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Abstract

This document represents the SRE19 AV submission by the
team composed of JHU-CLSP, JHU-HLTCOE and MIT Lin-
coln Labs. All the developed systems for the audio and video
conditions consisted of Neural network embeddings with some
flavor of PLDA/cosine back-end. Primary fusions obtained Ac-
tual DCF of 0.250 on SRE18 VAST eval, 0.183 on SRE19 AV
dev audio, 0.140 on SRE19 AV dev video and 0.054 on SRE19
AV multi-modal.

1. Introduction

The JHU-MIT submission is the joint effort of the teams at
Johns Hopkins CLSP and HLTCOE, and MIT Lincoln Labo-
ratory (MIT-LL). We submitted systems for the audio, video,
and audio-visual conditions.

For the audio condition, the systems consisted of F-TDNN,
E-TDNN or ResNet x-vectors followed by some form of
PLDA/cosine scoring classifier plus adaptive score normaliza-
tion. More in detail, all systems followed these steps:

Acoustic feature extraction (MFCC).

Voice activity detection.

Diarization.

Embedding extraction.

LDA dimensionality reduction.

Centering, whitening and length normalization.

PLDA log-likelihood ratio evaluation/Cosine scoring.
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Adaptive score-normalization (all system used AS-Norm
unless said otherwise).

9. Fusion/calibration.

For the video condition, we followed these steps:
1. Face detection on video frames.

Extract one embedding per each detected face.
Back-end based on cosine scoring.

Optional adaptive score normalization.
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Fusion/calibration.

Multi-modal systems (primary and contrastive), were ob-
tained by adding the scores of the corresponding audio and
video systems.

2. Training datasets
2.1. Individual datasets

The datasets used for training included:

e NIST SRE12 phonecalls recorded through far-field mi-
crophone (SRE12-micphn). We did not use interviews
to avoid dealing with the interviewer removal.

¢ MIXERG6 microphone phonecalls (MX6-micphn).

¢ VoxCelebCat 1+2: the original distribution of VoxCeleb
split each video into multiple short excerpts. We con-
catenated all excerpts from the same video into one file.
This makes the dataset more appropriate for PLDA train-
ing and also helps to balance the weight of each video in
the embedding training.

e SITW-dev-core: single speaker segments from the
Speakers in the Wild development set.

e DihardIl: 10-60 seconds segments extracted from the
DihardIl dev and eval distributions. The ground truth
RTTMs where used to create ground truth VAD to get
the speech of a single speaker per segment.

¢ SITW-dev-test-diarized. Segments obtained from diariz-
ing the SITW dev test set.

¢ SRE18-dev-VAST-diarized: SRE18 VAST development
set. For enrollment segments we used diarization marks
provided by the organizer. For the test segments, we used
the segments obtained by our diarization system.

2.2. JHU-CLSP Training data

The dataset combinations used in the systems from the JHU-
CLSP-MITLL team were:

¢ CLSP-Train-SRE18: This is the training set that we used
to train x-vector in the previous SRE18 eval. This set in-
cluded SRE12-micphn, MX6-micphn, VoxCelebCat and
SITW-dev-core. It contained 436815 recordings from
7936 speakers. This data was augmented with noise
or/and reverberation X 2 and added to the original dataset
to get x 3 the original dataset size.

e CLSP-Train-JSALT: This is the set we used to train x-
vectors during JSALT2019 workshop and included Vox-
CelebCat 1+2. We augmented with noise or reverber-
ation x4 and added to the original dataset to the x5
the original dataset size. Finally, it contained 833k ut-
terances from 7185 speakers.



e CLSP-Train-SRE19: This set only included VoxCeleb-
Cat 1+2. We augmented with noise or/and reverberation
x5 and added to the original dataset to the X6 the origi-
nal dataset size. Finally, it contained 1M utterances from
7185 speakers.

e CLSP-PLDA: This is CLSP-Train-SRE19 where we re-
moved speakers with less than 40 recordings (after aug-
mentation) and we removed utterances from speakers
with more than 80 utterances. We did this to balance the
number of utterances by speaker. We also removed utter-
ances with less than 15 seconds and more than 800 sec-
onds, to match SRE18 VAST eval durations. This dataset
had 400k utterances from 5728 speakers.

o SITW-SREI18-dev-diarized: SITW-dev-test-diarized +
SRE18-dev-VAST-diarized. It was used to center SRE8
and SRE19 video data.

e SITW-SREI18-Dihardll-diarized: =~ SITW-SRE18-dev-
diarized + DihardIl. It was used for adaptive S-Norm.

Impulse responses for augmentation were obtained from the
Aachen impulse response database (AIR)'. Noises were from
the MUSAN corpus®. We used the same SNR levels as in the
Kaldi recipes.

2.3. JHU-HLTCOE Training data

For our speaker system submission we trained our DNN on
VoxCeleb-1-2. In total, there are 7185 speakers in this dataset,
with 7 million utterances after augmentation.

2.3.1. Data Augmentation

To augment an utterance, we randomly pick from one of the
following strategies:

* Reverb: Artificially reverberate via convolution with
simulated RIRs from the AIR dataset

* Music: A single music file (without vocals) is randomly
selected from MUSAN, trimmed or repeated as neces-
sary to match duration, and added to the original signal
(5-15dB SNR).

¢ Noise: MUSAN noises are added at one second inter-
vals throughout the recording (0-15dB SNR).

* Babble: Three to seven speakers are randomly picked
from MX6-micphn, summed together, then added to the
original signal (13-20dB SNR)

¢ Codec: If the file is from VoxCelebCat, simulate GSM
AMR phone encoding®

2.4. MITLL Training data

The x-vector DNN was trained on data from VoxCelebl and
VoxCeleb2. After removing utterances with less than 5 seconds
of speech and speakers with less than 8 utterances, this set in-
cluded 1.1M utterances from 7.2k speakers. Data augmentation
was then performed by adding noise and reverberation, result-
ing in 3.9M utterances. Specifically, data augmentation was
performed according to the following recipe:

Uhttp://www.openslr.org/resources/28

Zhttp://www.openslr.org/resources/17

Shttp://www.3gpp.org/ftp/Specs/archive/26_
series/26.073/26073-800.zip

* Reverb: Room impulse responses were randomly cho-
sen from the small room and medium room subsets of the
MUSAN corpus.

* Noise: Noise signals were randomly chosen from the
MUSAN corpus, and added at 1 second intervals. The
noise sigals were mixed at SNRs randomly chosen from
the set {0, 5,8,10,13,15} dB.

e Music: A single music signal was randomly chosen
from the MUSAN corpus, and mixed at an SNR ran-
domly chosen from the set {5, 8, 10, 15} dB.

* Babble: Babble signals were created by first randomly
selecting speech files from the MUSAN corpus, and
then mixing 3-7 individual signals. The resulting bab-
ble noise was mixed at an SNR randomly selected from
the set {10, 13,15,17,20} dB.

A separate training set was designed for training the backend.
This set was comprised of VoxCelebCat, with data augmenta-
tion, resulting in 290k utterances from 7.2k speakers.

3. Development datasets

The development datasets were used to train fusion and cali-
bration; and measure performance. For the audio condition we
used SRE18 VAST eval, since it had much more trials than the
SRE19 AV dev (only 1 false alarm at P = 0.05). For the
video part, we used SRE19 AV dev. We didn’t use Janus dataset
for calibration, since we observed domain mismatch between
JANUS and SRE19 AV dev.

4. Acoustic features

JHU-CLSP and MITLL used 40 dimension MFCC (40 Mel fil-
ters) for x-vectors based on time-delay networks. For embed-
dings based on 2D convolutions (ResNet34), we used 40 log-
Mel filter banks. Features were short-time centered before si-
lence removal with a 3 seconds sliding window.
JHU-HLTCOE processed the audio at 16 KHz sampling
rate. We used 80 Mel filter bank log-energies with a 25 ms
window every 10 ms over the spectral band of 20-7600 Hz.
Mean normalization was applied using a moving window of 3
seconds. A DNN VAD was used to detect speech segments.

5. Voice activity detection
5.1. Kaldi energy VAD

The Kaldi energy VAD makes frame-level decisions, classi-
fying a frame as speech or non-speech based on the average
log-energy in a given window. JHU-CLSP used this VAD for
all datasets except SRE18 VAST and SRE19 AV. MIT-LL and
JHU-HLTCOE used this VAD for all datasets.

5.2. TDNN VAD

The voice activity detection (VAD) is based on a Time-Delay
Neural Network (TDNN) which special characteristic is the
statistics pooling for long context information *. The process
starts by training a GMM-HMM with 3 target classes: speech,
non-speech and noise (garbage). All the acoustic phones are
mapped to these classes. The TDNN is trained using the align-
ments from the GMM-HMM. At test time, we perform a usual

4More details can be found in [1] egs/aspire/s5/local/segmentation/
tuning/train_stats_asr_sad_la.sh
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Figure 1: Factorized TDNN x-vector architecture.

Table 1: Factorized TDNN 3A x-vector architecture

Layer Layer Type Context Context  Skip conn. Size Inner
factorl ~ factor2  from layer size

1 TDNN-ReLU -2:t42 512

2 F-TDNN-ReLU =2, t tt+2 1024 256
3 F-TDNN-ReLU t t 1024 256
4 F-TDNN-ReLU 3, t t, t+3 1024 256
5 F-TDNN-ReLU t t 3 1024 256
6 F-TDNN-ReLU t-3, 43 1024 256
7 F-TDNN-ReLU t-3,t 43 2,4 1024 256
8 F-TDNN-ReLU t-3,t 643 1024 256
9 F-TDNN-ReLU t t 4,6,8 1024 256
10 Dense-ReL.U t t 2048

11 Pooling (mean+stddev)  full-seq 2x2048

12 Dense-ReLU 512

13 Dense-ReLU 512

14 Dense-Softmax N. spks.

decoding transforming the estimating probabilities into likeli-
hoods and assign every frame a speech or non-speech label.
This VAD was trained using AVA-Speech corpus [2].

6. Audio embeddings
6.1. JHU-CLSP F-TDNN x-vectors

We used Kaldi x-vectors [3, 4] based on factor TDNN (F-
TDNN) encoder with skip connections as described in [5, 6].
These used mean+stddev pooling and were trained by softmax
cross-entropy. We have 3 variants of the F-TDNN encoder:

* 3A: This is the architecture that we used in the previous
evaluation. This model has around 17M parameters. We
have two models with this architecture:

— 3A-SREI18: This is last year’s model. It
was trained on Train-CLSP-SRE18 dataset for 3
epochs.

— 3A-JSALT: This was trained on the Train-CLSP-
JSALT dataset for 6 epochs.

Table 2: Factorized TDNN 4A x-vector architecture

Layer Layer Type Context  Context  Skip conn. Size Inner
factorl factor2  from layer size

1 TDNN-ReLU t-2:t42 512

2 F-TDNN-ReLU t2,t t, t+2 725 180
3 F-TDNN-ReLU t t 725 180
4 F-TDNN-ReLU t3,t t,t+3 725 180
5 F-TDNN-ReLU t t 3 725 180
6 F-TDNN-ReLU t3,t t, t+3 725 180
7 F-TDNN-ReLU t3,t t, t+3 2,4,6 725 180
8 F-TDNN-ReLU t3,t t, t+3 725 180
9 F-TDNN-ReLU t t 3,5,7 725 180
10 F-TDNN-ReLU -3t t, t+3 725 180
11 F-TDNN-ReLU t t 6,8, 10 725 180
12 F-TDNN-ReLU t-3,t t, t+3 725 180
13 F-TDNN-ReLU t t 7,9, 11 725 180
14 TDNN-ReLU t t 1800

15 Pooling (mean+stddev)  full-seq 2x1800

16 Dense(x-vector)-ReLU 512

17 Dense-ReLU 512

18 Dense-Softmax N. spks.

Table 3: Factorized TDNN 5A x-vector architecture

Layer Layer Type Context Context  Skip conn. Size Inner
factorl factor2  from layer size

1 TDNN-ReLU -2:t4+2 512

2 F-TDNN-ReLU t2,t t, t+2 2048 512
3 F-TDNN-ReLU t3,t t, t+3 2048 512
4 F-TDNN-ReLU t t 2 2048 512
5 F-TDNN-ReLU t-3,t t, t+3 2048 512
6 F-TDNN-ReLU t t 4 2048 512
7 F-TDNN-ReLU t-3,t t,t+3 2048 512
8 F-TDNN-ReLU t t 6 2048 512
9 F-TDNN-ReLU t-3,t t, t+3 2048 512
10 F-TDNN-ReLU t t 8 2048 512
11 Pooling (mean+stddev)  full-seq 2x2048

12 Dense-ReLU 512

13 Dense-ReLU 512

14 Dense-Softmax N. spks.

Table 4: Extended TDNN x-vector architecture

Layer Layer Type Context Size

1 TDNN-ReLU t-2:t42 512

2 Dense-ReLU t 512

3 TDNN-ReLU t-2, t, t4+2 512

4 Dense-ReLU t 512

5 TDNN-ReLU t-3,t, t+3 512

6 Dense-ReLU t 512

7 TDNN-ReLU -4, t, t+4 512

8 Dense-ReLU t 512

9 Dense-ReLU t 512
10 Dense-ReLU t 1500
11 Pooling (mean+stddev) Full-seq 2x1500
12 Dense(Embedding)-ReLU 512
13 Dense-ReLU 512
14 Dense-Softmax Num. spks.




e 4A: This is shallower and deeper F-TDNN compared
to 3A model. This model has around 14M parameters.
We have one model (4A-SRE19) with this architecture
trained on Train-CLSP-SRE19 data for 6 epochs.

* 5A: This is a wider model compared to 3A. It has around
40M parameters. We have one model (5A-SRE19)
with this architecture on Train-CLSP-SRE19 data for 3
epochs (because of deadline constrains).

6.2. JHU-HLTCOE x-vectors

We used a modified version of ResNet-34 presented in [7] for
our speaker embedding system. A statistics pooling layer is
used to aggregate across time. The number of channels in the
first block was 64. We double the channels as we progress be-
tween blocks. The channels in the last layers were 512. The
embedding dimension was 256.

6.3. JHU-CLSP ResNet-LDE embeddings

The ResNet-LDE system uses a residual network with 2D con-
volutions (ResNet34) [8] and the pooling layer is Learnable dic-
tionary encoding (LDE) layer [9, 10].

Instead of using categorical cross-entropy for training, we
used additive angular softmax loss [11, 12]. Additive angular
softmax loss has stronger requirements for correct classifica-
tion which generates a margin between embeddings of different
classes.

In summary, we had three models of this kind:

¢ ResNet34-SRE18: This was trained on the CLSP-Train-
SRE18 dataset.

¢ ResNet34-SRE19: This is ResNet34-SRE fine-tuned on
the CLSP-Train-SRE19 dataset.

* ResNet34-Large-SRE19: This one uses larger Resnet
size: blocks contain 64, 128, 256, 512 channels respec-
tively. Due to memory issue we only use 8 clusters for
this network.

6.4. MITLL x-vectors

The MIT LL x-vector DNN is an extended version of that de-
scribed in TDNN in [4]. Specifically, the network is extended
to include an additional TDNN layer with a dilation factor of
4. Additionally, the TDNN layers are interleaved with dense
layers. The network, illustrated in Fig. 4, was trained by mini-
mizing the multi-class cross-entropy of the output from the final
softmax layer.

7. Audio Back-ends
7.1. JHU-CLSP back-end

The JHU-CLSP back-end consisted of LDA, centering, whiten-
ing, length normalization and generative Gaussian SPLDA.

We trained LDA, centering, whitening and SPLDA on
the CLSP-PLDA data. LDA dimension was 200 and SPLDA
had 150 eigenvoices. The centering for the VAST was MAP
adapted from SITW-dev-diarized to SRE18-dev-VAST-diarized
with relevance factor r = 14.

As there may be several speakers in the test segment, we
used diarization to obtain several speaker clusters. Also, we
combined the x-vectors obtained from diarization with the x-
vectors coming from full-length recordings. We scored the en-
rollment segment against all the test segment clusters and se-
lected the maximum score.

We used adaptive S-Norm with SITW-SRE18-DihardII-
diarized as cohort. We selected the top 1000 cohort segments.
We observed consistent improvement by adding the DihardII
data to the AS-Norm. We didn’t observe any improvement
adding DihardII to PLDA or x-vector training.

7.2. JHU-HLTCOE back-end

The embeddings from our DNN were centered using the SITW-
core enrollment data and compared using cosine distance. As
there may be several speakers in the test segment, we used di-
arization to obtain several speaker clusters. We scored the en-
rollment segment against all the test segment clusters and se-
lected the maximum score.

We used adaptive S-Norm with SITW-SRE18-DihardII-
diarized as cohort. We selected the top 10% cohort segments.
We observed consistent improvement by adding the Dihard data
to the AS-Norm.

7.3. MIT Lincoln Laboratory back-end

The MIT LL back-end included LDA dimension reduction, cen-
tering/whitening and length normalization, PLDA scoring, and
adaptive score normalization. The back-end relied on the train-
ing set described in Sec. 2.4. In the back-end pipeline, LDA
was first applied to all x-vectors, reducing their dimension to
150, followed by whitening, centering, and length normaliza-
tion. PLDA scoring was then performed. Adaptive S-Norm
was applied for score normalization, where the SITW set was
used as a cohort, and the 200 top-scoring utterances were used
during normalization. The PLDA model was trained in a dis-
criminative manner by selecting random x-vector pairs from the
back-end training set, and minimizing the cross-entropy of the
PLDA posteriors. A total of 1M trials was used during discrim-
inative training.

8. Fusion and Calibration

Fusion and Calibration were performed using linear logistic re-
gression with liblinear optimizer [13]. To select the best fusion
combination, we used a greedy fusion scheme as last year [5].
First, we calibrate all the systems and select the best one given
the lowest actual cost. We fix that one as the best system and
evaluate all the two system fusions that include the best system.
Thus, we select the best fusion of two systems. We fix those
two system and then add a third system, and so on. To reduce
the chances of over-fitting, in each step, we prioritize fusions
with only positive weights. Logistic regression was trained on
operating point P = 0.05.

9. Diarization
9.1. JHU-CLSP diarization

For diarization of the SITW multi and VAST test data, we used a
similar setup to the Kaldi x-vector callhome diarization recipe >,
which is based on [14].

We used of F-TDNN x-vector 5A, to compute embeddings
using a sliding window with 1.5 seconds of frame-length and
0.75 seconds of frame-shift. We obtained sliding window em-
beddings for the dev, eval and VoxCelebCat without augmenta-
tion. We used VoxCeleb x-vectors to train LDA dimensionality
reduction to 120, centering and PLDA. We scored all x-vectors

Shttps://github.com/kaldi-asr/kaldi/tree/
master/egs/callhome_diarization/v2



Table 5: Audio systems results on SRE18 VAST eval and SRE19 dev

System

SRE18 VAST eval

SRE19 AV dev

EER MinCp ActCp EER MinCp ActCp

Single systems

COE-ResNet34 8.04 0.258 0.262 4.69 0.172 0.185
F-TDNN 5A-SRE19 10.18 0.33 0.339 584 0.205 0.239
F-TDNN 4A-SRE19 10.35 0.349 0.351 5.87 0.214 0.239
F-TDNN 3A-JSALT 10.35 0.347 0.352  6.28 0.198 0.223
F-TDNN 3A-SRE18 11.2 0.363 0.366  4.63 0.21 0.225
ResNet34-SRE18 9.36 0.356 0.359  6.66 0.207 0.246
ResNet34-SRE19 10.21 0.358 0.367 6.64 0.25 0.277
ResNet34-Large-SRE19  10.59 0.322 0.329 5.09 0.198 0.201
E-TDNN-MITLL 13.04 0.460 0.469  9.21 0.328 0.344
Submissions

Primary 7.64 0.247 0.250 4.50 0.177 0.183
Single (5A-SRE19) 10.18 0.33 0.339 584 0.205 0.239
Contrastive 7.65 0.243 0.243 451 0.171 0.186

in a given recording against each other and applied AHC on the
score matrix. We tuned the stopping threshold on SRE18 eval.
We assumed that the target speaker would have a signifi-
cant amount of speech in the test segment. For that reason, we
discarded all the speaker clusters with less than 10 seconds du-
ration unless all clusters in the segment are shorter than that.

9.2. JHU-HLTCOE diarization

Speaker diarization was performed by clustering segment em-
beddings with the leave-one-out PLDA GMM approach from
[15]. Given inputs of the length-normalized segment embed-
dings, initial segment posteriors over speakers from k-means,
and PLDA parameters (within-class and across-class covari-
ance), this algorithm alternates between updating the speaker
models and generating segment speaker posteriors.

The diarization embeddings were trained to optimize this
clustering using Bayesian enrollment from 1 to 20 previous seg-
ments. Training data was LDC corpora Switchboard, Fisher,
Mixer6, SRE2004-10 plus narrow-band versions of VoxCelebl
and VoxCeleb2. Various TDNN architectures were explored,
but the submitted version uses a modified version of ResNet34.
Diarization was performed on test cuts only, and initialized with
five clusters per cut; the PLDA GMM naturally reduced the
number of speakers within 30 iterations. The speaker recog-
nition score was generated as the maximum over embeddings
generated from no diarization and each of the diarization output
speakers.

10. Audio Single Systems

Table 5 presents the results of the individual systems on SRE18
VAST eval and SRE19 dev audio conditions.

11. Audio Submissions
The submissions for the audio conditions where:

¢ Primary: Best fusion of 4 systems composed of: COE,
F-TDNN-5A-SRE19, F-TDNN-4A-SRE19, ResNet34-
SRE19.

* Single: Best JHU-CLSP single system: F-TDNN-5A-
SRE19.

e Contrastive: Best fusion of 4 systems composed
of: COE, F-TDNN-5A-SRE19, F-TDNN-4A-SRE19,
ResNet34-SRE19, MITLL.

Table 5 presents the results of our submissions for audio.

12. Video Embeddings
12.1. JHU-CLSP embeddings

To extract embeddings for face recognition, we used original
InsightFace [11] embeddings and RetinaFace [12] face detec-
tion implementations®. Pre-trained models for RetinaFace were
computed, ’ and 4 pretrained models for InsightFace were ob-
tained ®:

e 1100: LResNet100.

* 150: LResNet50.

e 134: LResNet34

* mobile: MobileFaceNet

InsightFace models were trained on MS1M-Arcface dataset.
RetinaFace was trained on WiderFace dataset’.
Face detection procedure:

¢ Enrollment: We applied RetinaFace detector at the
frames given in reference bounding boxes 42 frames.
Then we keep the faces that overlap with the reference
bounding boxes. If we don’t detect any faces in the ref-
erence bounding boxes we apply face detection over the
full video and keep all the faces.

o Test: We detect faces with RetinaFace over the full video
extracting frames at a rate of 1 frame per second.

After face detection, we align the faces with the land-
marks obtained with Multi-task Cascaded Convolutional Net-
work (MT-CNN) [16] (included with the InsightFace embed-
ding models) and extract embeddings with the InsightFace

Shttps://github.com/deepinsight/insight face

"https://github.com/deepinsight/insightface/
tree/master/RetinaFace

8https://github.com/deepinsight/insightface/
wiki/Model-Zoo

http://shuoyangl213.me/WIDERFACE/WiderFace_
Results.html



model. If the MT-CNN fails to detect the landmarks, we use
the landmarks provided by the RetinaFace detector.

12.2. JHU-HLTCOE embeddings

For face embeddings, we utilized an implementation of Insight-
Face available for download'® that follows the methods outlined
in [11]. Our face embedding model was similarly found in
the same repository''. The downloaded ResNet-101 model was
trained with the MS-Celeb-1M dataset (3.8M faces, 85K faces).

Face detection was performed with a Multi-task Cascaded
Convolutional Network [16], also included in the downloaded
implementation. The default settings were used for an initial
detection pass run on frames extracted every quarter of a sec-
ond from all videos. Faces with a final confidence score less
than 0.95 were subsequently excluded in order to minimize false
alarms or low-resolution faces that might corrupt downstream
processing.

Enrollment models were created by averaging embeddings
from any detected boxes that overlap with the provided enroll-
ment box. Frames were searched for overlapping boxes within
a second before or after the enrollment box’s frame (a total of 9
frames searched). If no overlapping boxes were found with any
of the given enrollment faces, that model was left empty and
scores for its trials were added simply as zero after calibration.

Test faces were clustered using Agglomerative Hierarchical
Clustering to 21 clusters in all videos.

The choice of 21 clusters (as well as the confidence thresh-
old and search range for enrollment faces) was determined with
experiments on the provided Janus dataset.

13. Video Back-ends
13.1. JHU-CLSP back-end

We evaluated different back-end strategies all based on cosine
scoring. These back-end for each trial of enrollment video ¢
versus test video 7 do:

e bel: Score all detected enrollment versus all detected
test face embeddings and take the maximum score.

e be2: Average all the enrollment embeddings and score
versus all detected test face embeddings and take the
maximum score.

¢ be3: Compute the median of all the enrollment embed-
dings and score versus all detected test face embeddings
and take the maximum score.

¢ be4: Compute the median of all the enrollment embed-
dings, perform agglomerative clustering (AHC) on the
test embeddings with stopping threshold=0.8, score the
enrollment embedding versus all the test clusters and
take the maximum score.

¢ be5: Perform AHC in the enrollment and test sides, score
all enrollment clusters versus all test clusters and take the
maximum.

¢ be6: Compute the median of all the enrollment embed-
dings, apply self-attention procedure on the test side to
enhance the test embeddings. This self-attention method
consisted in, for each test embedding x;; in the test

Ohttps://github.com/foamliu/InsightFace-v3
"https://github.com/foamliu/InsightFace-v3/
releases/download/v1.0/BEST\_checkpoint.tar

Table 6: Video systems results on SRE19 AV dev.
Systems SRE19 AV dev
EER MinCp ActCp

Single systems

COE 6.02 0.185 0.2

r100-be2-snorm 11.29 0.228 0.249
r100-bed 8.03 0.360 0.384
r100-be5 10.96 0.364 0.375

r100-be7-snorm 10.79 0.238 0.245
r100-be9-snorm 9.73 0.219 0.236

r50-be3 12.64 0.454 0.475
r50-be3-snorm 14.55 0.316 0.334
r50-beS-snorm 13.10 0.284 0.308
r50-be7-snorm 14.54 0.347 0.347
r34-bel 14.09 0.441 0.456
r34-be2 12.67 0.501 0.522
r34-be4-snorm 14.69 0.328 0.334
r34-be5 13.78 0.435 0.462
r34-be5-snorm 15.49 0.255 0.281
r34-be7-snorm 13.28 0.377 0.377
mobile-bel 15.52 0.760 0.775

mobile-bel-snorm  16.20 0.356 0.360
mobile-be3-snorm  17.10 0.330 0.363
mobile-be4-snorm  17.34 0.337 0.345
mobile-be6-snorm  14.35 0.332 0.346

Submissions

Primary 5.12 0.140 0.140
Single 9.73 0.219 0.236
Contrastive 5.00 0.140 0.149

video, we computed a new enhanced embedding y ;; as

pj: = softmaxg(acos(xs,xx)) t=1,...,7 (1)
T

Yie=> pjwxs  t=1,...T )
k=1

where we set a = 2 empirically. The idea is to im-
prove each embedding by doing a weighted average of
the embeddings that are closer to it. Finally, we score
the enrollment embedding versus all the enhanced test
embeddings and take the maximum.

be7: Compute the median of all the enrollment embed-
dings, apply self-attention procedure on the test side to
enhance the test embeddings, apply attention procedure
between median enrollment embedding e; of video j
and the test enhanced embeddings y; to produce a sin-
gle test embedding z; closer to the enrollment, that is

qi; = softmaxy (bcos(es,y,k)) 3)
T

Zij = QijkYik “
k=1

where we set b = 7. Then e; is scored against a single
test embedding z;;. In this case, the final test embedding
used in each trial depends on the enrollment embedding.

be9: We apply self-attention procedure to the enrollment
and test side to obtain enhanced enrollment and test em-
beddings. Then, we score all enrollment vs all test en-
hanced embeddings and take the maximum.



Table 7: Multi-modal systems results on SRE19 AV dev.

Systems SRE19 AV dev

EER MinCp ActCp
Submissions
Primary 1.89 0.037 0.054
Single 2.63 0.056 0.070

Contrastive 1.75 0.037 0.042

For each back-end flavour, we have versions with and with-
out adaptive S-Norm. We used the top 1000 element from the
cohort. The cohort for score normalization was obtained from
JANUS dev test set.

13.2. JHU-HLTCOE back-end

For a given model/test pair, the enrollment model was scored
against all 21 face clusters using cosine scoring of the embed-
dings, and the maximum score was kept for the trial.

Face scores were calibrated using logistic regression
learned on the SRE19 Development set, as calibration param-
eters learned on the Janus data were not found to perform well
on the development data.

14. Video single systems

Table 6 presents the results of the individual systems on SRE19
AV dev video condition. We include only embedding plus back-
end combinations that were included in one of the submissions.

15. Video submissions

The submissions for the video conditions where:

e Primary: Fusion at P = 0.05 of

— COE system.

— Best fusion of 3 JHU-CLSP systems at P = 0.2,
composed of: r100-be9-snorm, r100-be4, mobile-
bel.

* Single: Best JHU-CLSP single system: r100-be9-snorm.

¢ Contrastive:

Fusion at P = 0.05 ofCOE system. Best
fusion of 20 JHU-CLSP systems at Pr = 0.2,
composed of: r100-be9-snorm-+r100-be4+mobile-
bel1+r50-be7-snorm+mobile-be4-snorm+mobile-
bel-snorm+r34-bel+r100-be7-snorm+r50-
be3+r34-be7-snorm+r100-be2-snorm+r50-be3-
snorm+r100-be5+mobile-be3-snorm+mobile-
be6-2-snorm+r50-be5-snorm-+r34-be5+r34-bed-
snorm+r34-be5-snorm.

Table 6 presents the results of our submissions for audio.

16. Audio Visual submissions

Multi-modal submissions (Primary, single and contrastive)
were obtained by adding the score of the corresponding audio
and video submissions. We added the scores instead of averag-
ing because both modalities are independent.

Table 8: Computational resources for face embeddings.

System Seconds per item  Memory (GB)
Detection (MT-CNN) 0.27 0.0024
Embedding (InsightFace) 1.85 1

Table 9: Computational resources x-vectors

System Real time factor Memory (GB)
F-TDNN 3A x-vector 35 3
F-TDNN 4A x-vector 43 3
F-TDNN 5A x-vector 3 3
E-TDNN x-vector 7 2
ResNet34 embedding 26.3 0.2
ResNet34LDE-Large 11.7 1.0

17. Computation resources

Processing times were measured in Intel(R) Xeon(R) CPU E5-
2680 v2 @ 2.80GHz. Most of the processing time is dedicated
to the embedding extraction. MFCC, VAD and back-end pro-
cessing time are negligible comparison.
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