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From extending the reach of the military, 
to countering piracy, to defending against 
ballistic missiles, to responding to natural 
disasters, the surface fleet of the U.S. Navy 

performs a range of critical missions to protect national 
interests at home and abroad. To provide the diverse 
capabilities required by these missions, the Navy has 
fielded a fleet of more than 100 major surface combat-
ants, ranging from versatile littoral combat ships and 
guided-missile cruisers to the immense nuclear-powered 
aircraft carriers [1]. The total crew size represented by 
these ships is well in excess of 90,000 sailors, under-
scoring their importance as a major Navy asset [2].

Though the fleet is an undeniably formidable global 
force, potential adversaries are developing advanced 
weapons, intent on putting U.S. ships and their crews at 
ever-increasing risk [3]. The emerging capabilities and 
proliferation of modern anti-ship cruise missiles (ASCMs) 
present a considerable threat to the surface ships of the 
Navy and their missions [4].

In recognition of this evolving threat, the Navy has 
a wide array of counter-ASCM systems, both deployed 
and in development, with the goal of equipping each 
ship (Figure 1) with a robust layered defense [5]. Each 
countermeasure system provides unique and complemen-
tary capabilities that must be employed quickly, correctly, 
and judiciously to mitigate the ASCM threat.

While the diversity in defensive systems is designed 
to enhance robustness for addressing the wide variety of 
ASCM types, the additional complexity of the combined 
defensive system presents a significant challenge for the 
sailors tasked with responding to ASCMs. For example, 

Defending U.S. Navy ships from the growing 
danger presented by modern anti-ship cruise 
missiles is a formidable challenge. Lincoln 
Laboratory, partnering with government and 
industry, developed the game-based trainer 
Strike Group Defender to equip the modern 
sailor with the knowledge and skills necessary 
to address the evolving threat. The combination 
of the immersive interface with novel machine 
learning and artificial intelligence techniques 
is advancing the state of the art in interactive 
training.
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assigning five countermeasures against five threats allows 
more than 100 distinct combinations of countermeasures, 
though only a few of these potential choices may actually 
result in a positive outcome for the defense. More realistic 
situations than this simple example have greater numbers 
and types of both attacking missiles and countermeasure 
systems, with additional complications from timing and 
geometric deployment considerations, and are there-
fore exponentially more complex. The challenge for the 
modern sailor is to select the correct course of defensive 
action, often on very short timelines and with incomplete 
information, from the large number of choices afforded by 
the array of countermeasure systems.

A critical factor in preparing the modern sailor to 
address complex ASCM scenarios is clear, accurate, and 
detailed training [6]. In recognition of this, Chief of Naval 
Operations Admiral John Richardson has made one of his 
four principal thrusts for the Navy to “achieve high-velocity 
learning at every level.” In particular, he suggests that the 
Navy “expand the use of learning-centered technologies, 
simulators, online gaming, analytics and other tools as 
a means to bring in creativity, operational agility, and 
insight” [7]. 

The serious game Strike Group Defender (SGD for 
short) was designed with this training need in mind, 
harnessing the immersive nature of modern video game 
technology, coupled with cutting-edge adaptive machine 
learning techniques, to provide the Navy with a flexible 
training and evaluation tool suitable for addressing 
demanding, realistic modern scenarios. In the end, the 
goal of SGD is to enable sailors to better defend themselves 
and their ships against the real dangers they face in their 
naval assignments.

Why a Video Game?
Because the purpose for the vast majority of video games 
ever produced has undeniably been entertainment, there 
has been a natural uncertainty and guardedness about 
games’ effectiveness and legitimacy for educational uses 
[8–10]. Even so, familiar schoolhouse games, such as The 
Oregon Trail, have occupied a niche market in the gaming 
world since the 1980s [11]. As technology has improved 
and the proliferation of video games into everyday life has 
increased, the interest in using video games for educa-
tion also has grown [12]. The development of SGD as a 
video game was driven by several key factors: the clear 

FIGURE 1. The various systems depicted in the illustration can be deployed to counter anti-ship cruise missiles. 
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connection games provide to young people, the game 
industry’s development of supporting technology, and 
the natural representation of defense against ASCMs as 
a two-sided game.

Connection
Part of the growing interest in leveraging video games 
for instruction flows naturally from the realization that 
today’s students have never known a world without the 
influence of video games [13]. To put this in perspec-
tive for the Navy, where the average enlisted crew 
member is 22 years old, the original Mario Bros.™ game 
was a quarter-century old when today’s sailors were 
in middle school and the venerable progenitor game 
Pong™ was already approaching 40 years of age [14–16]. 
Furthermore, the pervasiveness of video games for young 
people today in the United States can be quantified in part 
by noting that 97 percent of them report playing some 
form of video game, whether on gaming consoles, on 
personal computers, or, increasingly, on mobile devices 
[17]. The familiarity of the video game medium therefore 
offers the potential to tap immediately and intuitively into 
the everyday experience of the target audience of young 
sailors. The intuitive interfaces and instinctive gameplay 
developed for SGD allow players to focus on learning ship 
defense rather than on the mechanics of the game itself.

Technology
In tandem with the expansion of the influence of 
video games, the exponential growth in the computing 
capability that fuels the industry offers opportunities for 
developing instructional methods different from those 
found in more traditional teaching [18]. With educational 
video games, teachers can take advantage of immer-
sive and engaging on-demand lessons, networked team 
training, and immediate examination with feedback [19]. 
In addition, the massive data collection and new analysis 
techniques supported by a modern video game permit 
SGD developers to explore new avenues for improved and 
adaptive teaching, training, and testing [20].

Natural Game
While the stakes are extremely high and very real, the 
defense of a ship against an attack of ASCMs aligns 
itself very well with the pure definition of a game: two 
independent sides (the defense and offense) with definite 

objectives (minimal/maximal damage), operating under 
certain rules (the capabilities of defensive/offensive 
systems) [21]. Learning to play the game translates 
to the core goal of SGD: teaching sailors how better to 
defend their ships in the real world. Additionally, the 
tense real-time scenarios faced in defense against ASCMs  
naturally add an element of excitement and entertain-
ment to the game, increasing player engagement and 
educational opportunities.

The Reality for the Simulation
The game of chess can be intricately complex even though 
the movements of individual pieces are straightfor-
ward to define. In much the same way, the complexity 
in mounting a defense against ASCMs is derived from 
the much simpler definition of the offensive and defen-
sive systems that may be employed. Understanding the 
capabilities provided by these “pieces” is therefore neces-
sary for understanding the nature and magnitude of the 
complexity found in the overall “game” of ship defense.

The Offense
With significant roots in the technology developed near 
the end of  World War II, the first ASCM was introduced 
on the world stage in the late 1950s [22]. Since that time, 
the diversity of ASCM types and their associated array 
of capabilities have grown steadily, with a world arsenal 
of more than 75,000 and the number of distinct types in 
excess of 100 varieties [23]. 

Though the diversity of ASCM systems is daunt-
ingly large, the number of characteristics needed to 
define a given system at a high level is comparatively 
compact. Namely, once the flight profile (how it moves) 
and terminal seeker (how it sees and thinks) are defined, 
the system can be modeled sufficiently for the training 
goals in SGD.

Cruise missiles are kinematically diverse, with speeds 
ranging from subsonic to highly supersonic and altitudes 
from very high down to low-profile sea-skimming 
approaches [24]. Additionally, some systems incorpo-
rate high-g maneuvers in an attempt to evade missile 
interceptors fired by the defense [25]. The need for quick 
decision making by the defense can be brought into focus 
by considering fast, low-flying threats, for which the time 
from first appearance above the horizon of the ship until 
impact can be less than one minute.
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Because a ship is a moving target, all cruise missiles 
have some sort of terminal seeker designed to guide the 
missile to impact its target. Many ASCMs have radars 
mounted in their noses for this purpose, but passive 
sensors (homing in on emissions from the ship) or 
infrared sensors are also possibilities [26]. While the 
seeker enables the missile to select among targets and 
attempt to filter out decoys, it also provides an avenue 
for the defense to counterattack via electronic warfare 
techniques [27].

The Defense
Since the advent of the ASCM threat, the Navy has contin-
ually developed and deployed a wide range of ASCM 
countermeasure systems. Though the diversity of systems 
is large, all of them can be sorted into one of two classes: 
hard-kill (physically destroying or disabling the threat) or 
soft-kill (confusing or blinding the ASCM seeker) [28]. 

The primary hard-kill systems aboard ships are defen-
sive missiles called interceptors, designed to physically 
destroy the attacking ASCM before it can hit the ship [29]. 
Much like the ASCM threat, these defensive systems are 
defined by how far and fast they fly, as well as by the type 
and capability of their own terminal seekers. Additionally, 
close-in weapon systems utilizing a high-rate-of-fire gun 
are also a form of hard kill [30]. Each hard-kill system’s 
strengths and weaknesses determine the likelihood of its 
effectiveness against a given threat.

In contrast to the dramatic operation of hard-kill 
systems, the soft-kill systems on the ship employ more 
subtle means to defeat incoming threats. Onboard and 
off-board jammers interfere with the operation of the 
ASCM seeker to blind or confuse its targeting, attempting 
to render the threat unable to guide to the target ship 
[31]. Additionally, soft-kill decoy countermeasures can 
be deployed to act as a more enticing target, causing the 
threat not to target the actual ship [31]. The performance 
of soft-kill countermeasures depends heavily on when 
and where they are deployed and on the capability of the 
seeker installed on the attacking missile.

The counter-ASCM systems, both hard and soft 
kill, are supported at some level by the radars on board 
the ship and off board (e.g., on aircraft), as well as by 
electronic support measure systems listening for threat 
seeker emissions [32].

The Game
At the most basic level, the goal for the offense is to inflict 
as much damage as possible (potentially on high-value 
ships) with its resources, while the defense seeks to 
mitigate the damage and conserve its own countermea-
sures, saving them for potential subsequent attacks. 

In the conflict, the offense has some significant 
advantages, including deciding when the attack will 
occur, which types of ASCMs will be used, how many will 
be deployed, how they will be spaced geometrically and 
in time, and which ships will be targeted. The offense is 
challenged by two conditions: the target is moving, and 
the ships in the strike group can operate as a team.

The defense’s advantage is that it decides which ships 
are in the strike group, how they are positioned, and how 
they are equipped. Challenges for the defense include 
the uncertain identification of the attacking threats and 
imperfect knowledge of how many threats will attack at 
the current time and how many may attack later.

An effective defense requires judicious employment 
of countermeasure systems, with correct deployment 
timing and doctrine, in the face of limited information on 
a very limited timeline. The complexity of this challenge 
has spurred the continued development of the SGD game 
to help sailors become familiar with the critical decisions 
they may face and their options.

To maximize the clarity and effectiveness of instruc-
tion, a serious game must represent the salient features 
of the simulated scenario while minimizing extraneous 
information [33]. SGD was designed to provide minimally 
detailed representations of real offensive and defensive 
systems while essentially retaining the full complexity of 
the systems’ combined interactions that would be faced 
by a sailor mounting a defense against the broad array of 
potential ASCM threats. 

Because the task of defending a ship against ASCMs 
can be seen to fit perfectly in the paradigm of a game, 
SGD was seen as a logical, relevant training tool for the 
modern sailor.

Genesis of Strike Group Defender
The Navy is pursuing the enhancement of capabilities 
across a wide variety of new and ongoing hard- and 
soft-kill efforts. From large programs of record for new 
radars and electronic warfare systems, to Future Naval 
Capability efforts, to speed-to-fleet reactions to urgent 



 VOLUME 23, NUMBER 1, 2019  n  LINCOLN LABORATORY JOURNAL 29

G. MARK JONES, MATTHEW C. GOMBOLAY, REED E. JENSEN, AND STEVEN L. NELSON

needs, the breadth of new development is considerable 
[34–36]. In addition, concurrent with the creation of new 
systems, new tactics and deployment algorithms are being 
pursued. The result is that the capabilities and complexi-
ties encountered by today’s sailors are steadily increasing, 
and so is the need for education that addresses these 
technological advances. Lincoln Laboratory’s involvement 
in many of the Navy’s development efforts has afforded the 
Laboratory insight into both the capability and training 
needs of naval personnel. 

The first steps toward the development of an educa-
tional video game to address the evolving needs of the 
Navy were taken during the 2013 edition of the Lincoln 
Laboratory annual Red/Blue game held by the Air, Missile, 
and Maritime Defense Technology Division (Figure 2). In 
contrast to the later expanded SGD, the first iteration was 
focused on conveying several key concepts that illustrate 
the complexities of defense against ASCMs. This version 
was constructed as an intense real-time, simultaneous, 
two-player game, with one player acting as the offense and 
the other as the defense. The game was publicly introduced 
during an eight-team tournament conducted in conjunc-
tion with the 2013 Air and Missile Defense Technology 
(AMDT) Workshop at Lincoln Laboratory. 

Though the game was comparatively limited in scope 
at this stage, constructed by engineers (not game devel-
opers) and played by engineers (not Navy ensigns), several 
notable findings emerged from the tournament. First, it 
was clear that teams that practiced more ahead of time 
(i.e., trained together) performed markedly better than the 

less practiced teams. Additionally, teams that identified a 
limited selection of preferred strategies on both offense and 
defense were better able to respond quickly to a wide range 
of their opponent’s strategies. And finally, teams that had 
clear roles identified for each member were able to perform 
more measured responses, even against unexpected 
opponent behavior, on a short timeline. Though the obser-
vations from the Red/Blue tournament were qualitative, 
they provided insight into the potential for using a video 
game construct for experimentation and training.

Based on the initial demonstration of SGD during 
the Red/Blue game at the AMDT Workshop, the Office 
of Naval Research, PMR-51 Branch, expressed a desire 
to greatly expand the game into an immersive training 
and demonstration tool for the Navy. Partnering with 
professional video game developer Pipeworks and game 
consulting firm Metateq, Lincoln Laboratory rapidly 
transformed the Red/Blue game into the first version of 
SGD, which personnel at the Naval Postgraduate School 
in Monterey, California, beta tested.

Strike Group Defender Functionality
Over a few months, Pipeworks incorporated an array of 
professional-grade enhancements to expand the concept 
of the original Red/Blue engineering demonstrator 
into the first polished iteration of the SGD video game, 
which offered significantly increased training poten-
tial. Immediately striking were the improved visuals 
and stirring soundtrack designed to create an immer-
sive atmosphere and draw the player into the game. The 
action takes place in a third-person, three-dimensional 
arena, with the defended ships (blue) in the center and 
the cruise missile threats (red) flying in from the horizon. 
Supplementary displays and interfaces are arrayed around 
the large central display, providing users with easy access 
to all information needed to play the game (Figure 3). 

The player is given complete control over the defense, 
deciding strategy, deploying countermeasures, and even 
changing ship speeds and headings. This idealization, 
along with the representation of the interfaces, is intended 
to teach core concepts rather than simulating a partic-
ular display, piece of hardware, or role for an individual 
sailor. The supposition underlying the game’s design is 
that sailors more well-versed in the global operations of 
ship defense will better be able to fulfill their particular 
roles as part of the crew.

FIGURE 2. The Red/Blue game featured separate displays for 
the offense (left) and the defense (right).
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Similar to the idealization of the displays, the missiles 
and countermeasures in SGD are abstract representations 
intended to convey core concepts rather than repre-
sent real systems (Figure 4). On the red side, the types 
of ASCMs vary primarily with how the missile finds or 
selects its target. The Moth Missile, for example, uses an 
infrared seeker to measure heat from ships. On the blue 
side, the systems are broadly representative of classes 

of countermeasures. For example, the Hard-Kill system 
represents the full variety of hard-kill options on a ship. 

However, with the understanding that more realism 
could be desirable for some instructional considerations, 
the game was designed in such a way that converting to 
more realistic (and therefore also classified) representa-
tions amounts to a straightforward change to the input 
file defining the system.

FIGURE 3. The display for Strike Group Defender gameplay presents blue ships and red threats (center), an overhead 
view (lower left), a message panel (lower right), a countermeasure inventory (right), and menus and scoreboard (top).

FIGURE 4. Strike Group 
Defender features a variety 
of abstracted threat 
missile types (left) and 
defensive countermeasures 
(right), each with its 
own characteristics and 
capabilities. For example, 
the Moth Missile can be 
distracted from the defended 
ships with a flare (center).
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SGD is packaged with a range of built-in scenarios, 
from one-threat versus one-ship tutorials up to a full strike 
group versus an attack of 20 missiles or more. The game 
is not limited to these scenarios, however, as SGD also 
includes a built-in scenario editor that permits instruc-
tors and students alike to create their own situations 
(Figure 5). Ships, countermeasure loadouts (number of 
countermeasures carried on board), threat type, bearing, 
and timing are all adjustable, allowing players to explore 
actions from the point of view of both sides of the conflict. 
Additionally, threat timing and bearing can be varied, 
even randomly, adding challenge and discouraging rote 
memorization of responses.

Scenarios are played in real time, typically last a 
few minutes, and are playable under a variety of game 
modes that provide different instructional opportunities 
for the user: 
• Tutorial. Straightforward scenarios with a single type 

of incoming threat coupled with a virtual instructor 
teach players where and when to deploy the correct 
countermeasures. 

• Single-player defense. Controlling a single ship or 
group of ships, users defend against a computer-con-
trolled ASCM attack in a variety of scenarios across 
a range of difficulty levels based on the number of 
incoming threats and the availability of countermea-
sure resources. 

• Multiplayer defense. Through in-game text messaging 
or over a voice network, multiple players collaborate 
in real time to defend surface ships against a comput-
er-controlled ASCM attack. 

• Multiplayer offense versus defense. One player controls 
the adversary ASCMs (i.e., offense) while all other 
players collaborate as the defense. This setup enables 
players to gain insight into potential adversary strate-
gies and the tactics to counter them.

In addition to the central gameplay functionality, SGD 
also incorporates many social features designed to increase 
player interaction, encourage competition, and ultimately 
improve learning (Figure 6). Each scenario has its own 
leaderboard on which top scores are continuously updated 
for all players to see. The innate desire to be atop the 
leaderboard is a powerful motivating force for individual 
improvement [37]. Similarly, the ability to create and share 
new scenarios with which to challenge other players is also 
intended to foster creativity and the desire to improve. 

Finally, the message board facilitates communication 
among the players, allowing them to ask questions of their 
peers and instructors and to share insights gained. 

Though SGD’s capabilities are extensive, the game 
was designed from the beginning to require minimal 
system requirements to work properly. Running in any 
web browser with very low bandwidth requirements, 
the game retains full functionality whether played on a 
desktop computer in the classroom, on a laptop at home, 
or over secure networks on ships deployed at sea.

FIGURE 6. The intuitive interface offers players easy access to 
scenarios, leaderboards, and social media.

FIGURE 5. The editor panel allows the player to construct a 
scenario, selecting which type of threats to confront, how many, 
and where and when they are deployed against the elected 
defended ships.
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 SGD was introduced to the wider community at the 
2014 Air and Missile Defense Technology Workshop at 
Lincoln Laboratory. Over the three days of the workshop, 
67 participants logged 332 games. The positive feedback 
from the community qualitatively validated many of the 
underlying motivations that had influenced the devel-
opment of SGD and reinforced the Navy’s desire for the 
research team to pursue further enhancements.

Strike Group Defender Roles
The diverse capabilities designed into SGD enable access 
to multiple training avenues with the ultimate goal of 
equipping sailors with the skills needed to defend their 
ships within complex threat scenarios. These educational 
opportunities can be broken down into three distinct 
categories: teaching, exploration, and evaluation.

Teaching
The capabilities of SGD enable rapid instruction in ASCM 
defense, from threat characteristics, to countermeasure 
capabilities, to implementation of correct tactics. Using 
the built-in capabilities, instructors can construct lesson 
plans to relate core concepts in the classroom setting, or 
students can experiment on their own.

One of the notable benefits of SGD is building sailors’ 
trust in new capabilities. In response to the continually 
evolving ASCM threat, the Navy is rapidly introducing 
new countermeasure systems to the fleet. In particular, the 
new soft-kill systems, composed of a variety of onboard 
and off-board jammers, may seem arcane and untrust-
worthy if one does not understand how they actually do 
the job of defeating ASCMs. Because the new systems 
are unfamiliar to sailors, they may have a tendency to 
downplay these systems in favor of older, more familiar 
ones. By observing in SGD how new systems operate, 
sailors can learn how the systems work and therefore may 
choose to employ them appropriately in the field. 

Exploration
In contrast to the cost of making a mistake in countering 
a real ASCM, the penalty for performing poorly in SGD is 
only a lower game score and the immediate opportunity 
to try to improve. This lack of consequences encour-
ages players to experiment and to try any “what if?” 
scenarios desired. In this way, a deeper understanding 
of core concepts can be attained, and new methodologies 

may even be discovered [38]. Because the feedback 
is immediate, the trainee can try a wide variety of 
approaches in a short amount of time.

The game also permits outside input, which could, 
for example, come from another computer executing a 
new algorithm designed to help sailors do the job of ship 
defense. Thus, SGD can serve as a proving ground for new 
technologies with which sailors can interact to improve 
ship defense.

Evaluation
The construct of a video game, in which everything can 
be quantified, can provide educators with many oppor-
tunities for evaluating students’ success at the tasks of 
the game. The SGD environment records a large amount 
of information, ranging from the number of missiles 
correctly mitigated, to the number of resources expended, 
to reaction time, to deviation from desired tactics. The 
availability of these data affords instructors wide latitude 
in evaluating the performance of SGD users.

Emergence of Machine Learning
As the ASCM threat has grown in numbers and complexity, 
so too must the capabilities of naval training grow. The 
fusion of a video game interface, massive data collec-
tion, and modern machine learning techniques presents 
a potentially powerful and nontraditional mode for 
enriching training for the sailors of today and the future.

The behind-the-scenes data collection built into SGD 
is no less important than the eye-catching graphics and 
intuitive interfaces of the game. Every action of every user 
in every game is seamlessly recorded into a massive data 
archive that allows every game to be replayed and studied 
by any player. This replay functionality has the benefit of 
allowing trainees to learn from their own successes and 
mistakes, and from those of other players. Beyond that, 
these collected data enable the game to “learn about” 
its players and adapt itself to their needs. Through this 
application of cutting-edge machine learning techniques 
to the SGD data, the instructional capability of the game 
is maximized, and each user is ensured an experience 
tailored to his or her particular learning style.

Tournament Data Collection
To demonstrate the utility of applying machine learning 
techniques in SGD, a large dataset for experimentation 
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was needed. To fill this need, a Laboratory-wide SGD 
tournament, designated March Madness, was conducted. 
Beyond the intrinsic draw of competition, the Lincoln 
Laboratory Director’s Office further encouraged partic-
ipation by offering a cash prize to the champion.

Because SGD requires only modest computing power 
and functions on most any platform, the tournament could 
be played on demand over the local network on regular 
desktop computers. In the initial competition round, players 
attempted a variety of challenging scenarios. The top 16 

What is Machine Learning?
Machine learning is a subfield of artificial 
intelligence in which researchers develop computa-
tional methods (i.e., algorithms) that give computers 
the ability to autonomously learn a model to explain 
data. Generally, machine learning is categorized into 
two branches: supervised and unsupervised. 

In supervised learning, the goal is to predict an 
outcome from a previous example. For example, 
suppose a meteorologist who wants to predict 
whether it will rain tomorrow has data from over 
the previous 50 years that tells, for each day, the 
temperature, humidity, barometric pressure, and wind 
speed. These data are known as the features and are 
represented as a numeric vector, denoted →x, which 
describes each day. For each day, the meteorologist 
knows whether it rained the next day. This datum is 
known as the label, denoted y, for the corresponding 
features. The goal is then to learn a mapping f: →x →y 
to predict whether on any given day, described by 
→x, whether it will rain, y. This example is a classifica-
tion task: the prediction variable can take on one of 
a finite number of values. In this case, the outcome 
is binary—either 0 or 1 describing whether or not 
it will rain. Conversely, a regression task involves 
predicting a continuous value, such as tomorrow’s 
high temperature. Other examples of supervised 
learning include predicting whether a camera’s image 
contains a person of interest (i.e., facial recognition), 
translating Arabic to English, or determining the 
correct medical diagnosis for a sick patient. Common 
techniques for supervised learning include logistic 
regression, decision trees, support vector machines, 
neural networks, and k-nearest-neighbors.

The complement of supervised learning is 
unsupervised learning. The goal of unsupervised 
learning is to infer a function to describe one or 
more hidden attributes within data. Consider an 
example from U.S. politics, specifically, the legisla-
tive branch. Let us say we knew that congressional 
representatives voted yea or nay on certain bills, 
and we had features describing those bills. Rather 
than predicting whether a representative would 
vote yea or nay on a future bill as in supervised 
learning, now we want to group representatives 
according to similarity. The hidden attribute 
is party affiliation. If we give the unsupervised 
learning algorithm the features of bills along with 
how each representative voted, the algorithm 
will output an assignment of each representative 
to a group. If this algorithm was able to mimic 
reality, it would learn there are three groups: 
Republicans, Democrats, and Independents, and 
it would assign each representative to one of those 
groups. The key is that the unsupervised learning 
algorithm does not know beforehand the notion of 
a Republican, Democrat, or Independent—just that 
there are groupings of some kind. In addition to 
our political example, other unsupervised learning 
tasks might involve learning taxonomy for life on 
Earth (i.e., how to group life by species, genus, 
family, etc.) or learning a grouping for people 
according to the types of movies they watch. 
Common techniques for unsupervised learning 
include k-means, Gaussian mixture models, 
self-organizing maps (a type of neural network), 
and principal component analysis.
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players then competed in a single-elimination tournament; 
ultimately, the champion of a final-four series was crowned 
at an event complete with an audience and announcers.

Participation in the tournament exceeded expecta-
tions, with 140 players completing nearly 3,000 games, 
totaling approximately 100 hours of game time. The 
draw was diverse, with many players having no direct 
experience with the Navy in general or ship defense in 
particular. One player, a graphic artist who made the 
Sweet 16 as a top player, notably commented, “I have 
been illustrating these concepts for years, but now I 
understand what they mean.” Beyond the data collected, 
this sort of anecdotal evidence about the benefit of SGD 
helps validate the game’s educational value.

From Analysis to Enhanced Education
As players learn from SGD, the game is also learning from 
them. While the immense amount of data collected by the 
game holds the promise of increasing the effectiveness of 
instruction, it also presents an immense challenge to the 
analyst to distill the data down into a meaningful and useful 
result. Machine learning techniques are ideally suited to 
this situation, revealing hidden correlations and providing 
instructive adaptability useful to both trainees and teachers. 

An exploration of the utility of these techniques 
began with a multidimensional analysis of the data 
collected from the internal Lincoln Laboratory tourna-
ment [39]. Presented here is a subset of the results of 
that analysis, categorized into three topics: identifying 
player types, identifying tactics, and adaptive lesson 
planning. Each of these topics has immediate relevance 
to meeting the Navy’s educational needs for addressing 
complex ASCM scenarios. 

Identifying Player Types
Players approach video games with a range of styles and 
motivations, and, similarly, there is diversity in learning 
approaches [40, 41]. Categorizing players based on the 
features measured by SGD is a critical first step to enable 
instruction that adapts to the natural tendencies of each 
trainee. Moreover, the characteristics of high-performing 
game players can be reinforced, while the approaches of 
lower-performing players can be identified and remedied 
with tailored instruction.

Critical to player typing is the collection of large 
amounts of data, made possible through SGD’s harnessing 

the continuous monitoring and recording of player 
actions enabled by modern video game technology. Which 
countermeasures players use and when, how quickly they 
react to changing situations, and which tutorials they 
attempted and completed and in which order, all can be 
used as features to help define each player. 

The large number of data points and the high degree 
of dimensionality provided by the individual features 
measured by SGD can be reduced to a manageable set 
of categories through the application of unsupervised 
learning (i.e., clustering) techniques. The characteris-
tics that define the players, beyond just a score or a letter 
grade, are then brought into focus. Players are not only 
categorized, but the deeper explanations for their perfor-
mance can begin to be explored.

As a qualitative example of clustering, consider the 
classification of automobiles. The diversity in make, 
model, and model year is quite large, analogous to the 
number of players of SGD. Similarly, the number of 
features used to define a car could also be large, such as 
cost, performance, fuel efficiency, reliability, safety, and 
cargo space. Clustering could be used to determine a 
more concise set of automobile categories (e.g., family, 
utility, sport, or luxury) and the associated features 
that define each category. The complexity of the data is 
thereby reduced to a more manageable and useful level 
of categorization.

A more quantitative two-dimensional example of 
data clustering is depicted in Figure 7. Each point in 
the dataset is represented by two features: its x and y 
coordinates. The simulated input dataset is color-coded 
in Figure 7a to show that it was generated from five 
overlapping sources. In Figure 7b, the color-coding has 
been removed, illustrating that the underlying structure 
is not apparent. The challenge for effective clustering is 
then, given Figure 7b as an input, to extract some approx-
imation of Figure 7a as an output.

One way to infer the true clusters underlying a 
dataset is to apply the k-means algorithm [42]. The 
process supposes a number of clusters (represented by 
the k in its name) and then attempts to partition the 
data, minimizing the cumulative distance metric seen in 
Equation (1).

(1) Cumulative distance = xi − µ j
xi∈s j
∑

j=1

k

∑
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Clustering minimizes the cumulative distance over k 
clusters, defined as the total distance of each data point xi 

in cluster Sj from the associated centroid µj.
The primary output of the algorithm is the centroid 

of each identified data cluster, defined as the average of 
the features of all the points in the cluster. Each data point 
is closer to the centroid for its associated cluster than to 
any other centroid. The cumulative distance, defined as 
the total distance summed over all data points to their 
respective centers, is minimized.

The more clusters (higher k) assumed by the 
algorithm, the smaller the cumulative distance will be 
since all points will necessarily be closer to their assigned 
cluster centroids. Reducing the cumulative distance is 
a good thing up to a point, but if too many clusters are 
added, the whole purpose of dividing the data into more 
manageable partitions is lost.

Therefore, the desire to increase the number of 
clusters (k) is balanced against the separability power 
of the fit. One particular metric, known as the silhouette 
(Equation [2]), allows us to quantify this feature [43]. 

Maximizing this metric ensures that the distance from 
each point to the second-closest centroid is maximized.

(2)Silhouette = bi − ai
max ai ,bi( )i=1

Npoints

∑

The silhouette metric compares the cumulative 
distance of each data point to all other points in its associ-
ated cluster ai to the cumulative distance to all other 
points in the second-closest cluster bi.

Effective data clustering then seeks simultaneously to 
minimize the cumulative distance metric (Equation [1]) 
while maximizing the silhouette metric (Equation [2]). In 
Figures 7c and 7d, the value k = 5 can be seen to indeed 
best satisfy these criteria. The clustering result is shown 
in Figure 7f, with less well-matched fits of k = 3 (Figure 
7e) and k = 7 (Figure 7g) shown for reference. The clusters 
are identified by the black outlines, with their respective 
centroids depicted with a red X.

For the SGD tournament dataset, the following set 
of features was identified as most relevant for use in 
player typing: 
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FIGURE 7. The plots show the results of k-means data clustering, where k represents the number of clusters. The dataset was 
generated from five overlapping sources, color-coded in (a) and with the color-coding removed in (b). In (c) and (d), the (correct) 
value k = 5 is seen to balance the goal of simultaneously achieving low cumulative distance and high silhouette (i.e., similarity of 
cluster members to each other). The clustering result for k = 5 is shown in (f), and less well-matched fits of k = 3 (e) and k = 7 (g) 
are shown for reference. Clusters are outlined in black, and red X’s indicate the clusters’ centroids.
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1. Quit rate. Fraction of games that the player quit before 
the end of the scenario

2. Unique tutorials. Number of unique tutorials 
attempted by the player

3. Tutorial rate. Number of tutorials attempted by the 
player

4. Test rate. Number of times the player attempted a test 
level

5. Tutorials per test. Ratio of tutorial levels to test levels 
attempted by the player

6. Repeat rate. Number of times the player replayed a 
level already completed

7. Pause time. Average amount of time the player paused 
the game (when allowed)

8. Tutorial repeats. Mean number of times players 
attempted tutorial levels

Features identified with rate were normalized to the 
total number of games the player had played. Both the 
number of features (eight) and the amount of data (100 
hours of gameplay) are quite large, making the exact 
solution of Equation (1) impractical computationally. 
An expectation maximization algorithm was therefore 

employed to allow a rapid approximation of k-means 
clustering to be applied to the data [44].

The result of clustering with these features on the 
SGD tournament data was the identification of four player 
types, shown in Figure 8. The first player type is notable 
for a significantly higher score in the SGD tournament, 
compared to the other three types. Paradoxically, the 
first player type is also distinguished by feature 1, a high 
rate of quitting scenarios. On the surface, this behavior 
would seem to be a bad quality for a player to exhibit. 
However, when paired with the high scenario-repeat rate 
also shown by this group, a play style begins to emerge: 
when players in this group discern that a scenario is going 
poorly, they quit and begin anew, immediately attempting 
to correct their mistake. 

The other three groups performed similarly in the 
SGD tournament, though their play styles were different. 
The second and fourth player types both played a high 
rate of tutorials, differentiated mainly by the second 
group opting to quit scenarios while the fourth group 
used the pause feature more often. The third group 
eschewed almost all training and jumped right into the 
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FIGURE 8. Four player types, defined by eight unique features, were found by clustering the data from the Strike Group 
Defender tournament. The first type (a) also corresponded to the highest-scoring players. The remaining types (b, c, and d) 
scored similarly but had very different approaches to the game, as seen in their feature profiles.
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tournament, choosing to optimize their performance only 
on the examination levels.

Player typing gives a window into how players 
approach the game and which strategies produce the more 
desirable outcomes. For example, if group 1 is identified 
as the preferred way for players to perform, lesson plans 
could be developed to foster the characteristics of this 
group in all players. Hand-in-hand with this approach, 
players quickly can be assigned a type as they play the 
game, allowing early intervention to either encourage 
their current approach or to correct unwanted character-
istics. Through rapid player typing, the opportunities to 
improve the performance, and thus the training, of SGD 
users are increased. For instructors in diverse educational 
settings, similar player typing could inform the develop-
ment of lesson plans that use video games.

Identifying Tactics
Just as clustering can be used to distill player behav-
iors down to a few manageable categories, it also can be 
applied to discover the general classes of tactics employed 
by players for a given scenario. The results can be used in a 
traditional educational sense, with instructors confirming 
that the trainees are indeed employing the tactics that 
they have been taught. Additionally, the process also 
allows information to flow the other way: the game can 
learn interesting nonstandard tactics from the players. 
The large number of players, combined with the freedom 
afforded in the gameplay of SGD, allows the potential 
for the creation of enhancements to standard tactical 
approaches. Thus, identifying player tactics enables 
improvement of both the trainees and the educational 
information itself.

In the application of clustering algorithms to the 
identification of player tactics, the features to be consid-
ered present additional complexities: time (when an 
action is taken) and space (the bearing of the counter-
measure deployment) are integral to defining the basis 
feature set. 

To cluster tactics, the k-medoids approach is used 
[45]. In contrast to k-means, where a continuum of 
potential centroid positions is possible for each cluster, 
k-medoids requires that cluster centroids be positioned 
precisely on an actual tactic that was employed in a 
particular game played. This distinction is made because 
it does not make sense to average individual games played 

to produce a “mean tactic.” Put another way, deploying a 
countermeasure successfully to the left in one game and 
successfully to the right in another game does not imply 
that deploying it straight ahead is a viable tactic.

Like k-means, the k-medoids algorithm also seeks to 
minimize a cumulative distance function, as in Equation 
(1). However, here we are using disparate features that 
are difficult to compare directly. For example, deploying a 
rocket-type or persistent countermeasure may be seen as 
similar tactics, while deploying a flare would necessarily 
be regarded as different. To account for the variety in 
actions that may be taken by a player, a weighting scheme 
was constructed to define the comparisons among all the 
features making up each game [46]. With this machinery 
in place, the k-medoids algorithm can be applied to 
produce clustering results for player tactics.

To provide adequate data for clustering, participants 
in the SGD tournament were encouraged to play the Daily 
Performance Evaluation scenario, in which threat types 
were randomized for each game. The tactics extracted 
from the Daily Performance Evaluation data were found 
to cluster into four groups (not necessarily corresponding 
to the four player-type clusters). The prototypical tactic 
for each group is shown in Figure 9. 

The rings around the overhead depiction of a ship 
represent time in the scenario, with the start time at the 
innermost ring and the end of the scenario occurring 
at the outermost ring. The colored lines indicate which 
countermeasure type was deployed, and on which bearing. 
While the tournament scores are similar, the tactics are 
ordered with increasingly successful performance from 
left to right.

The rightmost tactic came to be known as the Iron 
Triangle, independently identified by those that played 
the game. Here, the long-lived countermeasures, such as 
persistent or floating decoys, are deployed in a triangle 
around the defended ship to address a range of threats, 
with the player left to focus on deploying expendable 
countermeasures as needed to address threats not other-
wise defeated. The middle two techniques are variants on 
this theme, with a few more countermeasures used in the 
second one and with the geometry a little off in the third. 
In contrast to the other more measured approaches, tactic 
number 1 is more sporadic. Recognized as an inefficient 
“kitchen-sink” approach, large numbers of all countermea-
sure types are applied continuously against the threats. 
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In the context of the scenario analyzed here, the 
identification of tactics allows for adaptive instruction to 
encourage players who are already using tactic 4, to prompt 
players to tweak their tactics if they are using approach 2 
or 3, or to teach players to totally overhaul their approach 
if they are using tactic 1. For other, even more complex 
scenarios, it is possible that tactics not previously identi-
fied as favorable could emerge, helping the game learn the 
preferred tactic from the players themselves.

Adaptive Lesson Plan
The continuous collection of data by SGD enables instruc-
tional adaptation in response to the changing needs of 
each player. Essentially, the game can learn how its 
players learn and use that information to improve its 
own teaching. Much as real teachers tailor their instruc-
tion to meet student needs, so too can the game adapt its 
interactions with the players to improve its instructional 
effectiveness. 

As an illustration of the utility of the adaptive teaching 
concept, the SGD tournament data were analyzed to 
construct an adaptive lesson planner, one that could guide 
players through tutorials and tests on a path to maximize 
learning. Through contrasting the learning approaches 
of the lower- and higher-performing players, preferred 
approaches were identified. Ultimately, this approach is 
intended to enable the creation of an on-demand, person-
alized virtual instructor, one that can observe if a student 
is headed down the right path and give reinforcement 
or give correction if the student has gone astray. The 

potential for instruction tailored to individual students is 
of considerable interest to the education community [47]. 

While human learning is a very complex process, 
significant progress toward a viable virtual instructor 
can be made with a tractable simplified model of a 
person’s learning [48]. To that end, a hidden Markov 
model (HMM) was applied to the data collected in the 
SGD tournament [49]. In this type of model, observable 
states, with transitions between them, are mediated by 
unobserved states, hence the “hidden” in the name. The 
model seeks to quantify transition probabilities among the 
states, allowing for evolution of the system to be predicted. 

In the context of the model applied to SGD, the 
observable states are identified as the various tutorial 
and game levels available to the players. One can train 
an HMM on particular player types and, because the 
HMM is generative, create an ordered list of likely game 
levels. By training the model on high-performing players, 
game developers can create a positive lesson plan (i.e., a 
sequence of lessons). Similarly, by training on lower-per-
forming players, a poor lesson plan can be produced. 
Players who are seen to naturally be on a positive plan 
can be encouraged while those on a less optimal plan can 
be redirected. 

The HMM topology applied to the SGD data is 
depicted in Figure 10. The observable states, the tutorials, 
and game scenarios are depicted in the boxes at the 
bottom. The hidden states, which imply the players’ 
unobservable inner machinations, are represented by 
the three circles at the top, designated X1, X2, and X3. 

FIGURE 9. The representative player tactics derived from 
k-medoids clustering are illustrated by the four circles. 
Each concentric ring indicates a time in the scenario, and 
the color-coded lines indicate the type of countermeasure 
deployed. From left to right, the tactics are ordered 
according to increasing effectiveness. 

Tactic 1 Tactic 2 Tactic 3 Tactic 4

Countermeasures

Floating Persistent Rocket Flare Chaff
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In between the circles are transition probabilities, repre-
sented by the Txy lines. The transition probability to an 
observed state, typically known as an emission, is repre-
sented by an Exy line. The values for all transitions and 
emissions are obtained by training the model on the data 
collected by SGD.

To create the adaptive lesson plan model from 
the SGD tournament data, the model was trained on 
data from two groups of players: the upper and lower 
50 percent of performers, identified by tournament 
scores. The result is two complete hidden Markov models, 
one demonstrating how the higher-performing students 
navigate through the game levels and a corresponding 
model for the lower-performing students. In both cases, 
the models can then be used to recommend the next level 
for a student to attempt, given the level just completed. 
Two example lesson plans so generated from the models 
are shown in Table 1.

The poor lesson plan on the left side of the table shows 
players bouncing around between lower-level tutorials, 
likely making little progress. Players following the better 
lesson plan, on the right side of the table, appear quickly 
to jump into difficult challenges. It is possible that these 
generated lesson plans are merely indicators of player 
capability and may not directly stimulate player improve-
ment. However, armed with this knowledge, the game 
itself can attempt to steer players onto an assumed positive 
path through suggestions about which levels to attempt 
next and evaluate player improvement along the way.

Though our initial lesson plans are derived from 
a simple model trained on limited data, they give an 
indication of the educational advantage that could be 
achieved with an adaptive instructor built into a game. 
Future enhancement may include injecting a modicum of 

recursion into the Markov model to better include effects 
of a player’s history as he or she traverses the game. The 
true impact of this approach will be quantifiable through 
the collection of more data and measurement of the perfor-
mance change in players provided with the adaptive tool.

Automating Players through Apprenticeship 
Scheduling
While the previous learning applications apply static 
analysis to improve a user’s experience, imagine if one 
could dynamically adapt content in real time to a specific 
player’s needs. Recently, Gombolay et al. have pioneered 
a method called apprenticeship scheduling that learns 
how to mimic scheduling tasks from expert scheduling 
demonstrations [50]. In SGD, Gombolay et al. showed 
that the tactical weapon assignments made by a player 
correspond to a multi-agent, multi-task, time-extended 
scheduling problem with complex dependencies, one 

FIGURE 10. This hidden 
Markov model was employed 
to quantify the way players 
traverse Strike Group 
Defender, moving among 
the different scenarios and 
games represented by the 
lower boxes.Moth 

missile 
tutorial

Operation 
Neptune

Watch 
replay

Custom 
game

Hungry 
missile 
tutorial

...
Table 1. Lesson Plans Depicting the Actions 
of Two Groups of SGD Players

LESSON PLAN 
GENERATED WITH 
DATA FROM BOTTOM 
50% OF PLAYERS

LESSON PLAN 
GENERATED WITH 
DATA FROM TOP 
50% OF PLAYERS

Basics Tutorial Basics Tutorial

Missile Type 1 Tutorial Challenge Mission

Basics Tutorial Test

Missile Type 1 Tutorial Challenge Mission 

Missile Type 1 Tutorial Challenge Mission
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of the most difficult scheduling categories. Using SGD 
tournament data, they were able to learn and mimic 
individual player behaviors autonomously within SGD 
via apprenticeship scheduling.

Having a learned scheduler opens the door for several 
real-time user interactions. For example, during an 
intense battle or a period of information overload, a player 
could be given prompts to deploy weapons in an expected 
way, as he or she would typically use them. Using a 
prompt framework, SGD can measure player responses to 
these suggestions and enable future studies of algorithm 
trust, acceptance, and reliance. An apprentice sched-
uler also enables the training of real-time autonomous 
agents that could either exploit the player’s weaknesses or 
cooperate by offering prompts or filling in actions that the 
player might often neglect. Players could iterate with the 
automated adversary or a teammate to learn and improve 
upon weaknesses or to form a trusted, dynamic team. 
Having dynamic learning and feedback in SGD enables 
important studies on autonomy, human-machine inter-
actions, teaming, and trust.

Next Steps
Machine learning techniques have a voracious appetite 
for data, and the studies undertaken with SGD are no 
different. As more people play the game, the dataset for 
analysis will grow, and the models based on it will become 
correspondingly better. Additionally, more data will lead 
to a more quantifiable assessment of the true benefits of 
the education tools provided by the game. 

To date, the data used to explore machine learning 
concepts have been based primarily on the SGD tourna-
ment dataset. While much progress has been made, these 
data were collected on Lincoln Laboratory employees 
rather than on the true final audience, the sailors in the 
fleet. Expansion into this area is being facilitated by the 
Naval Postgraduate School, which has made SGD avail-
able for play by anyone in the military. The data collected 
from this forum can be analyzed in the same way as those 
from the Laboratory’s tournament, and it will be illumi-
nating to compare and contrast the extracted results.

In recent months, several improvements have been 
made to the SGD back-end to support interactions with 
external simulations and artificial intelligence (AI). 
An application programming interface (API) has been 
designed to accommodate external models, simulations, 

and decisions. Enhancements with the API include the 
ability to send customized prompts to a player and the 
ability to control the SGD simulation time step. Efforts 
are under way to reduce the simulation runtime to enable 
AI routines that rely on running many SGD instances in 
order to make a decision. All of these improvements can 
be combined with machine learning concepts to create a 
dynamic, adaptive learning environment not available in 
the Navy today. 

While the back-end development of machine learning 
techniques and AI has been ongoing, the front-end video 
game has also undergone considerable development 
(Figure 11). The tactical focus of the first version of SGD 
has been expanded dramatically to include scenarios that 
require pre-attack strategizing. Full missions take place on 
a world map. Intelligence, surveillance, and reconnaissance 
(ISR) resources are built into this updated version, and new 
scenarios challenge players to avoid the threat of ASCMs 
in the first place. However, if missiles are launched in the 
game, the players are drawn into the original tactical-view 
version of SGD, attempting to defend their ships.

Also under development is a classified version of 
the game that allows for more realistic scenarios to be 
represented. With new scenarios and mission contexts, 
new weapon and sensor capabilities can be prototyped 
and assessed at a high level. In future versions of SGD, 
a player could configure a ship loadout or “purchase” a 
new weapon or AI capability and determine how well it 
supports the mission. Recorded player choices could also 
be used offline to seed an algorithm that solves for optimal 
loadouts and configurations. With the incorporation of 
these enhancements, SGD is envisioned as transforming 
from a pure focus on ASCM defense to a broader learning 
and technology development ecosystem that will enable 
the exploration of a wide variety of issues for the Navy.

Future Directions
The current research into the benefits of machine learning 
paired with the SGD platform provide a window into the 
training envisioned for the future. Identification of player 
types, for example, will help the Navy identify skilled 
players and also indicate ways to improve the performance 
of lesser-skilled players. Similarly, the identification of 
tactics will help identify which responses are effective, with 
real potential to also harness the creativity of sailors and 
to learn from them. The adaptive lesson plan personalizes 
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the learning experience for each player, offering a path 
to more efficient and focused instruction. The incor-
poration of autonomy and apprenticeship scheduling 
enables real-time, adaptive learning that can be tailored 
to players’ needs. These concepts, coupled with a host of 
other machine learning–enabled approaches, represent a 
new level of training customization and engagement. 

Over a short time period, the original internal Lincoln 
Laboratory Red/Blue game has been developed into Strike 
Group Defender, a professional video game that is coupled 
to back-end data storage, extended by an external API, and 
enhanced by AI and machine learning techniques. This 
combination is opening up new avenues of instruction and 
the ability to quantify effectiveness through the analysis of 
very large sets of collected data. The ultimate goal is to be 
able to say confidently that we have equipped the sailors 
in harm’s way with the knowledge and skills necessary to 
address the threats found in challenging modern scenarios.

Awards and Recognitions
The SGD’s professional video game development, founded 
in sound technical concepts and coupled with machine 

learning technology, has led to recognition for the game 
by several government and commercial entities. In 2014, 
the game was recognized as the Best Government Game 
at the Serious Games Challenge and Showcase at the 
national Interservice/Industry Training, Simulation and 
Education Conference. The following year, the National 
Training and Simulation Association honored SGD 
with the team award for best training game. Finally, 
the MOVES (Modeling, Virtual Environments and 
Simulation) Institute at the Naval Postgraduate School 
in Monterey, California, has said in an assessment of 
SGD: “We recommend the Navy take advantage of this 
advancement in technology and training consistent with 
the recommendations being developed and put forward 
by the Navy Warfare Development Command (Chief of 
Naval Operations designated lead for Electromagnetic 
Maneuver Warfare)” [51]. 
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