estimates
of the wind shear and wind shift associated with each gust front.

This document provides both high level and detailed functional descriptions of FAA build 2.0 of the
WSP MIGFA. The document was written with many explicit references to data structures and routines in
the actual software in order that it may serve as a useful algorithm development and programmers refer-
ence guide.
iii

iv

TABLE OF CONTENTS

Abstract . iii

List of Illustrations . xi

List of Tables . xiii

1. ALGORITHM DESCRIPTION. 1

1.1 Product Description . 1

1.2 Algorithm Overview . 1

1.3 Algorithm Inputs . 6

1.3.1 Algorithm Parameter Specification. 6

1.3.2 VSP Stream . 7

1.3.3 WSP Base Data . 7

1.3.4 Anemometer Data . 8

1.4 Algorithm Outputs . 9

1.4.1 Output Product Stream . 9

1.4.2 Archive Stream . 10

1.4.3 Display Stream . 10

1.4.4 Diagnostic Message Logging . 10

2. FUNCTIONAL DESCRIPTION. 11

2.1 Initialization . 11

2.1.1 Handling of Input Data in the Main Processing Loop 12

2.2 Image Preparation . 16

2.2.1 Filling the SKArray Base Data Objects . 16

2.2.2 Setting the Seasonal Sensitivity Mode . 16

2.2.3 Allocation of Feature Detectors . 17

2.2.4 Processing the VSP Control Stream . 18

2.2.5 Configuring Images for the Analysis Display. 19

2.2.6 Preprocessing of the Reflectivity Data . 19

2.2.7 Generation of "Single Scan" Objects . 19

2.2.7.1 Resampling of polar images to Cartesian images 20

2.2.7.2 Retrieval of prior images . 20

2.2.7.3 Estimation of airport, site, and regional winds . 20

2.2.7.4 Computation of high/low beam reflectivity difference image 21

2.2.7.5 Creation of clutter and AP images. 22
v

TABLE OF CONTENTS (CONTINUED)

2.2.7.6 Computation of velocity standard deviation images 23

2.2.7.7 Computation of "cleaned" velocity image. 24

2.2.7.8 Computation of out-of-trip weather image . 24

2.2.7.9 Computation of radial velocity shear maps (convergence images). 27

2.2.7.10 Computation of stratiform rain and storm cell images 29

2.2.7.11 Computation of zero-Doppler line image . 33

2.2.7.12 Generation of line storm interest and orientation images 37

2.2.7.12.1 Use of line storm interest by feature detectors 38

2.2.7.12.2 Use of line storm interest to boost anticipation 38

2.2.7.13 Dynamic sensitivity adjustment . 41

2.2.7.13.1 Computing the stratiform rain and storm cell coverage 42

2.3 Feature Detection . 44

2.3.1 Suppression of false thin line interest features . 44

2.3.1.1 Procedure for suppression of false thin line features. 45

2.3.2 Running the feature detectors . 47

2.3.3 Anticipation. 48

2.3.3.1 Parameters . 48

2.3.3.2 Mask images . 48

2.3.3.3 Description . 48

2.3.4 DZMotion - Reflectivity Thin Line Motion Detector . 50

2.3.4.1 Parameters . 50

2.3.4.2 Mask images . 50

2.3.4.3 Description . 50

2.3.5 TLDZ - Reflectivity Thin Line Detector. 54

2.3.5.1 Parameters . 54

2.3.5.2 Mask images . 54

2.3.5.3 Description . 54

2.3.6 TLSD - Velocity Thin Line Detector . 57

2.3.6.1 Parameters . 57

2.3.6.2 Mask images . 57

2.3.6.3 Description . 57

2.3.7 HIDZ - High-Altitude Weather Detector . 60

2.3.7.1 Parameters . 60

2.3.7.2 Mask images . 60
vi

TABLE OF CONTENTS (CONTINUED)

2.3.7.3 Description . 60

2.3.8 SDMotion - Velocity Thin Line Motion Detector . 64

2.3.8.1 Parameters . 64

2.3.8.2 Mask images . 64

2.3.8.3 Description . 64

2.3.9 TLSDDZ - Tandem Velocity Thin Line / No Reflectivity Detector. 68

2.3.9.1 Parameters . 68

2.3.9.2 Mask images . 68

2.3.9.3 Description . 68

2.3.10 Converge - Velocity Convergence Detector . 71

2.3.10.1 Parameters . 71

2.3.10.2 Mask images . 71

2.3.10.3 Description . 71

2.3.11 ConvMotion - Velocity Convergence Motion Detector 75

2.3.11.1 Parameters . 75

2.3.11.2 Mask images . 75

2.3.11.3 Description . 75

2.3.12 DZSDMotion - Tandem Reflectivity/Velocity Thin Line Motion Detector . . 79

2.3.12.1 Parameters . 79

2.3.12.2 Mask images . 79

2.3.12.3 Description . 79

2.3.13 PrecipEdges - Precipitation Edge Detector . 83

2.3.13.1 Parameters . 83

2.3.13.2 Mask images . 83

2.3.13.3 Description . 83

2.4 Interest combination. 87

2.4.1 Thin line smoothing . 87

2.5 Extraction. 89

2.5.1 Eliminating Poor Interest Shapes . 90

2.5.2 Thinning . 90

2.5.3 Chain Extension . 90

2.5.4 Extracting Thin Line Chains . 90

2.5.5 Establishing Point Correspondence. 91

2.5.6 Collecting "Best Chains". 92
vii

TABLE OF CONTENTS (CONTINUED)

2.6 Gust Front Analysis . 95

2.6.1 Editing Gust Front Chains. 96

2.6.2 Wind Analysis . 98

2.6.2.1 Descriptions of wind estimators . 102

2.6.2.1.1 "ByNormal" wind estimator (perpendicular wind model). 102

2.6.2.1.2 "ByAnemometer" wind estimator . 104

2.6.2.1.3 "ByHistory" wind and delta-V estimator (persistence model) 107

2.6.2.2 "ByShear" delta-V estimator . 108

2.6.2.2.1 "ByVecDiff" delta-V estimator (wind vector difference) 109

2.6.2.2.2 "ByHistory" delta-V estimator . 110

2.6.2.2.3 "BySegment" maximum delta-V estimator 110

2.6.3 Heuristics. 111

2.6.3.1 ChainLengthSmall . 111

2.6.3.2 InterestingDeltaV . 111

2.6.3.3 SideLobeChain . 111

2.6.3.4 ChainLagsBhdArpWinds . 113

2.6.4 Making the Final Report Decision . 113

2.6.4.1 Tracking depth test . 114

2.6.4.2 Indexed length test. 115

2.6.4.3 Delta-V distance test . 115

2.6.4.4 Delta-V speed test . 115

2.6.4.5 Reportable length test . 115

2.7 Predictions (position forecasts) . 116

2.8 Updating the image history . 116

2.9 Output . 116

2.9.1 Analysis Display Output . 116

2.9.2 Product and Archive Output . 117

3. SOFTWARE DESCRIPTION. 119

3.1 Overview . 119

3.2 Organization of Software Modules . 119

3.3 Required External Software. 121

3.4 Navigating the Software . 121

3.5 Running the WSP MIGFA. 122
viii

TABLE OF CONTENTS (CONTINUED)

3.5.1 Input and Output Options . 123

3.5.2 Debugging Output Options . 124

3.5.3 Options Related to Offline Processing . 126

3.5.4 MIGFA Diagnostic Display . 126

APPENDIX A: MIGFA PARAMETER FILES . 127
A.1. GF_WSP_CONFIG_FILE. 128
A.2. GF_WSP_PARAM_FILE . 130
A.3. GF_DET_PARM_FILE_WSP. 143
A.4. GF_EST_PARM_FILE . 162
A.5. GF_HEU_PARM_FILE. 163
A.6. GF_LOG_CONFIG_FILE. 164

APPENDIX B: MIGFA OUTPUT RECORD FORMATS . 167

APPENDIX C: MIGFA DATA CLASSES. 175
class GFBaseImages . 177
class GFBaseImagesWSP . 179
class GFChain . 181
class GFDeltaVEstBase . 185
class GFDetectorBase . 186
class GFDetectorParams . 187
class GFEvent . 188
class GFHeuristicsBase. 190
class GFPointArray. 191
class GFPointInfo . 193
class GFPredChain . 195
class GFRefData . 196
class GFWindEstBase. 198
class TclObject . 200

GLOSSARY . 202

REFERENCES . 204
ix

x

LIST OF ILLUSTRATIONS

Figure
 No. Page

1. General process and data flow for the WSP MIGFA. 4

2. WSP MIGFA Analysis Display. . 5

3. WSP MIGFA interface diagram. 8

4. Abbreviated WSP MIGFA call tree. 14

5. Static binary mask images used during interest generation. 15

6. Schematic illustration of WSP radial data record organization. 15

7. Example computation of high/low beam reflectivity difference image. 22

8. Example of binary clutter map image computed from the WSP FLAGS data.. . . . 23

9. Example of out-of-trip (OOT) interest image (right) computed from cor-
responding reflectivity (left) and velocity (middle) images. 25

10. Scoring functions and templates for the OutOfTrip weather detector. 26

11. Example shear maps computed from WSP velocity data. 28

12. Example computation of "expanded" stratiform rain interest image. 30

13. Example computation of stratiform rain interest image. 31

14. Example computation of storm cells interest image. 32

15. Scoring functions and templates for the ZeroCross detector. 35

16. Summary of processing steps in detection of zero-Doppler lines.. 36

17. Scoring functions and template for the LineStorm detector. 39

18. Summary of line storm detector processing. 40

19. Example of boosting of feature detector interest in the presence of a line storm.. . 41

20. Illustration of stratiform rain and storm cell pixel weighting for precipitation
coverage computation. 42

21. Example precipBiasTableData from paramsWSP.local file for Austin, TX 43

22. Scoring functions and templates for the DZMotion reflectivity thin line motion
detector. . 52

23. Images illustrating processing steps in reflectivity thin line motion detector
(DZMotion) using a simulated thin line signature moving at 10 m/s. 53

24. Scoring functions and template for the TLDZ reflectivity thin line detector. 55

25. Summary of processing stages of TLDZ reflectivity thin line detector.. 56

26. Scoring functions and template for the TLSD velocity thin line detector. 58

27. Summary of velocity thin line (TLSD) processing.. 59

28. Scoring functions and template for the HIDZ high altitude weather detector. 62
xi

LIST OF ILLUSTRATIONS (CONTINUED)

29. Example output of high altitude weather detector (HIDZ).. 63

30. Scoring functions and template for the SDMotion velocity standard deviation
line motion detector. 66

31. Summary of velocity thin line motion (SDMotion) processing. 67

32. Scoring functions and templates for the TLSDDZ velocity thin line with no
reflectivity detector. 69

33. Example output of velocity thin line with no reflectivity detector (TLSDDZ). . . . 70

34. Scoring functions and templates for the Converge velocity convergence
detector. . 73

35. Images illustrating processing steps in velocity convergence detector
(Converge).. 74

36. Scoring functions and templates for the ConvMotion velocity convergence
motion detector. 77

37. Images illustrating processing steps in velocity convergence motion
(ConvMotion). 78

38. Scoring functions and templates for the DZSDMotion (reflectivity thin line
with velocity thin line motion) detector. . 81

39. Images illustrating processing steps in tandem reflectivity thin line/velocity
thin line motion detector (DZSDMotion). 82

40. Scoring functions and template for the PrecipEdges detector. 85

41. Example computation of the precipitation edges interest image (PrecipEdges).. . . 86

42. Scoring functions and template for the "bow-tie" thin line smoother. 88

43. Combined interest image before (left) and after thin line smoothing (middle). . . . 88

44. Function call tree for the gust front extraction phase of MIGFA. 89

45. Chain extraction summary. . 93

46. Example extraction of most interesting chains from a simple graph structure.. . . . 94

47. Function call tree for the gust front analysis phase of MIGFA. 95

48. Function call tree for the MIGFA wind analysis stage. 99

49. Wind analysis regions for MIGFA gust front wind shift and wind shear
estimation. . 100

50. Illustration of vector difference method for computing the delta-V (DV)
across a gust front. 109

51. Example of sidelobe contamination in ASR-9 WSP reflectivity (DBDZ) and
velocity (LBV) images. . 112

52. Example wind estimation diagnostic output generated with -W MIGFA
debugging option.. 125
xii

LIST OF TABLES

Table
 No. Page

1. WSP MIGFA Environment Variables . 7

2. WSP Base Data Products Processed by MIGFA . 9

3. Base Data Scalings Expected by MIGFA Scoring Functions 16

4. Feature Detector Dependencies . 18

5. WSP MIGFA Variable Site Parameters (VSPs). 19

6. Default Parameters for the Anticipation Detector . 48

7. Default Averaging Weight Function for the Anticipation Detector 48

8. Default Parameters for the DZMotion Detector . 50

9. Default Parameters for the TLDZ Detector . 54

10. Default Parameters for the TLSD Detector . 57

11. Default Parameters for the HIDZ Detector . 60

12. Default Parameters for the SDMotion Detector . 64

13. Default Parameters for the TLSDDZ Detector. 68

14. Default Parameters for the Converge Detector . 71

15. Default Parameters for the ConvMotion Detector . 75

16. Default Parameters for the DZSDMotion Detector . 79

17. Default Parameters for the PrecipEdges Detector . 83

18. Parameters Used By Function EstablishChainCorrespondence 91

19. Parameters Used by Function EditGustFronts . 98

20. Wind Estimators Used for Wind Analysis Regions . 102

21. Parameters Used by the "ByNormal" Wind Estimator. 104

22. Parameters Used by the "ByAnemometer" Wind Estimator 106

23. Parameters Used by the "ByHistory" Wind and Delta-V Estimator 108

24. Parameters Used by the "ByShear" Delta-V Estimator . 109

25. Default Parameters Used by Heuristics . 111

26. Default Parameters Used by MakeReportDecision . 114

27. MIGFA Software Directory Contents . 120

28. Additional Lincoln Software Libraries Used by WSP MIGFA 121
xiii

xiv

1. ALGORITHM DESCRIPTION

1.1 Product Description

This document describes FAA build 2.0 (Lincoln Laboratory version wspmigfa-1-4) of the WSP MIGFA
algorithm. The WSP MIGFA algorithm detects gust fronts and other wind shifts in ASR-9 WSP radar data
and provides extrapolated position forecasts that can be used to predict when these events will impact an
airport. In addition to identifying the locations of wind shift boundaries, MIGFA estimates the wind shift
and the velocity change (wind shear) associated with each gust front detected and reports these data along
with the current and extrapolated gust front locations. Although gust front detection is based on
processing of WSP data, MIGFA also processes surface wind sensor data from an anemometer located
near the airport in order to improve the accuracy of the wind shift reports.

1.2 Algorithm Overview

Gust fronts present "signatures" in Doppler radar imagery that can be recognized by sufficiently
sophisticated automated processing algorithms. MIGFA uses knowledge-based image processing and data
fusion techniques to recognize the three principal gust front signatures observed in the radar data:

Velocity convergence: Colliding air masses with different velocities produce a velocity convergence
signature at the leading edge of a gust front. Velocity convergence is identified by a sharp decrease in
Doppler velocity at increasing ranges along a single radar radial. A variety of situations can produce
incomplete, distorted, or fragmented convergence signatures. Since gust fronts often propagate into clear
air ahead of the generating storms, there may often be insufficient radar returns to produce this signature.

Thin lines: Gust fronts can be observed in radar reflectivity data as thin lines of increased reflectivity
relative to background levels. The thin line is produced by dust, insects, rain droplets, or refractive index
changes along the frontal boundary. Thin lines of coherent velocity values surrounded by random (noisy)
velocities in low SNR clear air regions are another thin line signature that is often observed in ASR-9 WSP
data.

Motion: Gust fronts move conspicuously in a direction perpendicular to the orientation of the
convergence boundary and/or thin line.

Figure 1 is a block diagram illustrating general MIGFA processing and data flow. MIGFA is an iterative
process that produces a new set of gust front detections, position forecasts, and associated wind shift and
wind shear estimates for each scan of WSP radar data received. There are six principal steps involved:

1. Initialization and image preparation

2. Detection (interest generation)

3. Extraction

4. Analysis

5. Prediction

6. Output

An iteration of MIGFA processing begins when a complete scan of WSP base data product "radials" have
been received (approximately once every 2 minutes). During the initialization stage, MIGFA takes the
input WSP base data and computes a set of images (2-D arrays that represent visually interpretable data)
and other auxiliary information. These data are collected into a GFBaseImages data object called
"gfBaseImages" (descriptions of the various data classes used in MIGFA can be found in Appendix C).
1

Before proceeding with processing, the anemometer sensor data (e.g. from LLWAS centerfield or ASOS)
that have accumulated during the preceding 2 minutes are retrieved from the input buffer and are appended
to an anemometer_history which itself is contained in a GFRefData data object called "gfRefData". The
gfBaseImages and gfRefData objects serve as global data reference libraries that are globally accessible
during various stages of processing.

After initialization, MIGFA executes a set of feature detectors, which are computational modules designed
to detect specific physical signatures in radar data. Feature detectors in MIGFA are based on two
techniques of knowledge-based image processing: Interest images and functional template correlation
(FTC). Knowledge-based image processing is a mechanism of incorporating physical parameters of a
search problem into image processing operations. An interest image is a data representation device,
serving as a map of evidence for the presence at each pixel location of some feature that is selectively
indicative of an object being sought. Higher pixel values reflect greater confidence that the intended
feature is present at that location. Using interest as a "common denominator", data fusion is accomplished
by combining the pixel-registered interest images produced by the various feature detectors into a single
combined interest image. In MIGFA, interest values are mapped across an integer range, with 0 indicating
strong evidence against a feature being present, 128 representing the ambiguity point, and 255 indicating
maximum confirming evidence for the presence of a feature.

FTC is a generalized matched filter incorporating aspects of fuzzy set theory and producing interest images
as output. Specific inputs to feature detectors include the newly received base data images contained in the
gfBaseImages object as well as the image_history and event_history, which contain data from prior volume
scans. These histories are maintained and stored in the global gfRefData object for convenient access by
the algorithm. The interest images generated by the various feature detectors are then averaged to form a
single combined interest image. Figure 2 shows an example MIGFA analysis display. In addition to
displaying the input reflectivity and velocity base data images in the upper left, several derived data images
and interest images are shown.

The extraction step takes the combined interest image produced by the detection stage and extracts a set of
chains, each chain containing the set of points representing a single gust front. A chain is 1 pixel wide and
can be any length. Points (pixels) within a chain are arranged in consecutive order along the length of the
gust front. Once chain points have been extracted, an attempt is made to establish correspondence for each
extracted point with some point from the collection of chains extracted in the prior scan. If correspondence
is established, attributes of speed, direction of motion, and distance moved are computed and assigned to
the point from the current volume scan. The extracted chains of points are assembled in the data structure
called "gfEvent" (a GFEvent object).

The analysis stage performs a number of tasks on each extracted chain, adding additional information to
gfEvent. These tasks include:

1. Editing of the chains of points encoded in gfEvent, attempting to enforce consistency along each
chain by either changing the attributes of single points or by breaking chains into sub-chains.
Attributes of speed, direction, and distance are then smoothed along the length of each chain.

2. Computing estimates of the various wind products associated with each detected gust front. These
estimates are based on a consensus of several different estimation techniques.

3. Applying heuristics that adjust gust front interest scores (sum of interest values of all points in a
gust front chain). Some of these heuristics look for behavior that is uncharacteristic of gust fronts
and decrease interest scores accordingly. Others use wind shear estimates as a basis for modifying
interest scores.
2

4. Making a final decision as to whether a gust front should be included in the algorithm output. The
finished gfEvent is then added to the beginning of the eventHistory of the gfRefData object for use
during the processing of subsequent volume scans. If the number of GFEvents in the eventHistory
exceeds a parameter (nominally 12), then old excess GFEvent objects are removed from the end.

Predictions are generated by taking the information encoded in gfEvent and extrapolating the location and
appearance of each gust front at incremental time steps in the future. These extrapolations are encoded in
the list of predictions (a list of GFPredChain objects) and are stored in the gfEvent object.

Finally, the output handler outputs the contents of the gfEvent to the output stream. Among other
formatting operations, image coordinates in pixels for each gust front curve point are translated into
radar-centric coordinates in kilometers.
3

Initialize

Detect

Extract

Analyze

Predict

Output

gfBaseImages

anemometer_history

image_history

event_history

gfBaseImages

Interest

gfEvent

gfEvent (modified)

GFPredChains, gfEvent (modified)

WSP Base Data Stream

gfRefData:

LBDZ, HBDZ, DBDZ, LBV,
HBV, DBV, FLAGS

Wind speed, direction

Figure 1. General process and data flow for the WSP MIGFA.

Anemometer Data:Radar Products:
4

Figure 2. WSP MIGFA Analysis Display
5

1.3 Algorithm Inputs

Figure 3 shows the data interfaces to the WSP MIGFA. MIGFA processes input from four sources.
Algorithm parameters are obtained from two sources: parameter disk files, and VSPs sent from the WSP
System Control. Initial algorithm parameters are loaded from disk files using disk I/O. At any time during
algorithm processing, a subset of the initial set of algorithm parameters can be received as VSPs from the
system control and used to dynamically override the settings for those algorithm parameters.

There are two sensor data inputs: WSP base data (the primary data source used for gust front detection)
and anemometer data (used to refine gust front wind shift and wind shear estimates).

1.3.1 Algorithm Parameter Specification

There are a number of algorithm configuration and parameter files that control MIGFA run-time behavior.
When MIGFA executes, these files are found via UNIX environment variables that point to the location of
each parameter file (this allows flexibility in installation of the parameter files). Table 1 lists the
environment variables together with a brief description of the contents of the files. All except the
"LOCAL" files are required in order for the algorithm to run. Appendix A contains printouts of the default
parameter files.

The local parameter files provide a means for overriding default parameters to reflect site-specific
configurations. Site adaptation could be performed by modifying any of the parameters in the default files.
However, in most cases, only a few parameters are likely to change from site to site and it is preferable to
not alter the default files. MIGFA reads the local parameter files after the default parameter files are read,
so any parameter or configuration settings contained in the local files will override the ones in the default
file. As opposed to the complete default files, the local parameter files need only contain entries for those
parameters that need to be overridden. This helps to keep the local parameter files short, so it is easy to see
which parameters have been adjusted for that particular site. Local parameter file settings are specified in
the same Tcl language syntax used for setting the algorithm default values.

For example, the location of the airport with respect to the radar (arpOffsetXKM and arpOffsetYKM)
needs to be specified for each site (since most ASR-9’s are on the airport, the default offsets of 0,0 are
often sufficient). These offsets are needed in order for MIGFA to know which segment of a detected gust
front to analyze for generating the wind shift and wind shear hazard reports appropriate for the airport
region that will be affected. If the airport is an appreciable distance away from the ASR-9, then these
values need to be changed to indicate the number of kilometers east and north of the airport reference point
(ARP) with respect to the radar. Use negative values to indicate positions west of south of the radar. This
can be done by placing the following lines in the local configuration file pointed to by the
GF_WSP_LOCAL_CONFIG_FILE variable (lines starting with a "#" in the first column are treated as
comments):

#
Airport offsets:
#
set arpOffsetXKM -1.57
set arpOffsetYKM -0.89

In the WSP MIGFA software, configuration parameters defined in GF_WSP_CONFIG_FILE and
GF_WSP_LOCAL_CONFIG_FILE are loaded into a globally accessible GFIntGenConfig object variable
called gfConfig. General algorithm parameters defined in GF_WSP_PARAM_FILE and
GF_WSP_LOCAL_PARAM_FILE are loaded into a global GFParams object variable called gfParams.
6

1.3.2 VSP Stream

A subset of MIGFA parameters called Variable Site Parameters (VSPs) can be changed during program
execution via a dedicated TCP/IP stream connection from the WSP System Control. This stream is
checked during program initialization and is continuously polled after MIGFA enters its continuous
processing loop. Whenever a new set of VSPs are detected on the stream, MIGFA retrieves the new
settings and resets the appropriate parameters in its gfConfig and gfParams data structures, and processing
proceeds with the new settings.

.

1.3.3 WSP Base Data

MIGFA receives a new set of base data products from the WSP base data generator once every 24 scans
(approximately 2 minutes). Angular resolution of the base data products is 1.41 degrees (256 radials
covering 360 degrees), while range extent of each base data product is 111.120 km (ranges 1 through 240
have a resolution of 115.75 meters/gate, while range gates 241 through 420 have a resolution of 463
meters/gate). Table 2 lists the WSP base data products sent to and processed by MIGFA.

Table 1. WSP MIGFA Environment Variables

Variable Name Description

GF_WSP_CONFIG_FILE
Default data resolution and airport geometry parameters used
to configure data arrays and airport position-dependent
heuristics.

GF_WSP_LOCAL_CONFIG_FILE
Optional "local" settings used to override settings in
GF_WSP_CONFIG_FILE.

GF_WSP_PARAM_FILE Default general algorithm parameters (over 150 of them).

GF_WSP_LOCAL_PARAM_FILE
Optional "local" parameter file used to override settings in
GF_WSP_PARAM_FILE.

GF_DET_PARM_FILE_WSP
Parameters specifying which feature detectors are to be run
and, for each detector, values for functional template kernels,
scoring functions, interest weights, etc.

GF_EST_PARM_FILE
Parameters specifying which wind estimation methods are
available and, for each wind analysis region, which estimators
are to be used.

GF_HEU_PARM_FILE
Parameters specifying which heuristic sub-algorithms are
invoked to reject improbable gust front features.

GF_LOG_CONFIG_FILE
Message logging facility configuration file used to direct text
messages generated by MIGFA.
7

1.3.4 Anemometer Data

If available, MIGFA can use airport wind data to improve the accuracy of its gust front wind estimates.
The airport wind data are from a single anemometer (e.g., LLWAS centerfield, ASOS). If wind data is
unavailable, MIGFA can continue processing without it (albeit with some likely degradation of wind shift
and wind shear report accuracy). There are no time limits as to how old the data can be; data are internally
weighted as a function of age and are consequently ignored if too old. Wind data is provided to MIGFA by
the WSP Wind Data Server, which accesses whatever wind sensor is available and packs and transmits the
time (GMT), wind speed (knots), and wind direction (degrees). When wind data are from the LLWAS
centerfield, they are typically available once every 10 seconds. However, MIGFA makes no assumptions
about the frequency of wind data input. It processes whatever it receives during its 2-minute processing
cycle.

Although MIGFA does provide an option for obtaining airport wind data via a separate TCP/IP socket
connection, the WSP Base Data Generator serves the wind data to MIGFA on the same VME ring buffer
used to transmit the WSP radar base data products. The MIGFA driver is able to identify these wind data
records when they appear on the input base data ring and handles them appropriately.

MIGFA

WSP Base Data Generator

VSPsWSP

Output Stream

Disk

Display Stream

Archive Stream

Disk

(SHM)

(TCP/IP)

To GFUP

(TCP/IP) (File I/O)

(VME Ring)

Base Data Radials,

Parameters
(File I/O)

Figure 3. WSP MIGFA interface diagram.

System
Control

Wind Data

Diagnostic Messages

Disk

(File I/O)
8

1.4 Algorithm Outputs

As shown in Figure 3, MIGFA produces output on up to four output streams: the primary product output
stream, an optional archival stream for storing intermediate and final product data, a display stream for
imgsh graphics commands that generate the MIGFA diagnostic display, and diagnostic message output via
the WSP message logging facility. Note that unlike some of the other WSP meteorological algorithms,
MIGFA does not have a dedicated status stream. This is because MIGFA’s output is actually an
intermediate product that is further processed by the GFUP algorithm to produce the final gust front
product. The GFUP algorithm recognizes and handles interrupts in MIGFA processing and generates
appropriate status messages for the gust front product. Appendix B describes the MIGFA output record
formats.

1.4.1 Output Product Stream

At the end of each processing iteration, MIGFA transmits gust front detection and forecast data together
with their associated wind shift estimates to the product output stream via TCP/IP. This product data
stream serves as the input to the GFUP algorithm which updates the gust front positions and performs final
curve smoothing at 1-minute intervals and sends the final gust front product to the SD. The following
information are transmitted:

1. WSP base data date/time (GMT).

2. Output data/time (GMT).

3. Unique gust front ID number for each gust front.

4. The u and v components of the propagation velocity of each gust front in m/s.

5. The u and v components of the wind behind each gust front.

6. The position (x,y) in kilometers relative to the radar, of the wind shift arrow for each gust front.

7. The delta-V (approximation of wind shear) value in m/s.

8. A list of (x,y) coordinates in km relative to the radar for each point of each gust front curve.

Table 2. WSP Base Data Products Processed by MIGFA

Product Name Description

LBDZ Low Beam Reflectivity (dBZ)

HBDZ High Beam Reflectivity (dBZ)

DBDZ Dual Beam Reflectivity (m/s)

LBV Low Beam Velocity (m/s)

HBV High Beam Velocity (m/s)

DBV Dual Beam Velocity (m/s)

FLAGS Data Quality Flags
9

9. The number of prediction curves associated with the gust front detection as defined by the
gfParams->numPredictionTimes parameter.

10. A set of gust front predictions for each front, each describing the predicted appearance of the gust
front at each of the prediction time intervals defined in gfParams->numPredictionTimes
(nominally one minute intervals out to 35 minutes in the future). Each prediction is a list of (x,y)
coordinates in km relative to the radar for each point in each gust front. Each prediction is tagged
with its time in the future (i.e., one of the times encoded in the gfParams->predictionTimes
parameter) and the associated gust front ID number.

1.4.2 Archive Stream

An archival stream allows for separate archival of final and intermediate algorithm products. In addition to
the final product data output to the standard product stream, the archival stream (through command-line
arguments) can be configured to archive the interest images that were generated during algorithm
processing. The archival stream is usually configured to send its output to a disk file, but it can be
configured as an alternative TCP/IP stream, making its contents available to other real-time processes.

1.4.3 Display Stream

MIGFA has an optional diagnostic display that utilizes the Tcl/Tk-based imgsh image display package. If
the imgsh display daemon is running, and the MIGFA diagnostic display option is enabled (via the MIGFA
command-line), then MIGFA will send imgsh graphics commands to the imgsh display via a shared
memory channel.

1.4.4 Diagnostic Message Logging

MIGFA uses the WSP message logging facility to direct the output of diagnostic messages [4]. A logging
configuration file referenced by the GF_LOG_CONFIG_FILE environment variable is used to direct the
output of various classes of diagnostic message output (informational, warning, error, and debug). Output
of each class of message can be independently configured to be routed to a terminal, window, file, or
discarded. In an operational run-time environment, the messages are directed to log files. A
"dailyBackup" setting in the configuration file allows for automatic daily creation of new log files while the
algorithm runs uninterrupted. The number of these files maintained on disk is controlled by the
"numBackups" entry in the configuration file. See Appendix A.6 for an example configuration file for
operational use.
10

2. FUNCTIONAL DESCRIPTION
Figure 4 is an abbreviated call hierarchy showing the major function calls in the current algorithm
implementation. MIGFA draws heavily on routines from the CSKETCH library. The CSKETCH library
contains image processing functions (such as methods for performing functional template correlation) and
methods for manipulating arrays of data via the SKArray class. SKArrays are used to store and manipulate
much of the radar data and interest images processed and generated by MIGFA.

2.1 Initialization

GFLoadParams loads default and local algorithm parameters from files specified by UNIX environment
variables as described in section 1.3.1. Next, reusable temporary data storage for buffering the input WSP
base data radials is allocated by AllocTempArrays and the array values are initialized to nil by calling
function InitTempArrays. Nil is a special value recognized by CSKETCH array routines that is used to
indicate missing or neutral data that should not be processed.

GFAllocObjects performs a variety of initialization functions. First, it allocates memory for the various
SKArrays that are part of the gfBaseImages object. Additionally, some SKArrays that are exclusively
used by the WSP version of MIGFA are allocated and stored in a separate gfBaseImagesWSP object. The
various SKArrays hold image representations of the input WSP base data as well as derived image data,
such as Cartesian mappings of the base data, and various mask arrays used during FTC. Two different
GFIntGenConfig objects (gfConfig and gfConfigLR) are used as parameters in constructing the various
SKArrays. The global gfConfig object is initialized when the GF_WSP_CONFIG_FILE and
GF_WSP_LOCAL_CONFIG_FILE are loaded at start-up, and contains the geometry specifications that
dictate the allocated sizes for the standard 30 km range polar and Cartesian image arrays used for the bulk
of the gust front detection process. Long range (111 km) arrays are allocated after calling
GFFillIntGenConfigLR to fully initialize the gfConfigLR object. The granularity for the long range
Cartesian images is set to 4 times that of the standard granularity given by gfConfig->metersPerPixel.
Typically, this means that the long range images will have a resolution of 1920 meters per pixel, compared
to 480 meters per pixel for the standard 30 km images.

A resampler object (gfResamp) that is used to map polar data to Cartesian image representations is created
and initialized using the geometry parameters contained in the gfConfig object.

Next, the GF_EST_PARM_FILE is parsed and the appropriate wind estimator objects are created and put
on globally accessible lists called windAheadEstimators, windInsideEstimators, windBehindEstimators,
deltaVEstimators, and maxDeltaVEstimators. Finally, the GF_HEU_PARM_FILE is parsed and the
specified heuristic functions are put onto the global list variable heuristics.

GFFillStaticObjects generates various static mask arrays that are used to mask regions of input images
from interest generation during FTC. The mask arrays are added to the gfBaseImages object for later
reference by the feature detectors. Figure 5 shows examples of each of the static mask images described
below.

The dataMask defines a circular region that has a radius equal to the processing range (defined by
gfConfig->cartRadiusKM). Pixels outside of this area are set to nil.

The detMask is identical to the dataMask except that the radius of the non-nil (white) area is 0.5 km
smaller. The detMask is the more appropriate mask to use for FTC-based interest generators, since it offers
more "padding" to prevent edge effects. The dataMask is used to provide a neutral border for other
non-FTC interest images, such as the anticipation interest image.
11

The siteMask defines a small circular "bulls-eye" of "1"s located at the center of the image and having a
radius defined by gfConfig->siteMaskRadiusKM (nominally 2 km). All pixels outside of the
siteMaskRadiusKM are set to nil.

The detSiteMask is the same as detMask except that the siteMask has been used to create a "bulls-eye" of
nil values in the center of the image. The detSiteMask or an equivalent explicit combination of detMask
and siteMask is used by most of the feature detectors to prevent opinions being expressed in the immediate
vicinity of the radar.

The eightKmMask defines an 8-km processing radius. It is used by the Anticipation detector to boost
interest within 8 km of the radar and by the HIDZ high-altitude weather detector to prevent opinions at
short range where discrimination is poor.

Next, OpenOutputs is called to open the output product and archive streams and OpenInputs is called to
connect to the input WSP base data shared memory ring and to establish the input TCP/IP connection to
the anemometer data stream. OpenInputsWSP is a WSP-specific function that opens the TCP/IP
connection for receiving MIGFA VSPs from the WSP System Control. Before going into the main
processing loop, MIGFA repeatedly calls PollControlStream, waiting for an initial set of algorithm VSPs
to arrive (WSP system control is designed to send the current set of VSP’s to any newly connecting client
or whenever the VSPs are changed).

2.1.1 Handling of Input Data in the Main Processing Loop

Next, the main algorithm processing loop is entered. MIGFA reads base data records (BDRecords) from
the shared memory input data ring buffer via calls to RingBufReadDMA (for real-time processing on the
WSP system) or RingBufGet (for offline processing using a base data archive translator process). A
BDRecord appearing on the MIGFA base data ring is either a radial of WSP radar base data (type =
BD_MSG_RADIAL) or a wind data record (type = BD_MSG_WIND). If the data record is a wind record,
then ProcessWindRecord is called to retrieve the data. The anemometer data is appended onto the
anemometer history (gfRefData->anemometerHistory). The size of the anemometer data history is limited
by ANEMOMETER_HISTORY_SIZE, which is currently set to 1440 data records. For the LLWAS
centerfield wind data rate of 10 seconds, this translates to a history size of 4 hours. Once the maximum
history size has been reached, old data records are dropped off the end of the history as new data records
are appended.

If the BDRecord received is of type BD_MSG_RADIAL, then MIGFA calls function
CopyRadialProdData to copy the radar data into the 3-D data buffer inProdData. The data for each
BD_MSG_RADIAL are contained in a WSP Radial data structure (see Figure 6). The C-language
definition for the Radial data structure can be found in the file baseData.h in the share/inc directory (see
also Newell, 2000). A Radial is simply a contiguous block of bytes consisting of some basic header
information (time stamp, volume scan number, tilt number, azimuth angle, elevation angle, etc.) followed
by a data block containing all of the radar base data products for that radial. This data block is logically
partitioned as a sequence of base data products (e.g., reflectivity, velocity), which themselves are logically
partitioned into a product header (ProdHdr) followed by the product data.

The range gate spacings for the product data are defined in the ProdHdr block of each product. For the
WSP, each base data product has two range gate spacings (segments). The first 240 gates have a gate
spacing of 115.75 meters (this is the fundamental gate spacing), while the following 180 gates have a
larger gate spacing equal to 4 times the fundamental gate spacing or 463 meters per gate. In order to copy
the data into MIGFA’s inProdData array, product data values from the second range segment are replicated
in a 1-to-4 fashion in order to simulate the 115.75 meter gate spacing of the first range segment. The
inProdData buffer is dimensioned as a short integer array of size 7 products x 256 radials x 960 gates in
order to accommodate all of the radar base data from a single scan.
12

As each radial is read, CheckPPIStatus is called to check for the end-of-tilt flag indicating that the last
radial for the current scan has been received. If the status return is SCAN_COMPLETED, then processing
of the scan commences.
13

Figure 4. Abbreviated WSP MIGFA call tree (see text for description)

 BEGIN
GFLoadParams
AllocTempArrays
InitTempArrays
GFAllocObjects
GFFillStaticObjects
OpenOutputs
OpenInputs
OpenInputsWSP
PollControlStream

While (continue processing)
RingBufReadDMA (or RingBufGet) to obtain next radial of base data
CopyRadialProdData
CheckPPIStatus

If (complete scan received) then
GFFillDataObjects
InitTempArrays
SetSensitivityMode

If (first scan) then
GFAllocDetectors

end if

PollControlStream
ProcessAnemStream

GFPreProcessImages
GFFillSingleScanObjects

RunDetectors
SKAverageInterestImages

smoothThinLine->RunDetector

GFExtract

GFAnalyze
EditGustFronts
ProcessWindAnalysis
GFApplyHeuristics
MakeReportDecision
MakeDisplayPredictions

GFBuildImageHistory

gfConfig->outHandler

End if (complete scan received)
End while (continue processing)

CloseInputs
CloseInputsWSP
CloseOutputs

 END
14

dataMask detMask

detSiteMask

siteMask

eightKmMask

Figure 5. Static binary mask images used during interest generation. Red areas are "NIL" values. White
areas have a pixel value of "1".

RadialHdr

Reflectivity Velocity SNR

ProdHdr data ProdHdr data ProdHdr data

data

Figure 6. Schematic illustration of WSP radial data record organization
15

2.2 Image Preparation

After receiving a complete scan’s worth of radials, the data are copied from the input data buffer
(inProdData) into the image SKArray objects that MIGFA will process. Some preprocessing of the data
is also done. While this is the primary activity in the image preparation phase of algorithm processing, this
is also the stage where the algorithm control stream is checked in order to acquire any VSP changes that
may have been issued from the WSP Maintenance Display Terminal (MDT).

2.2.1 Filling the SKArray Base Data Objects

Once all of the radials for a complete gust front scan have been received, image preparation begins. First,
function GFFillDataObjects is called to copy the WSP base data products that were buffered in the
inProdData array into the SKArray objects whose reusable storage was pre-allocated by function
GFAllocObjects during algorithm initialization. The product data values that are received into the
inProdData buffer and stored in the SKArrays are integer-scaled representations of their true floating point
values. The following equation expresses the relationship between the actual and integer-scaled
representations of the data:

 scaledValue = (actualValue + offset) * scaleFactor

The scale factor and offset values used by the WSP base data generation algorithm to encode each base
data product are included as part of the base data information that MIGFA receives. For later decoding,
these quantities are stored along with the image array data in each SKArray object.

All of MIGFA’s functional template computations are performed on integer-scaled representations of the
physical image data. The FTC scoring functions (whose nodes are defined in the algorithm detector
parameter file) are expressed in terms of integer-scaled values having assumed scalings and offsets, not the
actual physical values, and not necessarily the data scalings that were transmitted to MIGFA.
GFFillDataObjects ensures that the SKArray data that will be subsequently processed are represented
with the expected scalings by rescaling the received polar reflectivity and velocity data to the expected
scalings via the SKArrayRescale function. The expected scalings are given in Table 3:

In addition to storing the scaling information in each SKArray, GFFillDataObjects stores the time stamp
associated with this interval of processing. This time stamp is the time associated with the last radial
received in the current scan. Finally, GFFillDataObjects copies the dbdzPol data to gfBaseImages->dzPol
and lbvPol to gfBaseImages->vPolRaw. This is done so reflectivity and velocity-based feature detectors
can be written to utilize common, expected image names for different radar systems.

2.2.2 Setting the Seasonal Sensitivity Mode

Several of the WSP MIGFA feature detectors employ season-specific logic that is automatically invoked
depending on the date of the scan being processed. Currently, only two seasons are recognized: "summer"
and "non-summer". Function SetSensitivityMode sets the gfRefData->summerMode boolean variable to

Table 3. Base Data Scalings Expected by MIGFA Scoring Functions

Product Type Scale Factor Offset

Reflectivity (lbdzPol, hbdzPol, dbdzPol,
dzLongPol, lbvLongPol)

2.0 20

Velocity (lbvPol, dbvPol, lbvLongPol) 100.0 100
16

"true" or "false" by comparing the current scan date against the start and end dates of the summer season as
defined by the "summerMonths" parameter in the default paramsWSP file or the site-specific local
paramsWSP.local file. The default values for the summer season are 4/1 - 9/30.

2.2.3 Allocation of Feature Detectors

Creation (allocation) of the feature detector objects is accomplished by calling function GFAllocDetectors
upon receipt of the first scan. GFAllocDetectors reads a Tcl-language detector parameter file pointed to
by the GF_DET_PARM_FILE_WSP environment variable. Near the top of the parameter file, is a setting
for a parameter named "Detectors". Detectors is a Tcl list variable that contains the names of all possible
feature detectors that can be run during the course of MIGFA processing. For each detector named in the
Detectors list, GFAllocDetectors dynamically creates the detector object by calling its constructor.

A subset of these detectors will eventually be run by the RunDetectors function; their interest images will
be averaged together to form the combined gust front interest image. GFAllocDetectors stores pointers to
these specific detector objects in one or both of two linked list variables: detectorListStatic and
detectorListMotion. RunDetectors (called by the MIGFA driver that is common to all radar system
variants) will iterate over all of the detectors that it finds in detectorList -- a local variable that is set to
detectorListStatic for the first scan (when motion-based feature detection is not yet feasible) and set to
detectorListMotion for all subsequent scans. Because the WSP motion-based feature detectors were
designed to perform their own internal checks regarding availability of prior images (and to modify their
output accordingly), the WSP version of GFAllocDetectors actually puts the same detectors onto both the
detectorListStatic and detectorListMotion lists. The detectors that are currently part of these lists are
(listed by their Tcl parameter name): Anticipation, Converge, ConvMotion, DZMotion, DZSDMotion,
HIDZ, SDMotion, TLDZ, TLSD, TLSDDZ, and PrecipEdges. Details of these detectors are described in
the next section.

It is important to note that the order of some of these detector names in the Tcl parameter file is significant.
For the subset of detectors that will comprise the detectorList, execution follows the order in which they
are listed in the parameter file. Some detectors require the results of other detectors to function properly.
For example, the high altitude weather detector (HIDZ) is prohibited from generating interest in areas
where there are line storms or where there is short or long-term anticipation of previously detected gust
fronts (as indicated in the Anticipation interest image). Table 4 lists the feature detector dependencies.
17

.

2.2.4 Processing the VSP Control Stream

Before gust front feature detection begins, all pending data on the input VSP control stream are processed.
Function PollControlStream processes the VSP control stream by reading any parameter data records that
may have been transmitted from the WSP MDT since the last MIGFA processing iteration. Values of
parameters retrieved from this stream override the values that were obtained from the MIGFA parameter
files loaded at process startup. Table 5 lists the MIGFA parameters whose values can be overridden by
VSPs.

Table 4. Feature Detector Dependencies

Feature Detector Requires Output Of:

Anticipation LineStorm

HIDZ LineStorm, Anticipation

TLDZ DZMotion

TLSD DZMotion

SDMotion DZMotion

Converge ZeroCross

ConvMotion ZeroCross

DZSDMotion DZMotion

PrecipEdges Anticipation, LineStorm, Converge, ConvMotion
18

2.2.5 Configuring Images for the Analysis Display

In order for an SKArray image to be displayed using the imgsh-based MIGFA analysis display, the image
has to be added to the global imageListAll list variable in the MIGFA code. A WSP-specific
implementation of function GFSetDisplayList is called from the MIGFA driver to create an initial list of
images that may be displayed. This initial list does not include the individual feature detector interest
images; these are added shortly thereafter by calling GFCreateDetectorDispList, which loops over the
list of detectors in the detectorList variable, and adds the pointer to each detector’s interest image to the
imageListAll list.

If it is desired to add additional non-feature detector images to imageListAll, then GFSetDisplayList has
to be modified to add the specific image to the list. Note that for every image that will be displayed, a
corresponding entry in the imgsh MIGFA display script (migfaDisplay) must also be made. Specifically,
configuration information for the image must be added to the pinfo array variable in the migfaDisplay
script, and the name of the image must be added to the defaultDispList variable of the migfaDisplay script.

2.2.6 Preprocessing of the Reflectivity Data

A WSP-specific implementation of GFPreProcessImages is called to reset all missing data values in
gfBaseImages->dzPol to an integer-encoded value corresponding to -20 dBZ. This allows FTC operations
for thin line detection to treat missing reflectivity pixels as "clear air" returns of -20 dBZ (rather than
ignoring the pixels).

2.2.7 Generation of "Single Scan" Objects

Function GFFillSingleScanObjects performs preliminary computations of numerous derived quantities
and data arrays that change for each new scan of data and are needed for subsequent gust front feature
detection and wind analyses.

Table 5. WSP MIGFA Variable Site Parameters (VSPs)

Parameter Name Description
Default
Value

siteMaskRadiusKm Radius in km of mask used to exclude pixels over the radar 2.0 km

arpControlRadiusKM
Distance from airport inside which airport-localized wind
analyses are performed

15.0 km

snThreshold
Reflectivity threshold below which velocity data is
rejected

-5 dBZ

gfMinScore
Minimum total chain interest score for a candidate gust
front

3000

minRawShapeLength
Minimum chain length in pixels needed to be considered
as a candidate gust front detection

12.5

minIndexedChainLength Minimum # of indexed points for a chain to be reported 11
19

2.2.7.1 Resampling of polar images to Cartesian images

The majority of FTC-based feature detection in MIGFA is conducted on Cartesian representations of the
data. In function GFFillSingleScanObjects, SKArrays containing the polar representations of reflectivity,
velocity, and flags are resampled to Cartesian SKArrays using the global gfResamp resampler created and
configured earlier in GFAllocObjects. This polar-to-Cartesian resampler class is a "last-in" resampler.
That is, if multiple range-azimuth cells of a polar array map to a single Cartesian resolution cell in the
output image, the last polar array value retrieved is the one that is stored in the Cartesian output cell.

Both standard range (30 km) and long range (111 km) polar images are resampled to Cartesian images.
The gfResamp object is used for resampling the standard range polar images into Cartesian images using
the parameters that are defined in the global gfConfig object (radialsPerScan, gateSizeMtrs,
metersPerPixel, cartRadiusKM). For resampling the long range images, GFFillSingleScanObjects
creates and configures a local SKResamp object called gfResampLR using the parameters of the
gfConfigLR object that was defined in function GFAllocObjects. Note that the metersPerPixel element of
the gfConfigLR object is set to four times that of the one defined for gfConfig (nominally 480 m), so the
resulting long range Cartesian image resolution is nominally 1920 m.

2.2.7.2 Retrieval of prior images

Images from prior processing iterations are needed for discerning the motion of gust front features in the
radar imagery. Retrieval of base images from the prior scan is accomplished by a call to function
GFGetBaseScan, which examines the image histories (dzHistory, vHistory, convHistory, sdHistory) in the
global gfRefData object, and searches for a prior image whose time stamp is gfParams->priorInterval
seconds prior to the time of current scan within an acceptable time window given by plus or minus
gfParams->priorIntervalTolerance. If a matching image from the image history is found, then the prior
image is stored in the global gfBaseImages structure for later access by feature detectors that require
previous scan images in order to detect motion.

2.2.7.3 Estimation of airport, site, and regional winds

The "airport" wind estimate (gfEvent->airportWind) is computed from the airport anemometer data history
by calling function GFComputeAirportWind. The wind estimate is computed as a weighted average of
the prior and current anemometer measurements, with the weight of each measurement being proportional
to the age of the measurement with respect to the current time (a relatively lower weight is assigned for
older wind measurements). The airport wind estimate is used later during wind analysis to help estimate
the wind shift (for outbound gust fronts) and the wind shear hazard when a front is within the vicinity of
the airport.

The "site" wind (gfEvent->siteWind) is intended to be a radar-derived estimate of the winds in the vicinity
of the radar site. For radar systems other than the WSP, MIGFA computes the site wind using a simplified
optimal estimation (OE) technique that is essentially a VAD analysis of a ring of Doppler values
surrounding the airport. However, outside of precipitation regions, the WSP often lacks sufficient
sensitivity to provide enough velocity data to support reliable estimation of the site wind in this fashion.
Because of the difficulty in estimating the winds from the radar data, and given the fact that most (if not
all) ASR-9’s are located on the airport, the WSP MIGFA simply sets the site wind (gfEvent->siteWind) to
be the same as the airport wind (gfEvent->airportWind) that was derived from anemometer measurements.

The "regional" wind is a radar-derived estimate of the mid-altitude steering winds within the radar
coverage area, and is used to adjust sensitivity either globally or within specific feature detectors. It is
computed in function GFComputeVAD using a least-squares optimal estimation technique operating on a
"cleaned" version of the polar long range velocity image. First, a cleaned velocity image is obtained by
calling ComputeSDImage to compute a long range velocity standard deviation image
20

(gfBaseImagesWSP->sdLongPol). This image is accessed by function GFComputeVAD, which
immediately calls function GoodSnrLBV to edit those pixels in gfBaseImages->lbvLongPol that have:

1. Low SNR as inferred by a high standard deviation value in gfBaseImagesWSP->sdLongPol

2. Low SNR as inferred by low reflectivity (gfParams->snThreshold)

3. Clutter, AP, or out-of-trip weather as flagged in gfBaseImagesWSP->flagsLongPol

Next, GFComputeVAD creates a local resampler object and uses it to resample the cleaned long range
polar velocity image to a 1920 meter resolution long range Cartesian image. In order to arrive at a wind
estimate that is representative of the mid-altitude steering winds, an initial preferred annulus ranging from
20 km to 80 km is chosen as the analysis region. A list of velocity samples is assembled by subsampling
the Cartesian image at an interval given by the gfParams->regionalWindSampleSpacing parameter, and
ignoring any pixels that have an invalid velocity value (nil) or that fall outside of the annular analysis
region. As the list of velocity samples is accumulated, a tally is kept of the number of valid velocity
samples extracted from each of four azimuth quadrants: NE, NW, SW, and SE. If any one of the quadrants
has no valid velocity samples within the preferred annulus, then the annulus is fattened to the range 0 km to
90 km, and a new attempt is made to find valid velocity points in all quadrants (the initial list of velocity
samples is deleted, and a new list is created from the subsampling of the points in the fattened annulus).

The final list of retrieved velocity samples will be supplied to an optimal estimation procedure that is
computationally intensive. The list of retrieved velocity samples is first checked to see if the number of
samples is less than gfParams->regionalWindMaxNumSamples (nominally, 64). If there are too many
samples, then the list of retrieved velocity samples is further subsampled as required to bring the number of
samples under the limit. This final prunedRadarList is a list of GFRadarOB data structures, each of which
stores location (x, y, azimuth) and Doppler velocity information for the radar observation. If there are at
least two observations, then the prunedRadarList is passed to function OptimalEstimation to estimate the
regional wind speed and direction utilizing a least-squares fit to a uniform wind model assumption.
OptimalEstimation returns a GFWind object that contains the estimated wind velocity along with weight
factors that reflect the confidence in the fit. The new regional wind estimate (newRegionalWind) that is
finally returned by GFComputeVAD is obtained by averaging the current wind estimate as provided by
OptimalEstimation together with the prior regional wind estimate stored in the event history
(gfRefData.eventHistory). Note that newRegionalWind may be NULL if there are fewer than two velocity
samples or if optimal estimation fails due to noisy velocity data.

2.2.7.4 Computation of high/low beam reflectivity difference image

Low reflectivity echoes from light rain showers often mimic gust front thin line echoes and are a leading
cause of false detections. By comparing the reflectivity returned from the high beam of the ASR-9 against
that seen in the low beam, it is often possible to discriminate high-altitude weather features from the lower
altitude thin line echoes associated with actual gust fronts. This discrimination capability is provided by
the high-altitude weather feature detector (HIDZ), which operates on an image representing the difference
between the high-beam reflectivity and the low-beam reflectivity. The reflectivity difference image is
computed by function ComputeDZDiff, which first performs a pixel-wise subtraction of the low-beam
reflectivity polar image array values (gfBaseImages->lbdzPol) from those of the high beam
(gfBaseImages->hbdzPol). The resulting integer-scaled dB difference values are truncated to the interval
[-128, 127], and then shifted by +128 to the interval [0, 255], so that a value of 128 represents a reflectivity
difference of zero. The scoring functions for the HIDZ detector are designed to operate on this shifted
integer-scaled representation of the reflectivity difference. The polar dB difference image is then
resampled to a Cartesian difference image using the gfResamp object, and the result is stored in
gfBaseImages->dzDiff for later reference. See Figure 7.
21

2.2.7.5 Creation of clutter and AP images

Images denoting regions of clutter residue and AP are used for masking purposes in several of the WSP
MIGFA feature detectors. The WSP sets a clutter flag in the FLAGS product wherever weather-to-clutter
residue ratio is too low to guarantee an unbiased weather estimate [2]. Function ExtractFlagImage is
called to create an initial binary image indicating the presence of clutter residue from the
gfBaseImages->flags array. Because the weather-to-clutter residue ratio test often fails in areas of low
SNR, the WSP often sets the clutter flag in these areas even though there is not a substantial amount of
clutter residue. In order to retain these areas for gust front processing, the initial binary clutter map image
is thresholded so that only clutter regions associated with reflectivity greater than 10 dBZ are retained in
the clutter map image. Finally, the reflectivity-thresholded binary clutter image is subjected to a 3x3
binary "close" operation which fills small holes in the binary clutter regions and slightly erodes the filled
regions. The clutter map image is stored in gfBaseImages->clutterMap for later reference. An example
binary clutter map image from Albuquerque, NM is shown in Figure 8.

Figure 7. Example computation of high/low beam reflectivity difference image: (a) High beam reflectivity (dBZ).
(b) Corresponding low beam reflectivity (dBZ). (c) Integer-scaled reflectivity difference after shifting by +128.
Blue colors indicate areas where low beam reflectivity exceeds the high beam (values < 128), and yellow/red col-
ors indicate areas where high beam reflectivity exceeds the low beam (values > 128). Data are from Austin, TX at
17:57:46 GMT

(a) (b) (c)
22

Areas of anomalous propagation (AP) are also excluded from some detector processing. Again,
ExtractFlagImage is called to identify areas in the gfBaseImages->flags array where the AP flag is set
and to create an initial binary map of AP. The initial AP map is dilated using a 3x3 binary "open"
operation which has the effect of removing isolated pixels of AP and then slightly dilating the remaining
regions. The result is stored in gfBaseImages->apMap for later reference.

2.2.7.6 Computation of velocity standard deviation images

An image representing the local standard deviation of the velocity is used as input for feature detectors that
can identify a thin line of coherent velocity values against a field of noisy clear air velocity values. The
standard deviation is computed over a 3x3 window for each pixel in the polar gfBaseImages->vPolRaw
image (low beam velocity) by calling function ComputeSDImage. Before returning the velocity standard
deviation image, ComputeSDImage truncates the integer-scaled standard deviation values to the range [0,
2735] (0 to 27.35 m/s), and then linearly remaps the values to the interval [0,255]. Remapping the data in
this fashion allows for more precise definitions of scoring functions over a smaller range of values. The
scoring functions for the various feature detectors that process the velocity SD image are therefore
matched to this range of velocity SD values. The polar velocity SD image is stored in
gfBaseImages->sdPol. A Cartesian image of the polar velocity SD data is then computed using the
gfResamp object and the result is stored in gfBaseImages->sd.

The velocity SD feature detectors are very sensitive. They utilize high amplitude scoring functions that
can generate high scores at the data edges where the nils returned during FTC from the outer detector
masking region are not sufficient to offset extremely high scores when optimal matches are found at pixels
just inside the detector mask. This can lead to bands of moderately positive interest values on the edge of
the interest image. To mitigate this "edge-effect", the nils in the outer detector mask region of the
gfBaseImages->sd image are replaced with a value of "32". This serves to return offsetting negative
scores where the template kernel extends beyond the edges of the actual data. The trade-off for this is that
there is a moderately reduced sensitivity to velocity thin lines at the very edge of the detection range.

Figure 8. Example of binary clutter map image computed from the WSP FLAGS data (right). The correspond-
ing reflectivity image is shown on the left. Images are from data collected on 7/7/98 at Albuquerque, NM
23

2.2.7.7 Computation of "cleaned" velocity image

An image of "good" quality velocity data is needed for derivation of a good quality shear map whose
values can be directly used as estimates of the delta-V associated with a detected gust front. Function
FillDBVPol is called by GFFillSingleScanObjects to compute a "cleaned" velocity image from the input
DBV data. Originally, this function filled missing values in the DBV field with corresponding LBV
product data (hence the function name), but this was found to occasionally cause sharp radial velocity
discontinuities that sometimes resulted in false convergence detections. Velocity values having insufficient
SNR or associated with clutter, AP, or out-of-trip contamination are rejected in this step.

SNR criteria are indirectly applied through two tests. The first test checks the local velocity standard
deviation as contained in the previously computed gfBaseImages->sdPol image, and if the standard
deviation exceeds a threshold of 125 (approximately 13.4 m/s), the velocity datum is rejected. The second
test checks the associated reflectivity value in the gfBaseImages->dzPol image, and if the reflectivity is less
than gfParams->snThreshold, the velocity datum is rejected.

If the gfConfig->doVMasking parameter is enabled, then velocity data are rejected if they are associated
with areas of excessive clutter residue, AP, or out-of-trip contamination as indicated in the
gfBaseImages->flagsPol image. Note that in the case where the cleaned velocity is being computed from
the gfBaseImages->dbvPol data (as is the case at the time of this writing), this editing is largely redundant
with what has already been applied during generation of the DBV data by the WSP signal processing
algorithms. The current WSP data quality algorithm tends to be over-zealous in flagging clutter residue in
areas of low signal-to-noise. To avoid throwing out potentially good velocity measurements, the clutter
flags are ignored if the associated reflectivity exceeds 10 dBZ.

The velocity data originally stored in gfBaseImages->dbvPol are overwritten with the resulting edited
velocity data computed and returned by FillDBVPol (before being overwritten, the dbvPol data are first
resampled by the gfResamp object to a Cartesian image and stored in gfBaseImages->dbv for future
reference). The gfResamp object is then used to create a Cartesian representation of the cleaned velocity
from gfBaseImages->dbvPol which is stored in gfBaseImages->vClean. The convergence detectors
operate on the gfBaseImages->vClean image.

2.2.7.8 Computation of out-of-trip weather image

Images denoting regions of range-ambiguous, or out-of-trip echoes are used for masking in several of the
WSP MIGFA feature detectors. Owing to the WSP pulse-pair velocity estimation technique, velocities in
areas of out-of-trip echoes exhibit a random +/- Nyquist velocity incoherency that is also seen in regions
of insufficient SNR. Thus, out-of-trip can easily be recognized in the WSP base data imagery as relatively
narrow, radially aligned wedges of low reflectivity that correspond to areas of high local velocity variance.

The out-of-trip image is computed by invoking the outOfTripDetector->RunDetector function directly.
This tandem functional template simultaneously probes the gfBaseImages->dzPol and
gfBaseImages->sdPol images to generate a polar interest image of out-of-trip. This polar interest image is
then resampled to a Cartesian interest image using the gfResamp object, and a gray scale dilation with a
3x3 kernel is applied before returning the final out-of-trip interest image. The interest image is stored in
gfBaseImages->outOfTrip for later reference. Figure 9 shows an out-of-trip image computed from
corresponding reflectivity and velocity images. Figure 10 shows the scoring functions and template
kernels for this detector. Note that the kernels only need to be applied at a single orientation (90 degrees)
since they are operating on polar images where each row is a radial of data, and the out-of-trip features are
aligned with radials.
24

Figure 9. Example of out-of-trip (OOT) interest image (right) computed from corresponding reflectivity
(left) and velocity (middle) images. Images are from data collected on 7/7/98 at Albuquerque, NM
25

1

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

2

2
2
2
2
2
2
2
2
2
2

2
2
2
2
2
2
2
2
2
2

Figure 10. Scoring functions and templates for the OutOfTrip weather detector. Lower X-axis of scoring
function plot is the integer-scaled pixel value. Upper X-axis is reflectivity in dBZ

Kernel rotation angle: 90

Kernel #2: VelocityKernel #1: Reflectivity
26

2.2.7.9 Computation of radial velocity shear maps (convergence images)

In order to detect the wind convergence associated with gust fronts, two separate "shear" maps
representing the local change in radial velocity over two different distance scales are computed from the
velocity data contained in gfBaseImages->dbvPol and gfBaseImages->vPolRaw (recall that dbvPol
contains "cleaned" DBV data, and vPolRaw contains LBV data). The first shear map
(gfBaseImages->conv) represents the change in velocity over a relatively short distance
(gfParams->convergeWindowSize) along each radial of the dbvPol image, while the second shear map
(gfBaseImages->lowResConv) represents the change in velocity over a larger distance
(gfParams->lowResConvWindowSize) as seen in the vPolRaw image. Lines of high convergent "shear"
values in these images will be identified by the velocity convergence feature detectors.

Function ComputeConvergenceImage generates the convergence images. This function uses the
CSKETCH library routine SKLsqDerivFilter to perform the computation. SKLsqDerivFilter computes
the change of velocity over a window distance by computing the slope of the least-squares regression line
through the data points within the sample window. The derivative is computed only if there are a sufficient
fraction of non-missing data points in the window and if the correlation coefficient does not exceed a
threshold. When calling SKLsqDerivFilter, ComputeConvergenceImage requires that at least 50% of
the values in the window be not missing, but does not currently impose any correlation coefficient
requirement (i.e., the correlation coefficient threshold is zero). After resampling the polar-coordinate shear
map image to Cartesian coordinates, all positive derivative values associated with areas of divergent radial
velocity change are set to zero, and the sign of the remaining convergent derivative values is reversed to
make them positive.

In GFFillSingleScanObjects, a 1-km scale shear map (gfBaseImages->conv) is computed first by calling
ComputeConvergenceImage with the gfBaseImages->dbvPol image and the appropriate half-window
size in range gates as derived from the gfParams->convergeWindowSize parameter (nominally, 1000
meters). Isolated "speckles" of convergence are removed by performing a gray-scale erosion on the
convergence image with a 3x3 elliptical kernel. It is important to note that the gfBaseImages->conv image
serves more than one purpose. In addition to its use as input to the Converge and ConvMotion feature
detectors, its values contribute to the consensus estimate of the delta-V once a front has been detected.
Traditionally, the delta-V, or "wind shear hazard", that is reported represents the velocity change over 1
km. Because of this additional use of the gfBaseImages->conv image, the default setting of
gfParams->convergeWindowSize should probably not be modified from its nominal 1000 meter value
without consideration of the impact on reported gust front wind shear estimates.

The low resolution convergence image (gfBaseImages->lowResConv) is computed next by calling function
ComputeLowResConv. ComputeLowResConv calls ComputeConvergeImage with the
gfBaseImages->vPolRaw image and the half-window size derived from the
gfParams->lowResConvWindowSize parameter (nominally, 3000 meters). Gray-scale erosion with a 3x3
elliptical kernel is also performed on this image to remove convergence speckle. Because the only use of
the low resolution convergence image is for input to the Converge and ConvMotion feature detectors,
ComputeLowResConv further processes the convergence image to prepare it for input to FTC. FTC
requires that the integer image data lie in the range [0, 255]. CSKETCH library function
SKScaleArrayToBounds is used to linearly rescale the image data such that the integer representations of
those delta-V values falling within the physical lower and upper bounds given by
gfParams->scaleBoundsLowResConv (nominally 0 and 8 m/s), map to the interval [0, 255]. Integer
encodings of delta-V values that exceed the maximum bound are set to 255, and values less than the
minimum bound are set to 0 (i.e., the data are clipped). The Converge and ConvMotion detector scoring
functions are tuned to these re-scaled integer data representations, so if the scale bounds are changed, then
the scoring functions would likely need to be adjusted as well.
27

When MIGFA computes the wind shear hazard associated with a detected gust front, it obtains shear
estimates from the 1-km resolution shear map in a restricted search region immediately behind a relatively
short segment of the gust front (the so-called wind analysis segment). To increase the likelihood that a
representative shear value will be present at the analysis point, GFFillSingleScanObjects computes an
additional 7x7 gray-scale dilated representation of the gfBaseImages->conv image and stores it in
gfBaseImages->convD77 for later use by the wind estimation routines. Figure 11 shows the normal and
low-resolution shear maps computed from the dual-beam and low-beam velocity data.

(a) (b)

(c) (d)

Figure 11. Example shear maps computed from WSP velocity data. (a) Cleaned dual-beam velocity.
(b) 1-km convergent radial shear map computed from (a). (c) Low-beam velocity data (vRaw). (d) Low
resolution convergent radial shear map computed from (c). Data are from 5/1/00 06:55:22 GMT at
Austin, TX.
28

2.2.7.10 Computation of stratiform rain and storm cell images

Images denoting areas of stratiform (low-intensity) and storm cell (high intensity) storm echoes are used
as masks in many of the feature detectors. A functional template approach is used to create interest images
of these areas. Copies of these interest images are typically binarized within the feature detectors by
applying an interest threshold of 128 in order to generate an appropriate mask image to be utilized in the
functional template correlation. Some feature detectors require more aggressive masking of these types of
precipitation regions, so several variants of stratiform rain and storm cell images are computed in
GFFillSingleScanImages and stored in the gfBaseImages object for future reference. These are:
stratRain, stratRainExpanded, stratRainD77, stormCells, stormCellsSuppressClutter, and stormCellsD77.
Note that the "D77" variants are not currently used by the WSP MIGFA (these are binary images created
by first thresholding copies of the stratRain and stormCells interest images by
gfParams->interestThreshold and then performing a binary dilation using a 7x7 elliptical kernel).

The stratRainExpanded image is generated utilizing a scoring function that returns positive scores for
lower values of reflectivity than the standard stratRain detector, and is used for masking in feature
detectors that look for thin lines in very clear air (TLDZSD, and DZSDMotion). The
stormCellsSuppressClutter image is the same as stormCells except that values in a copy of the
gfBaseImages->dz image are first set to 0 (-20 dBZ) wherever clutter is indicated in the
gfBaseImages->clutterMap image. The HIDZ detector is currently the only one that uses the
clutter-suppressed storm cells image.

To generate the stratiform rain and storm cell interest images, the RunDetector method of each of these
detector objects is directly invoked by GFFillSingleScanImages. Each of these detectors calls a generic
reflectivity-based feature detector named simpleDZFilterDetector. SimpleDZFilterDetector is an
unusual detector in that it does not have its own "built-in" template object. Rather, the calling functions are
required to supply a SKFuncTemplate object containing the kernel and scoring functions. Figures 12, 13,
and 14 show example computations of stratRainExpanded, stratRain, and stormCells interest images (the
stormCellsSuppressClutter image is not shown since for the example chosen, its image is identical to the
stormCells image).
29

(b)

(c)

(a)

Figure 12. Example computation of "expanded" stratiform rain interest image. The scoring function
(a) is applied to the reflectivity image (b) using a 3x3 ellipsoidal kernel. The resulting interest image is
shown in (c). Lower X-axis of scoring function is the integer-scaled pixel value. Upper X-axis is
reflectivity in dBZ. Data are from 5/24/99 at Albuquerque, NM.
30

(b)

(a)

(c)

Figure 13. Example computation of stratiform rain interest image. The scoring function (a) is applied
to the reflectivity image (b) using a 13x13 ellipsoidal kernel. The resulting interest image is shown in
(c). Lower X-axis of scoring function is the integer-scaled pixel value. Upper X-axis is reflectivity in
dBZ. Data are from 5/24/99 at Albuquerque, NM.
31

(b)

(a)

(c)

Figure 14. Example computation of storm cells interest image. The scoring function (a) is applied to
the reflectivity image (b) using a 9x9 ellipsoidal kernel. The resulting interest image is shown in (c).
Lower X-axis of scoring function is the integer-scaled pixel value. Upper X-axis is reflectivity in dBZ.
Data are from 5/24/99 at Albuquerque, NM.
32

2.2.7.11 Computation of zero-Doppler line image

During episodes of vertical wind shear where the wind direction is veering or backing with altitude, the
zero Doppler line as seen in the velocity data imagery will be observed to curve with increasing range from
the radar (sometimes sharply) as the broadening radar beam increasingly samples winds at higher altitudes
that may have a direction that is markedly different from that near the surface. If the vertical wind shear is
strong enough, the radial velocity shear can cause high interest scores to be generated by the velocity
convergence detectors (Converge, and ConvMotion), potentially leading to false gust front detections. To
combat this, a binary zero-Doppler line image is computed for later use as a detection mask in the
Converge and ConvMotion feature detectors.

In order to detect zero lines, a two-stage process is used whereby radially oriented zero lines are found first
by processing velocity data in the polar domain. This is followed by a second, Cartesian domain step that
finds zero line features of any orientation. The two interest images are conservatively combined by taking
the pixel-wise minimum of each interest image. Figure 15 shows the scoring functions and templates used
for the polar and Cartesian FTC operations. Since zero Doppler lines are radially aligned over at least
some fraction of the range gates, the polar coordinate template is applied only over a very limited 40
degree wedge centered on the radial axis.

Figure 16 illustrates the output of the various processing stages of the zero line detector. Processing begins
by first creating a weather mask image (wxMask) by copying the gfBaseImages->vClean image and setting
all missing (nil) values to "1" and everything else to "0" (recall that gfBaseImages->vClean has had all
velocity pixels not associated with weather removed, and so it is a convenient image for masking).
Processing then proceeds by rescaling the velocity data contained in a copy of the
gfBaseImages->vPolRaw image. The velocity data are rescaled such that each integral increment
corresponds to a change of 0.1 m/s, and a value of 128 corresponds to a Doppler value of 0 m/s. The
resulting values are clipped to the interval [0 255] (-12.8 to 12.7 m/s). This allows the data to be directly
input to FTC later. Figures 16a and 16b show the polar velocity image before and after the rescaling. In
order to prevent high interest scores from being generated on isolated lines of zero Doppler values
surrounded by missing velocity data, all missing velocity values in the scaled and clipped image are set to
128 (0 m/s). Figure 16c shows the resulting interest image after performing FTC on the rescaled polar
velocity. This polar interest image is then resampled to a Cartesian representation, and the wxMask image
is used to mask out (set to nil) any pixels in the interest image that may have resulted from clutter, second
trip, etc. (Figure 16d shows the polScore image that results from these operations.)

Next, the Cartesian-based zero Doppler line detection stage begins. First the polar velocity data in the
gfBaseImages->vPolRaw image are resampled to a Cartesian representation using the gfResamp object.
Masking for the Cartesian FTC operation consists of utilizing the same wxMask image that was previously
computed and used to mask the Cartesian representation of the interest image from the polar FTC stage
described above. Figure 16f shows the carScore interest image produced by the Cartesian domain FTC
operation.

Earlier experimental versions of this detector performed a chain extension operation in an attempt to
achieve better extent of zero line detections. Chain extension extends a single pixel wide chain of high
interest along a line of moderate, but slightly below threshold interest values. Artificially high interest
values are sometimes produced where missing velocity values in the copies of gfBaseImages->vClean
image used in this detector were temporarily replaced with zeroes. To prevent inappropriate chain
extension along these lines of artificially high interest, locations in the carScore interest image where the
original gfBaseImages->vClean image has missing values are reset to nil. The current version of this
detector no longer performs chain extraction and extension, so this additional masking step is no longer
critical, and it may be possible to eliminate it in the future.
33

Next, the two interest images, polScore and carScore are conservatively combined (fused) by taking the
pixel-wise minimum of the two images. If only one of the two pixels being compared is non-nil, than the
non-nil value is returned as the minimum value. The resulting combined interest image (score) is shown in
Figure 16g.

The combined score interest image may contain "spurs" of zero-line interest that are isolated or branch off
of the main zero line that is targeted. These are interest spurs pruned by calling the CSKETCH
EliminatePoorShapes function. EliminatePoorShapes takes the input array and applies a threshold for
extracting regions whose areas will be analyzed. A length threshold is applied to eliminate those areas
whose major axis does not meet the length threshold criteria. For pruning the zero line interest spurs,
EliminatePoorShapes is called with a threshold of "96" and length threshold of 16 pixels (7.68 km at 480
meters/pixel). To better ensure complete zero line detection, the returned pruned interest array (Figure
16h) is binary dilated with a 3x3 elliptical kernel to form the final binary image of zero Doppler lines
(Figure 16i).
34

22

1

2

0

2

1

0

2

1

2

0

2

2

2
2
2
2
2
2
2

2
2
2
2
2
2
2

1

2

0

2

1

2

0

1

2

0

2

1

2

0

2

1

2

0

1

2

0

2

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

Rotation angles:
0, 30, 60, 90, 120, 150, 180,
210, 240, 270, 300, 330

Rotation angles:
340, 0, 20, 160, 180, 200

Kernel #1: Polar Template Kernel #2: Cartesian Template

Figure 15. Scoring functions and templates for the ZeroCross detector. Lower X-axis of scoring function is
the integer-scaled pixel value. Upper X-axis is velocity in m/s.
35

Figure 16. Summary of processing steps in detection of zero-Doppler lines. (a) Input polar velocity image.
Each row of image pixels is a single radial (azimuth), with range increasing from left to right. (b) Polar velocity
data after rescaling and truncation. (c) Polar zero-line interest image after FTC. (d) Interest image after resa-
mpling to Cartesian coordinates and application of non-weather mask. (e) Cartesian representation of rescaled
velocity shown in (b). This is input to a Cartesian-based FTC operation which generates a second interest
image shown in (f). (g) Combined interest image representing the pixel-wise minimum of (d) and (f). (h) Inter-
est image after pruning to eliminate short interest regions. (i) Final binary image.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
36

2.2.7.12 Generation of line storm interest and orientation images

Line storms - organized lines of thunderstorm cells -- are favored locations for gust fronts. An interest
image indicating locations of line storms and an associated line storm orientation image are used in two
ways:

1. The line storm interest image and associated orientation image are consulted by the individual gust
front feature detectors. Feature detector interest values that are co-located with line storm regions
and which have similar orientations to the line storms (as indicated by the line storm orientation
image) are boosted by a multiplicative parameter.

2. The line storm interest image is used as a mask in the Anticipation detector to perform localized
boosting of anticipation for fronts that are currently being tracked in the vicinity of a line storm.
This helps to reduce the likelihood of losing an established gust front detection due to momentary
loss of radar signatures.

Line storms are best detected in the long range (111 km) reflectivity data, where the large spatial aspect
ratio of these echo regions can be more clearly discerned. Figure 17 shows the functional template and
scoring functions that are applied to the long range reflectivity image (gfBaseImagesWSP->dzLong) to
generate an initial line storm interest image.

Figure 18 illustrates the processing sequence for generation of the line storm interest and orientation
images. The orientation image returned from FTC gives the orientation angles at which the best pattern
match occurred at each image location, and is used to guide selective boosting of interest from the gust
front feature detectors. Because orientation values in areas of low match scores tend to be randomly
distributed, values in the initial orientation image are set to nil if their corresponding interest value is less
than the ambiguity threshold of 128.

Since one of the objectives is to boost gust front feature detector interest in the vicinity of a line storm, the
initial line storm interest image undergoes multiple gray scale dilation operations in order to substantially
expand the initial areas of supporting interest. Multiple dilations with a small kernel yield a less "blocky"
result than a single dilation with a very large kernel. So, four consecutive gray scale dilation operations
with a 5x5 elliptical kernel are performed. Given the nominal 1920 km resolution of the input long range
reflectivity image, this results in a substantial increase in the amount of area encompassed by supporting
interest values in the vicinity of a line storm.

The initial associated orientation image is also dilated so that orientation values can be associated with
values in the dilated interest image. The standard gray scale image dilation operation is inappropriate for
an orientation image, since it would bias the angle values. Function MedianDilate is called four times
with a 5x5 elliptical dilation kernel to perform an unbiased dilation of the orientation image. The median
dilation operation finds for each location in the input array, the median of all image values superimposed
by the non-nil regions of the dilation kernel.

The resulting long-range dilated line storm interest and orientation images have a coarser resolution and
extend further in range than the standard 30 km range interest images that they will be later fused with.
Therefore, these two images are next resampled to the standard 30 km image geometry. The
SKStmResamp class in the CSKETCH library is a Cartesian-to-Cartesian resampler class that is used to do
this. Once the two images have been resampled to the standard 30-km, 480 meter resolution grid, a final
gray scale and median dilation with a 15x15 kernel is performed on the resampled interest and orientation
images respectively.
37

2.2.7.12.1 Use of line storm interest by feature detectors

The line storm interest image and orientation image are used within the individual gust front feature
detectors to guide selective boosting of interest values. Within the equipped feature detectors, function
BoostLineStormAlignedInterest is called to perform this operation. For each pixel in a feature detector
interest image Id(x,y) having orientation Od(x,y) and co-located within a line storm region having
orientation Ols(x,y) != nil, a boost factor, B, is computed as:

B = 1.0 + ((Bmax - 1.0) * W)

where Bmax is the maximum boost factor defined by the detector’s LineStormBoostFactor parameter. W is a
weight factor that varies from 0.0 to 1.0 and is a falling linear ramp function of the angular difference
between Od and Ols. W = 1.0 for an angular difference of 0 degrees, and W = 0.0 for a maximum angular
difference of LineStormAngleTolerance (a parameter nominally 45 degrees). The adjusted detector interest
Id(adjusted) is then computed using:

Id(adjusted) = Id * B

Figure 19 illustrates the selective boosting of interest from the reflectivity thin line detector (TLDZ) for a
case where a gust front thin line was produced ahead of an approaching line storm. The following
detectors call BoostLineStormAlignedInterest to adjust interest values based on line storm evidence:
Converge, ConvMotion, DZMotion, DZSDMotion, SDMotion, TLDZ, TLSD, TLSDDZ.

2.2.7.12.2 Use of line storm interest to boost anticipation

The other use of line storm evidence is to perform localized boosting of anticipation of fronts being
currently tracked. In the Anticipation detector, if the expected location of a gust front is within an area of
line storm interest > 128, then the value used for the localized anticipation interest (normally set to 127 for
newly tracked fronts and 255 for long-term tracked fronts) is obtained from the
Anticipation(LineStormShortTermAntVal) or Anticipation(LineStormLongTermAntVal) parameters,
whichever is appropriate. Settings for these two parameters at the time of this writing are 127 (unchanged)
and 512 (twice the normal value) for short and long-term anticipation values respectively.
38

Kernel rotation angles: 0, 20, 40, 60, 80, 100, 120, 140, 160

Figure 17. Scoring functions and template for the LineStorm detector. Lower X-axis of scoring func-
tion is the integer-scaled pixel value. Upper X-axis is reflectivity in dBZ. Resolution of 23x29 kernel is
1920 meters/pixel.

1

1
1
1
1
1
1
1

1
1
1
1
1
1
1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
1
1
1

0

0

0

0

1
1
1

0

0

0

0

1
1
1
1

0

0

0

0

1
1
1

0

0

0

0

39

Figure 18. Summary of line storm detector processing. (a) Current long-range (111 km) reflectivity image. (b)
Corresponding short-range (30 km) reflectivity image. (c) Initial long-range interest image. (d) Long-range
interest image after multiple gray scale dilations. (e) Final interest image after resampling to 30 km grid and
final dilation by 15x15 kernel. (f) Initial long-range orientation image after removing values associated with
low interest. (g) Long-range orientation image after multiple median dilations. (h) Final orientation image
after final dilation with 15x15 median filter.

(a) (b)

(c)

(d)

(d) (e)

(f) (g) (h)
40

2.2.7.13 Dynamic sensitivity adjustment

MIGFA’s sensitivity is dynamically adjusted based on the type and extent of weather within its processing
range. If there is a predominance of convective weather (high reflectivity areas), then conditions are
favorable for gust fronts and MIGFA’s overall sensitivity is heightened. Conversely, during episodes of
widespread low-reflectivity light rain (stratiform rain), gust fronts are not expected. Moreover, the
potential for false alarms actually increases during stratiform rain episodes owing to occasional rain echoes
that may organize in moving bands that mimic gust front thin line signatures. Therefore, it is advantageous
to reduce MIGFA’s sensitivity during these episodes. Additionally, false alarm mitigation logic designed
to suppress interest features moving in the same direction as the ambient wind is automatically disabled if
convective weather is detected within the processing range.

Precipitation coverages are estimated using both long and short range reflectivity images. Since gust fronts
can propagate many kilometers away from generating thunderstorms, a long-range (111 km) look for
convective weather is needed to recognize conditions favorable for gust fronts. Conversely, stratiform rain
echoes cause false interest features only if they are inside 30 km where the gust front feature detectors
operate. So, for general sensitization purposes, it is more important to ascertain the amount of stratiform
rain at short range.

A pair of "precip numbers" (numbers ranging from 0 to 10 that represent the relative coverage of stratiform
rain and convective weather) are computed by calling function ComputePrecipNumbersWSP with a
reflectivity image that has all non-weather pixels removed. The computation is performed twice; once
with a copy of the standard Cartesian 30-km range reflectivity image, and once with a high resolution (500
m) Cartesian long-range reflectivity image. Function editNonWxDZ is called to remove out-of-trip and
clutter cells from the reflectivity images before calling ComputePrecipNumbersWSP. Stratiform rain
and storm cell coverage estimates used to adjust MIGFA’s overall sensitivity come from the short-range
stratiform rain and the long-range storm cell counts respectively. The two quantities are stored in the
global gfRefData->stratRainCoverage and gfRefData->stormCellCoverage variables for later reference.

Figure 19. Example of boosting of feature detector interest in the presence of a line storm. (a) Original interest
image from the reflectivity thin line feature detector (TLDZ). The relatively bright interest band extending from
NE to SW in the upper left quadrant is associated with an approaching gust front ahead of a line storm (see
reflectivity image in Figure 18b). (b) Corresponding TLDZ orientation image. Note coherent band of similar
orientation values associated with the bright interest band seen in (a). (c) Dilated line storm orientation image.
(d) Modified TLDZ interest image showing enhancement of thin line interest ahead of the approaching line
storm. Other interest pixels beyond the vicinity of the line storm are unchanged.

(a) (b) (c) (d)
41

For purposes of disabling steering-wind based suppression of interest features, the stratiform rain count
from the short range computation is used, while the storm cell coverage is taken as the maximum of the
short and long-range storm cell counts. These two quantities are stored in the global
auxRefData->stratRainCoverage and auxRefData->stormCellCoverage variables for later reference.

2.2.7.13.1 Computing the stratiform rain and storm cell coverage

The coverage computation performed by ComputePrecipNumbersWSP basically tallies the pixels that
fall between reflectivity limits given by parameters gfParams->stratRainDZ and gfParams->stormCellDZ
(each is a pair of dBZ values). Default values for these parameters are located in the paramsWSP file and
are set to 5 to 25 dBZ for gfParams->stratRainDZ and 30 dBZ and higher for gfParams->stormCellDZ.
Because these thresholds will likely be different depending on the general climate of each site, the default
values are typically overridden in the site-specific paramsWSP.local file.

The tallying approach allows for assigning larger weights to pixels at short range in order to give the short
range weather more import. The parameters that control the range-dependent differential weighting of
stratiform rain and storm cell pixels are cellScalar, cellBeta, stratScalar, and stratBeta. Figure 20
illustrates the use of stratScalar and stratBeta; the use of cellScalar and cellBeta is analogous. All of these
values, as well as the piecewise-linear/parabolic shape of the weighting function, have been determined
empirically.

The precip numbers stored in gfRefData->stratRainCoverage and gfRefData->stormCellCoverage are
used by the Anticipation detector (discussed in the next section) to index into the
gfParams->precipBiasTable. The gfParams->precipBiasTable is an 11x11 SKArray that is constructed
and loaded with the data from the precipBiasTableData parameter of the paramsWSP (or

30 km 110 km

stratScalar

stratScalar * stratBeta

0.0

Range

W
ei

gh
t

Figure 20. Illustration of stratiform rain and storm cell pixel weighting for precipitation coverage
computation.
42

paramsWSP.local) file. Figure 21 shows an example of precipBiasTableData suitable for the Austin, TX
environment. The table contains background anticipation interest values as a function of stratiform rain
(x-axis) and convective weather (y-axis) coverage, with (0,0) at the lower left of the table. As can be seen
from the figure, decreasing values of background interest are returned for increasing amounts of stratiform
rain in the absence of convective weather. When the background interest is averaged against the
precombined interest from the other detectors, the overall interest levels will be suppressed or enhanced
depending on the type and extent of the precipitation. A value of "96" in the precipBiasTableData
represents the highest background interest that can be used without causing an undesirably high
background interest that could result in a confusing (overly bright) interest map with numerous chaotic
detections.

set precipBiasTableData {
 "96 96 96 96 96 96 96 96 96 96 96"
 "96 96 96 96 96 96 96 96 96 96 96"
 "96 96 96 96 96 96 96 96 96 96 96"
 "96 96 96 96 96 96 96 96 96 96 96"
 "96 96 96 96 96 96 96 96 96 80 80"
 "96 96 96 96 96 96 96 80 80 64 64"
 "96 96 96 96 96 80 80 64 64 48 48"
 "96 96 96 80 80 48 48 48 48 32 32"
 "96 96 80 48 48 32 32 32 32 16 16"
 "96 80 64 48 32 32 16 16 16 0 0"
 "80 80 0 0 0 0 0 0 0 0 0"
}

Figure 21. Example precipBiasTableData from paramsWSP.local file for Austin, TX
43

2.3 Feature Detection

Detection in MIGFA is based on a consensus approach in which the results of multiple feature detectors
(computational modules that detect particular signatures or sets of signatures) contribute to a combined
interest image. Each individual feature detector computes its own interest image, in most cases through the
use of functional template correlation [1], and assigns weights to the interest image as a whole. In
addition, a feature detector may assign to a particular pixel in the interest image a nil value, meaning that
the feature detector has no opinion at that location. Each feature detector constructs an appropriate "mask"
image of nil values depending on that detector’s areas of skill. For example, because observability of most
gust front signatures is reduced in the immediate vicinity of the radar, the masks in the majority of the
WSP MIGFA feature detectors include a 2-km "bulls-eye" of nil values to help ensure that possible
negative evidence in this region doesn’t cause a previously detected gust front to be dropped when it is over
the radar - and in the case the WSP - over the airport.

The feature detectors in detectorList are invoked during the detection stage, with each detector producing
an interest image. As described previously, detectorList is equal to detectorListStatic for the first scan
processed, and detectorListMotion for all subsequent scans. After each of the feature detectors has been
run, CSKETCH library function SKAverageInterestImages is called to compute a weighted average of
the individual interest images. The resulting combined interest image is stored in
gfBaseImages->rawInterest where it is subsequently used during the extraction stage as the primary basis
for extraction.

2.3.1 Suppression of false thin line interest features

Bands of low-reflectivity precipitation moving with mid-altitude steering winds are a frequent source of
false detections. These bands often produce nearly identical radar signature characteristics as gust front
thin lines (both in reflectivity and in velocity). As a result, the various reflectivity and velocity thin-line
feature detectors (DZMotion, TLDZ, TLSD, SDMotion, and DZSDMotion) often generate inappropriately
high interest values on these echoes, increasing the likelihood of false alarms. To combat misinterpretation
of these weather features, these feature detectors are equipped to utilize one of two approaches in order to
reduce interest values that are likely to be associated with moving precipitation features rather than gust
fronts:

1. Wintertime fixed azimuth sector suppression of interest features moving from the south.

2. Dynamic sector suppression of interest features moving in a direction consistent with mid-altitude
steering winds.

Given sufficient WSP velocity data quality, the dynamic steering-wind sector based suppression is the
preferable approach for adjusting the interest images, since the direction from which moving interest
features are suppressed is computed based on the actual wind direction observed by the radar. However,
during the winter (and transitional) seasons, suppression of interest features moving from a southerly
sector provides a suitable fall-back. The fixed sector suppression approach is a statistically reasonable
once since during these months, many areas of the country are visited by organized low pressure systems,
where banded stratiform rain echoes are often observed moving with the southerly flow in the warm sector
ahead of an approaching cold front.

These suppression functions are used conservatively. If any convective weather or clear conditions are
present (as determined from the storm cell and stratiform rain reflectivity pixel counts), then
direction-based interest suppression by either approach is automatically disabled. Additionally,
steering-wind based suppression is performed only if there is sufficient confidence in the steering wind
computation (given the quantity and quality of Doppler velocity data).
44

The selected feature detectors call function SuppressSector to perform the adjustment of interest values
by one of these methods, depending on season and precipitation regime. Its parameters are:

1. Initial feature detector interest image to be (possibly) adjusted.

2. DZMotion detector orientation image.

3. Start, end azimuth bounds to be used for fixed sector suppression (BiasSector detector parameter).

4. Multiplicative interest bias factor for fixed sector suppression (SectorBias detector parameter).

5. Suggested bias factor to for adjustment of interest values by dynamic sector suppression
(SteeringWindSectorBias detector parameter).

Interest feature suppression by either of the two methods requires knowledge of the direction of motion for
each interest pixel under consideration. The direction of motion is inferred from the orientation image
produced by the DZMotion thin-line motion detector. Because of this dependency on the DZMotion
orientation image, the DZMotion detector is the first feature detector that is run after the Anticipation
detector. The DZMotion detector, by virtue of its 360 degree rotating template, provides a directionally
unambiguous thin line orientation angle at each pixel. With this information, the direction of motion for
any given feature detector interest pixel is taken to be orthogonal to the DZMotion orientation angle at the
corresponding pixel location.

2.3.1.1 Procedure for suppression of false thin line features

Shortly after creation of an initial interest image, the feature detector calls SuppressSector to possibly
modify the image. SuppressSector first calls FindWindBias to compute the steering wind based bias. It
computes the starting and ending azimuth bounds for the dynamic suppression sector centered on the
steering wind direction, and determines an appropriate bias factor that may be different than the suggested
dynamic bias factor depending on the confidence of the associated steering wind analysis.

Three parameters contained in the site-specific detectorParamsWSP parameter file are utilized by
FindWindBias:

1. steeringWindSectorWidth

2. vadBias

3. vadConfidenceRamp

The steeringWindSectorWidth parameter defines the angular width of the azimuthal suppression sector that
will be centered on the direction of the steering wind.

The vadBias parameter controls how much to bias the steering wind bias computation in favor of the
radar-derived estimate of the steering winds versus an optional additional estimate of the steering winds
provided by a storm-motion based estimate. Storm motion based estimation of steering winds is not
currently enabled in the WSP MIGFA, so vadBias should be set to 1.0 in the parameter file.

The vadConfidenceRamp parameter is a value between 0.0 and 1.0 that controls the degree to which the
lack of confidence in the regional wind calculation reduces the initial amount of suggested bias. For
example, a vadConfidenceRamp value of zero means that the regional wind estimate will be used as the
basis for direction-based interest suppression regardless of the confidence in the regional wind
computation. As of this writing, a value of 0.4 is used for "wet" sites, and 0.9 is used for "dry" sites.

Function FindWindBias begins by first retrieving the regional wind estimate that was previously
computed and stored in gfEvent->regionalWind as described in Section 2.2.7.3. If the regional wind
estimate indicates nearly calm conditions (both of the wind components (u or v) are 0.1 m/s or less), then
the interest bias factor is simply set to 1.0 (no interest biasing), and the function returns.
45

Otherwise, processing proceeds to compute the steering wind confidence factor, rz, that is simply the
minimum of the u and v component weight factors that were computed previously during the regional wind
computation. If the steering wind confidence factor is less than or equal to 0.3, then there is insufficient
confidence in the steering wind computation, and the FindWindBias returns a bias factor of 1.0 (no
biasing).

Otherwise, the steering wind direction (computed from the u and v components of the
gfEvent->regionalWind) is used as the center of the azimuth sector whose limits are computed by adding
+/- one half of the steeringWindSectorWidth to the steering wind direction.

Next, the dynamic suppression factor, s, is computed. The smallest that it can be is the ideal value
suggested by the detector’s SteeringWindSectorBias parameter, and the largest it will be is 1.0 (no
suppression). The first adjustment to SteeringWindSectorBias is made based on the steering wind
confidence factor, rz, that was computed as described above. The steering wind confidence factor is input
to a rising linear ramp function that returns a scalar between 0 and 1 depending on rz’s location in the
interval [vadConfidenceRamp, 1]. The resulting scalar, zed, that is output from the linear ramp weighting
function is used to compute a dampened suppression factor, s, from the suggested suppression factor,
SteeringWindSectorBias, using:

s = zed * SteeringWindSectorBias + (1.0 - zed)

A second adjustment to s is made based on the precipitation coverage that is evident on the current scan.
Dynamic sector suppression is disallowed in clear or stormy conditions by setting s to 1.0 if
auxRefData->stratRainCoverage < 1 or auxRefData->stormCellCoverage > 1. If there is only minimal
convective weather present (as indicated by auxRefData->stormCellCoverage = 1), then the adjusted
suppression factor, s, is further adjusted by one half using:

s = (s + 1.0) / 2.0;

Function FindWindBias returns the computed steering wind sector limits and the adjusted steering wind
sector bias factor, s, to function SuppressSector.

SuppressSector continues by deciding, based on the season, whether to adjust the feature detector interest
image by applying the dynamic steering wind bias factor computed by FindWindBias, or whether to
consider using fixed sector suppression. If the system is operating in summer mode
(gfRefData->summerMode = TRUE), then the only candidate method is the dynamic steering wind sector
suppression. Function AdjustForDirection is called to adjust all interest pixels whose corresponding
locations in the DZMotion orientation image indicate a direction of movement from within the dynamic
steering wind sector.

If MIGFA is operating outside of the summer months (gfRefData->summerMode = FALSE), then fixed
sector suppression is considered. First, the fixed sector suppression factor whose value is given by
SectorBias is conditioned according to the precipitation regime. If there are clear or stormy conditions,
then fixed sector suppression is effectively disabled by setting the fixed sector bias factor to 1.0. If there is
only minimal convective weather present, then the fixed sector bias factor is halved using the same
equation used for adjusting the dynamic steering wind suppression factor above.

With this adjusted fixed sector suppression factor in hand, SuppressSector decides whether to apply the
fixed sector or the dynamic steering wind sector adjustment by first checking the value of the adjusted
steering wind bias factor, s. If s is greater than 0.95 (indicating little confidence the steering wind
computation), then SuppressSector calls AdjustForDirection with the precipitation-adjusted fixed sector
suppression factor and the fixed sector limits (BiasSector). Otherwise, AdjustForDirection is called with
the dynamic steering wind sector limits and the adjusted steering wind bias factor.
46

2.3.2 Running the feature detectors

Function RunDetectors is the driver subroutine for executing the feature detectors on the detectorList
whose interest images will be subsequently averaged to produce the combined interest image that is the
basis for gust front extraction. Following are brief descriptions of each feature detector in the order in
which they are executed. The order of execution is dictated by the order in which the feature detector
names are listed in the detector parameter file. The current list of feature detectors consists of the
following:

1. Anticipation - Expected front location and general (background) interest

2. DZMotion - Reflectivity thin line motion detector

3. HIDZ - High altitude weather detector (a negative interest generator)

4. TLDZ - Static reflectivity thin line detector

5. TLSD - Static velocity thin line detector

6. SDMotion - Velocity thin line motion detector

7. TLSDDZ - Tandem velocity thin with no appreciable reflectivity detector

8. Converge - Velocity convergence detector

9. ConvMotion - Velocity convergence motion detector

10. DZSDMotion - Tandem reflectivity/velocity thin line detector

11. PrecipEdges - Storm edge detector (a negative interest generator)
47

2.3.3 Anticipation

2.3.3.1 Parameters

Table 6 lists the default site-adaptable parameter settings for the Anticipation detector.

Table 7. Default Averaging Weight Function for the Anticipation Detector

2.3.3.2 Mask images

The following pre-computed mask images are used by this detector:

gfBaseImages->eightKmMask
gfBaseImages->siteMask
gfBaseImages->detMask

2.3.3.3 Description

The Anticipation interest image provides a mechanism to spatially adjust the detection sensitivity of
MIGFA, based on situational context. High anticipation values get averaged with interest values from
other feature detectors to increase the likelihood of detection at specific locations. Low anticipation values
suppress the likelihood of detection.

Computation of the anticipation interest image begins by first retrieving the line storm interest image from
that was previously computed during data preparation. A binary line storm mask image is computed by
thresholding a copy of the line storm interest image at 128. This binary line storm mask image will be
used to further boost anticipation at expected locations of gust fronts.

Next, function ComputeGFForecastMap is called to generate a map of forecasted gust front locations
appropriate for the time of the current scan. Elements in the resulting image array that have values of 1

Table 6. Default Parameters for the Anticipation Detector

Parameter Name Nominal Value Units

LineStormShortTermAntVal 127 interest

LineStormLongTermAntVal 512 interest

WinterBiasFactor 0.67 unitless

WinterBiasThresh 80 interest

WeightFunc See Table 7 unitless

Interest Value Weight

0 - 15 1.00

16 - 95 0.75

>= 96 0.33
48

(indicating short tracking history) and 2 (long tracking history) are reset to interest values of 127 and 255
respectively. Because organized lines of thunderstorms are very likely to have a gust front near the leading
edge of the line, anticipation interest values for expected locations of gust fronts are set to
Anticipation(LineStormShortTermAntVal) or Anticipation(LineStormLongTermAntVal) (as the case may
be) wherever gust front anticipation pixels spatially coincide with pixels in the line storm mask image
computed earlier. This helps to maintain tracking of line storm induced gust fronts that are often
embedded in the precipitation along the leading edge of the line. Such strong anticipation interest will
very nearly cause coasting of a detection within the vicinity of a line storm even if there are no other
directly observable gust front signatures.

To help maintain tracking of gust fronts as they approach and cross over the radar, interest values of
forecasted gust front points are further increased as follows. Within 8 km of the radar, anticipation interest
for forecasted gust front points is increased by 10 percent. Within the small 2-km radius of the radar site
mask (gfBaseImages->siteMask), interest values associated with short-term tracking history (127’s) are
boosted to the long-term tracking value of 255.

The remaining areas of the interest image are set to a background level based on the relative amounts of
stratiform rain and storm cells as determined by indexing the precipitation bias lookup table
gfParams->precipBiasTable using the precipitation coverage values previously computed and stored in
gfRefData->stratRainCoverage and gfRefData->stormCellCoverage. During winter months, when
MIGFA is more prone to false alarms, a site-adaptable fractional reduction in background anticipation is
made. If the current date falls outside gfParams->summerMonths, and if the background anticipation
value obtained from the table is less than Anticipation(WinterBiasThresh), then the background
anticipation value is scaled by multiplying the original background anticipation value by
Anticipation(WinterBiasFactor).

At ranges beyond 20 km, the background anticipation level is limited to a value of 64. This is done so as
not to overly sensitize the algorithm at long range where false alarm probabilities increase due to
high-altitude weather returns.

The resulting interest image is stored in gfBaseImages->anticipation for later retrieval during the interest
combination stage. Figure 18d shows an example anticipation interest image.
49

2.3.4 DZMotion - Reflectivity Thin Line Motion Detector

2.3.4.1 Parameters

Table 8 lists the default parameter settings for the DZMotion reflectivity thin line motion detector. The
functional template scoring functions, kernels, and kernel rotation angles are shown in Figure 22

2.3.4.2 Mask images

The following pre-computed mask images are used by this detector:

gfBaseImages->detSiteMask
gfBaseImages->stratRainD77

2.3.4.3 Description

The DZMotion detector looks for lines of low reflectivity moving through clear air. The motion of these
lines can be detected by differencing the current and prior reflectivity images. A moving gust front thin
line will show up in the difference image as a line of positive difference values (corresponding to the
current location of the front) paralleling a line of negative difference values (corresponding to the previous
location of the front). Figure 23 uses a simulated thin line signature moving at 10 m/s to illustrate the
processing stages of the DZMotion detector described as follows.

The DZMotion detector utilizes functional templates that look for a pattern of positive and negative
difference lines in close proximity to each other. Because the distance behind which the negative
difference line trails the positive difference line depends on the propagation speed of the front, three
separate FTC operations are performed, each utilizing template kernels with different widths between the
positive and negative difference scoring regions. The three kernels are designed to match propagation
speeds of 5 m/s, 10 m/s, and 15 m/s. The same scoring functions are used for all three templates, since the
intensity of the difference line does not depend on the speed of movement. Within the typical range of gust
front propagation speeds, a reasonably good match score will be obtained with one or more of these
templates. The pixel-wise maximum of the three intermediate interest images is then computed to form
the final DZMotion interest image. Recall that one of the by-products of FTC is a corresponding
orientation image that contains the template rotation angle at which the best pattern match occurred. The

Table 8. Default Parameters for the DZMotion Detector

Parameter Name Nominal Value Units

SteeringWindSectorBias 0.25 unitless

LineStormAngleTolerance 45 degrees

LineStormBoostFactor 1.5 unitless

BiasSector (90, 250) degrees

SectorBias 0.25 unitless

ConfWeight 1.0 unitless

DisConfWeight 0.5 unitless
50

final orientation image is constructed by selecting for each pixel, the orientation value associated with
maximum score of the three intermediate interest images.

Because the positive/negative reflectivity difference pattern is not rotationally symmetric, the templates for
all three of the FTC operations must be rotated through a full 360 degrees to determine the best match.
The resulting FTC orientation images are therefore directionally unambiguous. Consequently, adding 90
degrees to an orientation value yields the direction of motion of the reflectivity feature at that location. The
use of the DZMotion orientation image to deduce the motion of reflectivity features is used as an aid in
deciding whether to suppress interest values for pixels whose direction of motion is inconsistent with
expectations for a gust front.

After the three FTC operations and generation of the maximum interest image, the maximum interest
image is modified by reducing all radially-aligned interest pixels that are co-located with out-of-trip
weather echoes by calling the function SuppressOOTAlignedInterest. Interest values whose associated
orientation angles are within gfParams->outOfTripAngleTolerance (nominally, 20 degrees) of the radar
azimuth angle are reduced by an amount equal to the corresponding out-of-trip interest
(gfBaseImages->outOfTrip) multiplied by the reduction factor parameter
gfParams->ootReductionFactorDZMotion (nominally, 0.7). That is,

interest(x,y) = interest(x,y) - [out-of-trip(x,y) * ootReductionFactor]

The interest image, together with the LineStormBoostFactor and LineStormAngleTolerance parameters, is
passed to function BoostLineStormAlignedInterest, which uses the results from the line storm detector to
boost interest pixels that are aligned with and proximate to a line storm (see Section 2.2.7.12.1).

Finally, the interest image is passed to function SuppressSector together with the biasSector, sectorBias,
and steeringWindSectorBias parameters to suppress interest pixels whose direction of motion (as inferred
from the DZMotion orientation image) are inconsistent with gust fronts (see Section 2.3.1).
51

3 3

Figure 22. Scoring functions and templates for the DZMotion reflectivity thin line motion detector.
Lower and upper X-axes of scoring functions are the integer-scaled pixel value of the reflectivity
time-difference image.

0

0

0

0

1

1

0

0

0

0

2
2
2
2
2
2
2
2
2
3

3
2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4
4
5
5
5
4
4
4
4
4
4
4
4
4

0

0

0

0

1

1

0

0

0

0

2
2
2
2
2
2
2
2
2
3

3
2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4
4
5
5
5
4
4
4
4
4
4
4
4
4

0

0

0

0

1

1

0

0

0

0

2
2
2
2
2
2
2
2
2
3
3
3
2
2
2
2
2
2
2
2
2

4
4
4
4
4
4
4
4
4
5
5
5
4
4
4
4
4
4
4
4
4

Kernel #3: 15 m/s motionKernel #1: 5 m/s motion Kernel #2: 10 m/s motion

Kernel rotation angles: 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260,
280, 300, 320, 340

Scoring Functions for AUS Scoring Functions for ABQ
52

Figure 23. Images illustrating processing steps in reflectivity thin line motion detector (DZMotion) using a
simulated thin line signature moving at 10 m/s. (a) Prior reflectivity image (dBZ). (b) Current reflectivity image
(dBZ). (c) Scaled and shifted reflectivity difference image. Negative differences are indicated with green/blue
colors, while positive differences (> 128) are indicated with yellow/orange colors. (d) Interest image from 5 m/s
motion template. (e) Interest image from 10 m/s motion template. (f) Interest image from 15 m/s motion tem-
plate. (g) Pixel-wise maximum interest. (h) Template match orientation associated with maximum interest
scores. (i) Final DZMotion interest image.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
53

2.3.5 TLDZ - Reflectivity Thin Line Detector

2.3.5.1 Parameters

Table 9 lists the default parameter settings for the TLDZ reflectivity thin line detector. The functional
template scoring functions, kernels, and kernel rotation angles are shown in Figure 24.

2.3.5.2 Mask images

The following pre-computed mask images are used by this detector:

gfBaseImages->detMask
gfBaseImages->stratRain
gfBaseImages->siteMask
gfBaseImages->clutterMap

2.3.5.3 Description

The TLDZ detector identifies low reflectivity thin line echoes in the current reflectivity image that are
indicative of gust fronts. The thin line echo is often evident when a gust front moves out ahead of the
generating thunderstorm into relatively clear air. Figure 25 illustrates the stages of the TLDZ detector.

Gust front thin lines generally have reflectivities in the range of 5 to 15 dBZ. Consequently, they are not
observable if there is any obscuring precipitation. Prior to FTC, a mask image is constructed that
corresponds to locations where the gfBaseImages->stratRain image has interest values > 128. The mask
image is further expanded to include any locations where there is potentially obscuring clutter residue as
indicated in the binary gfBaseImages->clutterMap image.

The gfBaseImages->dz image (dual-beam reflectivity), together with the detection mask described above
are supplied as input to FTC operation. Following FTC, SuppressOOTAlignedInterest is called to
suppress radially aligned thin line interest that is co-located with out-of-trip echoes. TLDZ interest values
whose associated orientation angles are within gfParams->outOfTripAngleTolerance of the radar azimuth
angle are reduced by an amount equal to the corresponding out-of-trip interest (gfBaseImages->outOfTrip)
multiplied by the reduction factor parameter gfParams->ootReductionFactorTLDZ (nominally, 0.75).

Table 9. Default Parameters for the TLDZ Detector

Parameter Name Nominal Value Units

SteeringWindSectorBias 0.25 unitless

LineStormAngleTolerance 45 degrees

LineStormBoostFactor 1.5 unitless

BiasSector (90, 250) degrees

SectorBias 0.25 unitless

ConfWeight 1.0 unitless

DisConfWeight 0.3 unitless
54

The interest image, together with the LineStormBoostFactor and LineStormAngleTolerance parameters, is
passed to function BoostLineStormAlignedInterest, which uses the results from the line storm detector to
boost interest pixels that are aligned with and proximate to a line storm (see Section 2.2.7.12.1).

Finally, the interest image is passed to function SuppressSector together with the biasSector, sectorBias,
and steeringWindSectorBias parameters to suppress interest pixels whose direction of motion (as inferred
from the DZMotion orientation image) are inconsistent with gust fronts (see Section 2.3.1).

3

2
2
2
2
2
2
3

3
2
2
2
2
2
2

0

0

0

1

1

0

0

0

0

0

0

1

1

0

0

0

Figure 24. Scoring functions and template for the TLDZ reflectivity thin line detector. Lower X-axis
of scoring function is the integer-scaled pixel value. Upper X-axis is reflectivity in dBZ.

Kernel rotation angles: 0, 20, 40, 60, 80, 100, 120, 140, 160
55

Figure 25. Summary of processing stages of TLDZ reflectivity thin line detector. A gust front thin line echo
can be seen as a N-S oriented line of 0-10 dBZ echoes just west of the radar in the input dual-beam reflec-
tivity (a). The corresponding stratiform rain interest image is shown in (b). This stratiform rain image is
used together with the corresponding binary clutter mask image (c) and 2-km site mask (not shown) to form
the detection mask shown in (d). The resulting TLDZ interest image is shown in (e). Data are from 7/13/99
at Austin, TX

(b) (c)(a)

(d) (e)
56

2.3.6 TLSD - Velocity Thin Line Detector

2.3.6.1 Parameters

Table 10 lists the default parameter settings for the TLSD velocity thin line detector. The functional
template scoring functions, kernel, and kernel rotation angles are shown in Figure 27.

2.3.6.2 Mask images

The following images are used as masks by this detector:

gfBaseImages->detSiteMask,
gfBaseImages->stratRain,
gfBaseImages->clutterMap

2.3.6.3 Description

The TLSD detector identifies thin line echoes in the low-beam velocity (LBV) image. These appear in
LBV images as lines of spatially coherent velocity estimates, embedded in a background of noisy velocity
estimates associated with low SNR clear-air regions. The velocity thin line signature cannot be seen if
there is obscuring precipitation or if the air is moist enough to produce spatially coherent velocity
estimates. Figure 27 illustrates the processing stages of the TLSD detector.

An image representing the local velocity standard deviation was previously computed and stored in
gfBaseImages->sd as described in section 2.2.7.6. Because the velocity thin line can only be observed
when embedded in a region of relatively low SNR, a mask is constructed in order to exclude regions of
precipitation or clutter residue from FTC. The mask corresponds to regions where the
gfBaseImages->stratRain image has interest values > 128 or where clutter residue is indicated in the
binary gfBaseImages->clutterMap image.

The gfBaseImages->sd image, together with the detection mask described above are supplied as input to
FTC operation. The resulting interest image, together with the LineStormBoostFactor and
LineStormAngleTolerance parameters, is passed to function BoostLineStormAlignedInterest, which uses
the results from the line storm detector to boost interest pixels that are aligned with and proximate to a line
storm (see Section 2.2.7.12.1).

Table 10. Default Parameters for the TLSD Detector

Parameter Name Nominal Value Units

SteeringWindSectorBias 1.00 unitless

LineStormAngleTolerance 45 degrees

LineStormBoostFactor 1.5 unitless

BiasSector (90, 250) degrees

SectorBias 0.25 unitless

ConfWeight 1.2 unitless

DisConfWeight 0.0 unitless
57

Finally, the interest image is passed to function SuppressSector together with the biasSector, sectorBias,
and steeringWindSectorBias parameters to suppress interest pixels whose direction of motion (as inferred
from the DZMotion orientation image) are inconsistent with gust fronts (see Section 2.3.1).

3

0

0

0

1
1
1

0

0

0

2
2
2
2
2
2
2
3

3
2
2
2
2
2
2
2

0

0

0

1
1
1

0

0

0

Figure 26. Scoring functions and template for the TLSD velocity thin line detector.
Lower and upper X-axes of scoring functions are the integer-scaled pixel value.

Kernel rotation angles: 0, 20, 40, 60, 80, 100, 120, 140, 160
58

Figure 27. Summary of velocity thin line (TLSD) processing. A gust front located south of the radar is ori-
ented W-E can be seen as a thin line of reflectivity (a) and a corresponding line of spatially coherent positive
velocities in (b). The derived velocity standard deviation image that is input to the TLSD detector is shown
in (c) where dark areas represent areas of small local standard deviation (coherent velocity). The stratiform
rain image (d) and clutter image (e) are used to form a detection mask of nil (no opinion) values that can be
seen as red areas in the resulting interest image shown in (f). Data are from 7/28/94 00:09:39 GMT at Albu-
querque, NM.

(b) (c)(a)

(e) (f)(d)
59

2.3.7 HIDZ - High-Altitude Weather Detector

2.3.7.1 Parameters

Table 11 lists the default parameter settings for the HIDZ high altitude weather detector. The functional
template scoring functions, kernel, and kernel rotation angles are shown in Figure 28.

2.3.7.2 Mask images

The following images are used as masks by this detector:

gfBaseImages->detMask
gfBaseImages->eightKmMask
gfBaseImages->stormCellsSuppressClutter
gfBaseImages->outOfTrip
gfBaseImages->clutterMap
gfBaseImages->dz
gfBaseImages->anticipation
lineStormDetector->interestImg

2.3.7.3 Description

Radar returns from elongated, low reflectivity precipitation regions can produce signatures that closely
resemble gust front thin line signatures. However, since gust fronts are a near-surface phenomenon, less
power is typically returned from the high receiving beam of the radar than from the low beam. For rain
echoes, which typically extend to high altitudes, this is often not the case.

The HIDZ detector generates negative interest wherever reflectivity from the high beam of the radar
exceeds that of the low beam. This negative interest serves to counteract positive interest that might be
generated from the reflectivity thin line detectors. A difference image representing the subtraction of
low-beam reflectivity from high-beam reflectivity (gfBaseImages->dzDiff) is pre-computed by function
ComputeDZDiff during earlier image preparation as described in section 2.2.7.4, and is supplied as input
to the FTC operation that generates the returned interest image. Figure 29 shows an example of HIDZ
interest image produced for a line storm that is preceded by a gust front thin line.

As can be seen in Table 11, negative interest generated by this detector is given a large amount of
disconfirming weight. This is done in order to ensure that the negative evidence is sufficient to overcome
the multiple instances of positive interest that may be generated from the various thin-line detectors in
association with elongated, low reflectivity rain bands. Because this detector has so much potential to
reduce the overall combined interest, it is allowed to express opinions only in areas where it is reasonably
certain that no gust front could be present. This is done through careful generation of a mask image from a
variety of image sources.

Table 11. Default Parameters for the HIDZ Detector

Parameter Name Nominal Value Units

ConfWeight 0.0 unitless

DisConfWeight 4.0 unitless
60

Mask formation starts with a copy of the usual gfBaseImages->detMask, which excludes the area outside
of the detection radius. The gfBaseImages->eightKmMask is then used to expand the mask to exclude the
8 km radius over the radar where altitude discrimination is poor.

Because high reflectivity storm regions are not a typical source of false alarms for the thin line detectors,
and because these areas might contain embedded gust fronts detectable by the convergence detectors, these
high reflectivity areas are excluded using the gfBaseImages->stormCellsSuppressClutter image.

To avoid inadvertently inhibiting detection of a gust front moving through an area of out-of-trip weather
contamination, the HIDZ detector is masked from expressing opinions wherever the
gfBaseImages->outOfTrip image has interest values greater than 48.

Regions of clutter residue (indicated in the gfBaseImages->clutterMap image) are also masked since the
presence of clutter residue indicates that clutter power is likely biasing the low beam returns; high altitude
weather discrimination based on high/low beam reflectivity differencing would not be practical in these
areas.

Because the leading edge of a line storm is a favored location for gust fronts and an often difficult area to
observe gust front signatures, the lineStormDetector->interestImg is used to further expand the mask for
excluding HIDZ detection.

Very low SNR regions (as inferred by dual-beam reflectivity values less than -10.0 dBZ) are excluded
because the high/low beam power difference is likely to be an unreliable indicator near the system noise
level.

Finally, anticipated locations of gust fronts that have been tracked sufficiently long to generate long term
anticipation interest (interest values > 255) are masked by binary thresholding the
gfBaseImages->anticipation image at 255 and performing a 5x5 dilation of the remaining long-term
anticipation pixels.
61

1

1

1 1

1

Figure 28. Scoring functions and template for the HIDZ high altitude weather detector. Lower X-axis of
scoring function is the integer-scaled pixel value. Upper X-axis is the high/low beam dBZ difference.
62

(b)(a)

(d)(c)

Figure 29. Example output of high altitude weather detector (HIDZ). (a) and (b) are the corresponding low
and high beam reflectivity images, respectively. (c) Integer-scaled reflectivity difference after shifting by
+128. Blue colors indicate areas where low beam reflectivity exceeds the high beam (values < 128), and yel-
low/red colors indicate areas where high beam reflectivity exceeds the low beam (values > 128). (d) Final
HIDZ interest image. Areas where high altitude weather is present are indicated with negative interest val-
ues (black areas). See text for explanation of interest masking (red pixels). Data are from 03/08/99
17:57:46 GMT at Austin, TX.
63

2.3.8 SDMotion - Velocity Thin Line Motion Detector

2.3.8.1 Parameters

Table 12 lists the default parameter settings for the SDMotion velocity thin line motion detector. The
functional template scoring functions, kernel, and kernel rotation angles are shown in Figure 30.

2.3.8.2 Mask images

The following images are used as masks by this detector:

gfBaseImages->detSiteMask,
gfBaseImages->stratRain

2.3.8.3 Description

Gust front boundaries that have propagated into clear air may appear as thin lines of spatially coherent, low
standard deviation velocity values surrounded by areas of high velocity standard deviation. The movement
of these coherent velocity lines is indicative of a gust front. The SDMotion detector identifies moving thin
lines of low velocity standard deviation as computed from the current and prior-scan Doppler velocity
fields (gfBaseImages->sd, gfBaseImags->sdPrior). Figure 31 summarizes the processing stages of the
SDMotion detector.

Because the velocity thin line can only be observed when embedded in a region of relatively low SNR, a
mask is constructed in order to exclude regions of precipitation and clutter residue from FTC processing.
Specifically, the mask corresponds to regions where the gfBaseImages->stratRain interest image has
interest values greater than 128 (the gfBaseImages->stratRain image includes the clutter residue
locations). The precipitation mask is dilated by calling GrayScaleDilate with a 3x3 dilation kernel.
Following mask computation, the current and prior velocity standard deviation images are pixel-wise
subtracted to yield a motion difference image named sdMotion that serves as the input to FTC together
with the mask image (the velocity standard deviation images were previously computed as described in
section 2.2.7.6 and stored in variables gfBaseImages->sd and gfBaseImages->sdPrior).

The sdMotion image, together with the detection mask described above are supplied as input to the FTC
operation. The resulting interest image, together with the LineStormBoostFactor and

Table 12. Default Parameters for the SDMotion Detector

Parameter Name Nominal Value Units

SteeringWindSectorBias 1.00 unitless

LineStormAngleTolerance 45 degrees

LineStormBoostFactor 1.5 unitless

BiasSector (90, 250) degrees

SectorBias 0.25 unitless

ConfWeight 1.2 unitless

DisConfWeight 0.3 unitless
64

LineStormAngleTolerance parameters, is passed to function BoostLineStormAlignedInterest, which uses
the results from the line storm detector to boost interest pixels that are aligned with and proximate to a line
storm (see Section 2.2.7.12.1).

The interest image is then passed to function SuppressSector together with the biasSector, sectorBias, and
steeringWindSectorBias parameters to suppress interest pixels whose direction of motion (as inferred from
the DZMotion orientation image) are inconsistent with gust fronts (see Section 2.3.1).

Finally, high interest values that may arise from partial pattern matches at the border between the radar
data and the nil pixels in the outer image mask are reduced by limiting all interest values to a maximum of
128 within a 1.5 km wide annulus whose maximum radius coincides with edge of the data being processed
(as given by the gfConfig->cartRadiusKM parameter).
65

3

0

0

0

1
1
1

0

0

0

2

2

2

2

3

2

2

2

2

2
2
2
2
2
2
2
3

3
2
2
2
2
2
2
2

2

2

2

2

3

2

2

2

2

0

0

0

1
1
1

0

0

0

Figure 30. Scoring functions and template for the SDMotion velocity standard deviation line motion detector.
Lower and upper X-axes of scoring functions are the integer-scaled pixel value.

Kernel rotation angles: 0, 20, 40, 60, 80, 100, 120, 140, 160
66

Figure 31. Summary of velocity thin line motion (SDMotion) processing. A gust front located south of the
radar is oriented W-E can be seen as a thin line of reflectivity (a) and a corresponding line of spatially coher-
ent positive velocities in (b). (c) Current velocity standard deviation image computed from (b). (d) Prior veloc-
ity standard deviation image. (e) Difference image produced by subtracting (c) from (d). The stratiform rain
image (d) and clutter image (e) are used to form a detection mask of nil (no opinion) values that can be seen
as red areas in the resulting interest image shown in (f). Data are from 7/28/94 00:09:39 GMT at Albuquer-
que, NM.

(b) (c)(a)

(e) (f)(d)

(h)(g)
67

2.3.9 TLSDDZ - Tandem Velocity Thin Line / No Reflectivity Detector

2.3.9.1 Parameters

Table 13 lists the default parameter settings for the tandem TLSDDZ Velocity Thin Line / No Reflectivity
detector. The functional template scoring functions, kernel, and kernel rotation angles are shown in Figure
32.

2.3.9.2 Mask images

The following images are used as masks by this detector:

gfBaseImages->detSiteMask,
gfBaseImages->stratRainExpanded

2.3.9.3 Description

The TLSDDZ detector is a tandem detector that looks for velocity thin lines that do not have any
appreciable corresponding reflectivity. This exploits a feature of the WSP base data processing whereby
radar returns from very weak gust front boundaries may be just strong enough to produce a line of coherent
velocity estimates, but not strong enough to generate a reflectivity thin line echo. Such disassociated
velocity thin lines have nearly always been found to be indicative of gust fronts.

The detectTLSDDZ functional template is jointly applied to both the gfBaseImages->sd and
gfBaseImages->dz images. This detector has no opinion where expanded stratiform rain is present (note
that the stratiform rain image used as a mask includes clutter breakthrough flagged by the WSP), or at
locations within short range of the radar. Following FTC, the interest image, together with the
LineStormBoostFactor and LineStormAngleTolerance parameters, is passed to function
BoostLineStormAlignedInterest, which uses the results from the line storm detector to boost interest
pixels that are aligned with and proximate to a line storm (see Section 2.2.7.12.1). Finally, confirming
interest score values (values > 127) are further enhanced by a factor of 1.25.

Figure 33 illustrates the processing of the TLSDDZ detector. In the example shown, the gust front is
visible only as a thin line of coherent inbound velocities oriented N-S and approaching the radar from the
west in the gfBaseImages->vRaw image shown in Figure 33b. The signal is too weak to produce a
corresponding thin line in the reflectivity image shown in Figure 33a. The velocity thin line is seen as a
line of relatively low velocity standard deviation as indicated by the dark pixels in the gfBaseImages->sd
image shown in Figure 33c. The resulting interest image after application of FTC is shown in Figure 33d.

Table 13. Default Parameters for the TLSDDZ Detector

Parameter Name Nominal Value Units

LineStormAngleTolerance 45 degrees

LineStormBoostFactor 1.5 unitless

ConfWeight 1.0 unitless

DisConfWeight 1.0 unitless
68

Kernel rotation angles: 0, 20, 40, 60, 80, 100, 120, 140, 160

Figure 32. Scoring functions and templates for the TLSDDZ velocity thin line with no reflectivity detec-
tor. Kernel #1 utilizes scoring functions 0, 1, 2, and 3, and is applied to the velocity standard deviation
image. Kernel #2 utilizes scoring functions 4 and 5 and is simultaneously applied to the reflectivity image.
Lower and upper X-axes of scoring functions are the integer-scaled pixel value.

Kernel #1: SD Kernel #2: DZ

3

0

0

0

1
1
1

0

0

0

2
2
2
2
2
2
2
3

3
2
2
2
2
2
2
2

0

0

0

1
1
1

0

0

0

5

4
4
4
4
4
4
4
5

5
4
4
4
4
4
4
4

69

(b)(a)

(d)(c)

Figure 33. Example output of velocity thin line with no reflectivity detector (TLSDDZ). (a) Reflectivity
image. (b) Low beam velocity image. The gust front can be seen as a thin N-S oriented line of inbound
velocities (blue) approaching from the west. (c) Velocity standard deviation image computed from (b). (d)
Final TLSDDZ interest image. See text for explanation of interest masking (red pixels). Data are from 07/
08/00 01:13:03 GMT at Albuquerque, NM.
70

2.3.10 Converge - Velocity Convergence Detector

2.3.10.1 Parameters

Table 14 lists the default parameter settings for the Converge velocity convergence detector. The
functional template scoring functions, kernel, and kernel rotation angles are shown in Figure 34.

2.3.10.2 Mask images

The following images are used as masks by this detector:

gfBaseImages->detMask
gfBaseImages->apMap
gfBaseImages->clutterMap

2.3.10.3 Description

Gust fronts are accompanied by sharp changes in wind speed and/or direction over a relatively short
distance. Where there is sufficient SNR and good Doppler velocity measurements, these convergent
boundaries can readily be observed in radar Doppler velocity data. However, when gust fronts propagate
away from generating thunderstorms into clear air, there may be insufficient sensitivity to produce good
Doppler measurements, and the velocity convergence signature may not be observed. Even given
sufficient signal returns, the velocity convergence signature tends to diminish whenever a gust front passes
over the radar and becomes radially aligned owing to a lack of a radial velocity component (Doppler
blindness). For these reasons, the disconfirming weight for this detector is currently set to zero, reflecting
the lack of skill in being able to able to state that a gust front is not present at all locations in the imagery.

The WSP Converge detector is a tandem detector that applies simultaneous templates to the
gfBaseImages->conv and gfBaseImages->lowResConv images previously computed during image
preparation as described in section 2.2.7.9. The gfBaseImages->lowResConv image is used in conjunction
with the 1-km scale gfBaseImages->conv image in order to help support recognition of broader-scale
convergence patterns that may not have a sharply focussed shear boundary.

Figure 35 shows example images summarizing the processing steps in the Converge detector. Before
performing the tandem FTC, a copy of the 1-km scale gfBaseImages->conv image is rescaled so that the
integer-scaled values fall within the required FTC input range of [0,255] (a similar rescaling operation was
immediately performed on the gfBaseImages->lowResConv image at the time it was created). CSKETCH
library function SKScaleArrayToBounds is used to linearly rescale the gfBaseImages->conv data such
that the integer representations of those delta-V values falling within the physical lower and upper bounds
given by gfParams->scaleBoundsConvCellConv (nominally 0 and 1.5 m/s), map to the interval [0, 255].
Integer encodings of delta-V values that exceed the maximum bound are set to 255, and values less than

Table 14. Default Parameters for the Converge Detector

Parameter Name Nominal Value Units

LineStormAngleTolerance 45 degrees

LineStormBoostFactor 1.5 unitless

ConfWeight 1.0 unitless

DisConfWeight 0.0 unitless
71

the minimum bound are set to 0 (i.e., the data are clipped). Figures 35d and 35e show rescaled convergent
shear maps plotted using gray scale.

In addition to the standard gfBaseImages->detMask masking, areas of missing velocity data as indicated
by nil pixels in the gfBaseImages->lowResConv, are also masked. Areas of AP breakthrough or clutter
residue contamination are optionally masked from convergence detection depending on the setting of the
gfConfig->doVMasking configuration parameter in the configWSP parameter file. If
gfConfig->doVMasking is "0", then no detector masking is performed. Otherwise, a mask is constructed
from the logical "OR" of the binary AP and clutter map images (gfBaseImages->apMap and
gfBaseImages->clutterMap) and supplied to the FTC operation to prevent opinions from being generated
in those areas. Figures 35h and 35i show the difference in the final interest images with the different
settings of gfConfig->doVMasking.

Following FTC, the resulting interest image is modified by calling function AdjustInterestByOrientation
to boost interest values whose associated best-match orientation angle are within 60 degrees of the radar’s
azimuth angle through the given point. For orientation angle differences of 20 degrees or less, the interest
values are boosted (multiplied) by 2.0. For angle differences between 20 and 60 degrees, the boosting
factor is a decreasing linear ramp from 2.0 to 1.0. Interest values whose orientation angle difference is
greater than 60 degrees are left unchanged. This boosting helps to maintain convergence interest as fronts
become radially aligned and the resulting Doppler measurements tend toward 0 m/s. The boosted interest
values are clipped to the maximum value given by gfParams->ftcImageRange (nominally, 256).

In a vertically sheared environment, the zero-Doppler line will curve with range, reflecting the change in
wind direction as the radar beam samples higher altitude winds. Thus, where the zero-Doppler line is
oriented across azimuths, there may be an apparent velocity convergence signature. To reduce the
probability of false alarms from vertical shear boundaries, a value of 128 is subtracted from the Converge
interest wherever the interest values coincide with areas of zero-Doppler lines as indicated in the binary
gfBaseImages->zeroCross image. The modified interest image is then clipped to a minimum allowable
interest value of 0.

Next, the interest image, together with the LineStormBoostFactor and LineStormAngleTolerance
parameters, is passed to function BoostLineStormAlignedInterest in order to boost interest pixels that are
aligned with and proximate to a line storm (see Section 2.2.7.12.1).

Finally, because convergence signatures are not reliably present in areas of low SNR, the detector is
prevented from expressing disconfirming opinions by calling GFSetElementsInIntervals to set to nil all
pixels in the interest image that fall within the disconfirming interest interval of [0, 127] and which fall
outside any precipitation areas (i.e., "non-weather" areas where gfBaseImages->stratRain has interest
values less than 128). Figure 35h shows the final interest image after the selective masking of
disconfirming interest values.
72

3

2
2
2
2
2
2
3

3
2
2
2
2
2
2

0

0

0
1

1
0

0

0

0

0

0

1

1

0

0

0

4

4
4
4
4
4
4
4

4
4
4
4
4
4
4

Kernel rotation angles: 0, 20, 40, 60, 80, 100, 120, 140, 160

Figure 34. Scoring functions and templates for the Converge velocity convergence detector. Kernel #1 uti-
lizes scoring functions 0, 1, 2, and 3, and is applied to the scaled 1-km convergence image. Kernel #2 uti-
lizes scoring function 4 and is simultaneously applied to the large-scale lowResConv convergence image.
Lower and upper X-axes of scoring functions are the integer-scaled pixel value.

Kernel #1: conv Kernel #2: lowResConv
73

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 35. Images illustrating processing steps in velocity convergence detector (Converge). (a) Reflectivity
image. (b) Low beam velocity. (c) Cleaned dual-beam velocity. (d) 1-km convergent shear map computed from
(b) after rescaling to interval [0, 255]. (e) Low resolution convergent shear map computed from (c) after similar
rescaling. (f) Initial interest image after tandem FTC. (g) Interest image after boosting areas of radially
aligned interest and suppression in areas of zero-Doppler lines. (h) Final interest image after "non-weather"
masking of disconfirming interest. (i) Final interest image as in (h), except with "VMasking" enabled to mask
areas of AP and clutter residue contamination. Data are from 5/1/00, 06:55:22 GMT at Austin, TX
74

2.3.11 ConvMotion - Velocity Convergence Motion Detector

2.3.11.1 Parameters

Table 14 lists the default parameter settings for the ConvMotion velocity convergence motion detector.
The functional template scoring functions, kernel, and kernel rotation angles are shown in Figure 36.

2.3.11.2 Mask images

The following images are used as masks by this detector:

gfBaseImages->detMask
gfBaseImages->apMap
gfBaseImages->clutterMap

2.3.11.3 Description

The ConvMotion detector identifies moving boundaries of convergent radial shear. It is actually a tandem
feature detector that simultaneously performs FTC on both a convergence time-differenced image as well
as the current low-resolution convergence image (gfBaseImages->lowResConv). Probing the current
low-resolution convergence image in addition to the 1-km scale convergence difference image helps to
ensure that the ConvMotion detector will still generate moderate positive interest in those cases where a
convergence zone exists, but is too broad to be seen in the motion of the 1-km scale convergence field
alone. For the same reasons discussed previously in the description of the Converge detector, the
disconfirming weight of this detector is currently set to zero.

Figure 37 summarizes the processing steps of the ConvMotion detector. First, the value of
gfBaseImages->convPrior>DataReady is checked to see if a prior convergence image exists for which to
construct the difference image. If there is no available prior image (as is the case for the first couple of
scans after the algorithm has started), then FTC is not performed and the returned interest image is simply
set to a moderately disconfirming interest value of 64. Otherwise, processing proceeds as follows.

The prior convergence image (gfBaseImages->convPrior) is pixelwise subtracted from the current
convergence image (gfBaseImages->conv), and the resulting difference values are stored in a local
SKArray (workConv). Since the ConvMotion detector only looks for lines of positive convergent shear
difference, all negative difference values in workConv are set to zero.

Before performing the tandem FTC, the workConv difference array is rescaled so that the integer-scaled
values fall within the required FTC input range of [0,255]. The CSKETCH library function
SKScaleArrayToBounds is used to linearly remap the workConv data such that values falling between the
minimum and maximum delta-V difference values given by gfParams->scaleBoundsConvCellConvMotion
(nominally 0 and 2.0 m/s) correspond to values of 0 and 255, respectively. Delta-V difference values that

Table 15. Default Parameters for the ConvMotion Detector

Parameter Name Nominal Value Units

LineStormAngleTolerance 45 degrees

LineStormBoostFactor 1.5 unitless

ConfWeight 1.0 unitless

DisConfWeight 0.0 unitless
75

exceed the maximum bound are set to the maximum bound, and values less than the minimum bound are
set to the minimum bound (i.e., the image data are clipped).

In addition to the standard gfBaseImages->detMask masking, areas of AP breakthrough or clutter residue
contamination are optionally masked from convergence detection depending on the setting of the
gfConfig->doVMasking configuration parameter in the configWSP parameter file. If
gfConfig->doVMasking is "0", then no detector masking is performed. Otherwise, a mask is constructed
from the logical "OR" of the binary AP and clutter map images (gfBaseImages->apMap and
gfBaseImages->clutterMap) together with a copy of the gfBaseImages->detMask and supplied with the
workConv image to the FTC operation to prevent opinions from being generated in those areas.

In similar fashion to the Converge detector, the resulting interest image is then modified by calling function
AdjustInterestByOrientation to boost radially aligned interest. Interest values whose associated
orientation angle differ from the radar azimuth angle by 20 degrees or less are boosted (multiplied) by 3.0.
For angle differences between 20 and 60 degrees, the boosting factor is computed as a decreasing linear
ramp from 3.0 to 1.5. Interest values whose orientation angle difference is greater than 60 degrees are left
unchanged. Again, this boosting helps to maintain convergence interest as fronts become radially aligned
and the resulting Doppler measurements tend toward 0 m/s. The boosted interest values are clipped to the
maximum value given by gfParams->ftcImageRange (nominally, 256).

Finally, interest values that coincide with zero-Doppler lines are reduced by subtracting 128 from the
ConvMotion interest wherever these occur. The modified interest image is then clipped to a minimum
allowable interest value of 0.

Next, the interest image, together with the LineStormBoostFactor and LineStormAngleTolerance
parameters, is passed to function BoostLineStormAlignedInterest in order to boost interest pixels that are
aligned with and proximate to a line storm (see Section 2.2.7.12.1).

As with the Converge detector, because convergence signatures are not reliably present in areas of low
SNR, the ConvMotion detector is prevented from expressing disconfirming opinions by calling
GFSetElementsInIntervals to set to nil all pixels in the interest image that fall within the disconfirming
interest interval of [0, 127] and which fall outside any precipitation areas (i.e., "non-weather" areas where
gfBaseImages->stratRain has interest values less than 128).

Finally, high interest values that may arise from partial pattern matches at the border between the radar
data and the nil pixels in the outer image mask are reduced by limiting all interest values to a maximum of
128 within a 1.5 km wide annulus whose maximum radius coincides with edge of the data being processed
(as given by the gfConfig->cartRadiusKM parameter). Figure 37i shows the final interest image after the
selective masking of disconfirming interest values.
76

3

2
2
2
2
2
2
3

3
2
2
2
2
2
2

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1
4

4
4
4
4
4
4
4

4
4
4
4
4
4
4

Kernel rotation angles: 0, 20, 40, 60, 80, 100, 120, 140, 160

Kernel #1: conv Kernel #2: lowResConv

Figure 36. Scoring functions and templates for the ConvMotion velocity convergence motion detector.
Kernel #1 utilizes scoring functions 0, 1, 2, and 3, and is applied to the scaled 1-km convergence image.
Kernel #2 utilizes scoring function 4 and is simultaneously applied to the large-scale lowResConv conver-
gence image. Lower and upper X-axes of scoring functions are the integer-scaled pixel value.
77

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 37. Images illustrating processing steps in velocity convergence motion (ConvMotion). (a) Prior
cleaned dual-beam velocity. (b) Current cleaned dual-beam velocity. (c) Current low-beam velocity. (d) Prior
1-km convergent shear map computed from (a). The gray scale ranges from 0 to 3 m/s. (e) Current 1-km con-
vergent shear map computed from (b). (f) Current low-resolution convergent shear map computed from (c). (g)
Convergence difference image produced by subtracting (e) from (d). (h) Interest image after adjustments for
radial orientation, zero Doppler lines, and line storms. (i) Final interest image after "non-weather" masking of
disconfirming interest (see reflectivity image in Figure 35a). Data are from 5/1/00, 06:55:22 GMT at Austin,
TX

(i)
78

2.3.12 DZSDMotion - Tandem Reflectivity/Velocity Thin Line Motion Detector

2.3.12.1 Parameters

Table 16 lists the default parameter settings for the DZSDMotion detector. The functional template
scoring functions, kernel, and kernel rotation angles are shown in Figure 38.

2.3.12.2 Mask images

The following images are used as masks by this detector:

gfBaseImages->detSiteMask,
gfBaseImages->stratRainExpanded,

2.3.12.3 Description

The DZSDMotion detector identifies reflectivity thin lines that are coincident with moving velocity thin
lines. Figure 39 illustrates the processing steps. Velocity thin lines are recognized as lines of spatially
coherent velocity estimates (low standard deviation), embedded in a background of noisy velocity
estimates associated with low SNR clear-air regions. Because the velocity thin line can only be observed
when embedded in a region of relatively low SNR, a mask is constructed in order to exclude moving
regions of precipitation from FTC processing. Specifically, the mask corresponds to regions where the
gfBaseImages->stratRainExpanded interest image has interest values greater than 128, and where the
associated Doppler value obtained from the low-beam velocity image (gfBaseImages->vRaw) is
essentially non-zero (|vRaw| > 0.5 m/s).

Once the mask has been prepared, the current and prior velocity standard deviation images are pixel-wise
subtracted to yield a motion difference image named sdMotion that serves as the input to FTC together
with the mask image (the velocity standard deviation images were previously computed as described in
section 2.2.7.6 and stored in variables gfBaseImages->sd and gfBaseImages->sdPrior).

Following FTC, interest features that are in close proximity and aligned with line storms (if any) are
boosted by calling function BoostLineStormAlignedInterest together with the LineStormBoostFactor
and LineStormAngleTolerance parameters. Next, SuprressSector is called together with the biasSector,
sectorBias, and steeringWindSectorBias parameters in order to possibly suppress interest values whose

Table 16. Default Parameters for the DZSDMotion Detector

Parameter Name Nominal Value Units

SteeringWindSectorBias 1.00 unitless

LineStormAngleTolerance 45 degrees

LineStormBoostFactor 1.5 unitless

BiasSector (90, 250) degrees

SectorBias 0.25 unitless

ConfWeight 1.0 unitless

DisConfWeight 0.0 unitless
79

motion as inferred from the DZMotion orientation image is unlikely to be associated with a gust front. See
Section 2.3.1 for a complete description of the suppression logic.

Following the dynamic interest adjustments, a further adjustment is made to highlight confirming interest
values (values greater than 127), by multiplying only the confirming values by a constant boost factor of
1.25.

Finally, high interest values that may arise from partial pattern matches at the border between the radar
data and the nil pixels in the outer image mask are reduced by limiting all interest values to a maximum of
128 within a 1.5 km wide annulus whose maximum radius coincides with edge of the data being processed
(as given by the gfConfig->cartRadiusKM parameter).
80

Figure 38. Scoring functions and templates for the DZSDMotion (reflectivity thin line with velocity thin
line motion) detector. Kernel #1 utilizes scoring functions 0, 1, 2, and 3, and is applied to the velocity stan-
dard deviation motion difference image. Kernel #2 utilizes scoring functions 4 and 5 and is simulta-
neously applied to the reflectivity image. Lower and upper X-axes of scoring functions are the
integer-scaled pixel value

Kernel rotation angles: 0, 20, 40, 60, 80, 100, 120, 140, 160

Kernel #1: SDMotion Kernel #2: DZ

3

0

0

0

1
1
1

0

0

0

2
2
2
2
2
2
2
3

3
2
2
2
2
2
2
2

0

0

0

1
1
1

0

0

0

5

4
4
4
4
4
4
4
5

5
4
4
4
4
4
4
4

81

(a) (b) (c)

(g) (h) (i)

Figure 39. Images illustrating processing steps in tandem reflectivity thin line/velocity thin line motion detec-
tor (DZSDMotion). A weak gust front is present near the left edge of the images. (a) Current reflectivity. (b)
Current low-beam velocity. (c) StratRainExpanded image used for mask. (d) Current velocity standard devia-
tion image (sd) computed from (b). (e) Prior velocity standard deviation image. (f) SDMotion difference image
formed by subtracting (e) from (d). (g) SDMotion image after setting negative differences to zero. (h) Interest
image after FTC. (i) Final interest image after boosting confirming interest scores by 1.5. Data are from 7/5/
99, 22:06:47 GMT at Albuquerque, NM

(e) (f)(d)
82

2.3.13 PrecipEdges - Precipitation Edge Detector

2.3.13.1 Parameters

Table 17 lists the default parameter settings for the PrecipEdges detector. The functional template scoring
functions, kernel, and kernel rotation angles are shown in Figure 40.

2.3.13.2 Mask images

The following images are used as masks by this detector:

gfBaseImages->detMask,
lineStormDetector->interestImg
DetectConverge->convergeImg
DetectConvMotion->convMotionImg

2.3.13.3 Description

The edges of low-reflectivity (stratiform) rain echo regions tend to generate false alarms owing to the fact
that reflectivity levels of such rain echoes overlap those found in gust front thin lines. When the region
outside of the stratiform rain is clear, then both the center line and one of the flanking strips of indices from
the reflectivity thin line functional template are contributing positive scores. This can also be a problem
for thin line motion detection, since the leading edge of a moving stratiform rain echo produces a positive
difference line in the difference image that is used as the basis of thin line motion detection. Consequently,
a functional template designed to look for edges is used to highlight the boundaries between stratiform rain
and clear air. The interest values are inverted, producing a map of low interest wherever precipitation
edges exist.

The PrecipEdges computation begins by setting up the mask that will be used to prevent interest generation
at inappropriate locations in the image. The mask is built in stages, starting with a copy of the basic
gfBaseImages->detMask that defines the outer border area of nil pixels beyond the radius of the actual
data. Additional pixels in the mask image are then set to nil in the following image regions:

1. Expected locations of long-term tracked gust fronts as indicated in the current Anticipation interest
image.

2. Areas of line storms as indicated by the current line storm interest image.

3. Areas where there is velocity convergence as indicated by the Converge or ConvMotion interest
images.

The relatively large amplitude scoring functions in the PrecipEdges detector can generate high scores at the
image edges from just a partial pattern match when the template extends partially into the area of nil values
in the outer mask region beyond the edge of the actual data. To counteract this edge effect, the input to
FTC is a copy of the gfBaseImages->dz reflectivity image with the nil values in the outer region beyond
the actual data replaced by a value of 45 (2.5 dBZ). With the scoring functions shown in Figure 40, this

Table 17. Default Parameters for the PrecipEdges Detector

Parameter Name Nominal Value Units

ConfWeight 0.0 unitless

DisConfWeight 4.0 unitless
83

means that negative (disconfirming) scores will be returned from the portions of the template that extend
beyond the actual weather data, and will result in reduction of the average interest score that is returned by
FTC near the edges of the data.

The modified reflectivity image is supplied along with the mask that was constructed as described above to
FTC. Note that the center of rotation for the template is not located at the geometric center of the kernel.
Therefore, the kernel must be rotated through a full 360 degrees at each image location in order to evaluate
all candidate match orientations. The output interest image will have confirming scores at the edges of the
precipitation regions. The regions of confirming scores are then expanded by performing a grayscale
dilation operation with a 3x3 kernel.

Finally, in order to make this into an interest image that can be combined in a negative fashion with the
other interest images, the interest values are flipped about the ambiguity value of 128 by multiplying each
interest value by -1 and then adding 255. Figure 41 shows example results of the PrecipEdges detector.
84

0
0
0
0
0

1
1
1
1
1

2
2
2
2
2

0
0
0
0
0

Figure 40. Scoring functions and template for the PrecipEdges detector. Lower X-axis of scoring
function is the integer-scaled pixel value. Upper X-axis is reflectivity in dBZ.

Kernel rotation angles: 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280,
300, 320, 340

3
3
3
3
3

3
3
3
3
3

85

Figure 41. Example computation of the precipitation edges interest image (PrecipEdges). (a) Reflectivity
image. (b) Modified copy of reflectivity image after setting outer edge values to 45 (2.5 dBZ). (c) Final Preci-
pEdges interest image after FTC and inverting the interest scores to produce the "negative" interest image.
Data are from 07/21/99 21:16:23 GMT at Austin, TX

(a)

(a) (b) (c)
86

2.4 Interest combination

The various interest images generated by the feature detectors are combined in two stages. First
SKAverageInterestImages is called to compute a weighted average for each pixel across all interest
images except the gfBaseImages->anticipation image. The weight assigned each interest pixel during the
averaging is determined from the intensity of the pixel. If the interest value falls within the disconfirming
interval of [0, 127], then the pixel value is multiplied by the disconfirming weight parameter for that
detector. If the pixel falls within the confirming interval of [128, 255], it gets the confirming weight. Nil
pixels are not included in the average.

For the second stage of interest combination, the pre-combined interest image computed above is assigned
confirming and disconfirming weights of 1.0, and SKFuzzyWeightedAverage is called to average the
pre-combined interest with the anticipation interest image. Anticipation interest values are assigned
averaging weights based on the weighting function nodes defined in the detector parameter file (see Table
7 for the default weight settings). The resulting weighted average representing the final combined interest
image is stored in the gfBaseImages->rawInterest variable.

2.4.1 Thin line smoothing

Thin lines in the combined interest image can be fragmented where gust fronts intersect with out-of-trip
weather, are obscured by storm cells, or have signals that are near the minimum detectable signal level.
The smoothThinLine function uses a "bow-tie" functional template (Figure 42) to smooth thin lines,
bridging the gaps between co-linear fragments and suppressing random, unaligned points of high interest
values. By placing more kernel elements at the ends than at the center, the bow-tie weights the influence of
the end regions over that of the center. Consequently, the bow tie generates high output interest scores for
an image point between two co-linear high interest segments, even if that point itself has a low input
interest value. Also, because of how the scoring functions are designed, the bow-tie filter suppresses and
amplifies co-linear interest values that are below and above the level of ambiguity
(gfParams->interestThreshold, nominally 127). An example input and output of thin line smoothing is
shown in Figure 43.)
87

1

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

0
0
0
0

Kernel rotation angles:

0, 10, 20, 30, 40, 50, 60,
70, 80, 90, 100, 110, 120,
130, 140, 150, 160, 170

Figure 42. Scoring functions and template for the "bow-tie" thin line smoother. Lower and upper X
axes of scoring functions are the is the pixel interest value.

Figure 43. Combined interest image before (left) and after thin line smoothing (middle). The rightmost
image is the corresponding orientation image. Data are from 12/11/00 20:10:53 GMT at Austin, TX
88

2.5 Extraction

The extraction phase begins after thin line smoothing of the combined interest image is completed. Gust
front chain candidates are extracted by applying a threshold to the smoothed, combined interest image,
eliminating resulting shapes that are too short, thinning the remaining interest bands to single-pixel wide
chains, extending the chains to recover valuable detection length lost during thresholding, establishing
correspondence with chains from prior detections, and finally, collecting the disjointed network of chains
into reasonable combinations of non-looping chains that represent individual gust fronts. Figure 44
illustrates the function call hierarchy for the extraction phase of MIGFA. The hierarchy is not exhaustive;
in particular, low-level functions from the CSKETCH library are omitted

 GFExtract
EliminatePoorShapes
SKThin
ExtendChains

MarkChainEndAndJunctionPoints
InitEndPointOrientations
BuildExtendSearchWindow

ExtractThinLines
MarkChainEndAndJunctionPoints
BuildSearchInfoTable
ExtractTerminalChains

GetTermChainFirstNeighbor
BuildChain

InitHorizVertDiagNbrIndices
SearchForJunctionPoint
SearchForChainPoint

ScoreGFChains
ExtractInternalChains

BuildChain
TwoPixelChainIsAReversal

ScoreGFChains
EstablishPointCorrespondence

FindCorrespondingPointInHistory
TestForCorrespondence
FindIndexOfNearestPoint

ComputePointAttributes
EstimateOrientationByDoppler

CollectBestChains
PruneWorstChains

FindAdjChains
CombineChains
BestChainMatch

ScoreChainMatch
SamePoint
ChainEndStats

UpdateChainEndStats

IsInternalChain
AdjChainRemove
SamePoint

RemoveLowAvgScoreIntChain
ResortInternalChains

Figure 44. Function call tree for the gust front extraction phase of MIGFA (see text for description).
89

2.5.1 Eliminating Poor Interest Shapes

Function EliminatePoorShapes applies a threshold of gfParams->interestThreshold (nominally, 127) to
the smoothed combined interest image to create a binary image of candidate gust fronts. The lengths of the
resulting elongated shapes are then computed. Contiguous regions of 1’s that are shorter than
gfParams->minRawShapeLength are reset to 0. The result of thresholding and pruning a smoothed,
combined interest image (Figure 45a) is shown in Figure 45b.

2.5.2 Thinning

Binary elongated shapes are thinned using an FTC implementation of homotopic thinning [5] implemented
by function SKThin in the CSKETCH library. Briefly, homotopic thinning is a binary pattern matching
technique that iteratively looks for pixel patterns that are characteristic of a shape that is not fully thinned
(i.e., one pixel in width), and removes a single later of pixels from the outside. When no more pixels can
be removed, the function stops. The result of this operation is shown in Figure 45c.

2.5.3 Chain Extension

The thinned chains of points are then extended along ridges of relatively high interest, using what is
essentially a road-following technique in function ExtendChains. At each marked endpoint, the
8-connected neighborhood (neighborhood of 8 surrounding pixels) is examined, looking for the pixel with
the maximum interest and whose orientation (found in the gfBaseImages->baseOrient image) is less than
the maximum deviation (defined by gfParams->extend1Params[2] - nominally, 41 degrees) from that of
the initial end point. If the maximum interest score is greater than or equal to the minimum interest score
given by gfParams->extend1Params[1] (nominally, 80), then the point is added to the chain, and the
process continues until a qualifying point cannot be found or the maximum number of extended points
given by gfParams->extend1Params[0] (nominally, 10) has been reached. The whole chain extension
process is repeated a second time by another call to ExtendChains with the gfParams->extend2Params
array, this time allowing points with lower interest values to be considered (nominally 48), but with a
much more restrictive angular deviation (nominally 11 degrees).

With normal chain extension, there are two "nearest" pixels within the 8-connected region that are
considered for addition to the chain. The two pixels chosen depend on the orientation of the chain at its
current end, and the extension direction given by the gfBaseImages->baseOrient image. If aggressive
chain extending has been enabled via the gfConfig->doAggressiveExtend parameter (this is enabled for the
WSP), then an additional third pixel on the "other" side of the initial pair is considered. This allows the
chain extension to "wander" a little more freely in search of a higher interest path to follow. The results of
the two rounds of chain extension can be seen in panels (d) and (e) of Figure 45.

After the "extend" operation, the image is re-thinned to eliminate any small clusters of pixels that may have
been introduced by the extension operations (Figure 45f).

2.5.4 Extracting Thin Line Chains

After chains have been extended outward through high interest areas, the resulting chains may be highly
branched and may even contain loops. Each network of chains is described as a graph -- a set of nodes
(junction points) that are linked together by edges (chains of points). Chain end points that are not found at
junctions are called terminal points. A chain having one or two terminal points is called a terminal chain;
otherwise it has two nodes as end points and is called an internal chain. Function ExtractThinLines
parses the chains into sets of internal and terminal chains that are stored and returned in linked lists of
GFChain data objects (Figures 45g and 45h). Function ScoreGFChains is called to compute chain score
values (total, minimum, average) for every internal and external chain based on the corresponding interest
values in the smoothed combined interest image (gfBaseImages->smoothedInterest).
90

2.5.5 Establishing Point Correspondence

Correspondence can be difficult to establish when two or more gust fronts collide; in such cases, a point in
the prior event that is nearest to a point in the current extracted chain is not necessarily the correct
corresponding point. MIGFA attempts to find the detected gust front point from the prior scan that has a
projected location (given propagation speed and direction estimates for that point) that is nearest to a
particular point in the current scan. If no such point in the prior event is found, then a point is assumed to
correspond to the closest point in the prior event. Once a corresponding point is found, the current point is
assigned the index of the corresponding point in the previous GFEvent (obtained from the GFEvent history
list gfRefData->eventHistory).

If the distance between the two corresponding points is too large, or if the distance moved for the two
points is inconsistent with prior history, then the point is unindexed again (the link is broken). Through the
index links, a point can be tracked backwards in time. The number of prior events through which a point
can be tracked is called its depth. A depth of "0" means that the point is unindexed. Once indexed, each
point is assigned various attributes including: coordinates, distance moved, direction moved, depth,
Doppler velocity value, interest value, and propagation speed. Whenever correspondence is established for
a chain point, the tracking depth is set to one more than the depth assigned to the corresponding prior
point.

Function EstablishPointCorrespondence is called twice: once with the list of terminal chains, and once
with the list of internal chains. Table 18 lists the parameters that are used by function
EstablishPointCorrespondence. See Appendix A.2 for brief descriptions of how each of the parameters
is used.

Table 18. Parameters Used By Function EstablishChainCorrespondence

Parameter Name Nominal Value Units

maxEventOneDimDistanceMovedKM 5.0 km

minCorrespondenceDepth 3 unitless

minDistanceMovedKM 3.0 km

maxOrientationChange 21 degrees

maxChangeInDistanceMovedKM 1.5 km

maxPctChangeInDistanceMoved 1.0 unitless

maxEventDistanceMovedKM 5.0 km
91

2.5.6 Collecting "Best Chains"

Function CollectBestChains is called to find, for each disjoint network of terminal and internal chains, the
combination of non-looping chains with the highest summed interest score (the highest scoring
combination is usually, but not always, the longest combination). An additional constraint is imposed to
favor the combining of segments that are moving consistently in terms of direction and propagation speed.
Consider the simple example shown in Figure 46. The most interesting combination of chains is
discovered by iteratively pruning away terminal chains. The basic operation is to find an internal node
having two or more terminal chains (e.g., node E in Figure 46). The terminal chain with the lowest score
(chain EG) is removed, leaving chain EF at node E. (If chain DE were found to be moving with a direction
and speed that were more consistent with EG than with EF, the EF would have been removed from the
search graph instead.) If the resulting pruned graph (Step 2) has an internal node with only one internal
chain (e.g., node E), then the internal node is removed and the internal and single remaining terminal
chains are combined (Step 3). This process continues until no more internal nodes with two or more
terminal chains are found. If at this point a network still contains more than one chain, then a loop exists
somewhere in the network (as in BCD in Step 3). A loop is broken by removing the internal chain with the
lowest summed interest score (CD). Pruning of terminal chains resumes, resulting in the removal of chain
BC in Step 5, the fusing of chains BD and DF in Step 6, and the fusing of chains AB and BF in Step 7. The
process is repeated until only one chain remains (chain AF in Step 7). If the resulting combined chain has
a score greater than a minimum threshold (gfParams->gfMinScore), then that chain is included in the
GFEvent for the current scan.

Once the highest scoring combined chain is discovered, its constituent edges are removed from the original
graph. The remaining graph structure is examined again (Step 8), looking for another maximally scoring
combined chain. Processing continues as long as combined chains with interest scores not less than
gfParams->gfMinScore (assume a value of 20 in this example) are extracted (edge EG with an interest
score of 20 is retained, the result of fusing chains BC and BD is rejected). Figure 45i shows the final
above-threshold combined chains. This completes the extraction process.
92

(a) (b) (c)

(d) (e) (f)

Figure 45. Chain extraction summary. (a) Smoothed combined interest image. (b) "Pruned" image after
thresholding and elimination of small interest shapes. (c) Thinned (single-pixel wide) chain image. (d)
Chain image after first round of extension. (e) Chain image after second round of extension. (f) Chain
image after re-thinning to single-pixel wide chain. (g) Terminal chains. (h) Internal chains. (i) Final
extracted chains. Data are from 7/08/98 21:08:17 GMT at Albuquerque, NM

(g) (h) (i)
93

Figure 46. Example extraction of most interesting chains from a simple graph structure. (See text for
explanation.)
94

2.6 Gust Front Analysis

GFAnalyze edits and smooths the gust front chains, subdivides chains that have segments exhibiting
different behaviors, computes the various wind estimates, applies heuristics to reject gust fronts exhibiting
inconsistent behaviors, and makes a final decision as to whether or not to report the gust front in the final
product output. The function call hierarchy for the gust front analysis stage (GFAnalyze) is shown in
Figure 47. The hierarchy is not exhaustive; in particular, low-level functions from the CSKETCH library
are omitted, as well as the function call hierarchy for the wind analysis (described later).

Before chain analysis begins, function GFBuildPointArray is called in order build a GFPointArray object
to store all of the chain points from the list of gust front chains in a single data structure. This data
representation is more efficient for many of the subsequent chain processing operations. The point array is
stored in gfEvent->gfPointArray for later reference.

 GFAnalyze
GFBuildPointArray
EditGustFronts

UnindexPointsWithInconsistentMotion
IndexZeroDepthPointsWithIndexedNghbrs
UnindexZeroDepthPointsWithZeroDepthNghbrs
FlipDirectionsNotMatchingNeighbors
GFBreakChainsAtDiscontinuities

GFDetectBreaksByDistance
GFDetectBreaksBySpeed
GFDetectBreaksByDirection
GFDetectBreaksByExternalAngle

DoChainSmoothing
SmoothChainAttribute

FillMissingChainAttribute
SmoothChainDirections

FillMissingChainAttribute
DeleteGFChains
BuildChainList
ProcessWindAnalysis
GFApplyHeuristics
MakeReportDecision
SummarizeWindAnalysis
MakeDisplayPredictions

Figure 47. Function call tree for the gust front analysis phase of MIGFA (see text for description).
95

2.6.1 Editing Gust Front Chains

Table 19 lists the default settings for parameters that are used in the chain editing process. Function
EditGustFronts uses several techniques to make point behavior more consistent over a local
neighborhood of chain points, and then breaks up single chains that have portions behaving in different
ways. The following functions are utilized to perform consistency editing of chain points:

1. Function UnindexPointsWithInconsistentMotion is called to unindex points that exhibit motion
characteristics (specifically, distance moved) that are not in line with the average motion for the
chain. If the motion of the point is more than gfParams->maxStdDevsMoved than the average
motion of all of the chain points, then the point is unindexed. Unindexing consists of setting the
tracking depth to 0 and the prior index to nil for the point in question.

2. Function IndexZeroDepthPointsWithIndexedNghbrs loops over chain points, looking for
points with tracking depth = 0. If a depth 0 point is bracketed by neighbors from the same chain
that have non-zero depth, then one of the non-zero depth points is arbitrarily chosen and its
attributes (with the exception of the location and interest score) are copied to the depth 0 point.

3. Function UnindexIndexedPointsWithZeroDepthNghbrs is called to loop over chain points,
unindexing points that are bracketed by zero depth points.

4. Function FlipDirectionsNotMatchingNeighbors flips by 180 degrees the current direction of
gust front points whose direction of motion is likely 180 degrees out of phase with neighboring
pixels. This is necessary because in some cases (especially for newly-detected or slow-moving
fronts), the direction of motion for some of the points may be 180 degrees ambiguous.

Following consistency editing, EditGustFronts attempts to break up chains that exhibit discontinuities in
various attributes. For example, differences in gust front propagation speed or direction can indicate that
two different fronts have been inappropriately merged into a single one and should be separated. This
operation is accomplished in function GFBreakChainsAtDiscontinuities by means of a consensus
approach using four different criteria for detecting discontinuities. A collection of 1-D feature detectors is
used, each detector looking for some indication of discontinuity and generating an interest line (a 1-D
interest image). The interest lines are averaged, and where the average interest values are large enough, the
chain is subdivided. Four functions are called to apply the chain breaking criteria:

1. Function GFDetectBreaksByDistance identifies locations where gust front chains should likely
be broken due to discrepancies in the distance moved by neighboring gust front points in the prior
scan. A 1-D array of distances moved by corresponding points in the previous scan is passed to the
CSKETCH library least squares derivative filter function SKLsqDerivFilter with a filter window
size of gfParams->breaksByWSize. The resulting derivative array is then converted to a 1-D
interest image by linearly mapping the derivative values within the range given by
gfParams->scaleBoundsBreaksByDist (a pair of numbers) to the interest interval of [0, 255]. The
interest image is assigned confirming/disconfirming averaging weights given by the
gfParams->weightsBreaksByDistance parameter.

2. Function GFDetectBreaksBySpeed determines locations where gust front chains should likely be
broken due to discrepancies in the speed of motion of neighboring gust fronts points in the prior
scan. A 1-D array of propagation speeds associated with corresponding points in the previous scan
is passed to SKLsqDerivFilter with a filter window size of gfParams->breaksByWSize. The
resulting derivative array is then converted to a 1-D interest image by linearly mapping the
derivative values within the range given by gfParams->scaleBoundsBreaksBySpeed (a pair of
numbers) to the interest interval of [0, 255]. The interest image is assigned confirming/
disconfirming averaging weights given by the gfParams->weightsBreaksBySpeed parameter.
96

3. Function GFDetectBreaksByDirection determines locations where gust front chains should
likely be broken due to discrepancies in the direction of motion of neighboring gust front points in
the prior scan. Two passes are made over the chain. The first looks at the direction of motion of 2
points nominally 6 nodes apart in the chain. If the points meet certain tracking depth criteria (1 or
greater) and have sufficiently different directions of motion (i.e., greater than
gfParams->breaksByDirCriterionAngle), a score is computed by multiplying the direction
difference by gfParams->breaksByDirFactor. Next, the index is found of the points within the
comparison window where the greatest jump in orientation between two consecutive pixels
occurred. The computed score is assigned to that index location in the interest image.

In the second pass, pairs of non-zero tracking depth point segments that are separated by segments
of zero depth points are examined. If the direction of motion of the last point of one segment
differs from the direction of motion of the first point of the next segment by more than 90 degrees,
and if this direction change is spatially persistent over the next 10 points, a high score is generated
by multiplying the large angle difference by gfParams->breaksByDirFactor to indicate a potential
chain break at a point between the 2 segments (as above, at the index of the point where the
greatest two consecutive pixel jump in point orientation occurred). The resulting interest image is
assigned confirming/disconfirming averaging weights given by the
gfParams->weightsBreaksByDirection parameter.

4. Function GFDetectBreaksByExternalAngle identifies locations where gust front chains should
likely be broken due to sharp "corners" seen in traversing the chain (e.g., rapid changes in the
direction of orientation of the chain). At every point in the chain, the external angle formed by the
point and its chain neighbors five pixels away on either side is computed. An interest score
indicating the likelihood that the chain should be broken at the centerpoint is computed by
multiplying the external angle by gfParams->breaksByExtAngleFactor. The score is halved if the
two "endpoints" of the window have motion attributes that indicate they will eventually intersect
(e.g., the front is converging on itself). The resulting interest image is assigned confirming/
disconfirming averaging weights given by the gfParams->weightsBreaksByExtAngle parameter.

Finally, after chain editing, function DoChainSmoothing is called to smooth the various chain point
attributes using spatial window averages over the chain. Function SmoothChainAttribute performs the
averaging of the distance-moved and speed attributes using parameter
gfParams->smoothAttributeWindowSize to govern the length of the averaging window. Function
SmoothChainDirections performs the averaging of the chain point directions using the
gfParams->smoothDirectionWindowSize parameter. The averagings are performed in two passes. The
first pass performs averaging and skips missing (nil) attributes; the second pass performs averaging again,
but subsequently fills the missing attributes (via function FillMissingChainAttributes) with an average of
the nearest two neighboring average values.

The initial chain list (whose points where copied to the gfEvent->gfPointArray array) is obsolete following
chain editing. A new chain list is rebuilt from gfEvent->gfPointArray by calling DeleteGFChains to
delete the obsolete chain list, and then calling BuildChainList to construct the updated chain list.

Before BuildChainList returns, and after rebuilding the chain list, function ScoreGFChains is called to
recompute score values (chain->score, chain->minScore, chain->avgScore) for each gust front candidate
chain based on the corresponding interest values in the gfBaseImages->smoothedInterest interest image.
97

2.6.2 Wind Analysis

MIGFA uses a consensus approach to estimating wind shift and wind shear values for detected gust fronts.
The consensus approach computes a weighted average of several estimates (each estimate based on a
different technique) for each windfield product. Along with the combined estimate for each product, a
weight or confidence value for the product estimate is also computed.

Figure 48 is the function call hierarchy for the wind analysis phase. Function ProcessWindAnalysis is the
processing driver for running the various wind estimators on each GFChain in the chain list. For each
GFChain, the wind estimation segment is determined by calling function GFChainCreateWindSegment.
The segment over which the analysis will be performed is chosen based on the distance of the front from
the airport reference point (ARP). If the front is more than gfParams->arpControlTimeSec seconds
(nominally 20 minutes) away from an airport control radius, gfParams->arpControlRadiusKM (nominally,
15 km), then MIGFA simply chooses a segment of length 2 * gfParams->windEstSegmentHalfLength
pixels centered about the front’s midpoint as the focal point for the wind analysis. Otherwise, if the nearest
point of a gust front is within gfParams->arpControlTimeSec seconds of the airport control radius, the
wind estimation segment is shifted to be centered on the point on the front that is closest to the ARP. Once
the wind analysis segment has been identified, function GFChainComputeWindSegmentStats is called
to compute the average speed, direction, and tracking depth over the wind estimation segment of the chain

Table 19. Parameters Used by Function EditGustFronts

Parameter Name Nominal Value Units

maxStdDevsMoved 1.5 km

breaksByWSize 6 pixels

scaleBoundsBreaksByDist (0, 0.43) pixels

weightsBreaksByDistance (1.0, 1.0) unitless

scaleBoundsBreaksBySpeed (0, 0.002) pixels/sec

weightsBreaksBySpeed (1.0, 1.0) unitless

breaksByDirCriterionAngle 45 degrees

breaksByDirFactor 4.266667 unitless

weightsBreaksByDirection (4.0, 1.0) unitless

breaksByExtAngleFactor 3.94 unitless

weightsBreaksByExtAngle (2.0, 2.0) unitless

smoothAttributeWindowSize 11 pixels

smoothDirectionWindowSize 5 pixels
98

(GFChain->windSegAvgSpeed, GFChain->windSegAvgDirection, and GFChain->windSegAvgDepth,
respectively).

Once the appropriate gust front segment has been identified, MIGFA conducts multiple windfield analyses
within three defined analysis regions as shown in Figure 49.

 ProcessWindAnalysis
GFChainCreateWindSegment
GFChainComputeWindSegmentStats
GFRunWindBehindEstmtrs

GFWindEstByNormal::RunEstmtrBehind
GetNormalPixelWindSpeedEst

GFWindEstByAnemometer::RunEstmtrBehind
EstimateByCenter

GFWindEstByHistory::RunEstmtrBehind
GetHistoricalChainWind

FindBestCorrespChain
GFRunWindInsideEstmtrs

GFWindEstByNormal::RunEstmtrInside
GetNormalPixelWindSpeedEst

GFWindEstByAnemometer::RunEstmtrInside
EstimateByCenter

GFWindEstByHistory::RunEstmtrInside
GetHistoricalChainWind

FindBestCorrespChain
GFRunWindAheadEstmtrs

GFWindEstByAnemometer::RunEstmtrAhead
EstimateAheadByCenter

GetHistoricalAirportWind
GetHistoricalAirportWindViaAnemometer
EstimateImpactDeltaTime

GFWindEstByHistory::RunEstmtrAhead
GetHistoricalChainWind

FindBestCorrespChain
GFRunDeltaVEstmtrs

GFDeltaVEstByShear::RunEstmtr
GFDeltaVEstByVecDiff::RunEstmtr

GFComputeVectorDeltaV
GFRunMaxDeltaVEstmtrs

GFMaxDeltaVEstByHistory::RunEstmtr
GFMaxDeltaVEstBySegment::RunEstmtr

GFFixCalmWindDirection

Figure 48. Function call tree for the MIGFA wind analysis stage (see text for description).
99

Wind estimates derived from the "winds ahead" analysis region are used for computing the wind shear
hazard (delta-V) across the front. Some wind estimators developed for other MIGFA variants (e.g. TDWR,
NEXRAD) analyze the radar Doppler measurements in a region just ahead of the front as defined by the
gfParams->windSamplingDistAheadKM parameter (nominally, 4 km). However, because the WSP often
lacks reliable Doppler velocity measurements in the clear air ahead of many gust fronts, the WSP MIGFA
does not utilize any Doppler-based wind estimation methods for that region, and the "wind ahead" region is
not strictly defined. Rather, the WSP MIGFA relies on current and historical distance-weighted airport
anemometer measurements for determination of the winds ahead (described later).

The "winds inside" analysis region is so named because of the association with being "inside" the thin line
echo region of many gust fronts. The winds in the thin line echo region are associated with the "nose" of
the outflow immediately behind the front. These can be stronger and more turbulent than the steadier
outflow winds further behind the front, and are analyzed primarily for purposes of computing the localized
wind shear (delta-V) across the frontal boundary. These winds are also used as part of the consensus for
the wind shift behind the front.

For estimation of the "winds behind", it is desirable to sample the winds at a distance behind the front that
is presumably representative of the persistent outflow winds. Airport runway planning needs have dictated
that a wind shift needs to persist for at least 10 minutes to warrant a runway change consideration. The
radar velocity data points analyzed for estimation of the "winds behind" are chosen based on the

Figure 49. Wind analysis regions for MIGFA gust front wind shift and wind shear estimation. For WSP,
the "winds behind" region is defined to be 0 minutes behind the front, so the "winds behind" region for
WSP MIGFA is the same as the "winds inside" region.
100

propagation speed of each point in the wind estimation segment and the value of the
gfParams->windSamplingTimeBehindSec parameter. Because many WSP gust front detections are based
on thin line echo signatures that lack good quality velocity measurements outside of the thin line echo
region, the WSP MIGFA is unable to reliably analyze the ideal region 10 minutes behind the front.
Instead, Doppler values inside the frontal boundary itself are analyzed by setting
gfParams->windSamplingTimeBehindSec to 0 for WSP. Note that for WSP this makes the "winds behind"
analysis region essentially the same as the "winds inside" region (described above).

A list of all available wind estimation methods is obtained from the windEstimationMethods parameter in
the parameter file referenced by the GF_EST_PARM_FILE environment variable (typically, this file is
named "estmtrParamsWSP". See Appendix A.4 for an example of this file). Note that the specification of
a particular estimator in the parameter file does not necessarily mean that it will be run for all three of the
analysis regions. Function GFAllocObjects (run at algorithm initialization as described in Section 2.1)
contains the logic that loads the appropriate wind estimator methods onto one of the three linked lists:
windAheadEstimators, windInsideEstimators, and windBehindEstimators. Table 20 lists the wind
estimators that are loaded by GFAllocObjects onto each of the three lists (provided they are also specified
GF_EST_PARM_FILE).

Functions GFRunWindBehindEstmtrs, GFRunWindInsideEstmtrs, and GFRunWindAheadEstmtrs
are called by ProcessWindAnalysis to run the selected estimators in each of the three analysis regions.
Each estimator returns a GFWind data object containing the resulting wind estimate and associated weight
value. The GFWind objects from each estimator run for the three analysis regions are packed into lists
(windBehindData, windInsideData, and, windAheadData). The lists of wind estimates are combined to
form consensus estimates of each wind quantity for each analysis region by calling
SKCombineWindEstimates. The resulting consensus wind estimates for each region are stored in the
windBehind, windInside, and windAhead variables of the GFChain being analyzed.

Consensus estimation of the wind shear hazard (delta-V) over the wind estimation segment is performed
by calling GFRunDeltaVEstmtrs to generate a list of delta-V estimates, and then calling
SKCombineWindEstimates to form the consensus. Similarly, function GFRunMaxDeltaVEstmtrs is
called to compute a list of maximum delta-V estimates over the entire front. The list of maximum delta-V
estimates is then combined using SKCombineWindEstimates to form the consensus maximum delta-V.
The consensus delta-V and maximum delta-V estimates are stored in the deltaV and maxDeltaV variables
of the GFChain being analyzed.

For the last stage of wind analysis, quality and consistency checks are conducted on the windBehind and
maxDeltaV consensus quantities. First, function GFFixCalmWindBehindDirection is called to enforce a
requirement that a weak windBehind estimate for a GFChain generally agrees in direction with the
estimate generated by the "ByNormal" estimator in the "winds behind" region (described later). If the
magnitude of the consensus windBehind estimate is less than gfParams->calmWindSpeed (nominally 1.5
m/s), and if the difference between the direction of the windBehind and the "behindByNormal" wind
estimates is greater than gfParams->calmWindAngleDiff (nominally, 60 degrees), then the consensus
windBehind estimate is set to the behindByNormal estimate. The second test requires that the deltaV not
exceed the maxDeltaV. If it does, then the maxDeltaV is reset to deltaV.
101

2.6.2.1 Descriptions of wind estimators

The following sections describe the various wind estimators that are employed to form the consensus
estimates of winds in each analysis region as well as the delta-V estimates.

2.6.2.1.1 "ByNormal" wind estimator (perpendicular wind model)

The "ByNormal" estimator is used for the "winds behind" and "winds inside" estimates. It assumes that
winds behind the gust front are perpendicular to the orientation of the gust front. Radial Doppler velocity
values vr within the analysis region are converted to horizontal wind speeds | V | using the relationship:

| V | = vr / cos θ

where θ is the viewing angle difference between the radar azimuth and the angle perpendicular to the
orientation of the gust front. This calculation is unstable for large θ which occurs when the gust front is
nearly aligned with a radar radial, so θ is constrained to a maximum of 60 degrees.

Function GetNormalPixelWindSpeedEst is called repeatedly to obtain a viewing angle adjusted wind
velocity (speed and direction) measurement and associated confidence weight at the requested
time-distance behind each gust front chain point. Since very slow moving gust front chains are more often
associated with false alarms than operationally significant gust fronts, the original Doppler velocity
measurement is not adjusted by the cosine of the viewing angle if the propagation speed of the chain point
is less than 1.5 m/s. As a sanity check, the returned wind estimate is limited to a maximum value of 40 m/
s. Under the perpendicular wind model, an initial value for the retrieved wind direction is simply taken to
be the propagation direction of the chain point.

GetNormalPixelWindSpeedEst computes an associated confidence weight for the wind velocity by
inputting the point’s corresponding propagation speed to a rising-S weight function (SKRisingS) with
nodes defined by gfParams->fuzzyNormalEstSpeed. This results in a weight value between 0 and 1. As
an additional sanity check, if the point is slow moving (propagation speed less than 1.5 m/s), and if there is
a conflict between the point’s propagation direction and the sign of the retrieved Doppler measurement,
then a sharp reduction in confidence is expressed by reducing the weight to 10% of its initial value. In
addition, the initial wind direction estimate (based on the point’s propagation direction) is flipped by 180

Table 20. Wind Estimators Used for Wind Analysis Regions

Estimator List Name Estimators

windAheadEstimators ByAnemometer, ByHistory

windInsideEstimators ByNormal, ByAnemometer, ByHistory

windBehindEstimators ByNormal, ByAnemometer, ByHistory

deltaVEstimators ByVecDiff, ByShear, ByHistory

maxDeltaVEstimators BySegment, ByHistory
102

degrees to reconcile the direction conflict. A final weight adjustment is made by multiplying the weight
value by one-half times the cosine of the viewing angle (θ).

At each point in the analysis region, the initial weight returned by GetNormalPixelWindSpeedEst is
further adjusted for tracking depth by multiplying the weight value by a scalar returned by indexing the
gfParams->depthWeightTable by the tracking depth, up to a maximum depth value of
gfParams->maxDepthWeightTableIndex.

A weighted average of the wind speed and direction values is then computed (avgSpeed, avgDir). The
individual pre-assigned weights of the wind values are also averaged (avgWeight). If no Doppler
measurements were available in the analysis region, then avgSpeed and avgDir are assigned the
propagation speed (propSpeed) and direction (propDirection) of the wind estimation segment midpoint,
and avgWeight is assigned a value of gfParams->windLowWeight (0.1). An initial weight factor
(weightFactor) that will be used to adjust avgWeight is set to the value of
gfParams->maxWeightBehindByNormal or gfParams->maxWeightInsideByNormal, as the case may be.

A number of limits and adjustments are then imposed on avgSpeed and avgWeight:

1. avgSpeed is limited to a minimum of gfParams->minNormalSpeed (nominally 2.57 m/s).

2. If avgSpeed is less than propSpeed, then avgSpeed is set to propSpeed and weightFactor is
halved.

3. If avgSpeed exceeds a maximum wind speed limit, Vmax, given by:

Vmax = gfParams->windBehindLimitFactor * propSpeed + gfParams->windBehindLimitOffset,

then avgSpeed is set to Vmax and weightFactor is halved.

4. The standard error of the individual cosine-adjusted wind speed values is input to a ramp plateau
weight function (SKRampPlateau) whose nodes are defined by
gfParams->fuzzyBehindByNormalError or gfParams->fuzzyInsideByNormalError as the case may
be. The resulting value (between 0 and 1) is used to scale weightFactor. If there were an
insufficient number of wind speed values to compute the standard error, then weightFactor is
scaled by multiplication by gfParams->windLowWeight. AvgWeight is then multiplied by the
adjusted weightFactor.

The final values for avgSpeed, avgDirection, and avgWeight are packed into a GFWind data object and
returned as the result of the "ByNormal" estimator. Table 21 lists the default settings for parameters
referenced by the "ByNormal" wind estimator.
103

2.6.2.1.2 "ByAnemometer" wind estimator

For a gust front that has just crossed the airport, an airport anemometer (such as the LLWAS centerfield
anemometer or ASOS) provides the most direct measurement of the near-surface winds behind the gust
front. Likewise, for a gust front that is approaching and is in close proximity to the airport, the
anemometer provides a good measure of the ambient winds ahead of the front and can be used in
estimating the wind shear hazard. However, representativeness of this measurement decreases with
distance from the location where the winds are to be estimated. Therefore, this estimate is given a large
weight when the wind sensor location (assumed to be the airport reference point) is close to the given wind
analysis region, and progressively lower weights with increasing distance. This estimator is used in all
three of the wind analysis regions ("ahead", "inside", and "behind"). Table 22 lists the default settings for
parameters referenced by the "ByAnemometer" wind estimator.

Using the "ByAnemometer" method to estimate winds ahead of the front

If the "ByAnemometer" method is being used to estimate the winds in the region ahead of the front, then
function EstimateAheadByCenter is called. This function estimates the winds ahead of a front given its
location with respect to a "center" location (in this case, the ARP). The function is supplied the current
gust front chain, the offset location of the ARP, and a maximum weight value given by
gfParams->maxWeightAheadByAnemometer.

Given an input gust front, it is first determined whether or not the gust front is approaching the supplied
center location. If it is, and if the front is greater than gfParams->gfImpactRadius from the center
location, then the current anemometer-based airport wind measurement (gfEvent->airportWind) is used as

Table 21. Parameters Used by the "ByNormal" Wind Estimator

Parameter Name Nominal Value Units

fuzzyNormalEstSpeed (0.0, 1.0, 2.0) m/s

depthWeightTable (0.01, 0.2, 0.5, 1.0) depth (integer)

windLowWeight 0.1 unitless

maxDepthWeightTableIndex 3 unitless

maxWeightBehindByNormal 1.0 unitless

maxWeightInsideByNormal 1.0 unitless

minNormalSpeed 2.57 m/s

windBehindLimitFactor 1.4 unitless

windBehindLimitOffset 7.5 m/s
104

an estimate of the winds ahead of the front. The distance requirement is needed in order to obtain a wind
measurement that is presumably unaffected by the approaching front.

If the front is not approaching, or is too close to the center location, then an attempt to retrieve a historical
anemometer-based wind estimate (priorAirportWind) is made by calling function
GetHistoricalAirportWind. Function GetHistoricalAirportWind searches back the through the event
history (gfRefData->eventHistory) until it locates a time when the midpoint of the wind estimation
segment for the front falls outside of gfParams->gfImpactRadius. It then sets priorAirportWind to the
airportWind from the retrieved historical GFEvent.

If the tracking history of a front is exhausted before being able to obtain a suitable historical GFEvent, then
function GetAirportWindViaAnemometer is called as an attempt to find an estimate of the winds ahead
of a gust front using historical anemometer data contained in gfRefData->anemometerHistory.
Specifically, the oldest available historical gust front point corresponding to the wind estimation segment
midpoint of the front is supplied to this routine, along with the time of the GFEvent containing the
historical point. Next, the time is computed at which the point would have been approaching the airport
but was outside the gfParams->gfImpactRadius, via function EstimateImpactDeltaTime. The
anemometer history is then searched for anemometer data from that time to form an estimate of the winds
ahead of the front. If no such data can be found, then a wind speed of zero is returned with a weight of
gfParams->windLowWeight (0.1).

GetHistoricalAirportWind then computes a weight factor that is a function of the time difference
between the time of the retrieved priorAirportWind and the current time. Specifically, the weight factor is
obtained by calling SKFallingS with the computed time difference (in minutes) and a set of falling-S
weight function nodes having values of 30, 60, and 120 minutes. This means that a priorAirportWind that
is less than 30 minutes old will have a full weight factor of 1.0, one that is 60 minutes old will have a
weight factor of 0.5, and one that is 2 hours or more old will have a weight factor of 0. The original weight
value for the priorAirportWind is adjusted (multiplied) by this weight factor before being returned as the
historical wind estimate to EstimateAheadByCenter.

EstimateAheadByCenter makes a final adjustment to the weight associated with the obtained wind
estimate, based on the distance of the front and the tracking depth of the front. If the front is too close or
too far away, or if the tracking depth is small, the weight will be reduced. An initial weightFactor is first
initialized to gfParams->maxWeightAheadByAnemometer. The weightFactor is then adjusted by
multiplying it by the weight returned by calling SKSPlateau with the distance of the front from the ARP
and the "S-Plateau" weight function nodes given by gfParams->fuzzyAheadByCenterDist. With the
default nodes, the S-Plateau will return a maximum weight factor of 1.0 for fronts that are between 6 and
10 km of the ARP. The weightFactor is further adjusted by multiplying it by the weight value obtained by
indexing gfParams->depthWeightTable by the depth of the wind segment midpoint (up to a maximum
depth of gfParams->maxDepthWeightTableIndex). Finally, the weight of the wind estimate to be returned
is multiplied by the weightFactor, with a limit of gfParams->windLowWeight.

Using the "ByAnemometer" method to estimate winds inside or behind the front

If the "ByAnemometer" method is being used to estimate the winds in the region "inside" or "behind" the
front, then function EstimateByCenter is called. This function takes the current airport wind
measurement, and adjusts its weight based on its appropriateness given the tracking depth of the front and
the location of the front with respect to a "center" location (in this case, the ARP). The function is supplied
the current gust front chain, the offset location of the ARP, the current airport wind
(gfEvent->airportWind), and a maximum weight value given by
gfParams->maxWeightInsideByAnemometer or gfParams->maxWeightBehindByAnemometer as the case
may be.
105

Given the current gust front chain, it is first determined whether or not the gust front is approaching the
supplied center location (i.e., the ARP). If it is approaching, a weight of zero (i.e. an estimate which will
be entirely ignored) is returned, as this method of wind estimation is only applicable in cases where the
front is moving away from the radar. If the front is not approaching, the winds via anemometer data will
reflect conditions behind the front, so a weight factor is computed based on the distance between the wind
segment midpoint and the "center" location; the shorter the distance, the greater the weight.

The distance weight factor is computed by calling SKSPlateau with the distance of the wind segment
midpoint from the ARP and the "S-Plateau" weight function nodes given by
gfParams->fuzzyEstimateByCenterDist. With the default nodes, the S-Plateau will return a maximum
weight factor of 1.0 for fronts that are between 3 and 6 km of the ARP.

A tracking depth-based weight factor is separately obtained by indexing gfParams->depthWeightTable by
the depth of the wind segment midpoint (up to a maximum depth of
gfParams->maxDepthWeightTableIndex).

The returned weight value is the product of the distance and tracking depth-based weight factors multiplied
by gfParams->maxWeightInsideByAnemometer or gfParams->maxWeightBehindByAnemometer as the
case may be.

Table 22. Parameters Used by the "ByAnemometer" Wind Estimator

Parameter Name Nominal Value Units

maxWeightAheadByAnemometer 1.0 unitless

maxWeightInsideByAnemometer 1.0 unitless

maxWeightBehindByAnemometer 1.0 unitless

gfImpactRadius 6.0 km

windLowWeight 0.1 unitless

fuzzyAheadByCenterDist (1, 3, 6, 10, 15, 40) km

fuzzyEstimateByCenterDist (1, 2, 3, 6, 10, 20) km

depthWeightTable (0.01, 0.2, 0.5, 1.0) depth (integer)

maxDepthWeightTableIndex 3 unitless
106

2.6.2.1.3 "ByHistory" wind and delta-V estimator (persistence model)

The consensus wind estimate from the previous processing interval can be used both as a default value
(assuming persistence) and as a dampening mechanism when averaged with other wind estimates. The
weight assigned to the persistence estimate is computed as a fraction of the prior consensus weight,
depending on how close the attributes (proximity and propagation direction) of the previous gust front
chain match the current one. The "ByHistory" estimate is a component of the consensus wind estimate for
for all three of the wind analysis regions ("ahead", "inside", and "behind"). It is also used as an estimator
for the deltaV and maxDeltaV. Table 23 lists the default settings for parameters referenced by the
"ByHistory" wind estimator.

Function GetHistoricalChainWind is called to retrieve the historical wind estimate. For a given gust
front chain, the wind estimation segment midpoint for the front is examined. Due to the point
correspondence routines executed previously, this point may have an associated point from a prior scan. If
it does, then all of the gust front chains from the prior scan are examined by function
FindBestCorrespChain to determine which one most likely corresponds to the current gust front. The
desired type of wind estimate ("ahead", "behind", etc.) of this prior-time gust front chain is taken to be a
"historical" estimate of the same type of wind for the current front. If the current front’s wind segment
midpoint had no prior point (e.g. has not been tracked prior to the current scan), a zero wind is returned (a
GFWind object which has all fields set to zero).

Once a historical estimate has been found, a weight factor is computed by adjusting the weight of the
historical estimate based on the distance between the wind segment midpoints of the current and historical
gust front chains, and the difference in the direction of motion. The distance-based weight factor
(weightFactor1) is computed by calling SKFallingRamp with the distance (in km) and the falling ramp
function nodes given by gfParams->fuzzyHistChainDist. The value for weightFactor1 returned by
SKFallingRamp is limited to a minimum value of 0.1. The second propagation velocity-based weight
factor (weightFactor2) is computed by calling SKFallingRamp with the angle difference between the
propagation directions of the current and historical previous wind segments, together with falling ramp
function nodes given by gfParams->fuzzyHistChainAngle. The value for weightFactor2 is limited to a
minimum value of 0.001. The combined weight factor returned by GetHistoricalChainWind for the
retrieved historical wind estimate is taken to be the product of the original consensus weight value for the
historical wind estimate and the two weight factors, weightFactor1 and weightFactor2.

The final weight value for the wind estimate returned by the "ByHistory" estimator is then computed by
multiplying the weight factor from GetHistoricalChainWind by the maximum weight parameter for the
particular region (or quantity) being analyzed (i.e., gfParams->maxWeightAheadByHistory,
gfParams->maxWeightInsideByHistory, gfParams->maxWeightBehindByHistory,
gfParams->maxWeightDeltaVByHistory, or gfParams->maxWeightMaxDeltaVByHistory).
107

2.6.2.2 "ByShear" delta-V estimator

The "ByShear" delta-V estimator retrieves values from the dilated shear map (gfBaseImages->convD77)
that correspond to pixels in the wind estimation segment of the gust front chain, and returns the delta-V
value corresponding to a parameter percentile of the delta-V distribution in the wind estimation segment.

As each delta-V value is retrieved from the shear map, a weight is computed as the cosine of the angle
difference between the radar azimuth of the point and the propagation direction of the point. This results in
low weights being assigned for delta-V values from points that are moving perpendicular to the radar line
of sight. The distance from the radar of each retrieved delta-V sample is also computed. After all of the
delta-V values corresponding to the wind estimation segment have been retrieved from the shear map, the
standard deviation (stdDev) is computed.

The delta-V values are then sorted in increasing order, and the sample corresponding to the
gfParams->percentileDeltaVByShear percentile in the distribution is selected as the delta-V estimate.

If the delta-V value is greater than 5.0 m/s, then a weight of gfParams->maxWeightDeltaVByShear is
assigned.

Otherwise, the weight that was computed for the retrieved delta-V value based on the direction of
movement with respect to the line of site is used as an initial weight value that is adjusted (via
multiplication) by two weight factors: one that is based on the standard error of the delta-V values, and one
that is based on the distance of the values from the radar. The standard error weight factor (factor1) is
computed by applying a falling-S weight function to the standard error (stdDev / sqrt(N)). The falling-S
weight function nodes are defined by parameter gfParams->fuzzyDeltaVByShearError. The distance
weight factor (factor2) is computed by calling SKSPlateau to apply an S-Plateau shaped weight function
with nodes defined by parameter gfParams->fuzzyDeltaVByShearDist.

Table 24 lists the default settings for parameters referenced by the "ByHistory" wind estimator.

Table 23. Parameters Used by the "ByHistory" Wind and Delta-V Estimator

Parameter Name Nominal Value Units

maxWeightAheadByHistory 1.0 unitless

maxWeightInsideByHistory 1.0 unitless

maxWeightBehindByHistory 1.0 unitless

maxWeightDeltaVByHistory 1.0 unitless

maxWeightMaxDeltaVByHistory 1.0 unitless

fuzzyHistChainDist (10, 20) km

fuzzyHistChainAngle (90, 135) degrees
108

2.6.2.2.1 "ByVecDiff" delta-V estimator (wind vector difference)

With this estimator, the delta-V across the front is computed using the previously computed consensus
estimates obtained for the "behind" and "inside" regions of the front. Figure 50 illustrates the vector
geometry. The delta-V is computed as the magnitude difference between the winds immediately behind
the front (the "inside" winds), Vb, and the vector component of the wind ahead of the front, Va, that is

parallel to Vb (labelled Va
’). Note that depending on the actual amount of wind shear, this estimator is less

likely to accurately capture the 1-km interval change in velocity across the front, since it measures only the
end-to-end velocity difference across a relatively large distance, and is insensitive to the velocity gradient
of the front across the desired 1-km distance.

After calling GFComputeVectorDeltaV to compute the vector difference delta-V estimate, an initial
weight for the delta-V estimate is computed as the minimum of the windAhead and windInside weights.
The final weight value is the product of this initial weight and the maximum weight given by
gfParams->maxWeightDeltaVByVectorDiff (nominally, 1.0).

Table 24. Parameters Used by the "ByShear" Delta-V Estimator

Parameter Name Nominal Value Units

percentileDeltaVByShear 0.75 unitless

maxWeightDeltaVByShear 0.1 unitless

fuzzyDeltaVByShearError (1, 2, 10) m/s

fuzzyDeltaVByShearDist (0, 1, 3, 10, 20, 60) km

Va

Va
’

Vb

∆V = |Vb| - |Va
’|

Gust Front

Figure 50. Illustration of vector difference method for computing the delta-V (∆V) across a gust front.
109

2.6.2.2.2 "ByHistory" delta-V estimator

See Section 2.6.2.1.3.

2.6.2.2.3 "BySegment" maximum delta-V estimator

This is a very simple method which merely copies the previously-computed combined deltaV estimate
(deltaV) of the input gust front chain and adjusts the weight of the estimate. That deltaV estimate was
computed over the wind estimation segment, hence the name of this method. The weight that is returned is
simply the weight of the consensus deltaV multiplied by the maximum weight given by
gfParams->maxWeightMaxDeltaVInSegment (nominally, 1.0).
110

2.6.3 Heuristics

Heuristics are functions that invoke rules to eliminate or add further support to candidate gust front chains,
making use of knowledge of typical gust front behavior. The set of heuristics that can be used (essentially,
functions that implement rules) are defined by the TCL parameter Heuristics in the parameter file
referenced by the GF_HEU_PARM_FILE environment variable (typically named "heuristicParamsWSP").
The methods named by the Heuristics parameter are loaded at startup by GFAllocObjects (see Section
2.1) into a global list variable named heuristics. See Appendix A.5 for an example of this file.

Function GFApplyHeuristics is called by GFAnalyze to invoke the heuristic methods that have been
loaded onto the heuristics list. For every chain in the list of candidate chains, four heuristics are currently
run: ChainLengthSmall, InterestingDeltaV, SideLobeChain, and ChainLagsBhdArpWinds. Each of these
methods returns a boolean variable, unindex, that indicates whether the entire chain is to be unindexed
(some of the heuristics are designed to perform their own conditional unindexing of selected points within
a chain, and will return a value of false for unindex). If an entire chain is to be unindexed,
GFApplyHeuristics will loop over every point in the chain, setting the priorIndex to nil and the depth to 0.

Table 25 lists the default parameters for the heuristics.

Following is a brief description of each of the heuristics:

2.6.3.1 ChainLengthSmall

If the indexed (non-zero depth) chain length is less than gfParams->minIndexedChainLength, the entire
chain is unindexed (depth set to 0).

2.6.3.2 InterestingDeltaV

The overall chain interest score of a gust front chain (chain->score) is increased as a function of the
convergence strength (delta-V) of the front. First, the smallest delta-V estimate of the chain
("deltaVByVectorDiff" or "deltaVByShear") is chosen for consideration. If its associated confidence
weight is greater than gfParams->minDeltaVWeight, then function SKRisingRamp is called to compute a
scale factor using the rising ramp function nodes defined by gfParams->fuzzyInterestingDVDV. The scale
factor is multiplied by 2 and then limited to a minimum value of 1.0. The chain->score is then multiplied
by the scale factor.

2.6.3.3 SideLobeChain

High reflectivity weather at close range can produce strong signals which show up in sidelobes of the
ASR-9 antenna pattern. This produces ghost echoes located identical range intervals, but significantly
displaced in azimuth from the primary weather echo. The smearing of the signal by the sidelobes results in
an azimuthal arc of low reflectivity echoes and a corresponding arc of coherent Doppler velocity estimates
having the same Doppler velocity sign and magnitude as the primary weather echo source. The arc may

Table 25. Default Parameters Used by Heuristics

Heuristic Parameter Name Nominal Value Units

ChainLengthSmall minIndexedChainLength 11 pixels

InterestingDeltaV minDeltaVWeight 0.0075 unitless

InterestingDeltaV fuzzyInterestingDVDV (0.0, 10.0) m/s
111

subtend more than 180 degrees and its occurrence is generally limited to weather reflectivities greater than
40 dBZ occurring within 20 km of the radar. The sidelobe returns are typically less than 0 DBZ, but have
been observed as strong as 5 dBZ. The reflectivity and annular range extent of the sidelobe returns are
comparable to those expected for gust front reflectivity thin lines and can therefore be a potential source of
false detections. As the high intensity weather approaches, the radius of the associated sidelobe ring
decreases. Thus, a gust front chain that has resulted from detection of a sidelobe echo will have
propagation directions that reflect this behavior. Figure 51 shows a particularly strong occurrence of
sidelobe contamination. In this case, the contamination is apparent in both the reflectivity and low-beam
velocity data.

Gust front chains that are associated with sidelobe contamination are identified by examining the chain
point propagation directions for the first, middle, and last points on the chain. If the propagation direction
difference between the first and last point is greater than 40 degrees (implying large convergent or
divergent front propagation), and if the propagation directions of the first, middle, and last points are all
within 14 degrees of radial alignment with the ASR-9, then the chain is considered to be a sidelobe
artifact, and the entire chain is unindexed.

Figure 51. Example of sidelobe contamination in ASR-9 WSP reflectivity (DBDZ) and velocity (LBV)
images. Sidelobe contamination appears as a broad ring of slightly elevated reflectivity values and a cor-
responding ring of lower Doppler variance (compared to clear air noise). In this example, the rings can
be seen at a range of 13 km. Range rings are in km, reflectivity in dBZ, and Doppler velocity in m/s.
112

2.6.3.4 ChainLagsBhdArpWinds

Function GFChainLagsBhdWinds unindexes chain points approaching the radar whose point movement
does not indicate convergence with respect to the airport wind. For each point in a gust front chain, the
propagation speed and direction are obtained. Function SKPointApproachingLocation is called to
evaluate the propagation direction and location of a gust front chain point to determine if the point is
approaching the radar. If the point is approaching, and the distance of the point from the radar is less than
20 km, and the propagation direction of the point is within 60 degrees of the radar azimuth of the point,
then the point is to be considered as a candidate for unindexing. Function GFComputeVectorDeltaV is
then called to compute the vector difference of the chain point propagation velocity and the airport wind
(gfEvent->airportWind) . If the vector difference (delta-V) is negative, then there is divergence, and the
point is unindexed (i.e., the priorIndex is set to nil and the depth is set to 0).

2.6.4 Making the Final Report Decision

Function MakeReportDecision is called by GFAnalyze with the list of candidate gust front chains in
order to subject the chains to a final series of tests that will decide whether each candidate front is to be
reported or not. The decision is based on multiple factors, including the overall interest score of the front,
how long the front has been tracked (the historical depth), the propagation speed of the gust front, and its
strength (delta-V). Briefly, a front is not reported if:

1. The interest score is low and the front has not been tracked long enough (tracking depth test).

2. The number of indexed points with prior tracking history is too small (indexed length test).

3. The front has a low-confidence delta-V estimate and is not near the airport
(delta-V distance test).

4. The delta-V as a function of the propagation and wind shift speeds is too low (delta-V speed test).

5. The reportable gust front length after pruning of low-confidence points is too short (reportable
length test).

MakeReportDecision starts by initializing a local variable reportDecision to zero (thereby assuming
initially that the front will not be reported). Each of the five tests executed in the order listed above results
in a revision of reportDecision to a value of 0 or 1. The final value of reportDecision is assigned to
chain->display before leaving function MakeReportDecision. Table 26 lists the default settings for the
parameters involved in MakeReportDecision. Details of the report decision tests follow.
113

2.6.4.1 Tracking depth test

Low confidence detections (i.e., fronts with a low interest score) require a longer tracking history before
they are reported. The chain being tested is passed to function RequiredChainDepth to compute the
minimum required tracking depth for the chain based on the overall chain interest score. The required
depth is obtained by comparing the chain->score against decreasing score thresholds ordered by
increasing depth index in one of two parameter look-up tables:
gfParams->depthThresholdTableWithNoDV, and gfParams->depthThresholdTableWithDV.

The choice of look-up table is determined by the strength and confidence (the weight) of the consensus
delta-V estimate. If the delta-V weight is less than the parameter gfParams->minDeltaVWeight (indicating
very low confidence) or if the delta-V value is less than the minimum reportable delta-V as given by the
last element of gfParams->decisionMinDeltaV (nominally 2.57 m/s), then the delta-V is weak or has low
confidence, and gfParams->depthThresholdTableWithNoDV is chosen as the look-up table. This table has
lower score thresholds for each depth than the gfParams->depthThresholdTableWithDV table that is
otherwise chosen. Given the chain->score, the required depth is the index of the lowest ordered entry in
the depth table (highest score) that is exceeded by the chain score value. The chain is flagged as "reported"
(reportDecision = 1) if the chain->windSegAvgDepth is greater than or equal to the required depth.

Table 26. Default Parameters Used by MakeReportDecision

Tests Parameter Name Nominal Value Units

Tracking depth test depthThresholdWithNoDV
(100000, 6800, 4800,

3900, 3000, 0)
interest
score

Tracking depth test,
Indexed length test

depthThresholdWithDV
(100000, 7000, 5000,

4000, 35000, 0)
interest
score

Tracking depth test,
Delta-V speed test

decisionMinDeltaV

(6.0 , 6.0 , 6.0, 6.0 ,
 6.0 , 6.0 , 5.0 , 5.0 ,
 5.0 , 5.0 , 5.0 , 4.0 ,
 4.0 , 4.0 , 4.0 , 4.0 ,
 3.0 , 3.0 , 3.0 , 3.0 ,
 3.0 , 3.0 , 3.0 , 3.0 ,
 3.0 , 3.0 , 2.57, 2.57,
2.57, 2.57, 2.57, 2.57,
2.57, 2.57, 2.57, 2.57)

m/s

Delta-V distance test gfImpactRadius 6 km

Delta-V distance test minDeltaVWeight 0.0075 m/s

Reportable length test minReportLength 16 pixels
114

2.6.4.2 Indexed length test

The chain under test is passed to function GetIndexedPoints which, if the chain->score exceeds the
minimum score contained in the last element of the gfParams->depthThresholdTableWithDV, returns the
number of points in the chain that have a tracking depth that is 1 or higher. Otherwise, if the chain->score
is too low, the number of indexed points is simply set to zero. If the number of indexed points returned by
GetIndexedPoints is less than or equal to 7, then the indexed length of the chain is too small and
reportDecision is consequently set to zero.

2.6.4.3 Delta-V distance test

If the nearest point of the candidate gust front is greater than gfParams->gfImpactRadius (nominally, 6
km) from the airport, and if the weight of chain->maxDeltaV is less than gfParams->minDeltaVWeight,
then the chain is not reported (reportDecision = 0).

2.6.4.4 Delta-V speed test

The final delta-V test is based on the minimum of the front’s propagation speed and the speed of the winds
behind the front. The propSpeed is obtained from chain->windSegAvgSpeed, and the speed of the wind
behind the front (speedBehind) is obtained from chain->windBehind. The minimum of the propSpeed and
the speedBehind is multiplied by 10 and rounded to the nearest integer to generate an index that is applied
to the gfParams->decisionMinDeltaV table. The table returns a minimum delta-V threshold (dvThresh).
(The gfParams->decisionMinDeltaV table is a list of delta-V values that decrease with increasing speed
index. Therefore, faster moving fronts have a lower minimum delta-V threshold.)

If the chain->deltaV is less than dvThresh, then reportDecision is set to 0. In addition, the more drastic
step is taken of unindexing the front in order to avoid generating a tracking history for the front. The
unindexing consists of setting the priorIndex to nil and depth to 0 for the chain, and setting the
chain->windSegAvgDepth to 0.

2.6.4.5 Reportable length test

The final test requires that the reportable length of the front (i.e., the length of all points for which tracking
history is sufficient to allow position predictions to be made), exceeds a minimum length given by
gfParams->minSDPredictionDepth. Function PredictFrontAtTime (described in more detail in the next
section) is called with a requested prediction time interval of 0 minutes. With a zero-minute prediction
interval, no point extrapolations are made, but logic that removes low confidence, zero-depth chain
fragments near the ends of a gust front chain is executed. If the number of remaining chain points after
calling PredictFrontAtTime is less than gfParams->minReportLength, then the chain is not reported
(reportDecision = 0).
115

2.7 Predictions (position forecasts)

The extracted event, containing all gust fronts detected for the volume scan, is used to make predictions of
where the points having sufficient depth and interest are likely to be at some time in the future. Given the
direction moved, the propagation speed, and the current coordinates of a point, a new coordinate is
computed for some time in the future.

Function MakeDisplayPredictions is called by GFAnalyze to generate a complete set of 1-minute
interval predictions for each chain in the list of chains for the current event. The number of predictions
generated is governed by the gfParams->numPredictionTimes parameter (nominally, 36). For each
prediction interval, a prediction chain of type GFPredChain is computed by function
PredictFrontAtTime.

For every point in the chain, PredictFrontAtTime checks to make sure that the point’s tracking depth is
greater than gfParams->minSDPredictionDepth. If the depth is sufficient, then the point is added to a list
of valid depth points. The current default setting for the minimum depth is zero, so initially all points on
the chain are put on the list (extrapolations can still be made for depth zero points because previous chain
attribute smoothing operations fill in the missing propagation information with averages of nearby chain
values).

Function PruneBadTerminalPoints is called by PredictFrontAtTime to iteratively prune away short
segments of zero-depth points near the end of the gust front chain where tracking is often less reliable (e.g.,
there may be many zero-depth points interspersed with positive-depth points in cases where gust front
length increases from scan to scan). The routine is called twice - once for each end of the chain.

Function BuildPredictionChain is then called to actually fill in a gust front prediction for the particular
prediction time interval. The input list of valid depth detection points are translated forward according to
their individual propagation velocities. Then, duplicate points are removed and small gaps filled in via
straight lines (larger gaps will remain unfilled). Finally, duplicate prediction chain points that may have
been introduced by the filling are again purged from the list, before returning the fill gust front prediction
chain.

2.8 Updating the image history

The last operation prior to output is to update the image history lists that are used to supply prior images
for operations such as motion differencing. Function GFBuildImageHistory is called by the main
MIGFA driver to update the image histories. The updated histories include: gfRefData->dzHistory
(reflectivity image history), gfRefData->vHistory (velocity image history), gfRefData->convHistory
(convergence image history), and gfRefData->sdHistory (velocity standard deviation image history). Each
of the image histories is hard-limited to a maximum of 3 images. Each time a new image is added, the
oldest one is deleted from the history list.

2.9 Output

As summarized in Section 1.4, MIGFA has a primary product output stream, an optional archival output
stream, and a diagnostic analysis display stream.

2.9.1 Analysis Display Output

If the optional MIGFA analysis display is running (migfaDisplay), then selected image arrays computed
during processing are displayed at the end of the processing cycle just prior to product output (see Figure
2).
116

Given a list of all available images (contained in the global imageListAll variable), and the list of image
names that the display daemon knows about (global displayList), function BuildImageDisplayList is
called to create a sublist of matching image names (matchedDisplayList) that is passed to function
DisplayImages for display. Overlay graphics are then added to selected image windows. The candidate
chains are displayed by function GFDrawDetections in the image window labelled "CANDIDATES".
The final reported current locations, and associated 10- and 20-minute predictions are displayed by
function GFDrawPredictions in the image window labelled "PREDICTIONS".

The latest airport anemometer measurement stored at the top of the gfRefData->anemometerHistory is
displayed on the PREDICTIONS window by function DisplayAirportWind. An single informational
string is constructed and at the top of the analysis display by function SetDisplayVar. The informational
string contains:

1. Scan time

2. Seasonal sensitivity mode setting (summer vs. winter)

3. Stratiform rain and storm cell precipitation coverage numbers

4. Regional wind speed and direction (gfEvent->regionalWind) as computed from the Doppler
velocity data by GFComputeVAD (Section 2.2.7.3)

2.9.2 Product and Archive Output

Handler routines to perform output formatting and transmission for the product and archival streams are
assigned by the OpenOutputs function during algorithm initialization. Function OutputGFFeatures is
the output handler assigned to gfConfig->outHandler (a function pointer variable) for output of end-user
product records only. It extracts the gust front detection and forecast information from the current
GFEvent data object, and packs and sends the various data records as described in Appendix B.

If diagnostic images are to be output along with the product records, then function ArchiveGFObjects is
the output handler that is invoked. It packs the SKArray image data for the requested images into separate
SKArray WxObject records that are transmitted prior to calling OutputGFFeatures to pack and send the
standard set of product data records.
117

118

3. SOFTWARE DESCRIPTION

3.1 Overview

MIGFA was originally prototyped using LISP and then re-written using the C++ programming language.
Both of these object-oriented languages were chosen because of the need to manage a complex processing
task that utilizes a large number of dynamically allocated data objects. Using an object oriented language
like C++ greatly simplifies algorithm code by freeing the programmer from having to explicitly manage
the overhead of data object instantiation, initialization, and destruction. Furthermore, object oriented
methods are tightly coupled to the data that they operate on (encapsulation), thereby providing additional
safety against illegal software instructions that can cause improper behavior or crashes.

3.2 Organization of Software Modules

Approximately 60% of the code that makes up the WSP version of MIGFA is common to all versions of
MIGFA. The common MIGFA code modules are located in subdirectories under the "migfa/" directory.
WSP-specific algorithm software modules are located under the "wspmigfa/" directory. The main driver
routine for the WSP MIGFA is function main() in file migfaDriver.C in wspmigfa/realtime/src. Table 27
provides a brief description of the contents of each source file subdirectory under the migfa and wspmigfa
directories.

MIGFA makes use of a number of software libraries developed at Lincoln Laboratory and included with
the WSP software distribution. The source code for these packages is located in separate directories out-
side of the MIGFA software. Table 28 lists the required Lincoln software libraries.
119

Table 27. MIGFA Software Directory Contents

Directory Contents

migfa/inc
Class definitions, data structures, constants, function
prototypes

migfa/analyze
Routines to edit chains, apply heuristic tests, wind analysis
driver

migfa/colormaps Colormap files for imgsh displays

migfa/common Common utility functions used by all MIGFAs

migfa/debug GFDebug class (used for diagnostic SKArray file output)

migfa/extract Chain extraction routines

migfa/intgen Feature detector driver, thin line interest smoother

migfa/io Input/output routines

migfa/predict Routines for generating gust front prediction curves

wspmigfa/incWSP
WSP-specific data classes, structures and constants
(including feature detector classes)

wspmigfa/detectors WSP-specific feature detectors

wspmigfa/disptcl Tcl/Tk imgsh diplay scripts

wspmigfa/params General and local site-specific parameter files

wspmigfa/realtime Main driver routine

wspmigfa/tools Utilities to support performance analysis

wspmigfa/windest WSP-specific gust front wind estimators

wspmigfa/wsp WSP-specific I/O, data preparation routines
120

3.3 Required External Software

Several additional public domain software packages are required to build and run the MIGFA software:

Tcl/Tk
Perl
GNU g++/gcc (C++ compiler)
GNU make utility (gmake)
Zlib compression library

3.4 Navigating the Software

With some 19,000 lines of common and WSP-specific MIGFA software (not including supporting libraries
like CSKETCH), and functions divided among many separate files and directories, navigating the software
can be a daunting task. A freeware C++-to-HTML conversion program called ctoohtml
 (http://www-anw.cs.umass.edu/~fagg/ctoohtml/ctoohtml.html) can be used to automatically generate
HTML pages for each of the MIGFA software source files. The MakeHTML script in the wspmigfa/scripts

Table 28. Additional Lincoln Software Libraries Used by WSP MIGFA

Library Name Contents

csketch C++ image processing library

sclite
C-language server-client interprocess communication
library supporting TCP and UDP protocols

share
Shared memory ring buffer routines, WSP base data record
parsing and packing routines, Tcl parameter parsing
routines

WSP Miscellaneous WSP-specific utility functions

WxObj
C++ library for packing/unpacking algorithm product data
records and interface for sending and receiving data via
server-client routines in sclite library

imgsh Tcl/Tk extension to generate displays of image data

llutil
Utility classes for managing linked lists, stacks, and queues;
LLTime class for manipulating time stamps

mem Custom memory manager

log Message logging

paramTcl Tcl parameter parsing
121

directory runs the ctoohtml utility with the proper options and lists of software files to create the HTML
files in the directory in which it is executed (the script assumes that ctoohtml is installed and is in the user’s
executable search path).

Once the HTML files have been generated, a web browser can be used to follow hypertext links to function
calls, data object definitions, or constants (these are referred to as "tags"). In addition to the individual
source code HTML files, ctoohtml also produces a number of useful index files that can be useful starting
points:

1. files.html - Alphabetically ordered list of HTML source files

2. tags.all.html - Alphabetically ordered list of tags

3. tags.file.html - Tags sorted by source file

4. migfaDriver.C.html - HTML version of the main driver routine

Alternatively, for those familiar with the emacs editor, an emacs tags file can be generated using the maket-
ags script in the wspmigfa/scripts directory. This tags file can then be loaded with the emacs visit-tags-
table command and used in the editor to quickly jump to functions, automatically loading the files.

3.5 Running the WSP MIGFA

Typing "wspmigfa -h" will print the list of command line options:

Usage: wspmigfa [options]

 Options:

 -r vmeRingAddr Specify that base data input is from VME

 ring buffer (default). Address is in hex

 The keyword 'default' can be used to specify

 the default address

 -m shmKey Specify that base data input is from shared

 memory ring buffer. Address (key) is in hex

 The keyword 'default' can be used to specify

 the default address

 -c ctrlStream Name of VSP input control stream.

 'default' results in /SC/vsp

 -f Use full range (240 gates) of WSP DBV product.

 Default value (for old data) is 160 gates.

 -w streamName Stream name for input airport wind data.

 'default' results in /SC/llwas_6

 -o streamName Output stream name. A streamName of 'default'

 results in /SC/MIGFA_GF_DETECTIONS

 -a archiveName Optional MIGFA output archive filename
122

 -i arcNames Quoted list of image names to output

 -p Enable output of images (listed with -i option)

 to output stream in addition to archive file

 -d debugDir Turn on debugging with output to debugDir

 -n displayName Set Tk display window to displayName

 -D Turn on debugging for detectors.

 -E Turn on debugging for extract routines.

 -H Turn on debugging for heuristics.

 -I Turn on debugging for I/O.

 -W Turn on debugging for wind estimators.

 -s nScans Quit after processing nScans (default: loop forever

 -N No diagnostic display (default is display enabled)

 -O Offline mode (base data ring is not flushed on start-up)

 -h Print (this) help message

3.5.1 Input and Output Options

For real-time operations on the WSP system, base data are received via the VME ring buffer, so the -r
option should be used. Alternatively, the -m option sets up input on a shared memory ring. This is the
option used when using the WSP bdplay utility to transmit base data from files or tape to the algorithm.
The -r and -m options take address keys as arguments. If "default" is specified, then the address defined by
GF_RING_ADDR (0x21800000) in $SW_HOME/share/inc/wsp_comm.h is used. The address specified
must match the address being utilized by the base data sender.

The -o option is used to specify the product output stream. If the name given as the argument to the -o
option is prefixed with /SC/ or /ServerClient/ then output will be on a stream via TCP. The name that fol-
lows the prefix must be associated with a unique port ID in the configuration file pointed to by the
SC_CONFIG_FILE or ALG_SERVICES environment variables (the setting of SC_CONFIG_FILE, if
present, will override that of ALG_SERVICES). If the argument to the -o option is not prefixed, then out-
put will be to a disk file with the name provided.

A small set of VSPs may be transmitted by the WSP remote monitoring function at any time, and will
immediately affect algorithm processing without having to restart the process. The WSP MIGFA receives
the VSPs on a TCP stream specified with the -c option.

Older WSP data recorded prior to 3/6/00 contain only 160 gates (10 n mi) of dual-beam velocity (DBV)
data. Specifying the -f option tells the WSP MIGFA to process the full 240 gates of DBV data now avail-
able.
123

Airport wind data (typically from the LLWAS centerfield anemometer) are currently transmitted as a type
of WSP base data record on the WSP base data stream. Previously, wind data were received on a separate
TCP/IP stream. If an external LLWAS stream connection is desired (with data provided by a suitable
LLWAS data server process), then the -w option can be used to specify the stream name. This name must
be registered in the SC_CONFIG_FILE or ALG_SERVICES configuration file.

For offline archival of algorithm products, the -a option can be used to specify the archive filename. This
option may also be used to specify a second output TCP/IP product stream by using the /SC/ prefix and
registering the stream name in the SC_CONFIG_FILE or ALG_SERVICES configuration file. Diagnostic
SKArray images may also be archived to the stream specified by the -a option by using the -i option fol-
lowed by a quoted list of image names to be output. The image names must correspond to the image
names that are used to index the pinfo array in the migfaDisplay imgsh script. Similarly, the -p option can
be used to output images on the standard product output stream specified by the -o option.

3.5.2 Debugging Output Options

Several command-line options are used to control output of information for debugging. Specifying the -d
option turns on a basic level of debugging with output to the directory specified. A large number of indi-
vidual SKArray image files will be output to the directory with names indicative of their purpose in the
processing. The gfDebug.writeSKArray command is used to write all debug images in MIGFA. This com-
mand can be searched for in the code (using the UNIX grep command for example) to identify which stage
in the processing the image corresponds. Additional diagnostic SKArray image files for the feature detec-
tors will be output if the -D option is specified. Specifying the -E option will output diagnostic text and
SKArray image files that indicate the various stages of chain extraction. Specifying the -H option will
cause the names of the heuristics to be printed as they are being executed. The -I option is reserved for
future implementation of diagnostic message output related to I/O. It currently does not produce any out-
put.

The -W option turns on diagnostic text output showing the results of the various wind estimators. Figure
52 shows an example of the output that is produced. Consensus (combined) values for the "WIND
BEHIND" are printed first in u(east), v(north) vector component form along with their corresponding con-
fidence weights (uweight and vweight). The constituent estimates that were combined to form the consen-
sus (WIND BEHIND DATA) follow and are printed in similar fashion. The diagnostic output continues
with the printing of the combined and constituent wind estimates for the "WINDS INSIDE" and "WINDS
AHEAD" regions. Finally, the combined and constituent estimates for the "DELTA-V" and the "MAX
DELTA-V" are printed.
124

WIND BEHIND:
 combined u: -4.53548 (uweight = 0.0942025)
 combined v: -5.8599 (vweight = 0.0942025)
 WIND BEHIND DATA:
 behindByNormal u: -4.58752 (uweight = 0.0968485)
 behindByNormal v: -5.96565 (vweight = 0.0968485)
 behindByHistory u: -4.8935 (uweight = 4.68303e-06)
 behindByHistory v: -5.67885 (vweight = 4.68303e-06)
 behindByAnemometer u: -2.73405 (uweight = 0.00279874)
 behindByAnemometer v: -2.201 (vweight = 0.00279874)
WIND INSIDE:
 combined u: -4.53548 (uweight = 0.0942025)
 combined v: -5.8599 (vweight = 0.0942025)
 WIND INSIDE DATA:
 insideByNormal u: -4.58752 (uweight = 0.0968485)
 insideByNormal v: -5.96565 (vweight = 0.0968485)
 insideByHistory u: -4.8935 (uweight = 4.68303e-06)
 insideByHistory v: -5.67885 (vweight = 4.68303e-06)
 insideByAnemometer u: -2.73405 (uweight = 0.00279874)
 insideByAnemometer v: -2.201 (vweight = 0.00279874)
WIND AHEAD:
 combined u: 0 (uweight = 0.0999002)
 combined v: 0 (vweight = 0.0999002)
 WIND AHEAD DATA:
 aheadByHistory u: 0 (uweight = 0.0001)
 aheadByHistory v: 0 (vweight = 0.0001)
 AheadByAnemometer u: 0 (uweight = 0.1)
 AheadByAnemometer v: 0 (vweight = 0.1)
DELTA-V:
 combined u: 4.99778 (uweight = 0.0797058)
 DELTA-V DATA:
 deltaVByVectorDiff u: 7.41007 (uweight = 0.0942025)
 deltaVByShear u: 0.863931 (uweight = 0.0549205)
 deltaVByHistory u: 1.18872 (uweight = 5.53671e-05)
MAX DELTA-V:
 combined u: 4.99778 (uweight = 0.0797058)
 MAX DELTA-V DATA:
 maxDeltaVBySegment u: 4.99778 (uweight = 0.0797058)
 maxDeltaVByHistory u: 1.18872 (uweight = 5.53671e-05)

Figure 52. Example wind estimation diagnostic output generated with the -W MIGFA debugging option.
125

3.5.3 Options Related to Offline Processing

The remaining options are provided for additional control during offline processing using recorded base
data. The -s option can be used to specify a maximum number of scans to process before termination (typ-
ically the algorithm will cycle forever). Specifying the -O (offline mode) option prevents the usual flush-
ing of the input base data ring buffer on start-up. Depending on the timing of base data arrival to the ring
buffer during offline processing, the flushing may cause some of the data for the first scan to be inadvert-
ently discarded before being processed. Finally, the -N option disables the usual output to the MIGFA
diagnostic display (if the -N option is not specified, then the migfaDisplay imgsh script must be running,
or MIGFA will hang when it tries to send display commands).

3.5.4 MIGFA Diagnostic Display

The optional MIGFA display is a separate imgsh process that MIGFA communicates with in order to dis-
play the many images that are generated in the course of processing (See Newell[3] for a description of the
Tcl/Tk-based imgsh graphics package). As shown in Figure 2, the display is divided up into 16 image sub-
windows. The image names are shown at the upper left of each image. If the left mouse button is held
down on any of the image labels, a pull-down menu of all displayable images is presented (there are more
images available for display than the 16 sub-windows allow). To restore the original sequence of images
on the display, select "Restore Default Display" from the "Options" menu in the upper left corner of the
display.

The mouse can be used to interact with the display in a number of useful ways. By moving the cursor over
any of the image sub-windows, a continuous readout of the underlying image values is displayed in the
upper right corner of each image sub-window (the actual arrow-shaped cursor is echoed as a plus-shaped
cursor at the corresponding image location in all of the other image sub-windows). The radar range and
azimuth of the pointer location are continuously displayed in the upper left corner of the MIGFA display.

Another useful feature is the zoom feature. To zoom in on a particular region, hold the left mouse button
while dragging the cursor to create a zoom box. After stretching the zoom box to the desired size, release
the left mouse button, then hold down the right mouse button to obtain a zoom menu. From the zoom
menu, you can select "Zoom" to zoom only the image sub-window that the cursor is currently in. Alterna-
tively, you can select "ZoomAll" to simultaneously zoom all of the image sub-windows to the same zoom
region selected in the current sub-window. To return to the original full-size view, hold down the right
mouse button and select "UnZoom" (for the current window) or "UnZoomAll" (to unzoom all of the win-
dows).
126

Appendix A: MIGFA PARAMETER FILES

This appendix contains printouts of the default parameter settings for the five required MIGFA parameter
files.
127

A.1. GF_WSP_CONFIG_FILE
###
#
File: configWSP
#
#
Basic fields of the GFIntGenConfig structure which must be known
before image sizes, etc. can be computed. This file specifies
default configuration variables for WSP MIGFA.
#
IMPORTANT NOTE regarding "cartRadiusKM". This variable must be chosen
so that the resulting number of needed gates of data is a multiple of
4. (This in turn is needed since the MIGFA algorithm needs to shrink
polar arrays down by a factor of 4 for some computations). For example,
suppose a coverage radius of 65.0 km is desired. With a "gateSizeMtrs"
setting of 150.0 meters, this would require 433.33 gates of data to
cover the desired radius ((150.0 meters / gate) * 433.33 gates = 65,000
meters). This number of gates should be bumped up to 436 (436 is the
smallest integer which is a multiple of 4 and is greater than 433.33.
The required coverage radius is thus 436 * 150 = 65,400 meters.
#
#
##
#

Location of airport reference point (ARP) with respect to the radar.
X is positive for locations east of the radar, Y is positive for locations
to the north.
set arpOffsetXKM 0.0
set arpOffsetYKM 0.0

Max input processing range from the radar in kilometers
set cartRadiusKM 27.78

Radius in km of a mask used to identify pixels near the radar site
set siteMaskRadiusKM 2.0

Internal processing resolution of Cartesian images.
set metersPerPixel 480.0
set kmsPerPixel 0.48

Number of radials in a scan
set radialsPerScan 256

Number of meters per range gate in input base data
set gateSizeMtrs 115.75

Azimuth resolution of input base data
128

set azPerRadial 1.40625

Names of input base data images recognized by the display daemon
set inImages "LBDZ LBV HBDZ DBDZ DBV FLAGS"

used to control radar-dependent algorithm logic.
Choices are "TDWR", "ASR9", or "NEXRAD"
set radarSystem "ASR9"

SNR base data product available? 0=FALSE, 1=TRUE
set snProductAvailable 0

Enable(1)/disable(0) SNR thresholding within feature dectetors
set doSnDetectorProcessing 0

Enable(1)/disable(0) use of out-of-trip image within feature detectors
set doOotDetectorProcessing 0

Enable(1)/disable(0) airport-centered processing
set doAirportCenteredProcessing 0

Enable(1)/disable(0) masking of interest images wherever velocity data
is missing
set doVMasking 0

Enable(1)/disable(0) "aggressive" chain extension. Conservative for
ITWS, aggressive for G&D & WSP.
set doAggressiveExtend 1

Max detection coverage range in km if airport-centered processing is
enabled
set airportCoverageRadiusKM -1.0

Max detection coverage range in pixels if airport-centered processing is
enabled
set airportCoverageRadiusInPixels -1.0
129

A.2. GF_WSP_PARAM_FILE
##
#
File: paramsWSP
#
Description:
#
Default algorithm parameters for MIGFA. This file should be read in
first, and any local parameters should be set in another parameter
file. To set a multiline parameter, the open brace must come on the
same line as the set keyword.
#
cvs id is: "@(#)$Id: paramsWSP,v 1.5 2001/01/05 16:36:28 setht Exp $ MIT/LL"
#
##

The time intervals in seconds between current volume scan and prior
volume scan for computing predictions for short-term and long-term
anticipation.
set anticipationIntervals { 120 240 }

The distance from the airport in kilometers at which the
rules for selecting the gust front wind estimation segment change. Used
in Function gfCreateWindEstSegment.
set arpControlRadiusKM 15.0

The maximum forecast time in seconds of a gust front used with the
airport-control-radius* to determine the method of selecting a
gust front segment. Used in Function gfCreateWindEstSegment.
set arpControlTimeSec 1200

The minimum angular deviation in degrees between points before a non-nil
interest value is assigned. Used in Function
detect-breaks-by-direction.
set breaksByDirCriterionAngle 45

Factor used to convert angle differences into interest values.
Used in Function detect-breaks-by-direction.
set breaksByDirFactor 4.266667

Factor used to convert computed external angles into interest
values. Used in Function detect-breaks-by-external-angle.
set breaksByExtAngleFactor 3.94

The size of the window over which the first derivative
is computed. Used in Function detect-breaks-by-distance
and detect-breaks-by-speed.
set breaksByWSize 6
130

For low wind speeds, the maximum allowed difference in degrees
between the directions of the combined wind estimate and the
estimate generated using the ``by-normal'' technique. Used in
Function GFFixCalmWindDirection.
set calmWindAngleDiff 60

The wind speed in m/s below which the wind direction may be
unreliable. Used in Function GFFixCalmWindDirection.
set calmWindSpeed 1.5

The number of points at the beginning end of the chain to
be included in statistics. Used in Function ChainEndStatistics.
set chainEndSublength 10

The necessary ratio of disagreeing to agreeing neighbors for a
direction to be reversed. Used in Function FlipDirectionsToConsensus().
set consensusFlipFactor 4.0

The (one-sided) distance defining the local neighborhood when looking for
direction consensus. Used in Function FlipDirectionsToConsensus().
set consensusSearchLimit 32

A table of minimum delta V values in m/s indexed by the gust front
propagation speed rounded to the nearest decimeter/sec. Used in function
MakeReportDecision and RequiredChainDepth.
set decisionMinDeltaV {
 6.0 6.0 6.0 6.0
 6.0 6.0 5.0 5.0
 5.0 5.0 5.0 4.0
 4.0 4.0 4.0 4.0
 3.0 3.0 3.0 3.0
 3.0 3.0 3.0 3.0
 3.0 3.0 2.57
 2.57 2.57 2.57
 2.57 2.57 2.57
 2.57 2.57 2.57
}

The number of elements in the decisionMinDeltaV table
set decisionMinDeltaVSize 36

A table of minimum depth necessary for depths from 0 to 8 for
gust fronts with reliable delta V estimates.
set depthThresholdTableWithDV {
 100000 7000 5000 4000 3500 0
}

The of elements in the depthThresholdTableWithDV table
set depthThresholdTableWithDVSize 5
131

A table of minimum depth necessary for depths from 0 to 8 for
gust fronts without reliable delta V estimates.
set depthThresholdTableWithNoDV {
 100000 6800 4800 3900 3000 0
}

The of elements in the depthThresholdTableWithNoDV table
set depthThresholdTableWithNoDVSize 5

A table of numeric factors used to adjust weights as a function of
depth in wind estimation functions.
set depthWeightTable { 0.01 0.2 0.5 1.0 }

Minimum interest value, above which interest scores for points with
good viewing angles are recomputed.
set detectorMinInt 64

The number of volume scans of computed results maintained in
refData.eventHistory.
set eventHistoryLength 12

The maximum difference in time between a requested time and events that
correspond to it.
set eventTimeDifference 60

The maximum number of pixels, minimum interest score, and the maximum
angular deviation in degrees, that can be added for the first round of
chain extensions in Subalgorithm migfaExtract.
set extend1Params { 10 80 41 }

The maximum number of pixels, minimum interest score, and the maximum
angular deviation in degrees, that can be added for the second round of
chain extensions in Subalgorithm migfaExtract.
set extend2Params { 20 48 11 }

The number of integer values used in scaling input images for
functional template correlation.
set ftcImageRange 256

A list of 6 numbers defining an s-plateau computation of weight
as a function of the distance in km from a gust front to a sensor.
Used in Function estimate-ahead-by-anemometer.
set fuzzyAheadByCenterDist { 1.0 3.0 6.0 10.0 15.0 40.0 }

A list of 3 numbers defining a falling-s computation of weight
as a function of the difference in time in seconds between the
volume scan time and a historical time. Used in Function
estimate-ahead-by-anemometer.
set fuzzyAheadByAnemometerTime { 1800.0 3600.0 7200.0 }
132

A list of 3 numbers defining a falling-s computation of weight
as a function of the difference in time in seconds between the
volume scan time and a historical time. Used in Function
estimate-ahead-by-site-wind.
set fuzzyAheadBySiteWindTime { 1800.0 3600.0 7200.0 }

A list of 2 numbers defining an falling-ramp computation of weight
as a function of the time difference in seconds between the volume
scan time and the TWIND analysis time. Used in Function
estimate-ahead-by-oe.
set fuzzyAheadByTwindTime { 300.0 900.0 }

These 2 numbers (in seconds) define a falling-ramp computation of airport
winds as a functions of time difference between the scan and the closest
(in time) anemometer measurement in function ComputeAirportWind().
set fuzzyAirportWindTime { 300.0 1800.0 }

A list of 4 numbers defining a ramp-plateau computation of weight
as a function of the standard error of velocity samples in m/s.
Used in Function gfEstimateBehindByNormal.
set fuzzyBehindByNormalError { 0.0 0.0 0.4 10.0 }

A list of 3 numbers defining a rising-s computation of weight as
a function of the propagation speed of a gust front in m/s. Used
in Function estimate-behind-by-oe.
set fuzzyBehindByOESpeed { 0.0 2.0 5.0 }

A list of 2 numbers defining a falling-ramp computation of weight
as a function of the elapsed time in seconds between the TDWR volume
scan and the TWIND data time. Used in Function
estimate-behind-by-twind.
set fuzzyBehindByTwindTime { 0.0 0.0 }

These 3 numbers (in degrees) define a falling-s computation of chain
match score as a function of angle difference (at 2 chain ends) in
function ScoreChainMatch().
set fuzzyChainMatchAngle { 5.0 15.0 25.0 }

These 2 numbers define a falling-ramp computation of
chain match score as a function of avg score difference (at 2 chain
ends) in function ScoreChainMatch().
set fuzzyChainMatchAvgScore { 20.0 160.0 }

These 3 numbers (in meters/ sec) define a falling-s computation of chain
match score as a function of speed in function ScoreChainMatch().
set fuzzyChainMatchSpeed { 2.0 5.0 8.0 }

These 3 numbers (unitless) define a rising-s computation of chain
match score as a function of the sum of the interest scores of the
2 chains in function ScoreChainMatch().
133

set fuzzyChainMatchIntSum { 1000.0 2000.0 3000.0 }

These 3 numbers (unitless) define a rising-s computation of chain
match score as a function of the minimum of the interest scores of the
2 chains in function ScoreChainMatch().
set fuzzyChainMatchIntMin { 500.0 1000.0 1500.0 }

A list of 2 numbers defining a falling-ramp computation of weight
as a function of the difference in orientation in degrees between
two gust fronts. Used in Function chasing-other-chains.
set fuzzyChasingChainsAngle { 0.0 40.0 }

A list of 2 numbers defining a falling-ramp computation of weight
as a function of the difference in speed in m/s between two gust
fronts. Used in Function chasing-other-chains.
set fuzzyChasingChainsSpeed { -1.0 1.0 }

A list of 2 numbers defining a rising-ramp computation of weight
as a function of the stratiform rain number in *precip-numbers*.
Used in Function chasing-other-chains.
set fuzzyChasingChainsStrat { 2.0 4.0 }

A list of 2 numbers defining a falling-ramp computation of weight
as a function of the storm cell number in *precip-numbers*.
Used in Function chasing-other-chains.
set fuzzyChasingChainsStorm { 0.0 1.0 }

A list of 6 numbers defining an s-plateau computation of weight
as a function of the distance between the radar site and the
gust front segment. Used in Function estimate-delta-v-by-shear.
set fuzzyDeltaVByShearDist { 0.0 1.0 3.0 10.0 20.0 60.0 }

A list of 3 numbers defining a falling-s computation of weight as
a function of the standard error of velocity values in m/s.
Used in Function estimate-delta-v-by-shear.
set fuzzyDeltaVByShearError { 1.0 2.0 10.0 }

A list of 6 numbers defining an s-plateau computation of weight
as a function of the distance in km between a gust front and some
location. Used in Function estimate-by-center.
set fuzzyEstimateByCenterDist { 1.0 2.0 3.0 6.0 10.0 20.0 }

A list of 2 numbers defining a rising-ramp computation of an
adjustment factor as a function of high interest values. Used in
Function compute-gf-score.
set fuzzyGFScoreInterest { 240.0 255.0 }

A list of 2 numbers defining a falling-ramp computation of weight
as a function of distance in km. Used in Function
get-historical-chain-attribute.
134

set fuzzyHistChainDist { 10.0 20.0 }

A list of 2 numbers defining a falling-ramp computation of weight
as a function of angular difference in degrees. Used in Function
get-historical-chain-attribute.
set fuzzyHistChainAngle { 90.0 135.0 }

A list of 4 numbers defining a ramp-plateau computation of weight
as a function of the standard error of velocity samples in m/s.
Used in Function estimate-inside-by-normal.
set fuzzyInsideByNormalError { 0.0 0.0 0.4 10.0 }

A list of 3 numbers defining a rising-s computation of weight as
a function of the propagation speed of a gust front in m/s. Used
in Function estimate-inside-by-oe.
set fuzzyInsideByOESpeed { 0.0 2.0 5.0 }

A list of 2 numbers defining a rising-ramp computation of weight
as a function of the gust front delta v in m/s. Used in Function
interesting-delta-v.
set fuzzyInterestingDVDV { 0.0 10.0 }

A list of 6 numbers defining an s-plateau computation of weight
as a function of the distance in km between the radar site and the gust
front segment. Used in Function estimate-max-delta-v-by-shear.
set fuzzyMaxDeltaVByShearDist { 0.0 1.0 3.0 10.0 20.0 60.0 }

A list of 3 numbers defining a falling-s computation of weight
as a function of the standard error of velocity values in m/s.
Used in Function estimate-max-delta-v-by-shear.
set fuzzyMaxDeltaVByShearError { 1.0 2.0 10.0 }

A list of 3 numbers defining a rising-s computation of weight as
a function of the propagation speed of a front in m/s. Used in
Function get-normal-pixel-wind-speed-est.
set fuzzyNormalEstSpeed { 0.0 1.0 2.0 }

A list of 2 numbers defining a rising-ramp computation of weight as
a function of the ambient wind magnitude in m/s. Used to desensitize
certain detectors in the event of strong ambient winds.
set fuzzyVelWeightScaling { 7.5 15.0 }

A list of 3 numbers defining a rising-s computation of weight as
a function of the gust front delta v in m/s. Used in function
GFUninterestingDeltaV.
set fuzzyUninterestingDVDV { 1.0 2.0 4.0 }

A list of 2 numbers defining a falling-ramp computation of weight
as a function of the estimated radar site wind velocity in m/s.
Used in Function GFUninterestingDeltaV.
135

set fuzzyUninterestingDVSiteV { 2.0 10.0 }

A list of 2 numbers defining a rising-ramp computation of weight
as a function of the propagation speed of a gust front in m/s.
Used in Function GFUninterestingDeltaV.
set fuzzyUninterestingDVSpeed { 0.0 3.0 }

The minimum interest score allowed for a gust front to be included
in MIGFA-gust-fronts. Used in functions ChasingOtherChains and
CollectBestChains.
set gfMinScore 3000

The distance in km around a wind sensor at which a gust front
begins to affect measurements.
set gfImpactRadius 6.0

The (one-sided) distance defining the local neighborhood when looking for
direction consensus. Used in Function FlipDirectionsToNearestIndexed().
set indexedSearchLimit 32

The interest value threshold applied to interest images to
distinguish features from background.
set interestThreshold 127

The window size in meters used to compute convergence values in
GFBaseImages.conv.
set convergeWindowSize 1000
#set convergeWindowSize 2000

The window size in meters used to compute convergence values in
GFBaseImages.lowResConv.
set lowResConvWindowSize 3000
#set lowResConvWindowSize 2000

The maximum change in distance moved in km allowed for current point
relative to its corresponding point in the prior volume scan. Used
in Function ComputePointAttributes().
set maxChangeInDistanceMovedKM 1.5

Largest index into depthWeightTable array used in wind estimation
routines
set maxDepthWeightTableIndex 3

The maximum distance in kms a gust front point can move from volume scan
to volume scan and still be indexed. Used in Function
ComputePointAttributes()
set maxEventDistanceMovedKM 5.0

The maximum one-dimensional distance in kms between a current gust front
point and a prior point. Used in Function
136

FindCorrespondingPointInHistory().
set maxEventOneDimDistanceMovedKM 5.0

The maximum change in orientation in degrees between a current point and
corresponding point in the prior volume scan. Used in functions
ComputePointAttributes() and FindCorrespondingPointInHistory().
set maxOrientationChange 21

The maximum percent change in distance moved allowed for current
point relative to its corresponding point in the prior volume scan.
Used in Function ComputePointAttributes().
set maxPctChangeInDistanceMoved 1.0

The maximum gap in a gust front prediction chain which may be filled
in by a straight line of pixels. These gaps can occur, for example,
in outwardly-expanding gust fronts from microbursts.
set maxPointGap 10

The minimum deviation in kms of a gust front point distance moved
relative to the other points in the gust front. Used in Function
editGustFronts.
set maxStdDevsMoved 1.5

The maximum weight assigned to wind estimates generated by wind
estimation functions.
set maxWeightAheadByOE 1.0
set maxWeightAheadByHistory 1.0
set maxWeightAheadByAnemometer 1.0
set maxWeightAheadBySiteWind 1.0
set maxWeightAheadByTwind 0.0
set maxWeightBehindByHistory 1.0
set maxWeightBehindByAnemometer 1.0
set maxWeightBehindByNormal 1.0
set maxWeightBehindByOE 1.0
set maxWeightBehindBySiteWind 1.0
set maxWeightBehindByTwind 0.0
set maxWeightDeltaVByHistory 1.0
set maxWeightDeltaVByShear 0.1
set maxWeightDeltaVByVectorDiff 1.0
set maxWeightInsideByHistory 1.0
set maxWeightInsideByNormal 1.0
set maxWeightInsideByOE 1.0
set maxWeightInsideByAnemometer 1.0
set maxWeightInsideBySiteWind 1.0
set maxWeightInsideByTwind 0.0
set maxWeightMaxDeltaVByHistory 1.0
set maxWeightMaxDeltaVByNormal 1.0
set maxWeightMaxDeltaVInSegment 1.0
set maxWeightMaxDeltaVByShear 0.1
137

The minimum depth needed in the absence of sufficient distance moved to
compute propagation speed for a gust front point. Used in function
ComputePointAttributes.
set minCorrespondenceDepth 3

The minimum confidence factor required to trust delta v estimates.
Used in Functions InterestingDeltaV, UninterestingDeltaV, Required
ChainDepth and makeReportDecision
set minDeltaVWeight 0.0075

The minimum distance moved in km in the absence of sufficient depth needed
to compute propagation speed for a gust front point. Used in Function
ComputePointAttributes.
set minDistanceMovedKM 3.0

The minimum number of indexed points required for a chain to be
reported. Used in the heuristics Function IndexedChainLengthTooSmall.
set minIndexedChainLength 11

The minimum average wind speed estimates using the ``by-normal''
technique (front direction of motion assumed to be normal to thin
line orientation). Used in Functions EstimateBehindByNormal and
and EstimateInsideByNormal
set minNormalSpeed 2.57

The minimum length in pixels of an extracted raw binary region
necessary to be considered as a gust front candidate. Used in
Function EliminatePoorShapes.
set minRawShapeLength 12.5

Minimum depth used in MakeReport Decision
set minReportDepth 1

Minimum chain length in pixels used in MakeReportDecision
set minReportLength 16

Minimum depth allowed for points to be included in forecast generation.
set minSDPredictionDepth 0

For now, parameter to indicate how many gust front chains to display.
This parameter will be removed after initial testing of prediction
routines.
set numChainsToDisplay 5

Number of distinct times for predictions. Note that this value must
be in agrrement with the array size (and number of valid values) for
the parameter "predictionTimes" shown later in this file.
set numPredictionTimes 36

Interest reduction factors for detectors which will suppress
138

radially aligned interest which coincides with out-of-trip weather
echoes. Interest scores at such pixels are multiplied by the
corresponding reduction factor.
set ootReductionFactorDZMotion 0.70
set ootReductionFactorTLDZ 0.75
set ootReductionFactorTLDZV 0.0

The tolerance in degrees for determining if an interest value
orientation is aligned with an out-of-trip signal. Used in
Function suppress-oot-aligned-interest.
set outOfTripAngleTolerance 20

Percentile value (expressed as a decimal fraction from 0.0 to 1.0)
of sorted wind shear values used as an estimate of delta V. Used
in Function GFDeltaVEstByShear::RunEstmtr()
set percentileDeltaVByShear 0.75

Percentile value (expressed as a decimal fraction from 0.0 to 1.0)
of sorted wind shear values used as an estimate of delta V. Used
in Function estimateMaxDeltaVByNormal.
set percentileMaxDeltaVByNormal 0.8

Percentile value (expressed as a decimal fraction from 0.0 to 1.0)
of sorted wind shear values used as an estimate of delta V. Used
in Function GFMaxDeltaVEstByShear::RunEstmtr()
set percentileMaxDeltaVByShear 0.8

Boolean indicating whether predictions should be generated for all
predicted chains.
set predictAllChains 0

A list of prediction times for displayed fronts.
set predictionTimes {
 0 1 2 3 4 5 6 7 8 9
 10 11 12 13 14 15 16 17 18 19
 20 21 22 23 24 25 26 27 28 29
 30 31 32 33 34 35
}

A scalar value that specifies how many seconds ago to look in the image
history for the prior image.
set priorInterval 240

A scalar value that specifies the window half width used in determining
whether an image from the history list is to be used as a prior image.
set priorIntervalTolerance 60

A scalar value that specifies the maximum number of velocity
samples used in computeRegionalWind.
set regionalWindMaxNumSamples 64
139

A scalar value that specifies the spacing(in pixels) between
velocity samples used in computeRegionalWind.
set regionalWindSampleSpacing 4

A list of two numbers defining the mapping of distance moved values
(in pixels) to the integer range [0,255] in the Function
DetectAzShear::RunDetector(). Not used in WSP
set scaleBoundsAzShear { 0.0 25.0 }

A list of two numbers defining the mapping of distance moved values
(in pixels) to the integer range [0,255] in the Function
GFDetectBreaksByDistance.
set scaleBoundsBreaksByDist { 0 0.43 }

A list of two numbers defining the mapping of speed values (in
pixels/sec) to the integer range [0,255] in the Function
GFDetectBreaksBySpeed.
set scaleBoundsBreaksBySpeed { 0 0.002 }

Lists of two numbers defining the mapping of convergence values to the
integer range [0,255] used in various detectors.
set scaleBoundsConvCellConv { 0 1.5 }
set scaleBoundsConvCellConvMotion { 0 2 }
set scaleBoundsConvDZConv0 { 0 0.5 };# Not used in WSP
set scaleBoundsConvDZConv1 { 0 1.0 };# Not used in WSP
set scaleBoundsConvDZConv2 { 0 2.0 };# Not used in WSP
set scaleBoundsConvDZConvMotion0 { 0 0.5 };# Not used in WSP
set scaleBoundsConvDZConvMotion1 { 0 1.0 };# Not used in WSP
set scaleBoundsConvDZConvMotion2 { 0 2.0 };# Not used in WSP
set scaleBoundsConvHighConv { 0 15.0 };# Not used in WSP
set scaleBoundsConvNonCellConv { 0 4 };# Not used in WSP
set scaleBoundsConvNonCellConvMotion { 0 2 };# Not used in WSP
set scaleBoundsDZ { -20 107 };# Not used in WSP
#set scaleBoundsLowResConv { 0 12 }
set scaleBoundsLowResConv { 0 8 }
set scaleBoundsVTLDZV { -0.5 0.5 };# Not used in WSP

The time in seconds, used as processing interval to go backward in
time in such increments. Used in Function EstimateImpactDeltaTime
which is called by EstimateAheadByCenter which is called from
gfEstimateAheadByAnemometer
set scanInterval 120

The smallest number of contiguous non-zero depth points at the
end of a chain to be included in the chain. Used in Function
PredictFrontAtTime.
set smallestTerminalSubchainLength 4

The window size over which gust front point attributes "distanceMoved"
140

and "speed" are smoothed in Function DoChainSmoothing. Must be an odd
integer.
set smoothAttributeWindowSize 11

The window size over which gust front point directions are smoothed in
Function DoChainSmoothing. Must be an odd integer.
set smoothDirectionWindowSize 5

The SNR (reflectivity for WSP) threshold below which velocity data is rejected.
set snThreshold -5.0

Months for summer operations (WSP only)
set summerMonths { 4 1 9 30 }

Confirming and disconfirming weights assigned to the
interest images generated by the break detectors.
set weightsBreaksByDirection { 4.0 1.0 }
set weightsBreaksByDistance { 1.0 1.0 }
set weightsBreaksBySpeed { 1.0 1.0 }
set weightsBreaksByExtAngle { 2.0 2.0 }

A scaling factor used to adjust the wind shift estimate just prior
to output.
set windBehindBias 1.0

A scale factor used in the calculation of the largest wind shift
value allowed for a given gust front as a function of propagation
speed. Used by function GFWindEstByNormal::RunEstmtrNormalBI
set windBehindLimitFactor 1.4

An offset used in the calculation of the largest wind shift value
allowed for a given gust front as a function of propagation speed.
Used by function GFWindEstByNormal::RunEstmtrNormalBI
set windBehindLimitOffset 7.5

The half lenght of the segment used for estimating the winds. Used in
function GFChainCreateWindSegment.
set windEstSegmentHalfLength 12

A low weight used in calculations of wind estimate weights. Used
in various wind estimation functions.
set windLowWeight 0.1

The distance in km ahead of gust front points where velocity values are
sampled. Used in Function GFMaxDeltaVNormal::Run.
set windSamplingDistAheadKM 4.0

The time in seconds, used together with the estimated propagation speed
of a gust front, to determine how far behind a gust front sample Doppler
values are to be collected for wind analysis. Used in Function
141

GFWindEstByNormal::RunBehind
set windSamplingTimeBehindSec 0

The time in seconds used to compute the distance behind a front where
Terminal Winds velocity estimates are retrieved. Used by class
GFWindEstByTWIND.
set windSamplingTimeTwind 1200

#
Following is a lookup table that returns a background interest value for
given precip numbers. Used to intialize the SKArray<short> precipBiasTable
member variable of GFIntGenConfig structure.
#
A "WET" environment table:
#
set precipBiasTableData {
 "80 80 80 80 80 80 80 80 80 80 80"
 "80 80 80 80 80 80 80 80 80 80 80"
 "80 80 80 80 80 80 80 80 80 80 64"
 "80 80 80 80 80 80 80 80 80 64 48"
 "80 80 80 80 80 80 80 80 80 64 48"
 "80 80 80 80 80 80 80 80 64 48 48"
 "80 80 80 80 80 80 80 64 64 48 48"
 "80 80 80 80 80 80 64 64 48 48 32"
 "80 80 80 80 80 80 64 48 48 48 32"
 "80 80 80 80 64 64 48 48 48 32 32"
 "64 64 64 64 48 48 48 32 16 0 0"
}

#
Integer reflectivity bounds in dBZ used to tally pixels of stratiform
rain and storm cells.
#
set stratRainDZ { 5 25 }
set stormCellDZ { 30 255 }

##
#
End
#
##
142

A.3. GF_DET_PARM_FILE_WSP
##
#
File: detectorParamsWSP
#
Description:
#
Parameter settings for the various feature detectors employed
by the WSP MIGFA algorithm
#
Note: Detector weight settings are grouped together at the end of
this file for ease of tuning.
#
cvs id is: "@(#)$Id: detectorParamsWSP,v 1.12 2001/03/10 16:00:29 setht Exp $ MIT/LL"
#
##
#

#
Global steering wind-related parameters used by multiple detectors
#
set steeringWindSectorWidth 80
set vadBias 1.0
set vadConfidenceRamp 0.4

set DZMotion(SteeringWindSectorBias) 0.25
set TLDZ(SteeringWindSectorBias) 0.25
set TLSD(SteeringWindSectorBias) 1.00
set SDMotion(SteeringWindSectorBias) 1.00
set DZSDMotion(SteeringWindSectorBias) 1.00

#
Line storm boosting parameters:
#
set LineStormAngleTolerance 45

set Converge(LineStormBoostFactor) 1.5
set ConvMotion(LineStormBoostFactor) 1.5
set DZMotion(LineStormBoostFactor) 1.5
set DZSDMotion(LineStormBoostFactor) 1.5
set SDMotion(LineStormBoostFactor) 1.5
set TLDZ(LineStormBoostFactor) 1.5
set TLSD(LineStormBoostFactor) 1.5
set TLSDDZ(LineStormBoostFactor) 1.5

#
List of all "detectors" that can be run, and the order in which they will
be run. The order is important because some detectors require the output of
143

other detectors.
#
set Detectors { LineStorm Anticipation SimpleDZFilter StormCells StratRain \
StratRainExpanded DZMotion HIDZ TLDZ TLSD SDMotion TLSDDZ \
Converge ConvMotion DZSDMotion OutOfTrip PrecipEdges ZeroCross SmoothedInt }

##
#
Line Storm Detector Parameters
#
##

set LineStorm(CMAP) INTEREST
set LineStorm(DebugImages) 0
set LineStorm(HistorySize) 0
set LineStorm(HistoryWeights) {0.0}
set LineStorm(WeightFunc) "(0 0.5) (127 0.5) (128 1.0) (32767 1.0)"
set LineStorm(Angles) "0 20 40 60 80 100 120 140 160"

set LineStorm(FuncTable) {
"(0 255) (60 255) (70 0) (80 -255) (100 -384) (255 -384) "
"(0 -512) (80 -384) (100 0) (120 384) (140 512) (255 512) "
}
set LineStorm(KernelCenter) " 11 14 "
set LineStorm(KernelData) {
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
144

"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
"9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 9"
"0 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9 9 9 9 9 0"
}

##
#
Anticipation Detector Parameters
#
##

set Anticipation(CMAP) INTEREST
set Anticipation(DebugImages) 0
set Anticipation(HistorySize) 0
set Anticipation(HistoryWeights) {0.0}
set Anticipation(LineStormShortTermAntVal) 127
set Anticipation(LineStormLongTermAntVal) 512
set Anticipation(WinterBiasFactor) 0.67
set Anticipation(WinterBiasThresh) 80

##
#
New positive/negative difference DZ Motion Detector Parameters
#
##

set DZMotion(CMAP) INTEREST
set DZMotion(DebugImages) 0
set DZMotion(HistorySize) 0
set DZMotion(HistoryWeights) {0.0}
set DZMotion(BiasSector) {90 250}
set DZMotion(SectorBias) 0.25
set DZMotion(WeightFunc) "(0 0.0) (127 0.0) (128 1.0) (32767 1.0)"
set DZMotion(Angles) "0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340"

#
DZMotion scoring functions:
#
Scoring functions 0 and 1 = region ahead of front.
Scoring functions 2 and 3 = leading (positive difference) edge of front.
Scoring functions 4 and 5 = trailing (negative difference) edge of front.
#

set DZMotion(FuncTable) {
"(0 -255) (118 -255) (123 255) (133 255) (138 -255) (255 -255)"
"(0 -382) (118 -382) (123 255) (133 255) (138 -382) (255 -382)"
145

"(0 -512) (128 -512) (138 512) (158 512) (168 255) (188 255) (208 0) (255 -255)"
"(0 -512) (128 -512) (138 512) (158 512) (168 255) (188 255) (208 0) (255 -512)"
"(0 -255) (48 0) (68 255) (88 255) (98 512) (118 512) (128 -512) (255 -512)"
"(0 -512) (48 0) (68 255) (88 255) (98 512) (118 512) (128 -512) (255 -512)"
}

#
DZMotion kernels. Note that the kernel center of rotation is not in the
middle of the kernel. Instead, it is offset so that the resulting interest
value is assigned to the location corresponding to the leading (positive difference)
edge of the front.
#
Kernel 1: 5 m/s motion
#
set DZMotion(KernelCenter1) { 3 10 }
set DZMotion(KernelData1) {
"9 9 9 2 9 4"
"0 9 9 2 9 4"
"9 9 9 2 9 4"
"0 9 9 2 9 4"
"9 9 9 2 9 4"
"0 9 9 2 9 4"
"9 9 9 2 9 4"
"0 9 9 2 9 4"
"9 9 9 2 9 4"
"1 9 9 3 9 5"
"9 9 9 3 9 5"
"1 9 9 3 9 5"
"9 9 9 2 9 4"
"0 9 9 2 9 4"
"9 9 9 2 9 4"
"0 9 9 2 9 4"
"9 9 9 2 9 4"
"0 9 9 2 9 4"
"9 9 9 2 9 4"
"0 9 9 2 9 4"
"9 9 9 2 9 4"
}

#
Kernel 2: 10 m/s motion
#
set DZMotion(KernelCenter2) { 3 10 }
set DZMotion(KernelData2) {
"9 9 9 2 9 9 9 9 4"
"0 9 9 2 9 9 9 9 4"
"9 9 9 2 9 9 9 9 4"
"0 9 9 2 9 9 9 9 4"
"9 9 9 2 9 9 9 9 4"
"0 9 9 2 9 9 9 9 4"
146

"9 9 9 2 9 9 9 9 4"
"0 9 9 2 9 9 9 9 4"
"9 9 9 2 9 9 9 9 4"
"1 9 9 3 9 9 9 9 5"
"9 9 9 3 9 9 9 9 5"
"1 9 9 3 9 9 9 9 5"
"9 9 9 2 9 9 9 9 4"
"0 9 9 2 9 9 9 9 4"
"9 9 9 2 9 9 9 9 4"
"0 9 9 2 9 9 9 9 4"
"9 9 9 2 9 9 9 9 4"
"0 9 9 2 9 9 9 9 4"
"9 9 9 2 9 9 9 9 4"
"0 9 9 2 9 9 9 9 4"
"9 9 9 2 9 9 9 9 4"
}

#
Kernel 3: 15 m/s motion
#
set DZMotion(KernelCenter3) { 3 10 }
set DZMotion(KernelData3) {
"9 9 9 2 9 9 9 9 9 9 4"
"0 9 9 2 9 9 9 9 9 9 4"
"9 9 9 2 9 9 9 9 9 9 4"
"0 9 9 2 9 9 9 9 9 9 4"
"9 9 9 2 9 9 9 9 9 9 4"
"0 9 9 2 9 9 9 9 9 9 4"
"9 9 9 2 9 9 9 9 9 9 4"
"0 9 9 2 9 9 9 9 9 9 4"
"9 9 9 2 9 9 9 9 9 9 4"
"1 9 9 3 9 9 9 9 9 9 5"
"9 9 9 3 9 9 9 9 9 9 5"
"1 9 9 3 9 9 9 9 9 9 5"
"9 9 9 2 9 9 9 9 9 9 4"
"0 9 9 2 9 9 9 9 9 9 4"
"9 9 9 2 9 9 9 9 9 9 4"
"0 9 9 2 9 9 9 9 9 9 4"
"9 9 9 2 9 9 9 9 9 9 4"
"0 9 9 2 9 9 9 9 9 9 4"
"9 9 9 2 9 9 9 9 9 9 4"
"0 9 9 2 9 9 9 9 9 9 4"
"9 9 9 2 9 9 9 9 9 9 4"
}

##
#
Storm Cell Detector Parameters
#

147

##

set StormCells(CMAP) INTEREST
set StormCells(DebugImages) 0
set StormCells(HistorySize) 0
set StormCells(HistoryWeights) {0.0}
Dummy weight function; not used.
set StormCells(WeightFunc) "(0 1.0) (32767 1.0)"
set StormCells(Angles) "0"

set StormCells(FuncTable) {
"(0 -512) (80 -128) (120 256) (255 256)"
}

##
#
Stratiform Rain Detector Parameters
#
##

set StratRain(CMAP) INTEREST
set StratRain(DebugImages) 0
set StratRain(HistorySize) 0
set StratRain(HistoryWeights) {0.0}
Dummy weight function; not used.
set StratRain(WeightFunc) "(0 1.0) (32767 1.0)"
set StratRain(Angles) "0"

set StratRain(FuncTable) {
"(0 -512) (45 -256) (92 256) (255 256) "
}

##
#
DZ Thin-line (TLDZ) Detector Parameters
#
##

set TLDZ(CMAP) INTEREST
set TLDZ(DebugImages) 0
set TLDZ(HistorySize) 0
set TLDZ(HistoryWeights) {0.0}
set TLDZ(WeightFunc) "(0 0.5) (127 0.5) (128 1.0) (32767 1.0)"
set TLDZ(BiasSector) {90 250}
set TLDZ(SectorBias) 0.25
set TLDZ(Angles) "0 20 40 60 80 100 120 140 160"

set TLDZ(FuncTable) {
"(0 255) (30 255) (38 0) (55 -511) (255 -511)"
148

"(0 255) (30 255) (38 0) (55 -511) (100 -768) (255 -768)"
"(0 -255) (20 -255) (35 0) (45 255) (50 384) (55 384) (60 384) (80 128) (160 0) (255 0)"
"(0 -384) (20 -255) (35 0) (45 255) (50 512) (55 512) (60 384) (80 128) (160 0) (255 0)"
}

set TLDZ(KernelCenter) { 5 7 }
set TLDZ(KernelData) {
"0 9 9 9 9 2 9 9 9 9 0"
"9 9 9 9 9 2 9 9 9 9 9"
"0 9 9 9 9 2 9 9 9 9 0"
"9 9 9 9 9 2 9 9 9 9 9"
"0 9 9 9 9 2 9 9 9 9 0"
"9 9 9 9 9 2 9 9 9 9 9"
"1 9 9 9 9 3 9 9 9 9 1"
"9 9 9 9 9 3 9 9 9 9 9"
"1 9 9 9 9 3 9 9 9 9 1"
"9 9 9 9 9 2 9 9 9 9 9"
"0 9 9 9 9 2 9 9 9 9 0"
"9 9 9 9 9 2 9 9 9 9 9"
"0 9 9 9 9 2 9 9 9 9 0"
"9 9 9 9 9 2 9 9 9 9 9"
"0 9 9 9 9 2 9 9 9 9 0"
}

##
#
Thin line Standard Deviation Detector Parameters
#
##

set TLSD(CMAP) INTEREST
set TLSD(DebugImages) 0
set TLSD(HistorySize) 0
set TLSD(HistoryWeights) {0.0}
set TLSD(WeightFunc) "(0 1.0) (32767 1.0)"
set TLSD(BiasSector) {90 250}
set TLSD(SectorBias) 0.25
set TLSD(Angles) "0 20 40 60 80 100 120 140 160"

set TLSD(FuncTable) {
"(0 -512) (100 -256) (130 0) (160 256) (255 512)"
"(0 -512) (60 -512) (100 -256) (130 0) (160 256) (255 512)"
"(0 -256) (10 256) (20 256) (25 512) (60 512) (100 256) (130 0)\
 (160 -256) (255 -512)"
"(0 -256) (10 128) (20 256) (25 512) (60 512) (100 256) (130 0)\
 (160 -384) (255 -512)"
}

set TLSD(KernelCenter) { 3 8 }
149

set TLSD(KernelData) {
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"1 9 9 3 9 9 1"
"1 9 9 3 9 9 1"
"1 9 9 3 9 9 1"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
}

##
#
Simple DZ Filter Parameters
#
##

set SimpleDZFilter(CMAP) INTEREST
set SimpleDZFilter(DebugImages) 0
set SimpleDZFilter(HistorySize) 0
set SimpleDZFilter(HistoryWeights) {0.0}
set SimpleDZFilter(WeightFunc) "(0 1.0) (32767 1.0)"

##
#
Hi Beam Reflectivity Detector Parameters
#
##

set HIDZ(CMAP) INTEREST
set HIDZ(DebugImages) 0
set HIDZ(HistorySize) 0
set HIDZ(HistoryWeights) {0.0}
set HIDZ(WeightFunc) "(0 1.0) (32767 1.0)"
set HIDZ(Angles) "0"

set HIDZ(FuncTable) {
"(0 256) (100 256) (120 192) (123 0) (135 -256) (255 -512)"
}

150

##
#
Standard Deviation Motion Detector Parameters
#
##

set SDMotion(CMAP) INTEREST
set SDMotion(DebugImages) 0
set SDMotion(HistorySize) 0
set SDMotion(HistoryWeights) {0.0}
set SDMotion(WeightFunc) "(0 1.0) (32767 1.0)"
set SDMotion(BiasSector) {90 250}
set SDMotion(SectorBias) 0.25
set SDMotion(Angles) "0 20 40 60 80 100 120 140 160"

set SDMotion(FuncTable) {
"(0 384) (1 256) (40 256) (50 0) (60 -256) (255 -512)"
"(0 512) (1 256) (40 256) (50 0) (60 -512) (255 -1024)"
"(0 -256) (40 -256) (50 0) (60 256) (70 512) (160 512) (190 255)\
 (230 -512) (255 -512)"
"(0 -512) (40 -512) (50 0) (60 512) (70 512) (160 512) (190 255)\
 (230 -512) (255 -1024)"
}

set SDMotion(KernelCenter) { 3 8 }
set SDMotion(KernelData) {
"9 9 2 2 2 9 9"
"0 9 9 2 9 9 0"
"9 9 2 2 2 9 9"
"0 9 9 2 9 9 0"
"9 9 2 2 2 9 9"
"0 9 9 2 9 9 0"
"9 9 2 2 2 9 9"
"1 9 9 3 9 9 1"
"1 9 3 3 3 9 1"
"1 9 9 3 9 9 1"
"9 9 2 2 2 9 9"
"0 9 9 2 9 9 0"
"9 9 2 2 2 9 9"
"0 9 9 2 9 9 0"
"9 9 2 2 2 9 9"
"0 9 9 2 9 9 0"
"9 9 2 2 2 9 9"
}

##
#
Simultaneous Thin Line Reflectivity/Standard Deviation Detector Parameters
#

151

##

set TLSDDZ(CMAP) INTEREST
set TLSDDZ(DebugImages) 0
set TLSDDZ(HistorySize) 0
set TLSDDZ(HistoryWeights) {0.0}
set TLSDDZ(WeightFunc) "(0 1.0) (32767 1.0)"
set TLSDDZ(Angles) "0 20 40 60 80 100 120 140 160"

set TLSDDZ(FuncTable) {
"(0 -512) (100 -256) (130 0) (160 256) (255 512)"
"(0 -512) (60 -512) (100 -256) (130 0) (160 256) (255 512)"
"(0 -256) (10 256) (20 256) (25 512) (60 512) (100 256) (130 0)\
 (160 -256) (255 -512)"
"(0 -256) (10 128) (20 256) (25 512) (60 512) (100 256) (130 0)\
 (160 -384) (255 -512)"
"(0 -128) (10 256) (40 256) (50 0) (55 -256) (255 -256)"
"(0 -128) (10 256) (40 256) (50 0) (55 -256) (255 -256)"
}

set TLSDDZ(KernelCenter) { 3 8 }
set TLSDDZ(KernelData0) {
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"1 9 9 3 9 9 1"
"1 9 9 3 9 9 1"
"1 9 9 3 9 9 1"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
}

set TLSDDZ(KernelData1) {
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 5 9 9 9"
152

"9 9 9 5 9 9 9"
"9 9 9 5 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
}

##
#
Convergence Detector Parameters
#
##

set Converge(CMAP) INTEREST
set Converge(DebugImages) 0
set Converge(HistorySize) 0
set Converge(HistoryWeights) {0.0}
set Converge(WeightFunc) "(0 1.0) (32767 1.0)"
set Converge(Angles) "0 20 40 60 80 100 120 140 160"

set Converge(FuncTable) {
"(0 256) (32 256) (64 0) (96 -256) (160 -256) (255 -512)"
"(0 256) (32 256) (64 0) (96 -256) (160 -512) (255 -512)"
"(0 -256) (32 -256) (64 0) (96 128) (160 256) (255 512)"
"(0 -512) (32 -256) (64 0) (96 128) (160 256) (255 512)"
"(0 -1024) (16 0) (32 128) (64 512) (255 512)"
}

set Converge(KernelCenter) { 5 7 }
set Converge(KernelData0) {
"0 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 0"
"0 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 0"
"0 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 0"
"1 9 9 9 9 3 9 9 9 9 1"
"9 9 9 9 9 3 9 9 9 9 9"
"1 9 9 9 9 3 9 9 9 9 1"
"9 9 9 9 9 2 9 9 9 9 0"
"0 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 0"
"0 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 0"
"0 9 9 9 9 2 9 9 9 9 9"
153

}

set Converge(KernelData1) {
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
}

##
#
Convergence Motion Detector Parameters
#
##

set ConvMotion(CMAP) INTEREST
set ConvMotion(DebugImages) 0
set ConvMotion(HistorySize) 0
set ConvMotion(HistoryWeights) {0.0}
set ConvMotion(WeightFunc) "(0 1.0) (32767 1.0)"
set ConvMotion(Angles) "0 20 40 60 80 100 120 140 160"

set ConvMotion(FuncTable) {
"(0 256) (32 256) (64 0) (96 -256) (160 -256) (255 -512)"
"(0 256) (32 256) (64 0) (96 -256) (160 -512) (255 -512)"
"(0 -256) (32 -256) (64 0) (96 128) (160 256) (255 512)"
"(0 -512) (32 -256) (64 0) (96 128) (160 256) (255 512)"
"(0 -1024) (16 0) (32 128) (64 512) (255 512)"
}

set ConvMotion(KernelCenter) { 5 7 }
set ConvMotion(KernelData0) {
"0 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 0"
"0 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 0"
"0 9 9 9 9 2 9 9 9 9 9"
154

"9 9 9 9 9 2 9 9 9 9 0"
"9 1 9 9 9 3 9 9 9 1 9"
"9 9 9 9 9 3 9 9 9 9 9"
"9 1 9 9 9 3 9 9 9 1 9"
"9 9 9 9 9 2 9 9 9 9 0"
"0 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 0"
"0 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 0"
"0 9 9 9 9 2 9 9 9 9 9"
}

set ConvMotion(KernelData1) {
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
"9 9 9 9 9 4 9 9 9 9 9"
}

##
#
Simultaneous Thin Line/Standard Deviation Motion Detector Parameters
#
##

set DZSDMotion(CMAP) INTEREST
set DZSDMotion(DebugImages) 0
set DZSDMotion(HistorySize) 0
set DZSDMotion(HistoryWeights) {0.0}
set DZSDMotion(WeightFunc) "(0 1.0) (32767 1.0)"
set DZSDMotion(BiasSector) {90 250}
set DZSDMotion(SectorBias) 0.25
set DZSDMotion(Angles) "0 20 40 60 80 100 120 140 160"

set DZSDMotion(FuncTable) {
"(0 384) (1 256) (40 256) (50 0) (60 -256) (255 -512)"
"(0 512) (1 256) (40 256) (50 0) (60 -512) (255 -1024)"
"(0 -256) (40 -256) (50 0) (60 256) (70 512) (100 512) (140 255)\
155

 (170 -512) (255 -512)"
"(0 -512) (40 -512) (50 0) (60 512) (70 512) (100 512) (140 255)\
 (170 -512) (255 -1024)"
"(0 128) (40 128) (50 0) (55 -128) (255 -128)"
"(0 128) (40 128) (50 0) (55 -128) (255 -128)"
}

set DZSDMotion(KernelCenter) { 3 8 }
set DZSDMotion(KernelData0) {
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"1 9 9 3 9 9 1"
"1 9 9 3 9 9 1"
"1 9 9 3 9 9 1"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
"0 9 9 2 9 9 0"
"9 9 9 2 9 9 9"
}

set DZSDMotion(KernelData1) {
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 5 9 9 9"
"9 9 9 5 9 9 9"
"9 9 9 5 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
"9 9 9 4 9 9 9"
}

##
156

#
Out Of Trip Detector Parameters
#
##

set OutOfTrip(CMAP) INTEREST
set OutOfTrip(DebugImages) 0
set OutOfTrip(HistorySize) 0
set OutOfTrip(HistoryWeights) {0.0}
set OutOfTrip(WeightFunc) "(0 1.0) (32767 1.0)"
set OutOfTrip(Angles) "90"

set OutOfTrip(FuncTable) {
"(0 255) (30 255) (50 128) (70 -255) (255 -255)"
"(0 -512) (30 -512) (35 0) (40 128) (45 255) (255 255)"
"(0 -512) (100 -512) (140 0) (141 nil) (255 nil)"
}

set OutOfTrip(KernelCenter) { 5 10 }
set OutOfTrip(KernelData0) {
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
"0 9 9 9 9 1 9 9 9 9 0"
}

set OutOfTrip(KernelData1) {
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
157

"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
"9 9 9 9 9 2 9 9 9 9 9"
}

##
#
Expanded Stratiform Rain Detector Parameters
#
##

set StratRainExpanded(CMAP) INTEREST
set StratRainExpanded(DebugImages) 0
set StratRainExpanded(HistorySize) 0
set StratRainExpanded(HistoryWeights) {0.0}
set StratRainExpanded(WeightFunc) "(0 1.0) (32767 1.0)"
set StratRainExpanded(Angles) "0"

set StratRainExpanded(FuncTable) {
"(0 -512) (10 -256) (35 256) (255 256)"
}

##
#
Precip Edges Detector Parameters
#
##
#
#
set PrecipEdges(CMAP) INTEREST
set PrecipEdges(DebugImages) 0
set PrecipEdges(HistorySize) 0
set PrecipEdges(HistoryWeights) {0.0}
Dummy weight function; not used.
158

set PrecipEdges(WeightFunc) "(0 1.0) (32767 1.0)"
set PrecipEdges(Angles) "0 20 40 60 80 100 120 140 160 180\
 200 220 240 260 280 300 320 340"
set PrecipEdges(FuncTable) {
"(0 nil) (39 nil) (40 0) (45 -512) (70 -512) (255 -512)"
"(0 512) (35 512) (40 0) (45 -256) (70 -256) (255 -256)"
"(0 -512) (40 -512) (50 0) (60 512) (255 512)"
"(0 -256) (50 -256) (60 0) (61 nil) (255 nil)"
}

set PrecipEdges(KernelCenter) { 5 2 }
set PrecipEdges(KernelData) {
"0 9 0 9 1 9 9 2 9 3 9 9 3 9"
"0 9 0 9 1 9 9 2 9 9 3 9 9 3"
"0 9 0 9 1 9 9 2 9 3 9 9 3 9"
"0 9 0 9 1 9 9 2 9 9 3 9 9 3"
"0 9 0 9 1 9 9 2 9 3 9 9 3 9"
}

##
#
Velocity Zero-line Detector Parameters
#
##
#
set ZeroCross(CMAP) INTEREST
set ZeroCross(DebugImages) 0
set ZeroCross(HistorySize) 0
set ZeroCross(HistoryWeights) {0.0}
Dummy weight function; not used.
set ZeroCross(WeightFunc) "(0 1.0) (32767 1.0)"
set ZeroCross(ConfWeight) 0.0
set ZeroCross(DisConfWeight) 0.0

set ZeroCross(PolTemplateAngles) "340 0 20 160 180 200"
set ZeroCross(CarTemplateAngles) "0 30 60 90 120 150 180 210 240 270 300 330"

set ZeroCross(PolFuncTable) {
"(0 -255) (108 -255) (128 0) (148 255) (255 255)"
"(0 255) (108 255) (128 0) (148 -255) (255 -255)"
"(0 -64) (103 -64) (108 128) (148 128) (153 -64) (255 -64)"
}

set ZeroCross(CarFuncTable) {
"(0 -255) (108 -255) (128 0) (148 255) (255 255)"
"(0 255) (108 255) (128 0) (148 -255) (255 -255)"
"(0 -64) (103 -64) (108 128) (148 128) (153 -64) (255 -64)"
}

159

set ZeroCross(PolKernelData) {
"1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1"
"9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9"
"9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9"
"9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9"
"9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9"
"2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2"
"9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9"
"9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9"
"9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9"
"9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9"
"0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0"
}

set ZeroCross(CarKernelData) {
"0 9 9 9 9 2 9 9 9 9 1"
"9 9 9 9 9 2 9 9 9 9 9"
"0 9 9 9 9 2 9 9 9 9 1"
"9 9 9 9 9 2 9 9 9 9 9"
"0 9 9 9 9 2 9 9 9 9 1"
"9 9 9 9 9 2 9 9 9 9 9"
"0 9 9 9 9 2 9 9 9 9 1"
"9 9 9 9 9 2 9 9 9 9 9"
"0 9 9 9 9 2 9 9 9 9 1"
"9 9 9 9 9 2 9 9 9 9 9"
"0 9 9 9 9 2 9 9 9 9 1"
"9 9 9 9 9 2 9 9 9 9 9"
"0 9 9 9 9 2 9 9 9 9 1"
"9 9 9 9 9 2 9 9 9 9 9"
"0 9 9 9 9 2 9 9 9 9 1"
}

##
#
Thin-line Smoother Parameters
#
##

set SmoothedInt(CMAP) INTEREST
set SmoothedInt(DebugImages) 0
set SmoothedInt(HistorySize) 0
set SmoothedInt(HistoryWeights) {0.0}
Dummy weight function; not used.
set SmoothedInt(WeightFunc) "(0 1.0) (32767 1.0)"

###
#

160

Detector Weights
#
###

set Anticipation(WeightFunc) \
 "(0 1.00) (15 1.00) (16 0.75) (95 0.75) (96 0.33) (32767 0.33)"

set DZMotion(ConfWeight) 1.0
set DZMotion(DisConfWeight) 0.5

set TLDZ(ConfWeight) 1.0
set TLDZ(DisConfWeight) 0.3

set TLSD(ConfWeight) 1.2
set TLSD(DisConfWeight) 0.0

set HIDZ(ConfWeight) 0.0
set HIDZ(DisConfWeight) 4.0

set SDMotion(ConfWeight) 1.2
set SDMotion(DisConfWeight) 0.3

set TLSDDZ(ConfWeight) 1.0
set TLSDDZ(DisConfWeight) 1.0

set Converge(ConfWeight) 1.0
set Converge(DisConfWeight) 1.0

set ConvMotion(ConfWeight) 1.0
set ConvMotion(DisConfWeight) 1.0

set DZSDMotion(ConfWeight) 1.0
set DZSDMotion(DisConfWeight) 0.0

set PrecipEdges(ConfWeight) 0.0
set PrecipEdges(DisConfWeight) 4.0
161

A.4. GF_EST_PARM_FILE
#
Full set of wind estimators. Not all methods will be applied at all
three relevant locations (ahead / inside / behind gust fronts)
#
set windEstimationMethods { ByNormal ByCenter BySiteWind ByOE ByTwind \
 ByHistory ByAnemometer }

Delta V in the wind estimation segment.
set deltaVEstimators { ByVecDiff ByShear ByHistory }

Delta V across the entire gust front.
set maxDeltaVEstimators { ByNormal BySegment ByShear ByHistory }

set windAheadEstimators { ByAnemometer BySiteWind ByOE ByTwind ByHistory }

set windInsideEstimators { ByNormal ByAnemometer BySiteWind ByOE ByTwind \
 ByHistory }

set windBehindEstimators { ByNormal ByAnemometer BySiteWind ByOE ByTwind \
 ByHistory }

Heuristics Functions
set heuristicsMethod { ChainLengthSmall UninterestingDeltaV InterestingDeltaV \

 ChasingOtherChains }
162

A.5. GF_HEU_PARM_FILE
#
List of all possible heuristics. MIGFA selects from these.
#
set Heuristics { ChainLengthSmall UninterestingDeltaV InterestingDeltaV \
 ChasingOtherChains SidelobeChain ChainLagsBhdArpWinds }
163

A.6. GF_LOG_CONFIG_FILE
#==
#
File: log.conf
#
Logging facility configuration file.
#
#
#==

#==
#
Output streams for the main 4 logging classes. Output can be to
a file and/or stdout/stderr, with different streams seperated by a
comman. Note that stdout and stderr can have their output streams
directed to a file also.
The same file can be specified for multiple logging classes.
To discard all messages for a given logging class, specify /dev/null
as the output stream.
#
#==

info /ll/sw/wsp2/logs/%T.migfa.log
warn /ll/sw/wsp2/logs/%T.migfa.log
err /ll/sw/wsp2/logs/%T.migfa.log
debug /ll/sw/wsp2/logs/%T.migfa.log

#==
#
stdout/stderr can be redirected to a logging file (including one of
the ones specified above). This is handy if libraries external to
an application make use of stdout/stderr - the output will be trapped
in the logfile. stdout/stderr may also be redirected to /dev/null
#
#==
#

stdout /ll/sw/wsp2/logs/%T.migfa.log
stderr /ll/sw/wsp2/logs/%T.migfa.log

#==
#
Debug message control. Allows specification of debug level and scope
#
Debugging level can range from 1 to 4, with 4 being the most detailed
(more output). The default level is 1.
#
If debugging enabled by specifying output stream other than /dev/null,
debugging messages from all modules in the application will be output
by default (global scope). The output can be made more selective using
two commands (in combination or individually)
164

#
debugEnableFile <file> [startLine] [stopLine]
#
debugEnableFunction <functionName>
#
If [startLine] and [stopLine] are not specified for the file version,
debugging messages are enabled for the entire file. Up to 20 of each
'rule' can be specified at one time.
#
The matching process is a simple substring match for both the
<file> and <functionName> fields, so, for example, a function name of
"Gust" would match any function prototype containing the word "Gust"
(In the case of C++, even if the "Gust" string is part of one of the
function arguments)
#
#==

debuglevel 2

#debugEnableFile logtest1

Enable debugging for all member functions of class 'Dummy'
#debugEnableFunction Dummy::

#==
#
To save backup copies of logfiles across multiple program runs, specify
a non-zero value for numBackups
#
#==

numBackups 20

#==
#
Daily backup setting. Setting this value to 'true' or 'yes' allows
separate logfiles to be maintained for each 24-hour period. The
current file becomes a backup file, which is kept around until the
'numBackups' value is exceeded.
#
The default is to do the switchover at 00:00:00 local time. If the
additional argument 'GMT' is supplied, the switchover will occur at
00:00:00 GMT
#
If no 'dailyBackup' setting is specified (commented out or missing),
creation of backup files is controlled solely by 'maxHistorySize'.
#
#==

dailyBackup true
#dailyBackup true GMT
165

#==
#
Max history size in bytes. If logging output exceeds this amount,
the current file is made into a backup (number of backups controlled
by above parameter) and a new file is started.
#
#==

maxHistorySize 7500000
166

Appendix B: MIGFA OUTPUT RECORD FORMATS

At the end of each iteration of MIGFA processing, some or all of the following records are transmitted in
the following sequence:

FRAME_START
SKARRAY (if image archiving requested))
GF_TILT_HEADER

GF_DETECTION (DETECT_ID = 1)
GF_FORECAST (DELTA_T = 1 minute)
GF_FORECAST (DELTA_T = 2 minutes)

.

.
GF_FORECAST (DELTA_T = 35 minutes)

GF_DETECTION (DETECT_ID = 2)
GF_FORECAST (DELTA_T = 1 minute)
GF_FORECAST (DELTA_T = 2 minutes)
.
.

.

.
GF_TILT_TRAILER

FRAME_END

FRAME_START and FRAME_END are always transmitted to the optional MIGFA archival stream ("-a"
command-line option), but are only transmitted to the product output stream (the one specified by the "-o"
option) if diagnostic image output was specified via the "-i" command-line option. Images are ouput in
separate SKARRAY records.

If no gust fronts are detected for an iteration of MIGFA processing, then no GF_DETECTION or
GF_FORECAST records will be transmitted. The following tables describe the format of each type of
record.

Data are packed in big-endian byte order (most significant byte at lowest address offset).
167

FRAME_START Record Format

Word #
(2 byte)

Description

0 Record ID (1470)

1 Record length in 2-byte words (14)

2-3 Sequence #

4-5 Frame type

6-7 Frame sequence number

8-13 Data start time (month, day, year, hour, minute, second)

SKARRAY Image Record Format

Word #
(2 byte)

Description

0 Record ID:
 SKARRAY_CHAR = 14000,
 SKARRAY_SHORT = 14001,
 SKARRAY_INT = 14002,
 SKARRAY_FLOAT = 14003,
 SKARRAY_DOUBLE = 14004

1 Record length in 2-byte words (variable)

2-3 Sequence #

4-5 # of dimensions for array (e.g., 1, 2, 3)

6-7 Total number of array elements (nElem)

8-9 Element size (bytes)

10-11 Slice size in X dimension (xsize)

12-13 Slice size in Y dimension (ysize)

14-15 Slice size in Z dimension (zsize)

16-17 Confirming weight factor

18-19 Disconfirmgin weight factor
168

20-51 Image name (e.g., VCLEAN)

52-83 Image data class (e.g., DZ, V, INTEREST)

84 Image ID

85-90 Image time (month, day, year, hour, minute, second)

91-92 Coordinate system (0=SK_CARTESIAN, 1=SK_POLAR)

93-94 Image bin size (resolution) in X dimension (meters)

95-96 Image bin size (resolution) in Y dimension (meters or degrees)

97-98 Image bin size (resolution) in Z dimension (meters or degrees)

99-100 Orientation (degrees from true north)

101-102 Image value scale factor

103-104 Image value offset

105-108 X location of reference point in image coordinates

109-112 Y location of reference point in image coordinates

113-116 Z location of reference point in image coordinates

117-120 X location of reference point in world coordinates

121-124 Y location of reference point in world coordinates

125-128 Z location of reference point in world coordinates

129-131 Reference latitude (degrees)

132-133 Reference longitude (degrees)

134-135 Reference altitude (meters)

136-
136 +

(nElements x
bytesPerElement /

2)

Image values sequentially ordered from bottom to top of the image
with origin (0,0) at lower left corner for a 2-D array). Data are
ordered in column-ordered matrix format (’x’ varies first, followed
by ’y’, then ’z’)

SKARRAY Image Record Format

Word #
(2 byte)

Description
169

GF_TILT_HEADER Record Format

Word #
(2 byte)

Description

0 Record ID (1001)

1 Record length in 2-byte words (51)

2-3 Sequence #

4 Tilt #

5 Elevation angle (deg x 10)

6-11 Data start time (month, day, year, hour, minute, second)

12 Local time zone offset (minutes behind UT) - (not used)

13-20 Radar name (not used)

21-28 Site name (not used)

29-36 Project name (not used)

37-42 Data write time (month, day, year, hour, minute, second)

43-44 Latitude of radar (deg north x 100000) - (not used)

45-46 Longitude of radar (deg east x 100000) - (not used)

47 Altitude of radar (meters above sea level) - (not used)

48 Nyquist velocity (m/s x 100)

49 Radar PRF (Hz)

50 "Bad value" used to identify missing or bad data
170

GF_DETECTION Record Format

Word #
(2 byte)

Description

0 Record ID (2901)

1 Record length in 2-byte words (variable)

2-3 Sequence #

4-9 Data start time (month, day, year, hour, minute, second)

10 U (west) component of gust front propagation speed (m/s x 100)

11 V (north) component of gust front propagation speed (m/s x 100)

12 U (west) component of winds ahead of gust front (m/s x 100)

13 V (north) component of winds ahead of gust front (m/s x 100)

14-15 Not used

16 U (west) component of winds behind gust front (m/s x 100)

17 V (north) component of winds behind gust front (m/s x 100)

18 X-coordinate of wind shift analysis point (km from radar x 100)

19 Y-coordinate of wind shift analysis point (km from radar x 100)

20 Orientation of gust front (deg x 10)

21-22 Detection ID #

23 Event ID # (same as detection ID)

24-25 Not used

26 # of points in gust front detection curve (npts)

27-(26+npts) X-coordinates of gust front points (km from radar x 100)

27+npts # of points in gust front detection curve

28 + npts -
(27+2*npts)

Y-coordinates of gust front points (km from radar x 100)

28+2*npts Delta-V (m/s x 100)
171

GF_FORECAST Record Format

Word #
(2 byte)

Description

0 Record ID (2905)

1 Record length in 2-byte words (variable)

2-3 Sequence #

4-9 Data start time (month, day, year, hour, minute, second)

10 Forecast delta-T (minutes)

11 Not used

12-13 Detection ID #

14-15 Event ID # (same as Detection ID)

16 # of points in gust front forecast curve (npts)

17-(16+npts) X-coordinates of gust front forecast points (km from radar x 100)

17+npts # of points in gust front forecast curve

18 + npts -
(17+2*npts)

Y-coordinates of gust front forecast points (km from radar x 100)

GF_TILT_TRAILER Record Format

Word #
(2 byte)

Description

0 Record ID (2090)

1 Record length in 2-byte words (11)

2-3 Sequence #

4 Radar tilt #

5-10 Output write time (month, day, year, hour, minute, second)
172

FRAME_END Record Format

Word #
(2 byte)

Description

0 Record ID (1417)

1 Record length in 2-byte words (14)

2-3 Sequence #

4-5 Frame type

6-7 Frame sequence #

8-13 Data start time (month, day, year, hour, minute, second)
173

174

Appendix C: MIGFA DATA CLASSES

This appendix contains descriptions for the C++ classes utilized by MIGFA. The class descriptions are
listed in alphabetical order.
175

176

class GFBaseImages
Name class GFBaseImages

Synopsis #include <gfBaseImages.h>

Hierarchy GFBaseImages

Description Class to hold all of the base images needed for processing. More members are
present than are needed, but this allows a single class to be used for multiple
radars. All members are set to NULL initially and space is allocated for them as
necessary. Only those members which have space allocated for them will be
deleted.

Constructors GFBaseImages();
Default constructor. Initializes all pointers to NULL.

Destructors ~GFBaseImages();
The GFBaseImages destructor checks to see which member pointers are not
NULL and deletes those which are not.

Public data
members

SKArray<short> *dz;
 SKArray<short> *vRaw;
 SKArray<short> *vClean;
 SKArray<short> *dbv;
 SKArray<short> *sn;
 SKArray<short> *apMap;
 SKArray<short> *clutterMap;
 SKArray<short> *dzPol;
 SKArray<short> *lbdzPol;
 SKArray<short> *lbvPol;
 SKArray<short> *hbdzPol;
 SKArray<short> *dbdzPol;
 SKArray<short> *vPolRaw;
 SKArray<short> *dbvPol;
 SKArray<short> *snPol;
 SKArray<short> *vPolClean;
 SKArray<short> *flagsPol;
 SKArray<short> *dzPrior;
 SKArray<short> *vPrior;
 SKArray<short> *convPrior;
 SKArray<short> *sdPrior;
 SKArray<short> *azShear;
 SKArray<short> *conv;
 SKArray<short> *convD77;
 SKArray<short> *lowResConv;
 SKArray<short> *dzDiff;
177

class GFBaseImages
 SKArray<short> *outOfTrip;
 SKArray<short> *sd;
 SKArray<short> *flags;
 SKArray<short> *stormCells;
 SKArray<short> *stormCellsSuppressClutter;
 SKArray<short> *stormCellsD77;
 SKArray<short> *stratRain;
 SKArray<short> *stratRainD77;
 SKArray<short> *stratRainExpanded;
 SKArray<short> *sparseV;
 SKArray<short> *zeroCross;
 SKArray<short> *sdPol;
 SKArray<short> *outOfTripPol;
 SKArray<short> *dataMask;
 SKArray<short> *detMask;
 SKArray<short> *detSiteMask;
 SKArray<short> *siteMask;
 SKArray<short> *eightKmMask;
 SKArray<short> *rawInterest;
 SKArray<short> *smoothedInterest;
 SKArray<short> *baseOrient;
 SKArray<short> *anticipation;
 SKArray<short> *velAlias;

See Also Library skarr, class SKArray

Document
Revision Date

10 December, 1998
178

class GFBaseImagesWSP
Name class GFBaseImagesWSP

Synopsis #include <gfBaseImages.h>

Hierarchy GFBaseImages->GFBaseImagesWSP

Description Class to hold WSP-specific base images needed for processing.

Constructors GFBaseImagesWSP();
Default constructor. Initializes all pointers to NULL.

Destructors ~GFBaseImagesWSP();
Checks to see which member pointers are not NULL and deletes those which are
not.

Public data
members

SKArray<short> *dzLongPol;
Long range polar reflectivity image

SKArray<short> *lbvLongPol;
Long range low-beam velocity image

SKArray<short> *flagsLongPol;
Long range WSP data quality flags image

SKArray<short> *dzLong;
Long range Cartesian reflectivity image

SKArray<short> *lbvLong;
Long range Cartesian low-beam velocity image

SKArray<short> *flagsLong;
Long range Cartesian data quality flags image

SKArray<short> *clutterMapLong;
Long range Cartesian clutter map image

SKArray<short> *outOfTripLong;
Long range Cartesian out-of-trip weather image

SKArray<short> *sdLongPol;
Long range polar velocity standard deviation image

SKArray<short> *lbvGoodSnrLong;
Cleaned long range Cartesian low-beam velocity image
179

class GFBaseImagesWSP
See Also Library skarr, class SKArray

Document
Revision Date

10 December, 1998
180

class GFChain
Name class GFChain

Synopsis #include <gfChain.h>

Hierarchy SKChain->GFChain

Description Class for holding information about a gust front detection

Constructors GFChain();
Default constructor. Sets display and forecastTimeInMinutes to zero, and all
other member variables of type T to be equal to SKArray<T>::SK_NIL. All
pointers are set to point to NULL.

Destructors ~GFChain()
Default destructor. Deletes all GFPoints which comprise the gust front detection
curve, all non NULL pointers and all wind data LLDLists.

Public data
members

short number;
An arbitrary number assigned to a GF for bookkeeping.

short ndxInPointArray;
Index of the chain start point in the gfPointArray member of the current event
 object.

short length;
Number of points in chain.

short windSegStartNdx;
Index of first point of subchain (relative to start of chain) over which wind esti-
mates are made.

short windSegMidNdx;
Index of midpoint of subchain (relative to start of chain) over which wind esti-
mates are made.

short windSegLastNdx;
Index of last point of subchain (relative to start of chain) over which wind esti-
mates are made.

short windSegLength;
Number of points in the wind estimation segment.
181

class GFChain
float windSegAvgDepth;
Average tracking depth of points "in the wind estimation segment". Actually,
what is stored is the 75th percentile of depth (e.g. a depth higher than 75% of all
depths among points in the wind estimation segment).

float windSegAvgDirection;
Average direction of motion for points "in the wind estimation segment".

float windSegAvgSpeed;
Average speed for points "in the wind estimation segment".

GFPoint *nearestToArp;
Pointer to chain point nearest to the Airport Reference Point (ARP).

GFPoint *windSegFirstPoint;
Pointer to the first GFPoint in the wind estimation segment.

GFPoint *windSegMidPoint;
Pointer to the middle GFPoint in the wind estimation segment.

GFPoint *windSegLastPoint;
Pointer to the last GFPoint in the wind estimation segment.

GFWind *windAhead;
Pointer to GFWind object containing consensus estimate of winds ahead of the
front.

GFWind *windInside;
Pointer to GFWind object containing consensus estimate of winds "inside" the
front.

GFWind *windBehind;
Pointer to GFWind object containing consensus estimate of winds behind the
front (wind shift).

LLDList windAheadData;
List of GFWind objects containing individual estimates of winds ahead of the
front from the different wind estimators.

LLDList windInsideData;
List of GFWind objects containing individual estimates of winds inside the front
from the different wind estimators.
182

class GFChain
LLDList windBehindData;
List of GFWind objects containing individual estimates of winds behind the front
from the different wind estimators.

GFWind *deltaV;
Consensus delta-V estimate for the front. This quantity is the one that is reported
for the gust front.

GFWind *maxDeltaV;
Consensus maximum delta-v for the front. Used by various heuristics.

LLDList deltaVData;
List of GFWind objects containing the individual estimates of delta-V from the
different delta-V estimators.

LLDList maxDeltaVData;
List of GFWind objects containing the individual estimates of maximum delta-V
from the different maximum delta-V estimators.

SKCoordI windShiftArrowPos;
Image coordinates of the center of the wind estimation segment that is the basis
of the anchor location for the wind shift arrow.

float avgDepth;
Average tracking depth for the entire chain.

float avgScore;
Average score of GFPoints in the chain.

short minScore;
Minimum score of GFPoints in the chain.

short display;
Flag to indicate whether or not to display this chain (and / or any associated pre-
dictions) (0 = don’t display, 1 = do display).

LLDList predictions;
List of GFPredChain objects containing incremental position forecasts.

short forecastTimeInMinutes;
Valid "forecast time" for the chain. A current detection chain has a forecast time
of zero. When a GFChain is used to encode a predection chain, the forecast time
will be a 1-minute interval.
183

class GFChain
Related global
functions

void DeleteGFChains(LLDList& chains);
Iterates through LLDList of GFChain objects, deleting each GFChain object.

See Also class SKChain (CSKETCH library), class GFPoint, class GFPredChain

Document
Revision Date

15 February, 2002
184

class GFDeltaVEstBase

185

Name class GFDeltaVEstBase

Synopsis #include <gfDeltaVEstBase.h>

Hierarchy GFDeltaVEstBase

Description Base class for the delta v estimators. All delta v estimators are derived off of this
class. This is done so that an LLNIDList of pointers to the estimators can be
formed by using pointers of type GFDeltaVEstBase.

Component
Structures

struct GFDeltaVEstParams
{
 char name[256];
} ;
Structure to hold the name of the delta v estimator.

Constructors GFDeltaVEstBase(char *, TclObject &);
Default constructor. Copies the name of the estimator into the
 GFDeltaVEstParams structure and reads in the parameters.

Destructors virtual ~GFDeltaVEstBase();
Default destructor. Currently a no-op.

Public virtual
functions

virtual GFDeltaV* RunEstmtr(GFChain *) = 0;
Function defined in a derived class used to estimate the delta v across a chain.

Public
member
functions

GFDeltaV* Run(GFChain *);
Calls RunEstmtr() defined in the derived class. Sets the v and vwt components of
the GFDeltaV* to 0.0 for all delta v estimators.

See Also Library gfext, class GFChain.
Library baseobj, class TclObject;

Document
Revision Date

10 December, 1998

class GFDetectorBase

186

Name class GFDetectorBase

Synopsis #include <gfDetectorBase.h>

Hierarchy GFDetectorBase

Description Base class for the detectors. All detectors are derived off of this class. This is
done so that an LLNIDList of pointers to the detectors can be formed by using
pointers of type GFDetectorBase. This allows for different lists of detectors to be
formed depending on the different conditions that exist.

Enumerations enum GFDetectorMasking { TDWR_MASKING, NEXRAD_MASKING_WITH_V,
NEXRAD_MASKING_WITHOUT_V };
This enumeration is used for dynamic identification of the type of masking.
Allows for each detector to be used for multiple radar systems.

Constructors GFDetectorBase(char *, TclObject &);
Default constructor. Initializes GFDetectorParams class and the prior interest
image if applicable.

Destructors virtual ~GFDetectorBase();
Default destructor. Deletes the prior interest image if applicable.

Public virtual
functions

virtual void RunDetector(GFBaseImages &, void * = NULL) = 0;
Function used to compute the current interest image for the detector.

virtual SKArray<short>* GetCurrInterestImg(void) = 0;
Returns a pointer to the current interest image of the derived detector.

Public
member
functions

void Run(GFBaseImages &);
Calls the RunDetector() of the derived class.

SKArray<short>* GetPriorInterestImg(void);
Returns a pointer to the prior interest image of the derived detector.

See Also Library skarr, class SKArray.
Library baseobj, class GFDetectorParams.

Document
Revision Date

10 December, 1998

class GFDetectorParams

187

Name class GFDetectorParams

Synopsis #include <gfDetectorParams.h>

Hierarchy GFDetectorParams

Description Class to contain the variables for the detector parameters.

Constructors GFDetectorParams();
Default constructor. Sets all history variables to 0.

Destructors ~GFDetectorParams();
Default destructor. Deletes history weights.

Public data
members

char name[256];
Parameter name.

char dataClass[256];
Type of data (e.g., DZ, V, INTEREST). Used for display colormap.

int historySize;
Number of current and prior detector images to maintain.

float *historyWeights;
Array of temporal weight factors.

Related global
functions

friend ostream& operator << (ostream &, GFDetectorParams &);
Insertor for the GFDetectorParams class. Inserts the data members and their
meaning into an ostream.

Document
Revision Date

10 December, 1998

class GFEvent
Name class GFEvent

Synopsis #include <gfevent.h>

Hierarchy GFEvent

Description Class to store all final computational results from a single scan of MIGFA pro-
cessing. A "LLDList" of such objects make up the MIGFA processing "history".

Constants #define MAX_HEADER_PRODS 25

Constructors GFEvent();
Default Constructor. Initializes variables, sets siteWind, airportWind, and region-
alWind to NULL.

Destructors ~GFRefData();
Default Destructor. Deletes all GFWind objects and GFChains on the gfChains
list.

Public data
members

LLDListLink link;
Link to another GFEvent.

short imageNum;
Arbitrary image number.

unsigned long currentTime;
Time in seconds of the radar data corresponding to this event.

unsigned long referenceTime;
Time in seconds of a prior volume scan. This prior scan is used as a basis for
estimating motion and in computing speeds.

GFWind* siteWind;
Site wind estimate.

GFWind* airportWind;
Airport wind estimate.

GFWind* regionalWind;
Regional wind estimate.

LLDList gfChains;
LLDList of "GFChain" structures, each encoding computed results for a single
gust front.
188

class GFEvent
GFPointArray gfPointArray;
Single array which encodes information about all gust fronts detected for the cur-
rent scan.

SKArray<short> prevIndices
 "PrevIndices" array. Each (x,y) location in this array stores the index of the cor-
responding point into the previous event’s "gfPointArray" structure.

See Also class LLDList, class GFWind, class GFPointArray, Library skarr, class SKArray.

Document
Revision Date

19 March, 2002
189

class GFHeuristicsBase

190

Name class GFHeuristicsBase

Synopsis #include <gfHeuristicBase.h>

Hierarchy GFHeuristicBase

Description Base class for the heuristics. All heuristics classes are derived off of this class.
This is done so that an LLNIDList of pointers to the heuristics can be formed by
using pointers of type GFHeuristicBase.

Component
Structures

struct GFHehuristicParams
{

char name[256];
} ;
Structure to hold the name of the heuristic.

Constructors GFHeuristicBase(char *, TclObject &);
Default constructor. Copies the name of the heuristic into the
GFHeurisiticParams structure and reads in the parameters.

Destructors ~GFHeuristicBase();
Default destructor. Currently a no-op.

Public virtual
functions

virtual bool RunHeuristic(GFChain *) = 0;
Function defined in a derived class to compute the heuristic of a chain.

Public
member
functions

bool Run(GFChain *);
Calls RunHeuristic() defined in the derived class.

Access
functions

char* GetName(void);
Returns a pointer to the name component of the GFHeuristicParams structure.

See Also Library gfext, class GFChain

Document
Revision Date

10 December, 1998

class GFPointArray
Name class GFPointArray

Synopsis #include <gfPointArray.h>

Hierarchy GFPointArray

Description Class for arrays of GFPointInfo objects. Since many gust front analysis opera-
tions involve splitting up an array of gust front points into two distinct chains,
this class was implemented to ease cleanup of various discarded arrays, etc.

Constructors GFPointArray();
This constructor create a GFPointArray object with default values of zero or
NULL as appropriate.

GFPointArray(short);
This constructor takes as its argument the number of points to be encoded in the
array. All points are assumed to lie in a single chain. An array of type
 GFPointInfo is created of size number of points. The number of chains is set to
one, and the lenght of the chain is number of points.

GFPointArray(short, short);
Constructor with two arguments. First argument is number of points to be
encoded in the array, the second is the number of chains represented in the array.
An array of type GFPointInfo is created of size number of points. The number of
chains is set to number of chains, and chainLengths is set to number of chains.

GFPointArray(const GFPointArray &);
Copy constructor. Creates GFPointArray object with all fields and data buffers
copied from input GFPointArray.

Destructors ~GFPointArray();
Default destructor. Deletes all memory allocated for member arrays of
pointArray and chainLengths.

Assignment
operators

GFPointArray& GFPointArray::operator = (const GFPointArray &);
Assignment operator. Copies all fields from input GFPointArray and allocates
space for GFPointArray returned from this operator.

Public data
members

GFPointInfo *pointArray;
Array of "GFPointInfo" structures; used for efficiency as points stored in this
fashion can be looked up just by indexing into an array rather than having to
traverse point lists in the original GFChain objects.

short nPoints;
Total number of encoded gust front points in all chains.
191

class GFPointArray
short nChains;
Number of chains encoded in the array of points. Note that in some contexts, the
GFPointArray class will be used to store information on all current gust front
chains; in other contexts just a single chain.

short *chainLengths;
Lengths of the individual chains contained in the pointArray. Used for indexing
into the pointArray when computing attributes for gust front chains as a whole.

See Also Library baseobj, class GFPointInfo.

Document
Revision Date

10 December, 1998
192

class GFPointInfo
Name class GFPointInfo

Synopsis #include <gfPointArray.h>

Hierarchy GFPointInfo

Description Class for storing gust front point information. Same basic information as the
GFPoint class, but useful for speeding up searches for points.

Enumerations typedef enum SKType { GF_X, GF_Y, GF_DIRECTION, GF_PRIOR_INDEX,
GF_DISTANCE_MOVED, GF_SPEED, GF_DEPTH, GF_INTEREST };
Enumerated type for specifying a particular chain attribute.

Constructors GFPointInfo();
Default constructor. Creates a GFPointInfo with all data members set to zero.

Destructors ~GFPointInfo();
Default destructor. Currently a no-op.

Public
member
functions

void CopyFrom(GFPointInfo &);
Copy all attributes of a GFPointInfo object into another GFPointInfo object.

void CopyFrom(GFPoint &);
Copy all attributes of a GFPoint object into a GFPointInfo object.

Access
functions

float GetFloatAttribute(GFPointAtt);
Function to return the value of the desired floating point member of a
GFPointInfo object.

void SetFloatAttribute(GFPointAtt, float);
Function to set the value of the desired floating point member of a
GFPointInfo object.

Public data
members

short x;
short y;
short priorIndex;
short depth;
short interest;
float direction;
float distanceMoved;
float speed;

See Also Library baseobj, class GFPoint.
193

class GFPointInfo
Document
Revision Date

10 December, 1998
194

class GFPredChain

195

Name class GFPredChain

Synopsis #include <gfChain.h>

Hierarchy SKChain->GFPredChain

Description Class for holding information about a gust front prediction chain

Constructors GFPredChain();
Default constructor. Sets forecastTimeInMinutes and number to
SKArray<short>::SK_NIL.

Destructors ~GFPredChain();
Default destructor. Deletes all GFPoints which comprise the gust front predic-
tion curve.

Public data
members

short forecastTimeInMinutes;
Valid "forecast time" for the chain. The forecast time will be a 1-minute interval.

short number;
An arbitrary number assigned to a GF for bookkeeping. The number matches the
number field of a corresponding GFChain.

See Also class SKChain (CSKETCH library), class GFPoint, class GFPredChain

Document
Revision Date

19 February, 2002

class GFRefData
Name class GFRefData

Synopsis #include <gfrefData.h>

Hierarchy GFRefData

Description Class to contain data used throughout the algorithm. Most of the data contained
in this class will change from scan to scan.

Constants #define MAX_HEADER_PRODS 25

Component
Structures

typedef struct
{

short prf;
short scanNum;
short tiltNum;
LLTime time;
short prodScale[MAX_HEADER_PRODS];
short prodOffset[MAX_HEADER_PRODS];
char *siteName;

} ScanHeader;
Structure to hold data taken from the scan header of the tilt.

typedef struct {
unsigned long time;
SKArray<float> *uArray;
SKArray<float> *vArray;
SKArray<float> *uVarArray;
SKArray<float> *vVarArray;

} TWindData;
Structure to hold ITWS Terminal Winds data (not used for WSP).

Constructors GFRefData();
Default Constructor. Initializes all non LLDList elements to zero.

Destructors ~GFRefData();
Default Destructor. Deletes all data on all LLDLists.

Public data
members

TWindData twindData;
Terminal gridded winds data for the current scan.

ScanHeader scanHeader;
ScanHeader contains base data time, product scalings, etc.

LLDList baseScan;
196

class GFRefData
List of prior DZ, V, and CONV images from a prior radar scan; needed
by detectors which are motion-based.

short stratRainCoverage;
A number used to indicate the degree of coverage of the radar images with strati-
form rain.

short stormCellCoverage;
A number used to indicate the degree of coverage of the radar images with storm
cells.

unsigned long currentTime;
Current time in seconds.

LLDList anemometerHistory;
List of anemometer data recorded over the last "anemometerHistoryHours"
(parameter).

bool summerMode;
summerMode is true if the current data is within the summer months defined by
GFParams->summerMonths.

LLNIDList dzHistory;
List of prior reflectivity images for the last "imageHistoryLength" (parameter)
scans.

LLNIDList vHistory;
List of prior velocity images for the last "imageHistoryLength" (parameter) scans.

LLNIDList convHistory;
List of prior velocity convergence images for the last "imageHistoryLength"
(parameter) scans.

LLNIDList sdHistory;
List of prior velocity standard deviation images for the last "imageHistoryLength"
(parameter) scans.

LLDList eventHistory;
List of GFEvent objects containing the computational results of the last gfParams-
>eventHistoryLength scans.

See Also Library llutil, class LLDList, class LLNIDList, struct LLTime.

Document
Revision Date

10 December, 1998
197

class GFWindEstBase
Name class GFWindEstBase

Synopsis #include <gfWindEstBase.h>

Hierarchy GFWindEstBase

Description Base class for the wind estimators. All wind estimators are derived off of this
class. This is done so that an LLNIDList of pointers to the estimators can be
formed by using pointers of type GFWindEstBase.

Component
Structures

struct GFWindEstParams
{

char name[256];
} ;
Structure to hold the name of the wind estimator.

Constructors GFWindEstBase(char *, TclObject &);
Default constructor. Copies the name of the estimator into the
GFWindEstParams structure and reads in the parameters.

Destructors virtual ~GFWindEstBase();
Default destructor. Currently a no-op.

Public virtual
functions

virtual GFWind* RunEstmtrAhead(GFChain *) = 0;
Function defined in the derived class to estimate the wind ahead of the front.

virtual GFWind* RunEstmtrInside(GFChain *) = 0;
Function defined in the derived class to estimate the wind inside of the front.

virtual GFWind* RunEstmtrBehind(GFChain *) = 0;
Function defined in the derived class to estimate the wind behind the front.

Public
member
functions

GFWind* RunAhead(GFChain *);
Calls the RunEstmtrAhead() function as defined in the derived class.

GFWind* RunInside(GFChain *);
Calls the RunEstmtrInside() function as defined in the derived class.

GFWind* RunBehind(GFChain *);
Calls the RunEstmtrBehind() function as defined in the derived class.

Public data
members

GFWindEstParams params;
Name of wind estimator.
198

class GFWindEstBase
See Also Library gfext, class GFChain.
Library baseobj, class TclObject.

Document
Revision Date

10 December, 1998
199

class TclObject
Name class TclObject

Synopsis #include <tclObject.h>

Hierarchy ParamTcl->TclObject

Description This class acts as an interface to a Tcl interpreter.

Constructors TclObject(char *) : ParamTcl(file);
Default constructor. Takes a pointer to a file name which is used in the call to the
base class constructor.

Destructors ~TclObject();
Default destructor. Currently a no-op.

Public
member
functions

void get(char *, short *);
void get(char *, int *);
void get(char *, float *);
void get(char *, char *);
void get(char *, short **, int *);
void get(char *, int **, int *);
void get(char *, float **, int *);
void get(char *, char **, int *);
void get(char *, short [], int *);
void get(char *, int [], int *);
void get(char *, float [], int *);
void get(char *, LLNIDList &);
All of the preceding Public Member Functions are wrappers for calls to the
appropriate functions in ParamTcl.

void get(char *, GFDetectorParams &);
Function to read in detector parameters for detector with name as passed in by
the character pointer. Parameters read in from file as defined in the constructor.

void get(char *, GFWindEstParams &);
Function to read in wind estimator parameters for estimators with name as passed
in by the character pointer. Parameters read in from file as defined in the con-
structor. Currently a no-op.

void get(char *, GFDeltaVEstParams &);
Function to read in delta v estimator parameters for delta v estimators with name
as passed in by the character pointer. Parameters read in from file as defined in
the constructor. Currently a no-op.
200

class TclObject
void get(char *, GFHeuristicParams &);
Function to read in heuristic parameters for heuristics with name as passed in by
the character pointer. Parameters read in from file as defined in the constructor.
Currently a no-op.

See Also Libraries paramTcl, llutil, baseobj. Classes ParamTcl, LLNIDList,
GFDetectorParams, GFWindEstParams, GFDeltaVEstParams,
GFHeuristicsParams.

Document
Revision Date

10 April, 2002
201

GLOSSARY

AP Anomalous Propagation
ARP Airport Reference Point
ASOS Automated Surface Observing System
ASR-9 Airport Surveillance Radar - 9
ATC Air Traffic Control
DMA Direct Memory Access
FAA Federal Aviation Administration
FTC Functional Template Correlation
GMT Greenwich Mean Time
GFUP Gust Front Update
I/O Input/Output
LLWAS Low Level Windshear Alert System
MDT Maintenance Display Terminal
MIGFA Machine Intelligent Gust Front Algorithm
PPI Plan Position Indicator
PRF Pulse Repetition Frequency
RDT Ribbon Display Terminal
SD Situation Display
SHM Shared Memory
SNR Signal to Noise Ratio
TCP/IP Transmission Control Protocol/Internet Protocol
VAD Velocity Azimuth Display
VSP Variable Site Parameter
WSP Weather Systems Processor
202

203

REFERENCES

1. R.L. Delanoy, S.W. Troxel, “The Machine Intelligent Gust Front Algorithm”, MIT Lincoln Labora-
tory, Project Report ATC-196, 1993

2. Weber, M.E., “ASR Weather Systems Processor Signal Processing Algorithms”, MIT Lincoln Labora-
tory, Project Report ATC-255, Publication Pending

3. Newell, Oliver, “ASR-9 Weather Systems Processor Software Overview”, MIT Lincoln Laboratory,
Project Report ATC-264, October 20, 2000

4. Newell, Oliver, “WSP Utility Libraries”, MIT Lincoln Laboratory Project Report ATC-284, October
23, 2000

5. S. Levialdi, “Parallel pattern processing”, IEEE Trans. Syst. Man and Cybern., SMC-1:292-296, 1971
204

205

	1. ALGORITHM DESCRIPTION
	1.1 Product Description
	1.2 Algorithm Overview
	1.3 Algorithm Inputs
	1.3.1 Algorithm Parameter Specification
	1.3.2 VSP Stream
	1.3.3 WSP Base Data
	1.3.4 Anemometer Data

	1.4 Algorithm Outputs
	1.4.1 Output Product Stream
	1.4.2 Archive Stream
	1.4.3 Display Stream
	1.4.4 Diagnostic Message Logging

	2. FUNCTIONAL DESCRIPTION
	2.1 Initialization
	2.1.1 Handling of Input Data in the Main Processing Loop

	2.2 Image Preparation
	2.2.1 Filling the SKArray Base Data Objects
	2.2.2 Setting the Seasonal Sensitivity Mode
	2.2.3 Allocation of Feature Detectors
	2.2.4 Processing the VSP Control Stream
	2.2.5 Configuring Images for the Analysis Display
	2.2.6 Preprocessing of the Reflectivity Data
	2.2.7 Generation of "Single Scan" Objects
	2.2.7.1 Resampling of polar images to Cartesian images
	2.2.7.2 Retrieval of prior images
	2.2.7.3 Estimation of airport, site, and regional winds
	2.2.7.4 Computation of high/low beam reflectivity difference image
	2.2.7.5 Creation of clutter and AP images
	2.2.7.6 Computation of velocity standard deviation images
	2.2.7.7 Computation of "cleaned" velocity image
	2.2.7.8 Computation of out-of-trip weather image
	2.2.7.9 Computation of radial velocity shear maps (convergence images)
	2.2.7.10 Computation of stratiform rain and storm cell images
	2.2.7.11 Computation of zero-Doppler line image
	2.2.7.12 Generation of line storm interest and orientation images
	2.2.7.13 Dynamic sensitivity adjustment

	2.3 Feature Detection
	2.3.1 Suppression of false thin line interest features
	2.3.1.1 Procedure for suppression of false thin line features

	2.3.2 Running the feature detectors
	2.3.3 Anticipation
	2.3.3.1 Parameters
	2.3.3.2 Mask images
	2.3.3.3 Description

	2.3.4 DZMotion - Reflectivity Thin Line Motion Detector
	2.3.4.1 Parameters
	2.3.4.2 Mask images
	2.3.4.3 Description

	2.3.5 TLDZ - Reflectivity Thin Line Detector
	2.3.5.1 Parameters
	2.3.5.2 Mask images
	2.3.5.3 Description

	2.3.6 TLSD - Velocity Thin Line Detector
	2.3.6.1 Parameters
	2.3.6.2 Mask images
	2.3.6.3 Description

	2.3.7 HIDZ - High-Altitude Weather Detector
	2.3.7.1 Parameters
	2.3.7.2 Mask images
	2.3.7.3 Description

	2.3.8 SDMotion - Velocity Thin Line Motion Detector
	2.3.8.1 Parameters
	2.3.8.2 Mask images
	2.3.8.3 Description

	2.3.9 TLSDDZ - Tandem Velocity Thin Line / No Reflectivity Detector
	2.3.9.1 Parameters
	2.3.9.2 Mask images
	2.3.9.3 Description

	2.3.10 Converge - Velocity Convergence Detector
	2.3.10.1 Parameters
	2.3.10.2 Mask images
	2.3.10.3 Description

	2.3.11 ConvMotion - Velocity Convergence Motion Detector
	2.3.11.1 Parameters
	2.3.11.2 Mask images
	2.3.11.3 Description

	2.3.12 DZSDMotion - Tandem Reflectivity/Velocity Thin Line Motion Detector
	2.3.12.1 Parameters
	2.3.12.2 Mask images
	2.3.12.3 Description

	2.3.13 PrecipEdges - Precipitation Edge Detector
	2.3.13.1 Parameters
	2.3.13.2 Mask images
	2.3.13.3 Description

	2.4 Interest combination
	2.4.1 Thin line smoothing

	2.5 Extraction
	2.5.1 Eliminating Poor Interest Shapes
	2.5.2 Thinning
	2.5.3 Chain Extension
	2.5.4 Extracting Thin Line Chains
	2.5.5 Establishing Point Correspondence
	2.5.6 Collecting "Best Chains"

	2.6 Gust Front Analysis
	2.6.1 Editing Gust Front Chains
	2.6.2 Wind Analysis
	2.6.2.1 Descriptions of wind estimators
	2.6.2.2 "ByShear" delta-V estimator

	2.6.3 Heuristics
	2.6.3.1 ChainLengthSmall
	2.6.3.2 InterestingDeltaV
	2.6.3.3 SideLobeChain
	2.6.3.4 ChainLagsBhdArpWinds

	2.6.4 Making the Final Report Decision
	2.6.4.1 Tracking depth test
	2.6.4.2 Indexed length test
	2.6.4.3 Delta-V distance test
	2.6.4.4 Delta-V speed test
	2.6.4.5 Reportable length test

	2.7 Predictions (position forecasts)
	2.8 Updating the image history
	2.9 Output
	2.9.1 Analysis Display Output
	2.9.2 Product and Archive Output

	3. SOFTWARE DESCRIPTION
	3.1 Overview
	3.2 Organization of Software Modules
	3.3 Required External Software
	3.4 Navigating the Software
	3.5 Running the WSP MIGFA
	3.5.1 Input and Output Options
	3.5.2 Debugging Output Options
	3.5.3 Options Related to Offline Processing
	3.5.4 MIGFA Diagnostic Display

	Appendix A: MIGFA PARAMETER FILES
	Appendix B: MIGFA OUTPUT RECORD FORMATS
	Appendix C: MIGFA DATA CLASSES

