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ABSTRACT 

In this work, machine learning and image processing methods are used to estimate radar-like 

precipitation intensity and echo top heights beyond the range of weather radar. The technology, called the 

Offshore Precipitation Capability (OPC), combines global lightning data with existing radar mosaics, five 

Geostationary Operational Environmental Satellite (GOES) channels, and several fields from the Rapid 

Refresh (RAP) 13 km numerical weather prediction model to create precipitation and echo top fields 

similar to those provided by existing Federal Aviation Administration (FAA) weather systems. 

Preprocessing and feature extraction methods are described to construct inputs for model training. A 

variety of machine learning algorithms are investigated to identify which provides the most accuracy. 

Output from the machine learning model is blended with existing radar mosaics to create weather radar-

like analyses that extend into offshore regions. The resulting fields are validated using land radars and 

satellite precipitation measurements provided by the National Aeronautics and Space Administration 

(NASA) Global Precipitation Measurement Mission (GPM) core observatory satellite. This capability is 

initially being developed for the Miami Oceanic airspace with the goal of providing improved situational 

awareness for offshore air traffic control. 
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1. INTRODUCTION 

Current weather processing systems used in Air Traffic Management (ATM) rely heavily on the 

land-based Next Generation Weather Radar (NEXRAD), and Terminal Doppler Weather Radar (TDWR) 

radar networks for the detection of aviation-impacting weather. Systems such as the Corridor Integrated 

Weather System (CIWS)[1], and the Weather and Radar Processor (WARP) [2] provide rapidly updating 

Contiguous United States (CONUS)-wide analyses of precipitation intensity and storm height derived 

from volume scans of overlapping radars. However, the National Airspace (NAS) covers areas both inside 

and outside of land-based radar range leaving many offshore and oceanic controllers without timely 

weather information required for proper air traffic management. Figure 1 demonstrates an example of this 

short-coming by showing how a storm outside of radar range is not depicted whatsoever in the radar 

mosaic, despite the presence of lightning flashes observed offshore. This lack of adequate situational 

awareness may be detrimental to both passenger safety and can lead to inefficiencies in the NAS. This 

shortcoming resulted in an Air Traffic Organization Corrective Action Report (CAR-2011-023) to 

highlight the safety concerns of limited or no NEXRAD coverage in the Miami offshore airspace and 

called for a solution [3].  

The Offshore Precipitation Capability (OPC) is a system designed to address this problem. The goal 

of OPC is to provide reliable and timely depictions of offshore precipitation and storm height fields 

commonly used by ATM in regions beyond weather radar coverage. OPC works by fusing non-radar data 

in regions where radar data is diminished or non-existent. These non-radar data used to estimate radar-like 

fields include global lightning detections (cloud-to-ground and inter-cloud), geostationary satellite 

(visible (VIS) & infrared (IR) channels) and Numerical Weather Prediction model output (Temperature, 

Pressure, Humidity, etc.). 

These data sources are brought together in a supervised machine learning framework that allows for 

the estimation of fields normally derived through weather radar measurements. A machine learning 

algorithm is trained in regions where both NEXRAD data and these non-radar data are available. This 

trained algorithm is able to estimate values of radar-derived fields from the current conditions observed in 

non-radar data. OPC generates two fields that are of interest to air traffic operations. The first is Vertically 

Integrated Liquid (VIL), which is a field that represents the amount of liquid water in a vertical column of 

the atmosphere and serves as a proxy for precipitation intensity. The units of VIL are kg/m
2
, however it is 

common to bin VIL into 6 intensity levels as shown in Figure 1. The other field generated by OPC is 

Echo Tops (ET), which represents the height of a storm, defined here as the height of the 18 dBz radar 

echo. Once these fields are generated from the machine learning model, the results are blended with 

existing radar mosaics to create a seamless radar mosaic that extends into offshore and oceanic regions.  

Methods for estimating precipitation by merging multiple datasets have existed for decades and are 

well studied [4], [5]. Multi-channel rainfall estimates derived from Visible (VIS) and Infrared (IR) 

satellite imagery are common, as geostationary (GEO) satellites provide imagery on a global scale fairly 
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regularly [6] [7],and [8]. Other methods combine VIS and IR imagery from a GEO satellite with the 

limited coverage of passive microwave (PMV) sounders that are capable of more accurate precipitation 

estimates, for instance Climate Prediction Center morphing method (CMORPH) [9], and Integrated 

Multi-satellitE Retrievals for GPM (IMERG) [10]. Lightning flash density has been used to provide a 

surprisingly accurate proxy for radar reflectivity [11], [12]. This is particularly enticing for OPC due to 

the availability of global lightning detection networks [13] [14], as well as the future availability of the 

Geostationary Lightning Mapper (GLM) on the GOES-R satellite [15].  

Not surprisingly, improved results are obtained by combining data across multiple sensors, for 

example, combing lightning with satellite data [16]. OPC falls into the family of these multi-sensor 

techniques by combining satellite, lightning, numerical model, and radar data into one precipitation-

related product. However, OPC also sets itself apart in numerous ways. Namely, OPC focuses on fields 

which are primarily of interest to ATM. A rapid updating capability was developed to make use of the 

freshest data possible in order to provide timely data on par with existing radar-based systems. OPC also 

employs novel feature extraction and non-linear regression models to combine highly heterogeneous input 

datasets.  

 

Figure 1. VIL with lightning flashes observed to the east (white markers). In this case, NEXRAD range (indicated 
with gray shading) does not extend far enough to properly depict these storms. 

An example of OPC being applied in the Gulf of Mexico is shown in Figure 2. The large cloud seen 

off the coast of Texas and Louisiana in the left panel indicates that a potential storm exists, but the limited 

range of NEXRAD is not able to depict the storm intensity. The right panel shows the same case with the 

OPC algorithm applied. Using other types of data like lightning and satellite yields a detailed picture of 

storm structure and intensity that would be valuable for controllers directing air traffic through this 

region. 
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Figure 2. Example of the OPC algorithm. The satellite in the left panel shows a potential storm exists over the Gulf 
of Mexico; however the limited range of NEXRAD is unable to depict details of storm intensity. On the right, the 
OPC algorithm combined a number of lightning, satellite and model indicators to estimate precipitation intensity 
over the region. 

This report is organized as follows. Section 2 describes details of the OPC development, including 

input data sources, preprocessing, and model training. Section 3 contains initial validation results, where 

OPC was compared to land radar, and spaceborne radar.  
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2. DEVELOPMENT OF THE OPC MODEL 

The OPC algorithm is based upon a supervised machine learning approach. In this approach, a 

regression model is trained using data gathered over regions with full radar coverage. This dataset 

consists of training examples that contain the field(s) of interest (VIL, ET), as well as features extracted 

from non-radar data. For optimal results, it is important that this training set contain a representative 

sample of conditions that will eventually be modeled by OPC.  

This section will provide details about the development of OPC. It will detail what non-radar data 

were used, what preprocessing steps were applied to the data, what features are extracted from the data, 

and the machine learning algorithm used to create the model 

2.1 INPUT DATA 

Inputs for OPC come from three major sources: lightning, geostationary satellite, and numerical 

weather prediction models. Each source of data is explained in more detail below. 

2.1.1 Lightning 

Lightning is a strong indicator of convective activity. Earth Network’s Total Lightning Network 

provides historical and real-time lightning data for OPC training and application. The data contains 

latitude/longitude, timestamp, amplitude, multiplicity, and height information of all detected flashes. This 

data also contains a cloud-to-ground/inter-cloud delimiter, though only cloud-to-ground was used in this 

work.  

2.1.2 Geostationary Satellite  

Satellite data for OPC comes from the GOES-13 (GOES-E) satellite. All imager channels provided 

by the satellite are utilized, including the 1 km VIS (0.65 µm) and all four 4-km IR channels (3.9 µm,  

6.7 µm, 10.7 µm, and 13.3 µm). Data arrival times depend on the current GOES-E schedule set by the 

Office of Satellite and Product Operations (OSPO). There are different sectors scanned by the GOES-E 

satellites: CONUS, Northern Hemisphere, Southern Hemisphere, and Full Disk. During routine 

operations, CONUS scans arrive roughly every 10–15 minutes whereas the larger Northern Hemisphere 

and Full Fisk scans take longer to arrive (30–45 minutes). 

2.1.3 Numerical Weather Prediction Models 

Numerical weather models are capable of simulating a large number of meteorological quantities in 

regions not covered by traditional sensors, including 3D sounding of temperature, pressure and humidity, 

as well as relevant 2D fields such as simulated radar reflectivity, rain rate, and convective cloud top 

height. The National Oceanic and Atmospheric Administration’s (NOAA) 13 km Rapid Refresh (RAP) 
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model
1
 was chosen for the initial version of OPC because of its relatively high resolution, hourly update 

and large spatial coverage. A portion of the full RAP domain (Grid 83), which covers the Atlantic ocean 

from south of Puerto Rico up to Southern Canada, are ingested and archived for training and simulation. 

Model fields used in OPC include 2 hour forecasts of Temperature, Pressure, Humidity, Composite 

Reflectivity, Precipitation Rate, Precipitable Water, Mean Sea Level Pressure, and Convective Available 

Potential Energy (CAPE). The 2 hour lead time was chosen to account for forecast latency.  

2.2 DATA PREPROCESSING AND FEATURE EXTRACTION 

Prior to extracting features for the machine learning model, a number of preprocessing steps are 

necessary. Preprocessing steps include visible satellite normalization, computation of cloud top height, 

parallax correction of satellite data, and binning and filtering of lightning data at multiple spatial and 

temporal scales. These steps are applied both during training and in real time application. 

Feature extraction translates the set of input satellite, lightning and model images into a dataset 

containing a fixed number of columns. Each row of this dataset represents a vector of features sampled at 

a particular geographic location, and each column represents a particular image feature. Features are 

obtained by applying a function to all pixels within a kernel centered at each point of interest. A number 

of different feature functions and kernel sizes are used in OPC feature extraction. Many features are 

classified as “1
st
 order statistics” which are quantities that don’t depend on how data are ordered within 

the kernel, such as mean, median, standard deviation, or a certain percentile of the data. Higher order 

feature functions are also used to capture quantities like image texture. For these higher order features, the 

magnitude of the gradient of underlying image |∇𝐼|2 = 𝐼𝑥
2

+ 𝐼𝑦
2, is applied and 1

st
 order statistics are 

computed using this transformed image.  

Kernel sizes used in feature extraction range from 1 to 13 km. The set of features used in OPC are 

summarized in Table 1. For satellite images affected by parallax, displacement vectors are applied to 

reposition kernel centers prior to extracting features. 

  

                                                   

1
 http://rapidrefresh.noaa.gov 
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TABLE 1 

Image Features used for OPC Model Training 

Image Type Kernel sizes (km) Image Features Gradient Features 

5 Min Lightning 1, 5, 10 mean - 

10 Min Lightning 1, 5, 10 mean - 

20 Min Lightning 1, 5, 10 mean - 

VIS 1, 4, 10 max, min, std, range median, 95th percentile 

IR 3.9 4, 12 max, min, median, std, range median, 95th percentile 

IR 6.7 4, 12 max, min, median, std, range median, 95th percentile 

IR 10.7 4, 12 max, min, std, range median, 95th percentile 

IR 13.3 4, 12 max, min, std, range median, 95th percentile 

Cloud Top Height 4, 12 max, min, std, range median, 95th percentile 

Solar Zenith Angle 1 mean - 

Filtered Lightning 1 mean - 

RAP Comp Refl 13 max, min, median, mean - 

RAP Precip. Water 13 max, min, median, mean - 

RAP Precip. Rate 13 max, min, median, mean - 

RAP Mean Sea 
Level Pressure 

13 mean - 

RAP CAPE 13 mean - 

 

Training data for OPC covers a year of data between May 2014 and May 2015 and covers the 

southeast domain shown in Figure 3. Radar mosaics from the Corridor Integrated Weather Service 

(CIWS) [17], [1] are used for truth. Radar mosaics with time stamps within 2.5 minutes of GOES scans 

were sampled at approximately one hour increments. Locations were randomly sampled in three data 

regimes: (a) No VIL (b) VIL Levels 1 & 2, and (c) VIL Levels 3 and higher. At each sample location, 

values of the radar mosaics were saved along with the location information and time stamp. For training, 

VIL is converted to digital VIL, in which a logarithmic transform is applied to larger VIL values in order 

to balance the distribution (i.e., lessen the long tail). No transformation was applied to Echo Tops data.  
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Figure 3. OPC Training Domain. 

For each point in the target dataset, lightning, satellite and model data were searched for a matching 

time stamp. If a time stamp that was sufficiently close could not be found for each input image type, this 

point was not used for training. If data matching this time stamp was found, input data underwent 

preprocessing and feature extraction. These features were paired with the observed radar fields and saved 

in the training database. 

Since VIS features are not valid during night time hours, the dataset was split into two pieces based 

on the solar zenith angle. Rows with solar zenith angle less than 60
o
 were used for day-time modelling. 

Rows with solar zenith angle greater than 60
o
 had the visible features removed, and were used for night-

time training. Finally, the resulting datasets were scrubbed of rows with any missing values, and 

downsampled such that they contained equal distributions of the three VIL regimes listed above (No VIL, 

low VIL, and high VIL). Finally, data was split into monthly training files, each containing 45K rows for 

both day and night time training.  

2.3 MODEL TRAINING 

A number of machine learning algorithms were tested for training the OPC model. The families of 

algorithms considered were 

• Linear Models: Models which use a linear combination of input features for predictions. 

Coefficients in the linear model are fit to minimize mean squared error plus a regularization 

term. Two types of regularization were investigated: Ridge Regression (L2 regularization), and 

Lasso Regression (L1 regularization), [18]. 
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• Artificial Neural Networks (ANN): These are non-linear models made up of groups of nodes 

connected through transfer functions whose parameters are fit from training data. The input 

features make up the set of input nodes, and these are connected to a number of hidden layers 

of nodes that feed forward into the final output. The parameters of the transfer functions are 

tuned through a method called back propagation.  

• Ensemble Learning Models: This family of models trains a number of “weak learners” (in this 

case, regression trees) and combines them to make a prediction which is, in general, more 

accurate than any individual learner. Algorithms tested in this family include Random Forest 

Regression (RFR), Extra Trees Regression (ETR), and Gradient Boosting Regression (GBR) 

[19], [20], [21].  

Prior to training, columns of the input dataset were normalized by applying a z-score 

transformation, and a grid search was performed to choose optimal hyper-parameters. In addition, 

lightning based features underwent a log-transformation. 

For each model, a grid search was performed to choose optimal hyper-parameters. A 10-fold cross-

validation was run to measure the coefficient of determination (𝑟2) for both day and night time datasets, 

and for digital VIL, Echo Tops, and Composite Reflectivity datasets. To avoid over-fitting during cross 

validation, the dataset was sorted by time stamp, and train/test datasets contained only segments of 

consecutive days. Only summertime data (June–August) for VIL and Echo Tops was used for model 

selection. The results of this series of cross validations for model selection are shown in Table 2. 

TABLE 2 

Cross Validation Performance of the Machine Learning Algorithms Considered 

In each cell, the numbers are RMSE/r2. For VIL’s RMSE, the units are in digital VIL and for echo 

tops they are in units of kft. 

  Digital VIL Echo Tops (kft) 

  Day Night Day Night 

Ridge Regression 42.30/0.6523 48.17/0.5415 6.891/0.7944 7.939/0.7164 

Lasso Regression 42.31/0.6521 48.06/0.5435 7.118/0.7806 8.348/0.6863 

Neural Networks 39.15/0.7011 44.52/0.6092 6.276/0.8294 7.172/0.7686 

Random Forest  38.93/0.7054 44.50/0.6086 6.232/0.8326 7.273/0.7595 

Extra Trees Regression 38.81/0.7072 44.39/0.6105 6.190/0.8349 7.231/0.7622 

Gradient Boosting  38.79/0.7075 44.48/0.6089 6.180/0.8354 7.256/0.7606 
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With the set of features chosen, GBR outperforms the other models during day time, but by only a 

small margin (~0.3%) over other ensemble models, and a slightly wider margin over neural networks 

(~1%). ANN and ETR outperformed other models for night time data, but again, only by a small amount. 

The linear models (Ridge and Lasso) were outperformed by all other algorithms, which suggest that non-

linear models are better suited for prediction based on these heterogeneous features. With the exception of 

night time echo top data, for which ANNs offer a slight improvement, ensemble methods show the best 

potential for OPC modeling. Despite the minuscule improvement provided by GBR and ETR, the 

Random Forest was chosen as it was most easily implemented in a real-time processing system.  

2.4 RADAR MOSAIC STITCHING 

As a final step, the output of OPC is “stitched” or merged with radar mosaics over land or wherever 

valid radar data is available. Since OPC is ultimately an estimation of radar mosaics, using true radar is 

almost always preferred when and where it is available. To stitch OPC with radar, a weight field is 

derived from a weighting function, 𝑤(𝑑), that depends on the distance in kilometers, 𝑑, to a closest radar. 

Near a radar, where 𝑑 is small, 𝑤(𝑑) is at or near 0. As 𝑑 increases towards the maximum range of radar 

data, 𝑤(𝑑) transitions smoothly towards 1. The weight computed at each pixel is then used in a linear 

combination of the OPC and CIWS data. This combination results in the stitched output. A demonstration 

of this process can be seen in Figure 4. 

𝑂𝑃𝐶𝑠𝑡𝑖𝑡𝑐ℎ𝑒𝑑 = 𝑤(𝑑)𝑂𝑃𝐶 + (1 − 𝑤(𝑑))𝐶𝐼𝑊𝑆 

 

Figure 4. Example of OPC radar stitching process. A weighting function is applied to combine OPC (top left) and a 
radar mosaic (bottom left). The result of the weighted combination is pictured on the right. 

 OPC 
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3. OPC MODEL ASSESSMENT 

This section will look at the reliability of OPC VIL & ET in regions near and around the southeast 

U.S. where OPC was trained. Two datasets are used for OPC validation. The first is NEXRAD VIL and 

ET produced by CIWS. While NEXRAD data isn’t available over ocean, these data are abundant (CIWS 

generates a new mosaic every 2.5 minutes) and also of high quality. A comparison of NEXRAD VIL and 

ET to their OPC counterparts is shown in Figure 5. Note that throughout this section, OPC is not stitched 

with NEXRAD. 

To validate OPC outside the range of NEXRAD, we utilize spaceborne radar onboard NASA’s 

Global Precipitation Measurement Mission’s (GPM) Core Observatory Satellite [5]. This satellite, 

launched in February of 2014, is a low earth orbiting satellite equipped with Dual-frequency Precipitation 

Radar (DPR) with Ku (13.6 GHz) and Ka (35.5 GHz) bands. As such, this radar provides validation data 

over ocean, however its availability is much less than NEXRAD’s. An overpass of the core observatory 

provides a 3D swath of radar reflectivity that is 245 km wide for the Ku band, and 125 km wide for the 

Ka band. The horizontal resolution of the data is 5km, with a vertical resolution of 500m. Reflectivity 

data obtained from this satellite is mapped to VIL and ET, and these fields are compared to their 

counterparts in OPC. An important fact to consider is that the high frequency Ka band on this radar 

suffers from attenuation in deep convective storms [22]. This should be kept in mind when treating the 

DPR as “truth”. A comparison between GPM VIL and ET, to OPC over the Caribbean is shown in Figure 

6.  

One qualitative difference between the two fields is that, in general, OPC appears more “dilated”, or 

softer than radar, and does not match the same 1 km storm resolution of NEXRAD radar mosaics. This 

can be seen by noting that the coverage of Level 1 & 2 VIL, as well as coverage of lower ET appears 

higher in OPC than in corresponding truth (NEXRAD or GPM). This is mainly a result of two factors: 

larger kernel sizes in the feature extraction, and the low resolution nature of satellite and model data. 

Despite this difference, OPC is able to capture the shape and character of many of the severe storms.  



 

 

12 

 

Figure 5. Comparison of NEXRAD (Left), and OPC (Right) VIL and ET. 

 

Figure 6. Comparison of GPM DPR, and OPC VIL and ET. 
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OPC was run for the summer of 2015 over the regions shows in Figure 7. Data generated within the 

southeast region will be assessed using NEXRAD (CIWS), whereas data over the Gulf and Caribbean 

regions will use GPM DPR. For the NEXRAD comparison, geographic points were randomly selected for 

OPC VIL & ET images generated every 30 minutes over the months of June, July, and August, 2015. For 

GPM DPR, 20 overpasses were selected within both the Gulf and Caribbean regions and points were 

selected in the portion of the overpass that intersected the scoring regions. These overpasses were selected 

based on weather content (a mixture of high and low impact cases) and data quality.  

 

Figure 7. OPC scoring regions. Over land (southeast domain), NEXRAD data taken from CIWS will be used as 
validation data. Offshore (Gulf & Caribbean), VIL and ET are measured from GPM DPR. 

Figure 8 shows the “pixel-by-pixel” comparison between NEXRAD, and OPC VIL & ET in the 

southeast domain. The y-axis in both of these plots show the average value of VIL/ET from NEXRAD 

conditioned on OPC values along the x-axis. Ideally, curves should lie along the dashed diagonal line, 

which would imply that OPC is (conditionally) unbiased. Curves are split by day (10UTC–22UTC) and 

night to show differences in performance when visible satellite is or isn’t included in the set of input 

features.  

All curves are monotone increasing, which suggests that OPC values are coupled to observations 

(i.e., observing high/low OPC implies high/low NEXRAD). For both VIL and ET, OPC is conditionally 

biased high in the “mid-ranges” (i.e., when OPC is showing VIL Level 1 & 2 or ET less than 30–35 kft). 

This bias is worse at night, especially in OPC ET. An example of this high bias in these ranges can be 

observed in Figure 5. In this example, the storms along the Florida Peninsula show gaps in the low level 

NEXRAD VIL and ET. In OPC, many of these gaps appear filled with VIL level 1 and 2.  

The results improve for high values of OPC VIL (≥ Level 3) & ET (≥ 30 kft). Both fields show a 

low conditional bias in both day and night time, as all curves converge near the diagonal line. This is also 
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consistent with the example shown in Figure 5 – nearly all storm cores visible in OPC are associated to a 

storm core in NEXRAD, although OPC storms appear larger, as discussed previously. 

 

Figure 8. Comparison between OPC and NEXRAD (CIWS), VIL(left) and ET (right) for the southeast domain. The 
y-axis in both plots shows the average value of the NEXRAD VIL/ET conditioned on OPC taking the values along 
the x-axis. 

Figure 9 shows a similar comparison between GPM DPR, and OPC VIL and ET for the Caribbean 

and Gulf regions (no day/night split was performed on these datasets due to a limited number of passes). 

Similar to NEXRAD, the OPC VIL and ET behave similarly to the fields derived from the DPR, as each 

curve is monotone increasing. Both OPC fields show a high conditional bias relative to GPM. Unlike 

NEXRAD, this high bias persists for the “high range” of VIL and ET. In the VIL especially, the curves 

remain below the diagonal even for high OPC showing Level 5 and 6. The bias appears to be slightly 

better for the Gulf domain, aside from OPC predictions of 50kft (which is likely a statistical anomaly due 

to small sample size).  

There are two possibilities that might explain the high bias observed offshore that’s not present in 

the NEXRAD comparison. First, weaker vertical motion in the storms associated with weaker surface 

forcing and instability observed in oceanic storms, may cause their ET and VIL to not reach as high as 

over land (where OPC was trained). Better features might need to be added to OPC to alleviate this issue. 

The second factor contributing to high bias offshore is the attenuation of the DPR. We suspect this is 

especially true for the low DPR VIL values observed in areas of high OPC VIL.  
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Figure 9. Comparison between OPC and GPM DPR, VIL(left) and ET (right) for the Caribbean and Gulf domains. 
The y-axis in both plots shows the average value of the DPR VIL/ET conditioned on OPC taking the values along 
the x-axis. 

3.1 DETECTION OF AVIATION IMPACTING WEATHER 

In addition to comparisons in the previous section that looked at OPC performance across the entire 

range of VIL & ET values, this section studies the performance of OPC in depicting aviation impacting 

weather. “Aviation Impacting” is defined here as VIL Level 3 or greater and Echo Tops ≥ 30 kft. OPC 

images are compared to NEXRAD images and scored based on the following contingency table: 

TABLE 3 

Contingency Table used for OPC Assessment 

 

To account for differences in resolution, a 5 km search radius was applied to look for matching 

OPC pixels. This is done to prevent penalizing OPC for creating storms that are more dilated than those 

seen in observations.  
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Once all pixels are classified, the following statistics Probability Of Detection (POD), BIAS, and Critical 

Success Index (CSI) are computed within the scoring domain. These statistics are defined as 

𝑷𝑶𝑫 =  
#𝐻𝑖𝑡𝑠

#𝐻𝑖𝑡𝑠 + #𝑀𝑖𝑠𝑠𝑒𝑠
   𝑩𝑰𝑨𝑺 =

#𝑂𝑃𝐶

#𝑇𝑟𝑢𝑡ℎ
=

#𝐻𝑖𝑡𝑠 + #𝐹𝐴𝑠

#𝐻𝑖𝑡𝑠 + #𝑀𝑖𝑠𝑠𝑒𝑠
  𝑪𝑺𝑰 =

#𝐻𝑖𝑡𝑠

#𝐻𝑖𝑡𝑠 + #𝑀𝑖𝑠𝑠𝑒𝑠 + #𝐹𝐴𝑠
 

These statistics were computed within the southeast domain in Figure 7 for June, July and August 

of 2015 and the results are shown in Figure 10. The points in these plots represent individual OPC images 

sampled at least 15 minutes apart (images without enough pixels exceeding a threshold are not plotted). 

The orange curve in each plot shows a 4-day moving average. The average (POD, BIAS, CSI) for the 

whole summer is (0.6272, 0.8727, 0.5026) for OPC VIL, and (0.7201,1.0323,0.559) for OPC ET. 

Overall, scores are better for OPC ET than for VIL, which is not surprising given that ET is a 

function of the top of the storm, in contrast to VIL which depends on an entire column of the atmosphere. 

There is a noticeable diurnal pattern in the OPC scores, where the skill drops overnight. This drop is due 

to the loss of the VIS channel, and due to the nature of convection in the southeast domain (afternoon 

thunderstorms which generate a lot of lightning are generally well detected by OPC). Periods where the 

average performance drops (e.g., around June 17
th
 ) are typically a result of heavy precipitation without a 

lot of lightning. Better satellite features (e.g., GOES-R) will help alleviate both of these issues. 

At first glance it seems contradictory that the results in the previous section show a high bias in 

OPC VIL (Figure 8) whereas the bias in these results is lower on average. The difference can be 

explained by the 5km search radius used here to classify OPC pixels as hit or false alarm. This has the 

effect of removing the “dilated” pixels from the bias computation. This helps confirm that OPC creates 

storms that are larger than observed storms, but rarely creates any aviation impacting storms that aren’t 

there (low false alarm rate). 
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Figure 10. OPC performance for detection VIL ≥Level 3(top) and ET≥30kft (bottom) for the summer of 2015. The 
points in each plot represent OPC images sampled 15 minutes apart (images without enough impacting weather are 
not plotted). The orange line in each plot represents a 4-day moving average. 
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4. CONCLUSION 

The Offshore Precipitation Capability (OPC) is a system that estimates weather radar-like fields 

used by aviation in areas without weather radar coverage. This capability has the potential to extend the 

coverage of current weather radar mosaics used in today’s ATC to offshore and oceanic areas. In 

particular, OPC can benefit Air Traffic Controllers by improving the safety and efficiency of the National 

Airspace.  

OPC works by estimating radar-derived fields, such as VIL and Echo Tops, by combining a number 

of non-radar data that are available in offshore and oceanic areas. These non-radar data include lightning 

flashes, geostationary satellite data, and output from numerical weather prediction models. Features 

extracted from the data are combined in a machine learning model to estimate VIL, and Echo Tops in 

regions outside weather radar coverage. Output from OPC is merged with existing radar in regions with 

radar coverage to create a seamless radar mosaic. 

OPC performance was studied over the summer of 2015. OPC outputs were compared to NEXRAD 

radar in the southeast U.S., and to GPM DPR radar over the Caribbean and Gulf of Mexico. Pixel-to-pixel 

comparisons showed that OPC is generally higher than NEXRAD- and DPR-based fields. The high bias 

was mainly observed in the mid-ranges of VIL and ET. Bias over ocean appeared to be higher, although 

some of this might be caused by attenuation in the DPR.  

The ability of OPC to depict aviation impact storms was also assessed. For this a 5 km search radius 

was applied for matching OPC storms to observations. The results here showed that OPC had a POD of 

63% for VIL ≥ Level 3, and 72% for ET ≥ 30fkt. In contrast to pixel-to-pixel scores, the bias for VIL ≥ 

Level 3 storms was slightly low (0.87), which was the effect of the 5km search radius applied when 

scoring. The bias ET ≥ 30fkt was low (1.03), suggesting that OPC is better at depicting impacting storms 

with high tops. 

Future work for OPC involves a third party assessment of OPC that will contain a much larger 

sample than was used in this report. Feedback from this assessment will be used to further improve the 

OPC model. Additional OPC improvements include expansion of the OPC domain to cover the expanded 

CONUS domain, and creation of Composite Reflectivity in selectable layers of the atmosphere and Echo 

Tops at selectable reflectivity thresholds. This work is planned for FY2016 and beyond. 
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GLOSSARY 

ANN Artificial Neural Networks  

ATM Air Traffic Management  

CAPE Convective Available Potential Energy  

CIWS Corridor Integrated Weather System  

CMORPH Climate Prediction Center morphing method 

CONUS Contiguous United States 

CSI Critical Success Index  

DPR Dual-frequency Precipitation Radar  

ET Echo Tops  

ETR Extra Trees Regression  

FAA Federal Aviation Administration 

GBR Gradient Boosting Regression  

GEO geostationary  

GLM Geostationary Lightning Mapper  

GOES Geostationary Operational Environmental Satellite 

GPM Global Precipitation Measurement Mission  

IMERG Integrated Multi-satellitE Retrievals for GPM  

IR infrared  

NAS National Airspace  

NASA National Aeronautics and Space Administration 

NEXRAD Next Generation Weather Radar 

NOAA National Oceanic and Atmospheric Administration  

OPC Offshore Precipitation Capability  

OSPO Office of Satellite and Product Operations  

PMV passive microwave  

POD Probability Of Detection 

RAP Rapid Refresh  

RFR Random Forest Regression  

TDWR Terminal Doppler Weather Radar 

VIL Vertically Integrated Liquid  

VIS visible  

WARP Weather and Radar Processor  
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