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Abstract—As unmanned aircraft systems (UASs) continue to 

integrate into the U.S. National Airspace System (NAS), there is a 

need to quantify the risk of airborne collisions between unmanned 

and manned aircraft to support regulation and standards 

development. Developing and certifying collision avoidance 

systems often rely on the extensive use of Monte Carlo collision 

risk analysis simulations using probabilistic models of aircraft 

flight. To train these models, high performance computing 

resources are required. We've prototyped a high performance 

computing workflow designed and deployed on the Lincoln 

Laboratory Supercomputing Center to process billions of 

observations of aircraft. However, the prototype has various 

computational and storage bottlenecks that limited rapid or more 

comprehensive analyses and models. In response, we’ve developed 

a novel workflow to take advantage of various job launch and task 

distribution technologies to improve performance. The workflow 

was benchmarked using two datasets of observations of aircraft, 

including a new dataset focused on the environment around 

aerodromes. Optimizing how the workflow was parallelized 

drastically reduced the execution time from weeks to days. 

Keywords—aerospace control, benchmark, open source, use 

case  

I. INTRODUCTION 

The continuing integration of unmanned aircraft system 
(UAS) operations into the National Airspace System (NAS) 
requires new or updated regulations, policies, and technologies 
to maintain safe and efficient use of the airspace. One such 
technology is detect and avoid (DAA), which enables unmanned 
aerial systems (UAS) to comply with operating rules and 
regulations for minimizing the risk of a midair collision (MAC) 
between aircraft. For operations under the jurisdiction of the 
Federal Aviation Administration (FAA), relevant rules of Title 
14 of the Code of Federal Regulations (14 CFR) include Parts 
Part 91, §.3, .111, .113(b), .115, .123 and .181(b).  

To satisfy these rules, DAA must meet a set of performance 
requirements which is often assessed using Monte Carlo safety 
simulations[1]. A foundational technology to these simulations 
are statistical encounter models of aircraft behavior based on 
observed aircraft behavior [2]. For many aviation safety studies, 
manned aircraft behavior is represented using the MIT Lincoln 
Laboratory (MIT LL) statistical encounter models. These 
models are dynamic Bayesian networks trained on observations 
from a variety of surveillance sources of manned aircraft.  
Training datasets often include hundreds of thousands of flight 
hours and necessitate the use of high performance computing 
(HPC) resources for data processing and model training[2]–[5].  

A. Motivation 

To assess the efficacy of a DAA system, Monte Carlo 
simulations needs to represent the operational environment 
where the DAA system is deployed. While various models have 
been developed for decades, many of these models were not 
designed to model manned aircraft behavior at low altitudes, 
where smaller UAS are likely to operate. In response, we 
previously developed new models for manned aircraft operating 
from 50 to 5,000 feet above ground level (AGL). and not 
receiving air traffic control services[3], [6], [7]. These models 
were designed to assess operations away from airport surfaces 
or outside of airport traffic patterns. The training data was 
sourced from the OpenSky Network[6], [8], a community 
network of ground-based sensors that observe aircraft equipped 
with Automatic Dependent Surveillance-Broadcast (ADS-B) 
out. ADS-B was initially developed and standardized to enable 
aircraft to leverage satellite signals for precise tracking and 
navigation[9]. However, these new models were not designed to 
model specific behaviors in the terminal airspace environment, 
such as when aircraft are taking off, landing, operating in the 
traffic pattern, or transiting through the airspace. Additionally 
while the model development workflow leveraged HPC 
resources[3], there were various computational and storage 
bottlenecks that hindered additional model development. 

B. Scope 

This work considered how aircraft, equipped with a 
transponder behaved within 8-10 nautical miles of an airport 
surface in controlled airspace, within the United States and 
flying between 50 and 3,000 feet AGL. The scope of this work 
was informed by the needs of RTCA SC-228, an aviation 
standards development organization.  
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C. Objectives and Contributions 

We focused on two objectives identified by the aviation 
community: (1) develop datasets of observed aircraft behavior 
and (2) efficiently processes these datasets to create training data 
for statistical models of manned aircraft behavior. In response, 
our primary contributions are the development of the required 
datasets and a novel workflow to enable efficient, scalable, and 
rapid processing of the data. The dataset contribution includes 
the development of a new dataset based on open source 
observations of aircraft operating in the terminal environment 
around aerodromes. These contributions and the output of the 
workflow are the inputs to the model training process, which is 
out of scope for this paper; please refer to other publications 
about model training[2], [4], [7]. An enabling technology for 
these improvements was the triples-mode job launch, a unique 
job launch mechanism developed at the Lincoln Laboratory 
Supercomputing Center (LLSC), which provides users with 
more flexibility to manage memory and threads[10].  

II. STORAGE AND COMPUTE ARCHITECTURE 

We first briefly overview the storage and compute 
infrastructure of the LLSC. The LLSC and its predecessors have 
been widely used to process aircraft tracks and support aviation 
research for more than a decade. 

A. Storage and Filesystem 

The LLSC HPC systems have two forms of storage: 
distributed and central. Distributed storage is comprised of the 
local storage on each of the compute nodes and this storage is 
typically used for running database applications. Central storage 
is implemented using the open-source Lustre parallel file system 
on a commercial storage array. Lustre provides high 
performance data access to all the compute nodes, while 
maintaining the appearance of a single filesystem to the user. 
The Lustre filesystem[11] is used in most of the largest 
supercomputers in the world. Specifically, the block size of 
Lustre is 1MB, thus any file created on the LLSC will take at 
least 1MB of space.  

B. Compute Infrastructure 

The processing described in this paper was conducted on the 

LLSC TX-Green HPC system. The system consists of a variety 

of hardware platforms, but we specifically developed, executed, 

and evaluated our software using Intel Xeon Phi 64-core nodes 

(xeon64c), each of which has 64 compute cores in a single 

processor socket laid out in a mesh configuration[12]. These 

nodes are allocated 3 GB for each job slot. This architecture has 

previously been benchmarked for a variety of notional use cases 

but not benchmarked specifically for an aviation use case.  

C. Triples-Mode Overview 

LLSC users can employ triples-mode, a unique job launch 

mechanism developed at LLSC which provide users with more 

flexibility to manage memory and threads[10]. It provides fast 

resource allocation and job execution by aggregating compute 

tasks to be executed on the same compute node as a single 

scheduling task in an array job. It implements explicit process 

placement and affinity control (EPPAC). When scheduling, the 

job is assigned exclusive use of each of requested compute 

nodes; this assigned is referred to as the LLSC exclusive mode. 

Jobs can be batched or self-scheduled.  

Compared to a traditional job launcher, triples-mode can 

improve performance due to increased flexibility to manage 

memory and threads. However, from an end-user perspective, 

triples-mode require more upfront job configuration and 

planning. Triples-mode is governed by three parameters: (1) 

number of requested compute nodes; (2) number of processes 

per node (NPPN); and (3) number of threads per process.  

At the time of the benchmarking experiment, LLSC end-

users were allocated a default of 4096 xeon64c cores, with each 

allocated 3 GB memory per slot. As of publication, the 

allocated default is now 8192 xeon64c cores. LLSC exclusive 

mode allocates cores by multiple the number of nodes by the 

slots per node. The slots per node are fixed to 64 for the 

xeon64c. Thus, due to exclusive mode allocation limits, the 

maximum number of requested compute nodes was 64 nodes. 

Also, the LLSC recommended NPPN to be 32 or less and a 

multiple of 8, due to xeon64c memory constraints. We fixed the 

number of threads per process, although this can be variable. 

The requested compute nodes and allocated compute cores 

may not be equivalent. Specific to our use case, due to the 

potential large files, we requested 2 slots per job for a total of 6 

GB per slot memory limit, which reduced our maximum 

potential compute cores to 2048.  Due to exclusive mode, we 

couldn’t request additional cores, as 2048 cores with 2 slots per 

core correspond to the maximum allocation of 4096 cores. 

D. Distribution Rules and Self-Scheduling 

Parallelization was implemented using pMatlab[13] for 

parallel array programming and LLMapReduce[14], which can 

allocate tasks to parallel processes via block or cyclic 

distribution. Previous research[3] used the LLSC default of 

block distribution which distributes equal sized blocks of 

consecutive tasks. For example, if there are two processes and 

four tasks, processes #1 would be allocated tasks 1-2 and 

processes #2 would be responsible for tasks 3-4. Cyclic 

distribution allocates tasks in round robin fashion, so in the 

example the first process would be allocate tasks 1 and 3, while 

the other process would have tasks 2 and 4.  

Tasks are allocated either all upfront as batch or 

dynamically allocated using a self-scheduling. Previous 

research[3] solely allocated tasks in batches and we observed 

significant load imbalances across compute processes. In 

response, we prototyped a simple self-scheduling approach 

with one managing process and many worker compute 

processes. First, the manager sequentially allocates initial tasks 

to all workers as fast as possible. The manager does not pause 

when sending the initial messages. Workers receive and 

complete the initial task and then reports back to the manager. 

The manager will receive the task completed messages, 

determine if additional tasks need to be allocated, and then will 

sequentially send tasks to idle workers. While idle, the workers 

wait 0.3 seconds prior between checking if another task was 

sent from the manager, and the manager waits 0.3 seconds prior 

to checking for more idle workers. The LLSC team 

recommended the 0.3 second duration. This repeats until all 

tasks are completed. The rate at which workers complete tasks 



and become idle will depend on task organization; if many 

workers are idle, workers may wait minutes prior to receiving 

their next task. For example, tasks can be randomly organized 

or by expected size of the task. Task organization specific to 

our use case is elaborated upon in Sections IV and V. 

III. WORKFLOW AND DATASETS 

This section overviews the HPC workflow, datasets used, 
and illustrates some example processed data. 

A. Processing Workflow 

The high level processing workflow has remained largely 

unchanged since our previous publication [3]. For the various 

improvements, please refer to the Git commit messages of the 

open source repository, Airspace-Encounter-Models/em-

processing-opensky, on GitHub.com. Processing steps 

consisted of (1) parsing and organizing the raw data; (2) 

archiving organized data; (3) processing and interpolating into 

track segments. 

We first identified unique aircraft by parsing and 

aggregating various national aircraft registries. All registries 

specified the registered aircraft’s type (e.g. rotorcraft, fixed 

wing single-engine, etc.); the registration expiration date; and 

an aircraft’s ICAO 24-bit addresses, global unique hex 

identifier of the transponder equipped on the aircraft. Using the 

registries, we created a four-tier hierarchical directory structure 

to organize the data. The top-level directory corresponds to the 

year, followed by aircraft type, then the number of seats; and 

the lowest level directory was based on the sorted ICAO 24-bit 

addresses. This hierarchy ensures that there are no more than 

1000 directories per level, as recommended by the LLSC, while 

organizing the data to easily enable comparative analysis 

between years or different types of aircraft. The hierarchy was 

also sufficiently deep and wide to support efficient parallel 

process I/O operations across the entire structure.  

This organization step can create many small files, which 

can lead to significantly large random I/O patterns for file 

access when hundreds or thousands of concurrent, parallel 

processes try to access the small files. This generates massive 

amounts of networks traffic and is undesirable in a cluster 

environment. To mitigate this, we create zip archives for each 

of the bottom directories. In a new parent directory, we 

replicated the first three tiers of the directory hierarchy from the 

previous step. Then instead of creating directories based on the 

ICAO 24-bit addresses, we archive each directory from the 

previous organization step.  

Once archived, the data is processed and interpolated into 

track segments. Processing includes removing track segments 

with less than ten observations; calculating the above ground 

level altitude; identifying airspace class; and estimating 

dynamic rates (e.g. vertical rate) were calculated. Once 

processed, track segments are ready to be used to train the 

statistical encounter models. 

B. Overview of Datasets Curated from the OpenSky Network 

We processed two datasets curated from the OpenSky 

Network using the described workflow. The first dataset is an 

extension of the dataset previously used[3] and a new dataset 

was developed based on location of aerodromes (i.e., airports). 

We will refer to the first as the Monday dataset and the second 

as the aerodrome dataset. The datasets differ in temporal and 

spatial scope, along with the frequency of observations.  

The OpenSky Network usually makes easily accessible the 

global, abstracted, raw state data from the most recent 10-15 

Mondays. Each day is organized into 24 files, each 

corresponding to one UTC hour. Observations are at least ten 

seconds apart and there is no guarantee on data availability. 

MIT LL has aggregated most of this data on the LLSC since 

2018. A shell script is used to download the data from a public 

OpenSky Network server. The first dataset consists of 104 

Mondays spanning from 2018-02-05 to 2020-11-16. Not all 

Mondays in this span were included. A previous Monday-based 

dataset consisted of 85 Mondays across 2018-2019[3]. The 

Monday-based dataset was originally developed to train models 

of aircraft not receiving air traffic control services[7].  

The second dataset was developed to solely support RTCA 

SC-228 and to train a model of aircraft operating in the terminal 

environment of aerodromes. RTCA SC-228 is developing 

performance requirements for DAA systems to enable UAS to 

operate in and out of aerodromes[15]. RTCA SC-228 defined 

the terminal environment as a cylinder with a radius of eight 

nautical miles (14,816 meters), a height of 3000 feet AGL (914 

meters), and centered over an aerodrome. Thus, unlike the first 

dataset, this aerodrome dataset had specific spatial 

requirements. To develop this dataset, specific queries to the 

OpenSky Network Cloudera Impala database were required. 

The OpenSky Network offers a historical database using 

Cloudera Impala and requiring terabytes of storage. Impala is a 

distributed query engine and does not index structures for query 

optimization. To improve query efficiency, the data is 

partitioned in hour-batches by the hour-field of the aircraft 

observations. Queries can be formulated based on mean sea 

level (MSL) altitude, time, latitude, longitude, and the ICAO 

24-bit address. The raw observations are only in MSL altitude 

and the OpenSky Network does not estimate the AGL altitude 

for any observations. However, unlike the Monday state data, 

observations can be one second, instead of ten seconds, apart. 

In response, we developed and publicly released software[16] 

to generate queries based on AGL altitude, location of 

aerodromes, airspace class, and time zones.  

The software[16] generates and organizes queries into 

three-dimensional bounding boxes. This was the most efficient 

approach because the OpenSky Network Impala Shell did not 

support geometric types or functions, such as implemented in 

PostgreSQL. We could not create queries based on the 

intersection of polygons and points.  

Accordingly, to generate the bounding boxes, the software 

first identifies all relevant aerodromes and generates a circle 

with a fixed radius around all aerodromes. Given the RTCA 

SC-228 scope, we set the radius to eight nautical miles. Next, 

the circles are combined to create a set of polygons; polygons 

may overlap and may not be convex. Then bounding boxes are 

created for each polygon and these boxes are union to create a 

set of discrete, nonoverlapping, rectilinear polygons, as 

illustrated by Fig 1. 



Next, these rectilinear polygons are iteratively joined to 

create simple, nonoverlapping rectangular bounding boxes. For 

large rectangles, they are iteratively divided into smaller boxes. 

Each smaller discrete bounding box is then assessed if it is 

within a desired airspace or distance from aerodrome; bounding 

boxes that fail these conditions are removed. With bounding 

boxes established, the NOAA GLOBE[17] digital elevation 

model is used to estimate the minimum and maximum elevation 

for each bounding box. The elevation data is used to calculate 

the MSL range of a query, given a desired AGL altitude range. 

By default, the desired AGL range is 5,100 feet AGL with a 

hard ceiling of 12,500 feet AGL. Lastly, the meridian-based 

time zone is identified for each bounding box and a set of 

queries are generated based on the bounding box, MSL altitude, 

and local time. Each query is assigned a group to facilitate load 

balancing and storage optimization. Fig 2 illustrates the final 

bounding boxes for the northeastern United States.  

Using this software, we generated 136,884 queries for 196 

days across 695 bounding boxes across Class B, C, and D 

airspace across the United States. Temporally, we queried for 

the first 14 days of each month from January 2019 through 

February 2020. This time window was largely unaffected by the 

COVID-19 pandemic, as the Schengen Area travel ban didn’t 

take effect until March 2020[18]. These queries were then 

executed using a shell script on the MIT Supercloud[10]. 

Queries were executed in serial across 3-5 CPUs, with a file 

created for each query. They were recorded in a .txt format and 

then formatted into .csv. The .csv files were then transferred 

from MIT SuperCloud to LLSC TX-Green using rsync via a 

special high bandwidth link. The data was not compressed or 

archived prior to transferring, with transferring requiring about 

5-6 hours. We notionally saw speeds of at least 33 MB/S based 

on rsync -p output. Benchmarking rsync was out of scope. 

C. Comparson of Datasets 

The datasets differed in spatial and temporal scope, 
frequency of updates, and storage. Dataset #1, “Mondays,” had 

a global scope with at least 10 seconds between observations, no 
altitude filtering, and stored across 2425 files organized by day 
and hour, requiring 714 Gigabytes of storage. Dataset #2, 
“Aerodromes,” was limited to specific regions near USA 
aerodromes, with observations at least 1 second apart; the 
altitude observations were filtered on observed MSL and 
estimated AGL altitudes, and stored across 136,884 files, 
organized by day and bounding box, requiring 847 Gigabytes of 
storage. Fig 3. illustrates that the distribution of file sizes also 
differed between the datasets. Dataset #1 had fewer but larger 
files; the Gaussian shape was indicative of diurnal pattern due to 
data organized by hour. Conversely, the sloping distribution of 
Dataset #2 was indicative that aircraft activity or surveillance 
coverage is not uniformly distributed across locations; while 
also introducing load balancing challenges of many small files. 

 

Fig. 3 Distribution of file sizes for each dataset. The bin width is 10 MB.  

 

Fig. 2 Example bounding boxes of queries.  

 

Fig 1. Rectilinear polygons as part of the query generation process.  



IV. PARALLELIZATION AND BENCHMARK RESULTS 

Given the established workflow and datasets, this section 
discusses parallel job optimization, and benchmark results.  

A. Dataset Organization 

The first benchmarking experiment was parsing and 

organizing dataset #1. Job tasks were created for each of the 

2425 files. Tasks were allocated via self-scheduling, with one 

task allocated at a time to workers, and tasks were organized 

either chronologically or be size. Chronological organization 

had the earliest date as the first task and the most recent date as 

the last task. Size organization had the largest file first and the 

smallest file last. In addition to varying task organization, we 

also varied the number of requested compute nodes and NPPN. 

Discussion focuses on dataset #1 but we observed similar 

benchmarking trends with dataset #2. 

TABLES 1 and 2 report the total job time to complete all 

tasks, as measured by the manager. Foremost, organizing tasks 

by size always outperformed chronological task organization. 

When holding the requested compute nodes constant, 

minimizing NPPN also improved performance. However due 

to constraints imposed by LLSC exclusive mode, we were only 

able to request 512 compute nodes when NPPN = 8.  

TABLE I.  JOB TIME (SECONDS) TO ORGANIZE DATASET #1 WITH 

CHRONOLOGICAL ORGANIZATION AND SELF-SCHEDULING 

 Allocated Compute Cores 

NPPN 2048 1024 512 256 

32 5640 5944 7493 11944 

16 - 5963 7157 11860 

8 - - 6989 11860 

TABLE II.  JOB TIME (SECONDS) TO ORGANIZE DATASET #1 WITH 

LARGEST FIRST ORGANIZATION AND SELF-SCHEDULING 

 Allocated Compute Cores 

NPPN 2048 1024 512 256 

32 5456 5704 6608 11015 

16 - 5568 6330 10428 

8 - - 6171 10428 

 

 Fig 4. illustrates that requesting more compute cores 

does not necessarily improve performance and that optimizing 

NPPN and task organization are important. Notably, 1024 

compute nodes with file size organization and NPPN=16 

outperformed 2048 compute nodes with chronological 

organization and NPPN=32. Optimizing NPPN and task 

organization enabled a 50% reduction in compute nodes while 

maintaining the same level of performance. These results also 

illustrate that performance gains due to job optimization are 

more pronounced when requesting less compute nodes. 

 Fig. 5-6 report the execution time for each worker, 

rather than the total job time and when self-scheduling with one 

manager and 255 workers. They also illustrate that reducing 

NPPN shifts the distribution to faster times, rather than 

changing the distribution’s shape. Comparing the two figures, 

organizing tasks by size reduced the variance of the worker time 

distribution and minimized the time span between the slowest 

and fastest workers. In comparisons to the batch task allocation 

with block distributions of the previous research[3], self-

scheduling and triples-mode led to better load balancing and the 

median worker time decreasing by 14%. The same conclusions 

are applicable for other triple-modes configurations.  

 Furthermore, the manager can send multiple tasks per 

message to workers. We briefly investigated if increasing the 

tasks per message improved performance. We experimented 

with organizing dataset #1 using one triples-mode 

configuration (Nodes = 64, NPPN = 8. Threads = 1) and a cyclic 

 

Fig 4. Job time for parsing and organizing dataset #1.  
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Fig. 5 Distribution of time spent by workers organizing dataset #1 with 

chronological organization and self-scheduling. 

 

Fig. 6 Distribution of time spent by workers organizing dataset #1 with largest 

first organization and self-scheduling. 



task distribution. The following figure illustrates the results of 

a performance decrease as tasks per message increase. Since 

performance degraded, we did not investigate further in this 

study and identify this as potential future work. 

B. Archiving Organized Data 

After the datasets are parsed and organized, they are 

archived for efficient HPC storage. We previously parallelized 

this process using a block distribution that resulted in poor 

load balancing[3]. For the predecessor to dataset #1, 2% of 

parallel processed account for more than 95% of the total job 

time, with archiving requiring days to complete. For this 

effort, we switched to a cyclic distribution which reduced the 

total job time by more than 90%, enabling archiving to be 

completed in hours. Since LLMapReduce sorts tasks based on 

filename, our hierarchical directory structure resulted in tasks 

effectively sorted by specific aircraft. Tasks associated with 

aircraft with many observations were sequentially ordered. 

With block distribution, a worker could be allocated many 

large tasks for a well observed aircraft while another worker 

could be allocated all small tasks for aircraft with limited data. 

By switching to cyclic distribution, this significantly improved 

load balancing and performance. We observed a similar speed 

for both datasets, with no notable differences between them.   

C. Processing and Interpolating into Track Segments 

Benchmarking the organization and archiving steps 

consistently indicated that using triples-mode, reducing NPPN 

and self-scheduling distribution produced better performance. 

Based on this, we did not iterate over triples-mode parameters. 

Instead, we benchmarked performance using only 64 

requested nodes, NPPN of 16, and a single thread. For self-

scheduling, we experiment with randomly organizing tasks 

instead of by size. Chronological organization wasn’t an 

option because tasks represented specific aircraft rather than 

spatial or temporal information. 

For dataset #2, the median worker time was 13.1 hours, 

99.1% of workers finished within 18 hours, 99.7% of workers 

finished in 24 hours, and all workers completed in 29.6 hours. 

There was a 17.3 hours difference between the fastest and 

slowest workers and 16.5 hours between the slowest worker 

and median. A similar trend was observed for processing 

dataset #1. However, batch job distribution without self-

scheduling or triples-mode required more than 7 days to 

complete. While load balancing with self-scheduling can be 

improved, the change to self-scheduling and triples-mode 

fundamentally improved performance to enable more rapid 

analyses and exploiting of the data. 

V. FOLLOW-UP BENCHMARK RESULTS 

Based on the benchmarked performance for processing 

the OpenSky Network-based datasets, a different dataset of 

aircraft observations was processed to evaluate if lessons 

learned can be applied across different sources of aviation 

data. This later benchmarking also benefited from an upgrade 

to the LLSC that allocated 8192 xeon64c cores to each end-

user. Triples mode was configured for 128 nodes, NPPN = 8, 

two threads, a single 3 GB memory slot for each worker. This 

configuration was based on the lesson learned of minimizing 

NPPN but an additional thread was employed based on 

feedback from the LLSC team. 

Observations of manned aircraft were sourced from raw 

secondary radar reports from terminal radars (ASR-9) that are 

part of the TCAS RA Monitoring System (TRAMS) over the 

period January through September 2015. Unlike the OpenSky 

Network data, these terminal area radar observations are not 

freely or easily accessible. Specifically, this included the radar 

located at MIT LL and radars associated with the following 

airports: KATL, KDEN, KDFW, KFLL, KHPN, KJFK, 

KLAS, KLAX, KOAK, KORD, KPDX, KPHL, KSDF, 

KSEA, KSTL. The specific radar identifiers were ATL, DEN, 

DFW, FLL, HPN, JFK, LAS, LAX, LAXN, MOD, OAK, 

ORDA, PDX, PHL, PHX, SDF, SEA, STL. The quantity and 

temporal scope varied across radars. For example, KDFW had 

data from January through August while KOAK only from 

June through August. These radar reports provide latitude, 

longitude and barometric altitude for transponder-equipped 

aircraft within the radar’s surveillance volume. However, this 

dataset does not include an aircraft’s ICAO 24-bit address; 

 

Fig. 8 Distribution of time spent by workers processing the archived datasets 

with random organization and self-scheduling.  

 

Fig 7. Job time for parsing and organizing dataset #1.  
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rather the specific ICAO 24-bit address was deidentified and 

replaced with 13,190,700 generic identifiers. The directory 

hierarchy remained four tiered but structured based on year, 

radar location (instead of aircraft type), month range (instead 

of number of seats), and unique id (instead of ICAO 24-bit 

address). Additionally, given the scope, an altitude ceiling of 

10,000 feet MSL was enforced during data organization.   

The lack of ICAO 24-bit address information resulted in 

significantly more tasks due to organization based on unique 

id. Suppose a fixed-wing multi-engine flew a round trip (2 

flights) between KATL to KDFW. In the OpenSky Network-

based dataset, all observations of the 2 flights would be 

organized in a single task associated with that specific aircraft. 

However, in this terminal radar-based dataset, the arrival and 

departure from each airport would be assigned different ids 

resulting in four tasks. Tasks were randomly ordered and 

allocated to workers via self-scheduling. Due to the increased 

quantity of tasks and based on heuristic testing, workers were 

allocated 300 tasks per self-scheduling message. Thus, there 

was 43,969 total messages allocated to workers. 

Each task consisted of querying a SQL database to 

organize the data and then processing and interpolating the 

data into track segments.  This was analogous to steps 1 and 3 

from the described workflow (Section III.A). New software 

was developed for the database queries but the same software 

from em-processing-opensky was used to generate track 

segments. 

This HPC configuration did not have any significant load 

balancing issues, unlike when previously processing the 

OpenSky Network-based datasets. The median worker time 

was 24.34 hours (87,633 seconds) and the span was only 1.12 

hours (4057 seconds). The empirical CDF distribution of 

worker time is provided as Fig. 9. Neither the performance 

degradation with multiple tasks per self-scheduling message 

or a significant time span between workers.  

 

This relative performance improvement was primarily 

attributed to the spatial and temporal scope for each task. 

Since each task was limited to continuous observations of a 

given aircraft surveilled by one sensor, the computational 

overhead for each task was relatively smaller than the 

OpenSky Network-based dataset. Specifically, when 

calculating the AGL altitude, the amount of DEM data 

required was constrained by the surveillance range of the 

radar. Compared to the OpenSky-based tracks that could span 

hundreds of nautical miles and multiple USA states, 

potentially requiring significantly more DEM data to be 

loaded into memory and manipulated. Also, since there are no 

temporal constraints, the span of observations for each unique 

id is also more constraint. The frequency in which a specific 

aircraft operates in a region is less impactful.  

More importantly, this benchmark indicates that 

processing observations of aircraft using a triples-mode 

configuration with self-scheduling task allocation can be 

achieved in reasonable timeframe with good load balancing. 

These results also indicate that the described workflow is 

appropriate for different sources of aircraft data. Future work 

for the OpenSky Network-based datasets should focus on 

improving task generation by leveraging spatial and temporal 

information.  

VI. CONCLUSION 

We substantially improved the performance of a novel 

workflow to organize, archive, and process observed aircraft 

tracks. Parallelization optimizations of self-scheduling and 

triples-mode operation has drastically reduced the execution 

time from weeks to days. The performance improvements 

enabled more resources to be focused on downstream efforts. 

Additional benchmarking is possible future work, as we did not 

vary the number of threads for the presented research.  

While triples-mode is a unique LLSC capability, the 

lessons learned about organizing and distribution parallel tasks 

for aircraft track processing are generally applicable. 

Additionally the time required to fully process the various 

datasets is also generally applicable. The paper demonstrates 

that without HPC resources, exeucting the end-to-end 

workflow on a few cores would require potential thousands of 

days and would be impracticable. Lastly, many of the 

capabilities described in this paper have been, or are in the 

process of being, transitioned as open source software under 

permissive open source licenses. On GitHub.com, please refer 

to the MIT Lincoln Laboratory (@mit-ll) and Airspace 

Encounter Models (@Airspace-Encounter-Models) 

organizations. 

ACKNOWLEDGMENT 

This research supported the FAA UAS research task: 
A11L.UAS.2. We greatly appreciate the support and assistance 
provided by Sabrina Saunders-Hodge, Deepak Chauhan, and 
Alex Fu from the Federal Aviation Administration. We also 
would like to thank fellow colleagues Dr. Rodney Cole and Wes 
Olson. The authors acknowledge the MIT SuperCloud and 
Lincoln Laboratory Supercomputing Center for providing HPC 
and consultation resources that have contributed to the research 
results reported within this paper. 

REFERENCES 

[1] A. Zeitlin, A. Lacher, J. Kuchar, and A. Drumm, 

“Collision Avoidance for Unmanned Aircraft: Proving 

the Safety Case,” The MITRE Corporation and 

Massachusetts Institute of Technology, Lincoln 

Laboratory, MP-060219, Oct. 2006. Accessed: Jan. 16, 

 

Fig 9. Worker time for organizing and processing radar observations.  

0

0.25

0.5

0.75

1

23.5 24.0 24.5 25.0

C
D

F

Worker Time (hours)



2019. [Online]. Available: 

https://apps.dtic.mil/docs/citations/ADA474336 

[2] M. J. Kochenderfer, M. W. M. Edwards, L. P. Espindle, 

J. K. Kuchar, and J. D. Griffith, “Airspace Encounter 

Models for Estimating Collision Risk,” J. Guid. Control 

Dyn., vol. 33, no. 2, pp. 487–499, Apr. 2010, doi: 

10.2514/1.44867. 

[3] A. Weinert, N. Underhill, B. Gill, and A. Wicks, 

“Processing of Crowdsourced Observations of Aircraft in 

a High Performance Computing Environment,” in 2020 

IEEE High Performance Extreme Computing Conference 

(HPEC), Sep. 2020, pp. 1–6. doi: 

10.1109/HPEC43674.2020.9286229. 

[4] A. J. Weinert, E. P. Harkleroad, J. D. Griffith, M. W. 

Edwards, and M. J. Kochenderfer, “Uncorrelated 

Encounter Model of the National Airspace System 

Version 2.0,” Massachusetts Institute of Technology, 

Lincoln Laboratory, Lexington, MA, Project Report 

ATC-404, Aug. 2013. [Online]. Available: 

https://apps.dtic.mil/docs/citations/ADA589697 

[5] N. K. Underhill, E. P. Harkleroad, R. E. Guendel, A. J. 

Weinert, D. E. Maki, and M. W. M. Edwards, “Correlated 

Encounter Model for Cooperative Aircraft in the National 

Airspace System; Version 2.0,” Massachusetts Institute 

of Technology, Lincoln Laboratory, Lexington, MA, 

Project Report ATC-440, May 2018. Accessed: Jan. 16, 

2019. [Online]. Available: 

https://apps.dtic.mil/docs/citations/AD1051496 

[6] A. Weinert, N. Underhill, and A. Wicks, “Developing a 

Low Altitude Manned Encounter Model Using ADS-B 

Observations,” in 2019 IEEE Aerospace Conference, Big 

Sky, MT, Mar. 2019, pp. 1–8. doi: 

10.1109/AERO.2019.8741848. 

[7] N. Underhill and A. Weinert, “Applicability and 

Surrogacy of Uncorrelated Airspace Encounter Models at 

Low Altitudes,” J. Air Transp., pp. 1–5, May 2021, doi: 

10.2514/1.D0254. 

[8] M. Schäfer, M. Strohmeier, V. Lenders, I. Martinovic, 

and M. Wilhelm, “Bringing up OpenSky: A large-scale 

ADS-B sensor network for research,” in IPSN-14 

Proceedings of the 13th International Symposium on 

Information Processing in Sensor Networks, Apr. 2014, 

pp. 83–94. doi: 10.1109/IPSN.2014.6846743. 

[9] G. Donohue, “Vision on aviation surveillance systems,” 

in Proceedings International Radar Conference, May 

1995, pp. 1–4. doi: 10.1109/RADAR.1995.522508. 

[10] A. Reuther et al., “Interactive Supercomputing on 40,000 

Cores for Machine Learning and Data Analysis,” in 2018 

IEEE High Performance extreme Computing Conference 

(HPEC), Waltham, MA, USA, Sep. 2018, pp. 1–6. doi: 

10.1109/HPEC.2018.8547629. 

[11] J. Kepner et al., “Lustre, hadoop, accumulo,” in 2015 

IEEE High Performance Extreme Computing Conference 

(HPEC), Sep. 2015, pp. 1–5. doi: 

10.1109/HPEC.2015.7322476. 

[12] C. Byun et al., “Benchmarking data analysis and machine 

learning applications on the Intel KNL many-core 

processor,” in 2017 IEEE High Performance Extreme 

Computing Conference (HPEC), Sep. 2017, pp. 1–6. doi: 

10.1109/HPEC.2017.8091067. 

[13] J. Kepner, Parallel MATLAB for Multicore and 

Multinode Computers. Society for Industrial and Applied 

Mathematics, 2009. doi: 10.1137/1.9780898718126. 

[14] C. Byun et al., “LLMapReduce: Multi-level map-reduce 

for high performance data analysis,” in 2016 IEEE High 

Performance Extreme Computing Conference (HPEC), 

Sep. 2016, pp. 1–8. doi: 10.1109/HPEC.2016.7761618. 

[15] “Terms of Reference RTCA Special Committee 228: 

Minimum Performance Standards for Unmanned Aircraft 

Systems (Rev 10),” RTCA, RTCA Paper 163-20/PMC-

2034, Jun. 2020. 

[16] Andrew Weinert, Marc Brittain, Christine Serres, and 

Ngaire Underhill, mit-ll/em-download-opensky: Initial 

release. Zenodo, 2020. doi: 10.5281/zenodo.4329768. 

[17] D. A. (David A. ) Hastings and P. K. Dunbar, “Global 

Land One Kilometer Base Elevation (GLOBE) Digital 

Elevation Model, Documentation, Volume 1.0. Key,” 

National Oceanic and Atmospheric Administration, 325 

Broadway, Boulder, Colorado 80303, U.S.A, 

Professional Paper NGDC Key to Geophysical Records 

Documentation No. 34, May 1999. [Online]. Available: 

https://repository.library.noaa.gov/view/noaa/13424 

[18] K. Dube, G. Nhamo, and D. Chikodzi, “COVID-19 

pandemic and prospects for recovery of the global 

aviation industry,” J. Air Transp. Manag., vol. 92, p. 

102022, May 2021, doi: 

10.1016/j.jairtraman.2021.102022. 
 


