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I. INTRODUCTION

This note deals with the accuracy of range-ranqe

tlon systems. Specifically the note extends a number

or spherical multilatera-

of useful results recently

developed for hyperbolic multi1ateration systems [1] to spherical systems,

Spherical systems operate by utilizing measurements of range from a number

of stations to a subject (i.e., an aircraft), the position of which iS to be

determined. Each range measurement serves to localize the subject to a sphere

centered about one of the stations. Thus the subject’s position is determined

by calculating the common intersection point of the spheres.

An example of a satel1ite-based spherical navigation system is shown in

Figure 1.1. The system operates as follows. At an agreed upon time, satel1ites

1,2,..,N transmit distinct pulses. The pulse time of arrivals (TOA’S) at the

aircraft are read from a local clock. The known transmission time is subtracted

from the TOA’s, and the resulting time differences (equivalent to ranges) are

used to calculate the aircraft position.

An example of a ground-based spherical system is shown in Figure 1.2. The

system operates as fol1ows. The ground-based stations transmit pulses to the

aircraft. The aircraft transponder retransmits the pulses which are picked up

by the originating stations. TM resulting round trip times (proportionalto

range) are used to calculate the aircraft position.

The accuracy of such systems is 1imited by the accuracy with which the

locations of the transmitting stations are known, by pro~~gation disturbances in

the atmosphere, by noise disturbances in the receiver(s), and the accuracy of

the clocks used, Typically, the algorithm that calculates position translates

these errors into corresponding aircraft position errors.



Considerable previous work [2-9] has been done on calculatlnq the accuracy

of such systems. Thus, given disturbance statistics and a specific deplo~ent

of transmitters and receivers, it is straightforwardto calculate the resulting

positional error.

The purpose of this note is to present a novel method for calculating the

accuracy of a spherical multilaceration system, and then to use the method as a

basis for drawing some general conclusions about accuracy. Thus, in contrast to

the referenced work [2-9], the emphasis~ is not on calculating accuracy measures

for specific deployments of transmitters and receivers. Rather the emphasis is

on identifying general propertiesof spherical multilateration systems. Thus,

for example, the reportaddresses questions such as the following:

1.

2.

3.

4.

5.

What are the trade-offs between accuracy and the number of

transmitting (or receiving) stations?

What are the trade-offs between accuracy and the deployment

of transmitting (or receiving) stations?

How do the errors depend on direction? (E.g., in an aircraft

surveillance system it is desirable that altitude errors be

smaller than horizontalerrors; is this the case?)

How does accuracy depend upon the accuracy of the clock used

to record signal arrival times?

What are the smallest rms errors that can be attained using a

fixed number of receivers? How should the receivers be deployed

to achieve minimum error?

2
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11. SUMMARY OF RESULTS

Although the present work has been motivated by satellite-basedmultilat-

eration systems 1ike that shown in Figure 1,1, the work is reported in more

general terms to make the results available to other applications as wel1.

Thus, it is assumed that a spherical multilaceration system consists of a

number N of beacons (e.g., satel1ite-based transmitters), and a subject (e.g.,

an aircraft). The beacons and the subject are assumed to be in fixed positions.

The beacons simultaneously transmit signals that are received at different times

by the subject (or equivalently, the beacons simultaneously transmit a signal

that is transponder by the subject back to the beacons). Due to disturbances of

various kinds, the TOAS are somewhat in error. As a result, the calculated

subject position is correspondingly in error.

The report treats both satel1ite-based and ground-based systems. It should

be noted that the assumption of fixed beacon positions ignores the effects of

motion in satellite-based systems. Thus with regard to such systems, the results

apply to a single instant of time.

In some cases, no geometrical constraints are placed upon the beacon loca-

tions. In other cases, the beacons are assumed to be confined to a viewing

cone, or a cone-complement.

The main results are as follows:

1. It is shown that the inverse of the covariance matrix for

positional“errorcorresponds to the moment of inertia matrix

for a simple mass configuration. The insight provided by

this fact makes it possible to answer many questions relat-

ing to accuracy [Section VIII].

2. The performance of an actual spherical multilateration system

is bounded by the performance of a comparable hyperbolic

system and that of an “ideal” spherical system (defined in

4
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Section X). Specifically, the accuracy of a spherical system

always exceeds that of a hyperbolic system, but is not as

good as that of an ideal system [Section X].

3. If 00 denotes the rms error in the recorded signal arrival times

due to highly correlated effects (e.g., clock error, ionospheric

delays, transponder delay), and Ot den~<s the corresponding

error due to uncorrelated effects (e.g., receiver noise, beacon

location errors), then the accuracy benefits of an ideal

spherical system are obtained if UO < ut/{N where N denotes

the number of beacons. For UO > ot/JT accuracy begins to
degrade, and approaches that of a hyperbolic system as 00

becomes large [Sections XU and XVIII].

4. For both satellite-basedand ground-based systems it is shown

that error measures typically are not highly sensitive to the

number N of beacons. Specifically, typical error measures are

proportional to 1/~N. Thus, for example, to double system

accuracy by the expedient of adding beacons, it is necessary

to increase the number of beacons by a factor of four [Sections

XIII, XIV, XVI, and XVII].

5, The accuracy of an ideal spherical system is much more sensitive

to beacon deplo~ent. For example, in the case of N beacons

distributed uniformly within a viewing cone, increasing the cone

half angle from $ = 30° to $ = 60° doubles accuracy, an improve-

ment that otherwise would require a fourfold increase in the

number of beacons [Section XIII].

6, For satellite-basedsystems the errors made using ideal

spherical multilaceration are primarily horizontal errors.

Typically rms horizontal errors are twice as large as rms altitude

errors [Section XI11].

7. By contrast, for ground-based systems the errors are primarily

altitude errors [Section XVI].



8. Expressions are derived for the minimum ms error that can be

expected from N beacons using ideal spherical multilateration.

Corresponding optimum beacon deployments also are presented.

The results assume that the beacon locations either are un-

restricted, or are restricted to a viewing cone of arbitrary

half angle [Section XX].

9, The moment of inertia method for calculatingthe inverse of the

error covariance matrix is generalized to accommodate an

independent (e.g., barometric) altitude measurement [Section

XIX],

Al1 results are derived for the three-dimensionalposition determination

problem. Corresponding results hold for the two-dimensionalproblem as well.

The derivations parallel those given here.

6
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III . TIME OF ARRIVAL EQUATIONS

A typical spherical multilaceration system is shown in Figure 3.1. Under

ideal conditions the signal

..,dN as follows:

tl = to t all/c

t2 = to t d2/c

tN = to + dN/c

where

arrival times are related to the distances d,,d2,

tj = The time of arrival (TOA) of the pulse from the jth

(j = 1,2,...N).

~ = The time of pulse transmission.

dj/c = The transit time from the jth beacon to the subject

the signal velocity).

The basic procedure for determining the subject position from

(3.1)

(c denotes

(3.1) consists

of expressing the distances d. in terms of some convenient coordinate system,
J

and then solving (3.1) for the subject coordinates. Note that the system of

Equations (3.1) is overdetermined in that it consists of N equations in 3 unknowns.

Thus, if no measurement errors are present, only three of the equations are

needed to calculate subject position. The remaining equations are redundant.

When the data contains measurement errors, however, it is advantageous to use

the entire system of equations to calculate subject position. Specifically, it

7
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is desirable to average the system of equations together to obtain a set of

three equations in three unknowns, and then solve the resulting equations for

the subject position. The averaging step improves final accuracy in that it

permits error cancellation among the measured data.

Equation (3.1) makes the following idealizing assumptions:

1. The time of signal transmission is exactly known.

2, Signal prop~gation is ideal.

3. No errors are made in measuring the arrival times of the

signals.

If conditions 1-3 are satisfied the subject’s position relative to the beacons

can be determined exactly by solving Equations (3.1) for the coordinates of the

subject. If in addition,

4. The beacon positions are exactly known in an earth-based

reference frame

the position of the subject relative to a point on earth can be determined

exactly.

Conditions 1-4 never are satisfied, however. The measured quantities

that appear in (3.1) always are in error. Thus the relative position of the

subject that is calculated from the system of Equations (3.1) is correspondingly

in error, as isthe position calculated in an earth reference frame.

9



IV. SOURCES OF ERROR

The quantities tj, ~, and dj that appear in (3.1) are ideal quantities

in the sense that they are not available for calculation.
‘bus ‘et t:’ tt’

and d~ denote the corresponding quantities that are available for calculation,

That is, let

J

t~ = The measured (or estimated)

transmission.

dj = The measured (or estimated)

beacon to the subject.

.tht~ = The measured TOA from the J beacon (j=l,2,....N),

time of signal

.thdistance from the J

t .,
J

t are related to their ideal counterpartsThe quantities t:, t~, and dJ

to, and dj as follows:

t:= tj tAt, [j=l,Z,...,N]
J

(4.1)

t~ = to t At. (4.2)

dj=dj+Ad,
J

(4.3)

where Atj, At. , and Adj denote the relevant measurement (or estimation) errors. .

For present purposes it is assumed that the time of arrival error Atj has

four principal components. These are as follows:

At. = An approximately uniform delay imposed upon all N signalsJ,l
(e.g., by the ionosphere, or a transponder).

Atj ,2 = Fluctuation in the transit time of the jth signal due to

random effects in the propagation media.

10



Atj,3 = Error in the measured TOA of the jth signal due to

receiver noise.

Atj,4 = Error in the measured TOA of the jth signal due to

clock error.

The error Atjtherefore can be expressed as follows:

4

Atj = ~ Atj, k

k=l

The error At. results from inaccuracies in

to, or from error in the assumed time of signal

rather than measured).

(4.4)

the clock used to measure

transmission (if ~ is estimated

In satel1ite applications the error Adj represents combined measurement

and tracking errors. In ground-based applicationsAdj corresponds to the

beacon siting error.

It is reasonable to expect that al1 of the foregoing errors have zero mean

over a large number of measurements with different transmitting and receiving

equipment, with the exception of Atj,,. The unifom delay Atj,, imposed by the

ionosphere, or a transponder has a definite non-zero mean that is measurable,

and that can be subtracted from the arrival times t~ before the subject position

is calculated. The viewpoint taken here is that this correction has been made.

Thus, in what follows, it is assumed that

Al. N of the errors Atj,1..,Atj,4, At. and Adj have zero mean,
and that Atj,1 denotes the residual deviation Of the unifo~

delay from its mean.

11



With regard to correlation of the errors, observe

tends to fal1 into one of the following categories.

1. The error is generated by uncorrelated

that each type of error

physical mechanisms for

that

used

different j. Thus the errors for different j are statistically

independent,

11. The error is generated by highly correlated (if not identical)

physical mechanisms for different j. Thus the errors for

different j tend to have correlation coefficients of unity,

Table 4.1 indicates the appropriate category for each error source. Note

the c1ock error At.J,4 can be of either type. If independent clocks are

to measure TOAS, then the errors Ati-4 belong in Category 1. If the same
.>.

clock is used to measure all TOAS, the Atj,4 belong to Category 11.

Henceforth, the following assumptions are made concerning correlation of

errors,

Error Correlation Assumptions

A2. Pairs of errors that appear in different rows of Table 4.1

are uncorrelated.

A3. Pairs of 1ike Category I errors are uncorrelated for different

j. For example, At, 2 and At2 2 are uncorrelated., ,
A4. Pairs of 1ike Category 11 errors have identical variances, and

a correlation coefficient of unity. For example, Atl,, and

At2 , have identical variances and a unit correlation Coefficient.

12



Table 4.1

Category I Category II
(Independent for (Unity Correlated

Error different j) for different j)
Atj,, (residual delay) x

At. ~ (transit time
J‘ fluctuation)

x

Atj , ~ (receiver noise) x

Atj ,4 (clock error) x or x

At. (transmissiontime x
error)

Ad. (beacon position error) x
J

13



v. SUMMARY ERROR VARIABLES

Use of (4.1) -

(3.1) produces the

and d~.

t~=t; t

Equation (5.1)

(4.3) to eliminate the ideal quantities to, tj and dj from ‘

following equations for the measurable quantities t:, t~,

d~lc t At, - At. - Ad,/c

dfi/c+ AtN - At. - AdN/c (5.1)

can be expanded to place in evidence the TOA error components

At. ,At
J,l. .

j,4 by substituting (4.4) in (5.1). The resulting equations are

tf = tfi t d~/c t > At, , -At. - Adl,c

k=l ‘

t~ = tfi t dfi/ct : At, k - At. - AdN,c (5.2)

k~f ‘

To simplify subsequent discussions it is convenient to define summary

error variables as follows:

so = At.

11

t At.J,l J,4
- At.

11

(5.3)

Ej =At. tAt.
J,2 IItAt.

J,3 J,4 - Adj/c (5.4)

I

14



The error CO is the sum of all errors that are unity correlated [see Table 4.1].

Thecj (j =1 ,2,,..,N) are sums of the uncorrelated errors for the different

signal paths. The notations { }1 and { }11 mean that Atj,4 belongs in (5.4) if

Atj,4 falls in Cate90rY I, and belongs in (5.3) if Atj,4 falls in Cate90rY II.

Equations (5.2) take the following simple form when rewritten in terms of

the CO,S,,....EN

t~=t~tdf/ctcOtc,

tfi=t;tdfi/ctc tcNo
(5.5)

Al1 subsequent discussion is carried out in terms of the summary error

variables CO,C1,....EN. No further mention is made of the constituent errors

in Table 4,1. Henceforth, the error E. is called the clock error, even though

other errors also contribute to it. The errors Cj multiplied by the velocity

c of signal propagation are called ranging errors.

As a result of assumptionsA1-A4 of Section IV, it is assumed that

Co,c,,.... EN are zero mean random variables with the diagonal covariance

matrix

P= (5.6)

15



The covariance matrix ~Z for the error terms !SO t Cj) in (5.5) can be

expressed in terns of BE as follows:

where E denotes expectation,

E=—

c1

‘N._

-c-
0

[N t 1) rows

and

~ = an N x (Ntl) matrix of the fom

1

-1 : 1

1;

, 0,.,

(5.7)

(5.8)

N rows (5.9)

.

16



VI. POSITIONAL ERRORS WITH OPTI~L PROCESSING

Let ~ be a (3x1) vector that specifies the actual subject position. A

number of different methods exist for “solving” the TOA Equation (5.5) for ~,

Each method can be viewed as defining a (3x1) vector function (estimator)

di’d;’..di)i)

that approximates ~.

The generalized least squares procedure is

procedure involves 1inearizing the TOA equations

the subject. The subject p~sition ~ relative to

(6.1)

one such method [4,6,8]. The

about a point known to be near

the reference point then is

approximated by the vectoi ~ that minimizes the quadratic error measure

17
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The linearized equations take the following form:

(6.3)

6; = The distance from the assumed position of the jth beacon

to the reference point.

= A (1x3) unit vector pointing from the subject to the jth~i
satellite; see Figure 6.1.

~ = A (3x1) vector specifying the subject position relative

the reference point; see Figure 6.1,

For the purpose of minimizing (6.2) it is convenient to rewrite

Equations (6.3) in matrix notation as follows:

to

where

(6.5,6.6)

[1
g
J1

~= . (N t 1) rows

h
3 columns

(6.7)



and where ~ and s are given by (5.9) and (5.8).

Use of (6.4) in (6.2) yields

Q(R)=[I*-:A*-:EE. M’E;l

The minimizing condition that

equal zero for al1 vector differentials g requires that

Solution of (6,10) produces the estimator

.
Use of (6.4) in (6.11) shows that the error ~ - ~ in calculated position

is related to ~ as follows:

i - ~= c[F’ H’ ~~1 ~~]-1 F’ H’ ~j’ ~~— —— -— (6.12)

.
Clearly, ~ -~= Oif~=O. More generally E[~ - ~] = O provided E[~ = O.

Therefore, theAestimator (6.11) is unbiased. The associated covariance matrix

for the error ~ - ~ is as follows:

~R = E[(~- ~) (~- ~)’]

= c2[~’ ~’ ~;’ ~ ~]-1

= C2[F’ H’(~~ ~’)-’ ~~]-’—- (6.13)

20



The least squares result (6.11) represents only one possible estimator

of the subject position ~. Other workable estimators can readily be devised.

According to Markov’s Theorem [101, however)the generalized least squares
estimator is optimal in

error of al1 estimators

Conditions

1. The

2. For

the sense that it produces the smallest mean-square

that satisfy the following (weak) conditions.

estimator is unbiased.

the error magnitudes of interest, the estimator is

linear in the Cj. That iS

where the matrix ~ is

Accordingly, in what follows, we restrict

by the least squares procedure.

independent of the c..
J

attention to the errors generated

21



VI 1. ERROR MEASURES

For the purpose of assessing accuracy it is convenient to rewrite the

covariance matrix (6.13) as follows:

qR = (U*C)2~
—

[1
r

xx
r

Xy
r

Xz

= (U*C)2 r
Xy r YY

r
Zy

r Xz r
ZY

r 22

where (U*C)2 denotes the mean-squared ranging error. That is

(U*C)2= ~ ~ (“jc)2

j=l

(7.1)

(7.2)

(7.3)

Use of (6.13) in (7.1) shows that the L matrix is defined by the relationship

~ = + [~’ ~’(~ Q ~’ )-’”””~fl-’
(U*)

= [1’ E’(HEn N)-’Hal-’

where ~n denotes the normalized covariance matrix

I
(:)2 o

~.n = (+)2,

(7.4)

(7.5)

22



All of the conventional measures of accuracy are directly available from

the diagonal elements of the covariance matrix (7.2). For example, the mean-squared

errors in the X: Y’and Z’directions are given respectively by

2 - *C)* rxx
ax - (a (7.6)

u; = (a*C)2 r
YY

(7.7)

~2 = ~a*c)2 r
z Zz (7.8)

Similarly the total mean-squared error o*, and the so-cdlled “geometric dilution

of precision” (GDOP) are given by

02 = a: t u; t a; = (a*c)2 (rxx + ryy t rzz)

and

GDOP = ~= (rxx t ryy + rzz)l’2 .

(7.9)

(7.10)

Equations (7.6) - (7.10) show that the elements of the r matrix in (7.2)

possess a simple interpretation. Speclfically, the elements can be interpreted

as error magnification factors. For example, Equation (7.6) asserts that the

mean-squared error in the X’ direction equals the mean-squared ranging error

magnified by rxx. Similarly, (7.9) asserts that the total mean-squared error

O* equals the mean-squared ranging error magnified by the factor (rxx t r~y t r22).

Accordingly, the matrix ~ henceforth is called the error magnification matrix.

23



VIII. THE INVERSE ERROR MAGNIFICATION MATRIX

it

it

of

It

In

To deduce useful properties of the various measures of

is necessary to relate the error magnification matrix ~ or

to the beacon-subject geometry. The present section shows

positional error,

some function of

that the inverse

~ possesses two extremely simple interpretationsin terms of system geometry,

is these interpretationsthat lead to the conclusions sumarized in Section 11.

Thus let ~ denote L-l , That is, let

(8.1)

Appendix I it is shown that the matrix factor ~’(~ ~ ~’)-1 ~ can be calculated

from the expression
,,

~’(~~ ~’)-’ ~= [~- M U(U’ M U)-’ Q’] ~~———— — - y(~’ ~ y)-’ g’~

(8.2)

where

~=q’ and ~’ = [-1.,.1,1...1]

Ntl

Use of (8.2) in (8.1) shows that

~=~’~~

where

K=[~ - U(U’M U)‘1 U’ M] ~

(8,3)

(8.4)

(8.5)

24



Equation (8.5) can be developed as follows:

1
i [-mo,m,,m2,...mN]

1

1

1

(8.6)

where mi denotes the typical diagonal element of ~, ~j denotes the jth unit

vector ~n row format, and

(8.7)

TO interpret the matrix ~, assume that the followin9 construction is

carried out.

25



Construction of Beacon Images on Unit Sphere

i) Draw a sphere of unit radius with center at the

subject position O.

ii) Oraw the vectors i

Place a mass of v~~~e~m...k ‘r~ ~he point o.= (u*) /u. at the point O;iii) o
place masses of value Mj = (0*)2/U~ (j=l,2,,..N)
respectively at the points where the unit vectors i–l’k’.. ”h
terminate in the sphere (see Figure 8.1)

The vector ~ specified by (8.7) can be interpreted as pointing from the

point O to the $enter of mass CM of the mass configuration as shown in

Figure 8.1, Likewise, the vector difference ~j - ~ contained in the jth row

(j z 1) of the matrix ~ can be interpreted as a vector pointing from CM to the

mass m.. Thus if (X,Y,Z) denotes a Cartesian coordinate system centered at CM,
J

and differing from the system (X’,Y’,2’) only by a translation, then the

elements of the jth row (j ~ 1) of ~ are simply the coordinates Xj, Yj and Zj

of the point P; in the system (X,Y,Z).

That is,

~=

:X. -Y. -zo-

‘1 ‘1 21

. . .

. . .

1‘N ‘N ‘N

(8.8)

where Xo, Yo, 20 denote the coordinate of the point O in the system (X,Y,Z).

The desired formulation of ~ follows directly from (8.4) and (8.8); namely

26
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L=— i
m.X.Y.

JJJ
j=o

i
m.X.Z.

JJJ
j~o

: m.X.Y. ? mjXjZj
j=o JJJ j=o

N N

i
m.Y.z.

JJJ i ‘jz~
j~ j=0

where

2

-
O*

‘j=(o)
j

In some cases it is useful to rewrite (8,9) as follows:

rN

where N

2a

(a.9)

(a.lo)

(a.12)



Equation (8.9) asserts that the entries in ~are simply the moments and
products of inertia of the mass configurationmo,ml,m2,...mN about its Center

of mass.

By contrast Equation (8.11) asserts that the entries in ~can be regarded

as averages of the second order products X2,XY,XZ, etc. over the set of masses.

Both interpretationsare highly useful.

29
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IX. EXAMPLES

This section contains two examples which demonstrate the ease with which

error measures can be calculated using the moment of inertia results of Section

VIII. The examples utilize rather s~etrical geometries for the purpose of

obtaining simple expressions for the error measures (7.6) - (7,10). As is

evident from the derivation of Section VIII s~metry is not at all necessary to

the method, however.

The examples are based upon two different beacon-subject geometries. One

geometry is representative of satellite-basedmultilaceration systems. The other

geometry is representativeof ground-based multilaceration systems,

Example 9.1 (Satellite-BasedNavigation)

Assume that an aircraft utilizes timing signals simultaneoulsytransmitted

by four satellites to determine its position. Let the satellites be positioned

at the corners and the center of an equilateral triangle at the time of signal

transmission as shown in Figure 9.1.

Assume that the errorsin the nominal satellite positions, the actual TOA

errorsat the aircraft, and the TOA measurement errors in the receiver corres-

pond to an aggregate rms ranging error of (otc) feet for each signal path.

Also assume that the error in the nominal time of signal transmission, the

residual ionospheric delay, and the aircraft clock error correspond to an equiva-

lent “clock error” having the rms ValUe of O. seconds.

30

The appropriate mass constellation takes the form shown in Figure 9.2.

The masses ml - m4 account for the ranging errors. The masses have unit value

since, according to (7.3),
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= (at)2

and

‘j=~=~=l j = 1,2,3,4

j t

(9..1)

(9,2)

The mass mO at the center of the sphere accounts for the clock error u ~.

The mass has the value

mO = (u*fiO)2 =

A simple calculation

(otPo)2 (9.3)

shows that the center of mass (CM) is located on the

tetrahedral axis a distance

d=- (9.4)
4t (ut/%)

above mO. Let (X,Y,Z) denote a Cartesian coordinate system at CM as indicated

in Figure 9.3. Let (Xj, Yj, Zj) denote the coordinates of mass mj with

respect to CM. The elements of the ~ matrix (8.9) can be calculated straight-

forwardly as follows:

Lxx
= ml(sin @)2 + (m2 t m3) (~ sin $)2

-3- ~ sin20 (9.5)
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L~y=(m2tm3)($ sin $)2

= ~ ~in2 $
(9.6)

LZz =mOd2t(m, +m2 t m3) (COS $ - d)2 t mo(l - d)2

[
= ~+(3cos2$tl)t*; (l -cos @)21 (9.7)

LXy =LXZ=L =0
yz

where

a Q 4(uo/ut)2

Thus the ~ matrix is as follows:

[

~sin2$ o

~= o ~sin2$

o 0

(9.8)

(9.9)

o

0

(3cos20t l)+a; (l-cos $)2

(at 1)

(9.10)
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The correspondingE matrix is given by

0

0

atl

(3c0S2 $t 1) + a~l -COS $)2

(9.11)

The expressions for the rms error magnification factors are as follows:

J(rXx)’/2 = $

r(rzz)l/2 = —
atl

(3cos*$ +l)+a}(l-cos $)*

GDOP =
atl

$*+(3 cos20+l)ta T(l -3 Cos 0)2

(9.12)

(9.13)

(9,14)

(9.15)

,

For the values o = 45°, at = 30 nsec~ Co = 10 nsec~ the ‘MS positions’

errors are

1/2 (otC) = 34.6 ftox = Oy = (rxx)

Uz = (rzz)”2 (utc) = 22.7 ft

(9,16)

(9.17)

o = GDOPX (UtC) = 53.9 ft (9.18)
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If the clock error UO is increased to 100 nsec the rms errors increase to

=0 = 34.6 ft‘x y (9.19)

= 8? ft~z (9,20)

u = 100 ft

ENO OF EXAMPLE

(9.21)

Example 9.2 (Ground-BasedSurveillance)

Assume that round trip times from four ground based beacons are utilized

to determine the positton of an aircraft. Let the beacons be located at the

corners and center of a very large equilateral triangle as shown in Figure 9.4,

Let the aircraft be located near the center of the triangle at an elevation

angle of 45° from the central beacon as shown,

Assume that the errors in the nominal beacon positions,anomalies in the

round trip transit times and TOA measurement errors are equivalent to a one—
~ ranging error of (utc) ft for each signal path. Assume also that the air-

craft transponder imposes a residual delay on all signals equivalent to a

one way ms clock error of u. sec.

The mass constellation for this case is shown in Figure 9.5. The

masses m -1 m4 account for the ranging error (utc). Again, the masses have

unit value since

4

(9.22)(U*)2 ❑ + y (utc)2 = (ut)2
4C j=l
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and

2

4
O* 1‘j=(o)=t

(9.23)

Masses m,-m3 are placed on the equator of the unit sphere since Beacons

are assumed to be on the aircraft’s horizon. The mass mO at the center

the sphere accounts for the “clock error” UO.

The center of mass CM of the configuration is located a distance

4

‘=m41mj
j=o

from the center of the sphere along

Figure g.5.

Let (X,Y,Z) denote a Cartesian

I-3
of

(9.24)

the unit vector pointing to m4 as shown in

coordinate system at the CM oriented so

that mass ml lies in the X-Z plane as shown in Figure 9.6 ,

Straightforwardcalculation shows that the moments and products of inertia

about the center of mass are as follows:

L=xx
[ 1+ (2)t& (1.875)

L=
YY [

* (1.5) t & (1.5)1
L =
22

[ 1* (0.5) t * (0.375)

L
XY

=0

L=X2 [
& (0.5) t * (0.375)

I

(9.25)

(9.26)

(9.27)

(9.28)

(9.29)

(9.30)LOyz =

38



●
m4

39

Figure 9.6



where

()a ~ ~ mj /m. = 4(0./0,)2
j=l

(9.31)

Consequently, the ~ matrix is

~=+[o: 1; :]tfi~: 1: :[

(9.32,

For the specific clock error UO = Ut (or a = 4), the correspondingL

matrix is as follows:

rO.667 O -0.6671

~= Lo 0.667 0

1

(9.33)

-0.667 0 3,166

The rms error magnification factors are given by

(rXX

(rzz

GDOP

1/2= (ryy)l/2=o.816 (9.34)

J12= ~.7Jg (9.35)

= 2.121 (9.36)

For the values U. = Ut = 20 nsec, the rms errors in calculated position are

as follows:

40



ux =0 ~ = (rxx)l’2(utc) ❑ 16.32 ft

Uz = (rzz)l’2(utc)= 37.58 ft

o = (GDOp) (OtC) = 42.42 ft

END OF EXAMPLE
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x. THE LIMITING CASES UO + ~ AND UO + @

Obviously, as the rms clock error O. decreases, the accuracy of a spherical

multilateration system increases. Conversely, as the clock error U. inCreaSeS,

accuracy decreases.

It is instructive to examine the mass configuration of Figure 8.1

to see how the foregoing conclusions derive from the moment of inertia view-

point. The conclusions can

the mass m. at the origin.

the system which must

1. Increase all

the diagonal

be reached as follows. Decreasing O. increases

8ut increasing m. amounts to adding new mass to

moments of inertia and (thereby) increase

elements of the ~ matrix.

2. Correspondingly reduce the diagonal elements of the

~ matrix.

Thus the error magnification factors are reduced so that accuracy is increased,

Conversely, increasing 00 amounts

duces the opposite effect.

Clearly, maximum accuracy is

to removing mass from the

obtained as U. + O. Here

has migrated to the center O of the unit sphere-in Figure 8.

system which pro-

the center of mass

1, so that

the elements of ~ are moments and products of inertia taken about O. Henceforth,

this limiting form of a spherical system is called an ideal spherical system.

At the other extreme, minimum accuracy is obtained as the clock error

Uo+m. Here m. = O so that the moments are taken about the center of mass

HCM of masses m,,m2,...mN. It has been shown elsewhere [9] that the ~ matrix

calculated about HCM is the ~ matrix for a hyperbolicmultilaceration system

having exactly the same beacon locations and ranging errors as the spherical

system, Consequently, as U. + w the accuracy of a spherical system degrades
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to that of a comparable hyperbolic system.1,2

For values of uO between zero and infinity the center of mass CM is located

on a straight line connecting the points O and HCM as shown in Figure 10.1.

The vector displacement g of the CM from HCM is given by

~=~ ltoh (10.1)

~ = a (3x1) vector pointing from O to HCM

where

()a= $mJ,mO
j=l

One might anticipate that

N

for

that performance approximates

N

‘O<>mj
j=l

,

(10.2)

1412 lhl/2j or equivalently

(10.3)

that of an ideal spherical system, while for

(10.4)

‘This conclusion agrees well with intuition. For assume that the same clock
is used to record all TOAS. Clearly, as the clock error becomes large, the
recorded TOAS lose their meaning; only the relative TOAS or TOA differences
then contain useful information. Thus the accuracy of the s herical system

emust become identical to that of a comparable hyperbolic sys em.

44

2For a specific example, compare the limiting value of (9.15) with the result
of Example 9.1 in Reference [1],



performance begins to degrade toward that of a hyperbolic system. For the

special case

condition (10.3) is equivalent to

(10.5)

(10.6)

Inequality (10.6) is discussed further in Sections XV and XVIII.

Equation (10.1) and the “parallel axis theorem” of elementary mechanics

can be used to put the moment of inertia matrix in a particularly interesting

form. Specifically, the parallel axis theorem states that

where

(~)5 = The ~ matrix with moments taken about CM (i.e., the ~

matrix for the spherical system).

(~)” = The ~ matrix with moments taken about tlChl(i.e., the

~ matrix for the hyperbolic system).

According to the previous discussion, the ~ matrix

system is given by

45

(10.7)

(~). for an ideal spherical



= lim [(~)~]
m-o

Use of (10.8) to eliminate the product ~~’ in (10.7) shows that

(10.8)

(10.9)

Thus the ~ matrix for a spherical system is an interpolation between the ~

matrices for comparable ideal spherical and hyperbolic systems.’

A somewhat more complex argument shows that the ~ matrix for a spherical

systen[1ikewise is a simple interpolationbetween the E matrix for a comparable

ideal-spherical system and that for a comparable hyperbolic system, The result

is

where

(10.10)

(10,11)

Equation (10.10) can be used to “prove” the conclusions on accuracy stated

at the outset of the section. Specifically, the inequalitiesgiven on the fol-

lowing page are immediate consequences of (10.10)

1See Eq. (9.32) for a specific example.
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(rxx)o f (rxx s -) < (rxx)H , (ryy)o~ (ryy)~ ~ ‘ryy)H (10.12,13)

(rzz)o 5 (rzz)~ 5 (rzz)H , (GooP)o : (GDOP)S s (GDOP)H (10.14,15)

where the notations ( )., ( )s and ( )H mean the indicated quantities evaluated

for comparable ideal-spherical, spherical and hyperbolic systems.
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XI. CALCULATION OF AVERAGE ERROR MEASURES

The error measures (7.6) - (7.10) for any specific beacon-subject geometry .

can be determined straightforwardlyas indicated in Section IX. Accordingly,

calculation of error measures for specific geometries is not discussed further. ,

In the next seven sections, the report develops general properties of spherical

multilaceration systems for the foi’lowingcases of special interest.

Case I (Satel1ite-Based Systems):

The beacon images are confined to a viewing cone of half angle o as indi-

cated in Figure 11.1. Moreover, the rms ranging errors for al1 signal paths

are equal.

Case II (Ground-Based Systems):

The beacon

cated in Figure

Case I includes

images are confined to a cone-complement

11,2. Again, the ms ranging errors for

most practical beacon constellations for

Case II includes most practical beacon constellations in

of half angle o as indi-

all signal paths are equal.

satel1ite based systems.

which the beacons are

far removed from the subject (aircraft). Applications in which one or more

beacons are in the near vicinity of the subject can be analyzed by the method

of Example 9.2.

An averaging procedure

The basic approach is as fo”

is used to develop the properties of such systems.

lows:
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1.

2.

3.

4.

5.

It is assumed that the image of each beacon can occupy any position

within the allowed area o of the unit sphere; moreover, the beacon

image positions are independent of each other, and all positions

within O are equally likely.

The ~matrix is averaged over all combinations of beacon image positions

to obtain an average ~matrix.

The average ~matrix is inverted to obtain an (approximate)average

~ matrix.

Average error measures are extracted from the ~matrix.

Properties are deduced from the resulting error measures.

This procedure leads much more directly to the basic properties of spherical

systems than a detailed examination of typical cases.

The law of large numbers can be used to show that for large N the resulting

“average” error measures are rigorous averaqes* in spite of the approximation

E[~-l]= (E[~])-l (11.1)

in Step 3. For small values of N the resulting “average” quantities are only

approximate averages.

In what follows the quantities produced by Steps 1 - 5 are simply called

“average error measures.” It is emphasized, however, that the averages are in

fact approximate, with (11.1) being the approximation involved.

*
Specifically if N is increased and a02 is decreased such that the quantity

~ (uO,aj)z remains constant, then the random matrix N x L-l converges to—
j=l

N X( E[~])-l with probability one as N -,m.
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XII. THE AVERAGE ~MATRIX

A general expression for the average ~matrix is derived in Appendix II

based upon the following assumptions.

Al. ‘he ‘asses ‘1’m2’
...mn are confined to a region n on

the surface of the unit sphere.

A2. The mass positions within ~ are uncorrelated and are

described by identical probability density functions.

The result specializedto the case

❑~2=a2= ... 2 2
12

=u=~
Nt

or equivalently

=m=. ..=m‘1 2
N=(;) 2=1

takes the following form

[[

x’

1 E y’
‘[U = N 1 t (N u:/0~)

z’

(12.1)

(12.2)

:x‘ Y’ 2’1

221[
x’ - iv [(x’ -i’), (y ’-), (zlzit)])]

22
‘Uo’ot ~ ~,

- ~’
/

)

tN (1 - ~) , + (N Oo/ut)

z’

(12.3)
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where E denotes expectation, and x‘,y’,Z’ denote the coordinates (measured from

the sphere center) of a random point P within Q governed by the same probability

density function as the masses m,,m2,..,mN.

It is useful to rewrite (12.3) as follows to Parallel (10.9)

where

[x’ y’ z’]

I
(r 1x’ - i’ [(x’-i’), (y’-), (z(i’-i’)] )
{1~=(l-~)NXEY’ -j’

The formulation (12.4) asserts that the average ~ matrix is an

the matrices ~, and ~. The matrix ~, is the average ~ matrix

Oo = O), and therefore corresponds to the average ~ matrix for

system with beacon images confined to O. The matrix ~ is the

(12.4)

(12.5)

(12.6)

(12.7)

interpolationof

for mO = ~ (or

an ideal spherical

average ~ matrix

for m. = O (or O. = m) and therefore corresponds to th~ average ~ matrix for a

hyperbolic system with beacon images confined to n.

52
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Note that the matrix ~ is disadvantaged compared to ~, by the factor

(1 - l/N). This is due to the fact that for each sample mass configuration,

the elements of ~ are moments about the sample CM rather than the mean CM, The

disadvantage is most pronounced for m. = O, or EILI= ~, in which case sample
CMS can deviate considerably from the mean CM. The effect disappears for

‘o = m or E[~] =

In physical

matrix about the

density NP where

random point P.

~, in which case all sample CM’s coincide with the mean CM.

terms, the matrix ~, corresponds to the moment of inertia

sphere center of a thin shel1 confined to ~ and having mass

P denotes the probability density fUnCtiOn describin9 the

Similarly, the matrix &/(1 - l/N) corresponds to the moment

of inertia matrix for the same shel1 taken about its center of mass. For the case

of a uniform probability density function (i.e., P = const.)

that ~1 and ~ take the following special fores.

Case I (Satel1ite-Based System)

J-COS 0)(2+COS $L
6

0

0

1-COS $)(2tcos 0)
6

0

0

0

Ww

o

0

J1-cos $)(2tcos $)
6

0

it is easy to show

o

0

l+COS $ t COS2 @

3-

0

0

+

(12.8)

(12.9)
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Case II (Ground Based System)

Note that the entries in (12.8), (12.9) and (12.10),\(12.11) are consistent with

conditions (10.12) - (10.15).
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X111. SATELLITE-BASED SYSTEMS (UO + O)

For U. + O the satel1ite-based system becomes an ideal spherical system.

The corresponding average rms error measures can be calculated from the inverse

of (12..4)with U. = O, or equivalently from the inverse of (12.8).

The results are as follows

(rxx)’/2 = (ryy)l/2 = 1
1/2

p [71 - COS$)6(2 t Coso)1 (13.1)

(13.2)

GOOP = ~
[u

12 3 1
1/2

m - Cos$) + Cos$) + 1 + Cos$ t COS2$

(13.3)

A plot of the average GDOP versus $ is given in Figure 13.1. The dashed

curve represents the minimum GOOP obtainable from N beacons confined to a cone

of half angle $.l Note that the “average” curve is wel1 above the “minimum”

curve and exhibits the same general o depend~nce.

Examination of (13.1)-(13.3) shows that al1 error measures are proportional

to l/m. This means that the error measures are not highly sensitive to the

number N of beacons. For example, to halve GOOP by the expedient of adding

beacons, it is necessary to increase the number of beacons by a factor of four.

lThe expression for minimum GOOP is derived in Section XX.
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Normalized plots of the rms error measures are given in Figure 13.2.

The following conclusions are evident from the figure.

1. Accuracy is much more sensitive to cone angle than to N.

For example, increasing $ from @ = 30° to @ = 60° halves

GDOP, an improvement that otherwise would require a fourfold

increase in the number of beacons.

2. Errors in position are primarily horizontal errors. For ex-

ample, for @ = 45°, (rxX)l/2= 2(rzz)1/2 so that rms horizontal

errors exceed rms vertical errors by a factor of two.

I
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XIV. SATELLITE-BASED SYSTEMS (00 + ~)

For UO + M the satel1ite-based system degrades to a hyperbolic system.

The corresponding average error measures can be found from the inverse of (12.4)

with 00 = O, or equivalently from the inverse of (12.9).

The resulting error measures are as follows:

Again,

is not

(rXX)

(rXX)

/2 = (ryy) _—
‘2 -J;-, [(, - ,0s$]6(2 + ~os$,]”2

(14.1)

/2 1 23
1 - Cos$~1 —

‘Dop =J* [1, - .0s,;2(2 t Cos,

the error measures substantially have a

highly sensitive to N.

(14,2)

12
1

1/2
t (14.3)

(1 - Cos$)z

/~ dependence so that accuracy

Normalized plots of the error measures are shown in Figure 14.1 for N = 4

and N = ~. The curves for 4 < N < m lie between the N = 4 and N = - curves.

The following conclusions can be drawn from the figure:l

1, Again accuracy is”highly sensitive to cone anqle. For example,

increasing$ from 40° to 60° halves GOOP or double over-al1

accuracy.

2. Altitude accuracy is much poorer than horizontal accuracy.

For example, at O = 45° altitude errors typically exceed

horizontal errors by a factor of three.

1The same conclusions are drawn in Reference [1] using different arguments.
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Figures 14.2-14.4 contrast plots of the avera9e

the limiting cases 00 = O (ideal spherical) and U. =

ing conclusions can be drawn from the curves.

Ideal-Spherical vs. Hyperbolic

rms error measures vs. h for

M (hyperbolic), The follow-

1. Altitude accuracy is much better for the ideal spherical system.

For example, Figure 14.2 shows that for @ = 45° altitude errors for

the ideal spherical system typically are an order of magnitude

smaller than those for the hyperbolic system.

2. The horizontal accuracies are comparable for the two 1imiting cases.

Specifically, the plots of (rxx)l’2~N shown in Figure 14.3 are

almost identical.

3. Over-Al1 Accuracy (GDOP) is Siqnficantly Better for the Ideal Spherical

system. For example, Figure 14.4 shows that for $ = 45° GDOP for the

ideal spherica’

bolic system.

system typically is one fourth of that for the hyper-
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xv. SATELLITE-BASED SYSTEMS (General Case)

The extent to which the benefits of a.UO = O (or ideal) spherical system

are realized depends upon the size of the clock error U. relative to the

normalized ran9ing errorl Ot/iN.

Average rms error measures for different values of U. can be calculated

from the inverse of (12.4). Plots of the resulting error measures versus the

normalized variable~N uo/ut are shown in Figures 15.1-15.3.

It is clear from Figures 15.1-15,3 that accuracies typical of an ideal

spherical system are obtained provided

As do is increased beyond Ot/~N, accuracy degrades and approaches that typical

of a hyperbolic system. Figure 15.1 shows that altitude accuracy degrades

rapidly as u. is increased beyond Ot/~N and substantiallyequals that of a

hyperbolic system for U. > 50 Ut/~N. Figure 15.2 shows that horizontal accuracy

decreases only slightly as O. exceeds ot/~N and roughly equals that of a hyper-

bolic systm for U. > 5 Ut/~N. Total rms error or GDOP has a ~N uo/ut dependence

similar to that of rzz, which dominates the GDOP calculations for uo > 5 Ot/~N.

The curves of Figures 15.1-15.3 are useful for assessing the effect of

clock improvements. For example, it is clear that for U. < ut/fi clock improve-

ments wil1 not significantly improve accuracy. By contrast, for U. = 10 Ot/~N

clock improvements substantially increase accuracy.2

1This is reasonable since in the absence of a clock input, accuracy is propor-
tional to at/~N. Thus for the clock to impact accuracy, o should be small
compared to ut~N times a geometric factor. ?“Also, see Sec lon X.

2Note that actual clock error is only one component of the error uo [see (5.3)].
Thus there is a limit to the reduction in uo that can be achieved by improve-
ments to the actual clock.
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XVI. GROUND-BASED SYSTEMS (00 + O)

For U. + O the ground-based system becomes an ideal spherical system. The

average rms error measures can be determined from the inverse of (12.10).

The results are as follows.

[1(rxx)”2 = (ryy)’/2=1 2 1/2

{N
1-+.

(rzz)l/2.- 1 J3
-~m

GOOP = ~

[

4 3
t—

$

1-+
sin2 $

1/2

(16.1)

(16.2)

(16.3)

Again the error measures have a l/fi dependence. Consequently accuracy is not

highly sensitive to the number N of beacons.

Normalized plots of the

maximum elevation angle $ are

are apparent from the figure.

1. Horizontal errors

errormeasures (rxx)l/2 and (rzz)l’2 versus the

shown in Figure (16.1). The following conclusions

are comparatively smal1 and independent of $.

2. By contrast altitude errors are large and highly sensitive to O.

Indeed as $ + O altitude discriminationdisappears altogether.
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XVII, GROUNB BASEO SYSTEMS (Oo + ‘)

For on + m the groun& b~sed system becomes a hyperbolic system. Thus the

rms accurac~ measures can be determined from the inverse of

The results are as follows.

(rxx)l/2 = (ryy)l/2 =Jti[,&l”2

1
1/2

4 12t—

i-+~ sin2 @

(12.11),

(17.1)

(17.2)

(17.3)

As in all preceding cases, the error measures substantially have a l/~N depen-

dence. Thus accuracy is relatively insensitive to the number of beacons.

Normalized plots of (rxx)”2 and (rzz)”2 versus $ are shown in Figure 17.1.

Once again

1. Horizontal errors are smal1 and relatively independent of $.

2. Altitude errors are large and very sensitive to d.

Figures 17.2 and 17”.”3compare normalized plots of (rxx)l’2 and (rzz)”z vs. d

for hyperbolic and ideal spherical systems. Figure 17.2 shows that

1. The horizontal accuracies of two systems are almost identical.

It is clear from Figure 17.3 that

2. While the altitude accuracy of both systems is poor, the altitude

accuracy of the ideal spherical system is approximately twice as good

as that of the hyperbolic system.

Thus the primary difference in performance of the limiting cases is in

altitude descrimintationwhere the ideal spherical system performs approximately

twice as well.
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XVIII, GROUND-BASEO SYSTEMS (General Case)

The extent to which a ground-based system achieves the better altitude

discrimination of a pure spherical system depends upon the value of the rms

clock error U. relative to the normalized ranging error ut/~N.

The average rms error measures for different values of uo/(ot/<N) can be

calculated from the inverse of (12.4) using (12.10) and (12.11).

Figures 18.1 and 18.2 show normalized plots of the error measures versus

~N uO/at. The curves start from the values for an ideal spherical system and

degrade to those of a hyperbolic system as U. becomes large. For 5° ~ o ~ 10°

the error measures approximate those of an ideal spherical system provided

(18.1)

For 5° ~ $ ~ 10° the error measures approximate those of a “hyperbolicsystem

whenever

(18.2)

Thus almost a factor of two improvement in altitude d~scrimination over

a hyperbolic system is obtained whenever (18.1) is satisfied. NO improvement

is achieved when (18.2) is satisfied. A modest improvement is obtained for
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X1X, INDEPENDENTALTITUDE MEASUREMENT

While spherical multilaceration systems provide an altitude estimate,

Sections XVI and XV show that the estimate nomal ly is poor in the case of a

ground based system, and can be poor in a satel1ite-based system for a suf-

ficiently large clock error O.. Thus in some applications it may be desirable

to use an independent altitude measurement (e.g., from a barometric altimeter)

as an input to the position calculation algorithm so as to obtain an improved

position estimate in all dimensions. The present section extends the analysis

of Sections III - VIII to accommodate such a measurement.

Thus assume that measured altitude is to be used as an input to the cal-

culation of subject position, Let (x’,y’,z’) denote a Cartesian coordinate

system centered at the subject, and oriented such that the z axis corresponds

to altitude. In addition let

c = The altitude of the reference point (see Section VI) a
above anaaltitude reference (e.g. sea level)

*
z = The measured altitude.

E = The error in the measured altitude.z

The quantities C, z* and Cz are related by the equation

*
z = c t [0,0,-1] g t Cz

or equivalently

(19.1)

(19.2)



The subject position now is to be estimated by “solving” (6.3) and (19.2)

for ~ using the least squares procedure. The solution parallels that given in

Section VI. The error in the resulting estimate is given by the expression

where

—

1!Nt2

0 . . . 01

!Ll]~F Nt2

0,0,1

—.

3

A

Ntl

v

(19.5-7)

Nt2

with E, F and H as in Section VI, and where P+ denotes the Covariance matrix-——

noq:
o

(19.8)

J5



and EC denotes the covariance matrix of Section V.

The covariance matrix for the resulting positional errors is given by

A

pa = E[(~-~) (~-&)’]

The error magnification matrix defined by

where ~ denotes the normalized covar
t

:+

(19.9)

(19.10)

(19.11)

ante matrix

(19.12)
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It is shown in Appendix III that the inverse of the covarianc

(19.11) can be calculated as follows

000 1
000 I

t Jo (u*c)2/a*
z

where ~ is as in Section VIII.

Equation (19.13) shows that r~l is computed exactly as in Sect
O*C 2 2

except that the quantity /uz now must be added to the Z-Z el(

(1+)-1. Thus the effect of the independent altitude measurement is
-1the Z-Z element of ~ and correspondingly to reduce rzz.

The effect of a highly accurate altitude measurement can be a:

examining the limiting form of ~+ as Uz + O. It is clear from (19

lim ~+ =
02+0

[ 1
—

L L -1 0
xx XY

L L o
Xy Yl ,

L o 0 Jo

Thus the error magnification factors (rXx)+ and (ryy)+ can be found

expressions

(rXx)+ =

xx y:- (Lxy)2

YY

LL

(ryy)+ = L L ‘x
xx ~;- (Lxy)2
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where Lxx, L and L are calculated by the method of Section VIII. For smal1

but non-vanil~ing uzy~t can be shown that the error magnification factor (~zz)+

is given by

(rzz)+ : u:/(u*c)2

as expected.
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xx. OPTIMUM BEACON CONSTELLATIONS

The following questions appear to be basic ones from the viewpoint of

designing spherical multilateration systems.

1) What is the minimum total mean-squared positional error

U* that can be achieved from a given number N of beacons?

2) How should the beacons be deployed to achieve minimum

error?

The present section

satisfying the following

answers these questions for beacon constellations

restrictions.

Case I: The beacon locations are not restricted and U. > 0.

Case 11: The beacons are confined to a viewing cone having a

$. Moreover, the system is ideal (i.e., U. = O).

half angle

The section also presents an example that illustrates the usefulness of the

results.

Bounding arguments are used to identify the minimum errors and corresponding

optimal constellations for Cases I and II. That is, a lower bound on U* is

established. Then it is shown that certain select constellations realize the

bound.

The total mean-squared error U* is given by the sum of the diagonal elements

in the covariance matrix (7.2). That is,

0*22:=Ux+utu
Y

= (rXX tryy tr Zz) (U*)2 (20.1)
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Thus the problem of minimizing G2 amounts to minimizing the error magnification

factor

02
~ =‘xx + ‘yy ‘r 22

The following boundl is used to deal with the quantity(20.2):

r trtr 111>_+_+_
xx YY zz - LXX L L

YY 22

(20.2)

(20,3)

where the equal sign applies if and only if the ~ matrix is diagonal. The

bound is useful in that it facilitates use of coordinate systems that do not

necessarily diagonalize ~.

EXAMPLE 20.] (UnrestrictedConstellations)

Consider the problem of positioning N beacons in three dimensional space so

as to minimize the total mean squared error o2 at the subject.

Let C denote any constellation of the N beacons, Let (x’,y’,z’) denote an

arbitrary Cartesian coordinate system located at the center of the unit sphere.

Let (x,y,z) denote a Cartesian coordinate system located at the mass center of

mo,ml,...mN, that differs from (x’,y’,z’) only by a translation. Finally, let

L L L denote the diagonal elements of the ~ matrix for C, calculated inxx’ yy’ 22
the coordinate system (x,y,z).

According to (20.2) and (20.3) the total mean-squared error u2 satisfies

1
See Appendix 1, Reference [1],
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where

The parallel axis theorem of elementary mechanics asserts that

Lxx= $m.(x.)’ = j m.(x!)2 - M(~)2
j=o J J j=o J J

Similarly

LYy = MH ~ - M(~)2

L22 = MH ~ - M(~)2

where

81
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(20.6-7)

(20.8-9)

(20.10)

(20.11)

(20.12)

(20.13)



Use of (20.5), (20.10) and (20,11) in (20.4) yields

02 1 t 1
~~

MH ~ - M(~)2 MH~ - M(~)2

t 1

MH~ - M(~) 2

It follows from (20.14) that

(20.14)

(20.15)

with equality possible only if ~ = ~~ = ~ = O.

According to the Pythagorean Theorem, the coordinates (x;,y~,zj) of each
mass mj on the unit sphere satisfy the relationship

(X;)2 t (yj)2 t (2;)2 = 1 (20.16)

Summation of (20.16) gives

$ m.(x!)’ t ~ mj(Y~)2 t $, mj(zj)2 = $ mj

j=, J J j=l j=l

so that

(20.17)

—— —

(X’)2 t (y’)2 t (2’)2 = 1
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Use of (20.18) in (20,15) yields

Straightforward

domain defined by

indicates that

minimization of the right hand-member

(x’)2tm:l

.

(20.19)

of (20.lg) over the

(20.20)

(20.21 a-b)

(20.22)

Moreover, the minimization procedure shows that equality in (zo.22) holds only

if Lxx = L = Lzz = MH/3.
YY

A review of the development (20.1) - (20.22) shows that the lower bound

(20.22) is achieved if and only if the following conditions are satisfied

1. The ~ matrix is diagonal.

2. ~=~=~=o.

3. Lxx = Lyy = Lzz ❑ MH/3 .

For the case of equal ranging errors,

The bound (20.22) reduces to

(20.23)

(20.24)
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It is easy to identify beacon constell~tions that attain the bound (20.24).

For example, for N = 4,6 the constellations shown in Figures 20.1 and 20.2

achieve the bound. Simil,Jarly,the N = 8, 12 and 20 constellations in which

the beacon images are located at the vertices of the regular solids realize the

bound (20.24). Also, any superpositionof the “regular” conste.1lations or their

rotations achieve the bound (20.24). More generally, any constellation in which

the beacon images are (approximately)uniformly distributed over the unit sphere

satisfies conditions 1 - 3, and therefore (nearly) realizes the bound (20.24).

Note that the bound (20.24) is equivalent to the relationship

GDOP ~ 3/~ti . (20.25)

For the case of unequal ranging errors fewer constellations realize the

lower bound (20.22) exactly. The bound can be realized approximately, however,
by positioning the beacons so that m,, m2, ... mN approximate a uniform distri-

bution of mass over the unit sphere. For such constellations

It is interesting to

corresponding bound for a

is not more accurate than

(20.26)

note that the bound (20.24) is identical to the

hyperbolic system.’ Thus an optimal spherical system

an optimal hyperbolic system having the same number

of beacons. Rather the constellations have exactly the same accuracy.

ENO OF EXAMPLE

lSee Example 11.2 of Reference [1].
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EXAMPLE 20.2-(Cone Restricted Constellation;U. = O)

Next consider the problem of placing N beacons within a cone of half angle

$ so as to minimize the total mean-squared error U2 at the subject. Assume

that the rms clock error O. is zero.

Let (x ,y ,Z ) denote a Cartesian coordinate system at the center of the unit

sphere and oriented such

Figure 20.3.

According to (20.2)

02

(CO*)2 ~&+

the z axis coincides with the cone axis as shown in

and (20.3) 02 satisfies

11—t—
L Lzz (20.27)
YY

On the basis of Fi~ure 13.2 one exPects that

L << L and L << L (20.28-24)
xx 22 YY 22

so that the right hand-member of (20.27) is dominated by the l/Lxx and l/Lyy

terms. This suggests that the proper strategy for minimizing u2/(cu*)2

consists of placing the beacon images so as to maximize Lxx and L In the
YY.

case of equal ranging errors

(20.30)

or equivalently

‘1
=M2=. ..= MN=1 (20.31)

the quantities Lxx and Lyy evidently are maximized by placing the N beacon

images uniformly around the ring R shown in Figure 20.4. A straightforward

calculation shows that the associated ~matrix is given by
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so that

‘= ’[*t*](CU*)2

and

[ 1

1/2

“+ +*
‘Dop=~Nsln @

(20,32)

(20.33)

(20.34)

The conjecture that (20.33) actually is the minimum value of 02/(co*)2

can be explored as follows.

The quantities Lxx, Lyy, and Lzz are given by the expressions

Lxx = fmj(xj)2=MH~

j =0
(20.35)

(20.36)

(20.37)

aa



where n, -and (Z’)2 are as in (20.9), (2~.12) and (20.13). Once

again, the Pythagorean Theorem (20.18) applies. Use of (20.35), (20.36), and

(20.37) in (20.27), followed by use of (20.18) to eliminate (z’)2 yields

Now the coordinates x;, y! of any mass m, within the cone satisfy
J J

(xj)2t (yj)2= (rj)2

{20.40)

~ sin2 4— !20.3g)

for t sri/2, with the equal sign possible only if mj is on the ring R.

Summation of (20.39)as in (20.17)shows that

7+~<sin20
J J-

for o s n/2, with the equal sign applying only if all of the masses

‘1‘“2’... ‘!!are ‘n ‘“

Minimization of the right-hand member of (20.38)over the domain O defined

by (ZO.40) and the conditions

05Q , 02q (20.41-42)

produces a bound on u2/(u*c)2 that depends only upon N and O, and therefore one

that can be compared with (20.33). The domain D consists of the shaded area

in Figure 20.5 . The minimization is performed most directlyin terms of the

variable

h=~t~ (20,43)
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Use of (20.43) in (20,38) gives

It follows successively from (20.44) that
.

$ 1 Minimum ~ + 1 ~
~~r [H ~h (x,)

Os(x ) s L
=+~-h- h- (X’) 1

1 Minimum
LT [; t +1

H 0<h<sin2$——

(20.44)

(20.45)

for o > sin-l(2/3 (20.46)

with equality in (20.45-46) possible onlY if

for @ s sin-’ ~/3”, and only if

—_

(x’)2=(y ’)2=~=+

for$ > sin
-’w ‘

(20.47)

(20.48)
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A rev

(20.45-46)

ew of the development (20.27) - (20.46) shows that the lower bound

is realized if, and only if, the following conditions are satisfied:

1. The ~ matrix is diagonal.

2. For O ~ sin-l~2/3 the masses mj are located on the ring

R in such a manner that (20.47) is satisfied.

3. For $ > sin-l~2/3 the masses m. are placed within the
J

cone such that (20.48) is satisfied (but not necessarily

on the ring R).

For the case (20.30), MH = N. Thus Inequality (20.45) shows that for
$ < sin-l~2/3 the ratio 02/(@ *)2 cannot be smaller than the value predicted—
by (20.33) and realizedby the constellation of Figure 20.4. Inequality (20.46)

indicates the limitations of (20.33). Specifically for $ > sin-l~2/3”,the

ratio 02/(ca*)2 can be smaller than that suggested by (20.33) but cannot be—
smaller than 9/N. Note that the constellation of Figure 20.4 with $ equal to

sin-l~2/3, among others realizes the bound (20.46).

In the case of unequal ranging errors, the lower bound (20.45), (20.46)

normally cannot be realized exactly, The bound (20.45) can be realized approxi-

mately for $ < sin— ‘1{2/3 by placing the beacon images m,,m2,...,mN around the

ring R so that conditions 1 and 2 are satisfied as nearly as possible. For
$ > sin-l~273, the bound (20.46) can be approximated by placing the beacon

images m,,m2,....mN around a ring with $ = sin-’fi)3 in such a manner that

condition 1 and (20.48) are satisfied as nearly as possible.

For the case (20.30), Figure 20.6 depicts a nomal ized graph of the mini-

mum value of GDOP versus $,-~mplied by (20.45-46). Note that GDOP achieves its

absolute minimum at O = sin i2/3. Note also that the curve decreases more

rapidly than the corresponding curve for a hyperbolic system,’ but attains the

same final value as predicted by Example 19.1.

1See Example 11.4 of Reference [9],
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According to the discussion of Section X, the curves of optimum GDOP

for non-ideal spherical systems 1ie between those shown in Figure 20.6.
END OF EXAMPLE

EXAMPLE20.~ (Satellite Position Determination)

As an example of l;heapplication of the results of Example20.2.,consider

the problem of determining the position of a satel1ite S in synchronous orbit

about the earth. Assume that N ground stations simultaneously take range fixes

to detemine the position of S.

The earth subtends a half angle of 8.7° viewed from S. Thus the N ground

stations are confined to a cone of half angle @ = 8.7°.

If the “clock error” u is zero, then according to (20.45), the mean-20
squared positional error u is bounded below by

~22+
[

4 t 1

H sin2(8,70) 1cos2(8,70),

= 22g.7 d
‘H

If U. is non-zero, then

(20.49)

the meaksquared error U2 again satisfies (20.49)

for the reasons given in Section X. Thus Uz satisfies (20.49) in any case.
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For the parameter values

N=3

and

=0‘1 2 = ‘3 = 30 ‘See

condition (20,49)shows that the rms positional error exceeds

[1229.7 + “2= 262 ft

ENO OF EXAMPLE

95

(20,50)

(20.51)

(20.52)



1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

REFERENCES

H.B, Lee, “Accuracy Limitations of Hyperbolic Multilaceration Systems,“
Technical Note 1973-11, Lincoln Laboratory, M.I.T. (22 March 1973).

N. Marchand, “Error Distributions of Best Estimate of Position from
Multiple Time Difference Hyperbolic Networks,“ IEEE Trans. Aerospace
Navigational Electron. ANE-11, 96-gOO (lg64).

D, L. Sn~~der,“~lavigationv!ithPigh-Pltitude Satellites: A Study of
Errors in Position Determination,“ Technical Note 1967-11, Lincoln
Laboratory, M.1.T. (6 February 1967), DDC AD-648828.

C.D. Sullivan, “Navigationwith High-Altitude Satellites: A Study of
the Effects of Satellite-User Geometry on Position Accurac ,“ Technical
Note 1967-18, Lincoln Laboratory, M.I.T. (24 February 1967~, DDC AO-
651863.

T,J, Goblick and D.L. Snyder, “Analysis of Position Fix Accuracy Using
tligh-AltitudeSatellites,” private communication.

G.W. Casserly and E.D. McConkey, “A Unified Approach to the Error Analysis
of Position Finding Techniques,” Univ. of Michigan; presented at the 14th
Symposium on Advanced Navigational Techniques of the Avionics Panel of
the Advisory Group for Aerospace Research and Development of NATO (AGARD),
Milan, Italy (September 1967).

I.G. Stiglitz, et fl. , “Concept Formulation Studies of the Surveillance
Aspects of the ~urth Generation Air Traffic Control System,” Project
Report ATC-7, Lincoln Laboratory, M.I.T. (21 September 1971).

D.C. Cooper, “StatisticalAnalysis of Position-Fixing;General Theory
for Systems with Gaussian Errors,” Proc. IEEE ~, 637-640 (1972).

E.J. Kelly, “The Use of Supplementary Receivers for Enhanced Positional
Accuracy in the OAB System,” Technical Note 1972-38, Lincoln Laboratory,
M.I.T. (4 Oecember 1972), DOC AO-756843.

F.N. David and J, Neyman, “Extension of the
Squares,” Statistics Research Mere.2, Dept.
(1938), 105-116.

Markoff Theorem on Least
of Statistics, London

.

96



APPENDIX I

PROOF OF IDENTITY (8.2)

Theorem:

.
If

k>L

~ = any k x L matrix of rank L

~ = any (k-l) x k matrix of rank (k-~)
for which H U = O—-

! = a k x k symmetric positive definite matrix

M = P-l——

Then

Proof:

Let ~ denote the k x k matrix

(A1.2)

Because of the way in which the final ~ rows of ~+ are constructed
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(Al.4)

Thus

~’ (H P H’)-’ ~t M U(U’ M U)-l U’ M--— (A1.5)—— ——— --

Rearrangement of (Al.5) gives
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Outline of Derivation:

For any placement

the matrix ~ of moments

APPENDIX II

DERIVATION OF EQUATION (12.3)

of the masses (o*)2/u12...(u*)2/uN2 on the unit sphere,

about the center of mass, the corresponding mtrix ~“

where

of moments about the origin, and the vector ~ pointing from the origin to th~

center of mass satisfy the identity

~=~-(mOtMH)~~’ (A2.1)

‘H9~mj
(A2.la)

j=l

The identity is a form of the “parallel axis theorem(’of elementary mechanics.

The relationship (12.3) is derived by averaging (A2.1) over al.

constellations that satisfy the following assumptions.

Assumptions

Al. The masses (o*)*/a,*...(o*)2/oN2 are confined to

a region Q on the surface of the unit sphere.

A2. The mass positions within ~ are uncorrelated

and are described by identical probability

density functions.

mass

The derivation is broken into three steps. First the tem ~ in (A2.1)

is averaged over all mass constellationsconsistent with assumptions Al and A2.

Next the quantity ~ ~’ is averaged over the same constellations. Finally the

average of ~ is detemined from the relationship
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where

E[~] = E[~] - (mO t

E denotes the expected

Step 1: Average of LO

MH) E[~ ~’]

value over the area 0.

(A2.2)

Let (X’, Y’, Z‘) denote a Cartesian coordinate system centered

at the origin. The expected value of ~ is as follows.

E[~] = E

100

(A2.3)

.

j , Y;, Z; denote coordinates of the mass (U*/0j)2measuredwhere X‘

from the origin. Since the probability density functions are

identical for all masses, Eq. (A2.3) can be rewritten as follows



.

x E

MHx E 1
x’ [x’

Y’

z’

x’

Y’

z

,, ;

[x’ Y’ z’:

(A2.4)

where X‘, Y’, Z’ denote the coordinates of a random point

w~thin o having the same probability density function as

the masses (o*/O1)2...(u*/ul)2.

—-

Step 2: Average of ~ ~’

The vector pointing

is given by

from the origin to the center of

7=— &

Thus the average va’

follows.

P

mass

——

E[~ ~’] = 1

(mO t MH)2

—-

ue of the product ~ ~ can be expressed as

E

[

x!

; (;)2 (;)2 j
k=l j z!

J

(A2.5)

(A2.6)
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It is convenient to break the right hand member of (A2,6)

into two terms ~ and T
w

—-
E[i i’] =~t~——

where

&= 1

(mO t MH)2

as follows

(A2.7)

~=
1

(MO t MH)2

The term ~ contains all

The term ~ contains all

(A2.9)

correlated products of mass coordinates.

uncorrelated products of mass coordinates.

The term ~ can be developed as follows

[[1 I
[x; Y; z;j

1 j ($4 , ;;L = (mO t M“)2 j=l

j

= (mO~MH)2 [$ $4]XEI[] ‘X’y’z’]l (A2.,0)
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with the last 1ine following from the hypothesis that the

masses (o*/ul)2...(u*/uN)* and the point P are described

by identical“probabilitydensity functions.

In a similar manner the term ~ can be

follows.
.

developed as

~=
1 $ ~ (;)2(+)2E

(m. t MH)2j=l k=l J
j#k

~ $ (;)2 (+)2
j=l k=l J

j#k

= 1

(m. t MH)Z

N
1 [12‘H -

(;)4
= (mO + MH)Z j=l “

where the notation “-” denotes expec’._

x

xI

d value.

(A2.11)
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Use of (A2.1O) and (A2.11) in (A2.7) gives

2

2 [1

Y’ [Xl y! ~1]
— —

E[~~], = ‘H T’
(m. t MH)

7’

Step 3: Average of L

[1
(x’ -Y’) [(x’ -r)(Y’-P)(z 7)])]

(Y’ - Y’)

(Z1 -~1) 1
(A2.12)

Substitution of (A2.4) and (A2.12) in (A2.2) gives

x’ [x’ Y’ z’]

Ill IE[~] = MH X E Y’

z’

2
‘H

-m

N

x (:)4- j=l .

mt XE
( O ‘H)

(xl _ y!)

(Y’ - Y’)

(z’ - z’)
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[(x’ - Y’)(Y’ -V’)(Z’ -z’)]

(A2.13)



,
.

N 4. s

+

.

x m

‘N
4k

--

N_
l



APPENDIX III

PROOF OF EQUATION (19.13)
.

The inverse of (19.11) is as follows

Ct)-’ = GU(5% y)-’~~ (A3.1)
t

The matrix factor H’ (H P+ + + i)-’ ~ can be evaluated using the result of
Appendix I as in Section VIII. ~pecifically, with the agreements

~t = EN -’ and ~j = [-1,1,1...1,0]
t - .—

(A3.2) ‘

Nt2

there follows

~~(!t..‘N ~;)-’ ~+ =
-t

[~ “-””y+~t(~;~t ~+)-’ ~il ~t[~ - U+(!4 Mt Ut)-’ !; M+] (A3.3)

Use of (A3.3) in (A3.1) shows that
.

(~t)-’ = ~;~+ ~+ (A3.4)

where

f+ = [j - Q+(U; Et ~+)-’ ~; yt] It (A3.5)
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Evaluation of ~+ shows that

(A3.6)

where ~ is as in Section VIII. Consequently, the matrix (1+)-1 is given by

([+

=K’MKt———

-[

0

=Lt O

0

D

0

0

0

0

EM—

0

~

(u*c)*/u:

00

00

0 (u*c)2/o;
—

o-

0

0 ((1*c)2/o; _

(A3.7)

where ~ is as in Section VIII

Q.E.D.
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