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ABSTRACT 

Privacy-preserving contact tracing mobile applications, such as those that use the Google-Apple 
Exposure Notification (GAEN) service, have the potential to limit the spread of COVID-19 in communities; 
however, the privacy-preserving aspects of the protocol make it difficult to assess the performance of the 
Bluetooth proximity detector in real-world populations. The GAEN service configuration of weights and 
thresholds enables hundreds of thousands of potential configurations, and it is not well known how the 
detector performance of candidate GAEN configurations maps to the actual “too close for too long” 
standard used by public health contact tracing staff. To address this gap, we exercised a GAEN app on 
Android phones at a range of distances, orientations, and placement configurations (e.g., shirt pocket, bag, 
in hand), using RF-analogous robotic substitutes for human participants. We recorded exposure data from 
the app and from the lower-level Android service, along with the phones’ actual distances and durations of 
exposure. Data from this collection have been shared with the Exposure Notification community of research 
and practice, and have been incorporated into EN-related models and public health EN deployment 
decisions. 
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1. BACKGROUND

Automated digital contact tracing was proposed early in 2020 as a practical way to augment the efforts 
of traditional contact tracing teams and slow the spread of the SARS-CoV-2 virus. The PACT, or Private 
Automated Contact Tracing, protocol used cryptographic protection measures to enable two devices such 
as smartphones to communicate securely and privately when nearby, and to share information about a 
COVID-positive test with public health and with those who were nearby during the infectious window, 
without divulging the identity of the infected person [1]. 

In May 2020, the first version of the Google Apple Exposure Notification (GAEN, or EN) service 
was released [2]. Exposure Notification was designed to help an individual become aware of recent “close 
contact” events they may have experienced, by listening for specialized Bluetooth messages and using the 
signal strength of those messages to estimate the duration and proximity of the encounters. The GAEN risk 
scoring algorithm uses a scheme of weights and thresholds to assign an exposure risk value to each 
exposure, and sums the score of each exposure to arrive at a daily cumulative score. If the total score 
exceeds a specified threshold, the user of the EN service sees an alert on their smartphone, advising them 
of the risky exposure and recommending next steps (e.g. testing and self-quarantine), alongside contact 
information for the local public health authority [3]. 

The selection of appropriate weights and thresholds for EN is a key determinant of the sensitivity 
(percentage of correct detections of risky encounters) and specificity (avoidance of incorrect detections) of 
the Bluetooth-based proximity detector, when a given standard is defined. The U.S. Centers for Disease 
Control and Prevention (CDC) had set the definition of a “close contact” for contact tracing activities as 
“15 or more minutes at six or fewer feet” [4]. However, Bluetooth is not terribly accurate at estimating 
distance between a pair of devices, so some “fuzziness” in the estimate was deemed tolerable in order to 
make use of the ubiquity of Bluetooth-equipped smartphones. Tuning the risk scoring configuration to 
achieve a desired level of sensitivity, while understanding the tradeoff in specificity, was an early and 
recurring concern of public health teams who wished to use EN in their communities. 
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2. RELATED WORK

Quantifying the performance of the Bluetooth detector required data. In May 2020, MIT Lincoln 
Laboratory performed preliminary measurements for a DARPA-funded PACT effort, during strict 
lockdown conditions, in staff members’ homes. In these tests, staff and family members exercised the 
Bluetooth radios with a custom app, as EN was not yet available. The app collected signal strength 
measurements with iPhones in a variety of placements (in pockets, in bags, in hands) and at varying 
rotations away from line-of-sight orientations. The dataset was published on GitHub with other PACT-
related datasets [5], and confirmed initial hypotheses that phone placement and orientation could have a 
significant effect on the perceived signal strength of the Bluetooth messages  [6].  

Apple and Google were aware that hardware diversity and power budget considerations would result 
in unequal transmission power selections for different smartphone devices. Therefore, when they released 
the first version of the EN service, it included a calibration offset value and a transmit power value for each 
model of phone. For some models, the values were derived from a single-orientation measurement 
campaign; others were extrapolated based on hardware similarity [7]. More extensive follow-on calibration 
campaigns were conducted by phone vendors, and the calibration values were updated on users’ phones 
through updates to the EN service throughout 2020, although many models of Android phones still are 
listed with the lowest level of “calibration confidence” in early 2022. 

Due to the well-documented variations in perceived attenuation, early adopters of the EN service 
sought early measurement and analysis of how the implemented system might be performing, and how well 
it matched the sensitivity and specificity needs of public health. Early experiments in Europe included a 
data collection performed with volunteers on public transit buses [8] and in a large office building [9].  

Taking end-to-end measurements of whether EN alerts are triggered in close proximity/over long 
durations, or not triggered outside of close proximity/over short durations, provides a very limited 
assessment capability. It requires a specific set of weights and thresholds to be preselected and programmed 
into the EN application, and only provides information about the performance of that specific configuration. 
That might still have been adequate to assess the performance of EN for a handful of test configurations, 
but two factors compelled us to focus less on the weights and thresholds, and more on collecting as much 
low level BLE message data as possible: 

1. The first version of the GAEN risk scoring algorithm [10] permitted an astronomical number of
arithmetically valid configurations, and even a coarse-grained reduction to “sensible”
configurations suggested at least 12,500 candidate configurations.

2. Google and Apple announced in July 2020 that the original risk scoring algorithm was being
replaced with a new version (“ExposureWindow” mode), and although the original scoring was
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still available, public health partners were strongly encouraged to move to the new risk scoring 
and configuration model [11]. 

The new scheme for configuring EN still relied on a simplified “bucketing” of attenuation 
measurements and duration, which produced an estimate of weighted “minutes at attenuation”. However, 
the new scheme was different enough that exposures assessed under the old risk scoring algorithm would 
not necessarily result in the same number of notifications as if they were assessed under the new algorithm. 

For these reasons, MIT LL was tasked with conducting a new data collection campaign using the 
CDC’s “Guardian” reference application, and recording the individual RSSI measurements, so that the same 
exposure events could be re-processed with different configurations, even if the risk scoring algorithm were 
to be updated again. Additionally, the testing would be conducted onsite at the Autonomous System 
Development Facility, rather than in homes, and mannequins would be used in place of human participants, 
both to protect staff from possibly infecting each other and to eliminate individual body variation as one of 
the test variables. Finally, the tests would include longer indoor distances than were obtainable in homes 
and apartments. 
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3. EXPERIMENTAL DESIGN

Our objective was to collect a high-quality dataset of actual EN messages, transmitted by the then-
current implementation of the EN Service, under more representative usage (i.e., not tabletop or anechoic 
chamber measurements), and using well-defined and reproducible physical configurations. We aimed to 
control for phone distance, placement or “carriage”, orientation, and body absorption, and hardware 
variation, and EN “calibration confidence”. To do this, we selected a single model of Android phones listed 
as having the highest of three calibration confidence levels. We were able to obtain a developer credential 
from Google that made low-level debugging information about Exposure Notification messages available 
for inspection and exfiltration. Because Apple did not provide developer entitlements that would allow us 
to record individual EN message signal strengths, this type of data was not available to us from iPhones. 

The CDC’s Informatics Innovation Unit had developed a basic EN app from the Google-provided 
reference implementation, and granted us access to both the source code of their “Guardian” app and a 
prototype key server so that we could confirm our test setup was working correctly.1 Our software testbed, 
shown in Figure 1, included an adapted prototype EN app, the CDC-hosted prototype key and verification 
servers, and a Java program wrapper of the open source risk scoring algorithm, which enabled us to re-run 
the algorithm on the collected data to better understand idiosyncrasies and the effects of different EN 
configurations. Due to the privacy-preserving design of EN, and the implementation decisions made by 
Google, it was necessary for us to perform a key exchange and matching attempt in order to decrypt, record, 
and validate the logged Bluetooth information. Although the implementation required us to select 
configuration weights and thresholds, we were concerned only with recording the RSSI signal strength and 
timestamps of the received messages, as these could be used to “replay” an exposure mathematically with 
any configuration, and predict whether a notification would be triggered. Likewise, we kept the 
infectiousness stored in the diagnosis key’s metadata constant in all tests. 

1 In fact, our pre-test validation phase revealed a bug in the Guardian app’s risk scoring implementation. 



6 

Figure 1: Software test infrastructure "family tree" of related code. 

Figure 2. Autonomous Systems Development Facility (ASDF) floor plan. 
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Our test environment was the East Hangar section of the Autonomous Systems Development Facility, 
which enjoys a 400,000 ft3 space augmented with a real-time motion capture system (Figure 2) [12]. The 
robotic mannequins used for testing had been coated in a foam skin that approximated radio frequency (RF) 
absorption similar to that of an adult human, as measured in the MIT LL anechoic chamber earlier in the 
pandemic. The mannequins were mounted on robotic platforms and augmented with motion-capture targets 
on their heads, as well as on the phones’ carriage locations. The motion capture system recorded the position 
and orientation of each “person” and phone during testing. 

Figure 3: Data collection hardware, software, and infrastructure in the ASDF. 

 Our test environment was the East Hangar section of the Autonomous Systems Development 
Facility, which enjoys a 400,000 ft3 space augmented with a real-time motion capture system (Figure 2) . 
The robotic mannequins used for testing had been coated in a foam skin that approximated radio frequency 
(RF) absorption similar to that of an adult human, as measured in the MIT LL anechoic chamber earlier in 
the pandemic. The mannequins were mounted on robotic platforms and augmented with motion-capture 
targets on their heads, as well as on the phones’ carriage locations. The motion capture system recorded the 
position and orientation of each “person” and phone during testing. 

Figure 4 shows how the mannequins were used to collect data at preplanned distances and 
orientations. The phones were placed in the front shirt pocket, the front pants pocket, or a bag worn by the 
mannequin. Test durations ranged from 5-25 minutes and distances ranged from 0.5-60.0 feet. The 
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mannequin and phone orientations were selected for zero-body-blocking, one-body-blocking, and two-
body-blocking tests, as shown in Figure 4.  

Figure 4: Physical configurations used in testing. 

In order to create statistically relevant data, it was important to maximize the number of tests 
performed with unique combinations of physical configurations. The testing scenarios laid out 92 individual 
tests with 2 or 3 phones/mannequins per test. This enabled the team to generate 196 individual results and 
compile them into a database for analysis.      

TABLE 1: 

 Summary of Physical Configurations Under Test 

Number of 
phones 

Number of 
Tests 

Carriage Test Duration 

Scenario 

Large Room 3 12 Shirt Pockets, 
Pants Pockets, 

Bags 

15 min 

Large Room 2 40 5-25 min

Small Room 2 40 15 min 

Totals 
196 

unique samples 
92 ~1380 min 
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4. DATA COLLECTION PROCEDURE

Prior to each exposure trial, the phones’ records of previous exposures were erased from the Exposure 
Notification service and from the app. Each phone was placed in position in a mannequin’s hand, pocket, 
or bag. The beginning of each exposure period was recorded from the phones’ system clocks. During the 
exposure period, the mannequins moved through the test space as scripted for each distance and duration 
under test. The overall amount of motion was roughly intended to correspond to reality; because the EN 
sampling rate is on the order of 2–5 minutes, however, it was not necessary to have the phones in near-
constant motion. 

At the end of each exposure period, we deactivated EN on each phone in the same order in which it 
was activated. We then shared the Temporary Exposure Key from the sick phone with each of the exposed 
phones, and recorded whether the phone showed an alert to the user. We saved a copy of the Android system 
logs, which recorded the low-level timestamps and signal strength measurements of the beacons heard by 
each phone, and the confirmation of the key matching procedure. These data files, in combination with our 
ground truth positional and time data, were processed after the test. The specific system logs we used were 
the “bugreport” files with “dumpsys” records for each EN message. We extracted the system clock 
timestamps, raw RSSI values, Rolling Proximity Identifiers (RPIs), encrypted metadata, version 
information, and previous scan times from the EN log lines and dumpsys records, matching the encrypted 
and unencrypted metadata to ensure that no “stray” messages were recorded from bystander phones. The 
motion capture system clock was used as a test time reference, and the videos of test runs were examined 
against the log files to determine whether the phone timestamps should be offset to correlate to recorded 
distances at which RSSI samples were recorded. If RSSI was sampled while the mannequin was in motion, 
the samples were discarded. 
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5. RESULTS

At the time of our data collection exercise, little was known about the performance of EN “in the 
wild”. The experiments attracted interest from our colleagues at Google, Apple, and the NHS COVID-19 
app implementors. The sponsor permitted us to share our data with these researchers, which enriched 
technical meetings and facilitated the analysis of combined EN data for both Androids and iPhones. The 
collected data have been publicly released to GitHub [13]. 

We examined the effect of absorption and carriage state on the perceived signal strength at the 
receiving phone, i.e., the phone of a potential “close contact” of someone with COVID-19. Figure 5 shows 
the relationship between ground truth distance, and recorded signal strength, or attenuation, and compares 
the effects of absorption by bodies, and phones placement. When no bodies were in the way, attenuation 
did correlate fairly well with distance, although there was still noticeable variance over 5’ increments. The 
position of the phone on the mannequin had a smaller effect than the signal loss from body-blocking, and 
at distances greater than 10–12 feet, the difference in attenuation is negligible for one versus two bodies.  

Figure 5: Attenuation vs actual distance in large indoor space. 

The data confirm that Bluetooth signal strength, even when calibrated according to the EN 
specification, is still going to be a noisy estimate of distance. If extra information regarding the local 
environment of the phone (e.g., is it in a bag or pocket) and of the individual (e.g., are they indoors or 
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outdoors) could be made available to the risk calculation, the attenuation component of the risk score could 
be tuned to contribute more appropriately to the total risk score.  

However, to put this finding in perspective, recall that the attenuation measurement ultimately is used 
to estimate not distance, but infection risk. As scientific understanding of COVID-19 transmission has 
increased, it has become more apparent that risky exposures cannot be characterized by a “bright line” 
threshold for either distance or duration. The imprecision inherent in the distance and duration estimates 
may actually prove to be an appropriate match to the inexact risk of transmission in the real world (due to 
compounded variations in aerosol distribution, personal susceptibility, and other factors).  

The data from these experiments have been used to inform the development and refinement of the 
Bluetooth Low Energy Model of User Risk (BLEMUR) [14], and indirectly contributed to sensitivity and 
specificity parameter selection for the Simulated Automated Exposure Notification (SimAEN) model and 
web-based tool for public health [15], [16], [17]. Analysis outputs from this dataset have been presented to 
public health teams through CDC-hosted community of practice calls, direct technical exchanges with state 
departments of public health, and two Risk Scoring Symposia hosted by the Linux Foundation Public 
Health [18], [19].  
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6. CONCLUSION

In order to fully assess the design and performance of a distributed sensor network such as GAEN, it 
is necessary to examine performance at multiple levels, from the system as a whole down to the individual 
sensor performance under well-understood conditions. Our data collection efforts in 2020 helped to close 
the gap between simple benchtop and anechoic measurements for two-phone interactions, and “black box” 
or “in the wild” performance assessments which lack ground truth information about timing, proximity, 
and environmental effects. The data were rigorously inspected and validated, timestamped, and correlated 
to ground truth data for distance, orientation, and duration. The test procedure we developed for this 
exercise laid the foundation for a more extensive data collection in early 2021, and contributed directly to 
parallel modeling efforts and the decision processes of public health teams as they piloted and launched 
Exposure Notification systems in their regions. 
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GLOSSARY 

ASDF Autonomous Systems Development Facility  

Attenuation Reduction of signal amplitude  

BLEMUR Bluetooth Low Energy Model of User Risk  

CDC Centers for Disease Control and Prevention (United States)  

COVID-19 Coronavirus disease caused by the SARS-CoV-2 virus  

DARPA Defense Advanced Research Projects Agency  

EN Exposure Notification  

GAEN Google-Apple Exposure Notification  

MIT LL Massachusetts Institute of Technology Lincoln Laboratory  

NHS National Health Service (United Kingdom)  

PACT Private Automated Contact Tracing  

RF Radio frequency  

RPI Rolling Proximity Identifier, a short-lived token generated from the TEK 

RSSI Received signal strength indicator  

SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 

SimAEN  Simulated Automated Exposure Notification  

TEK  Temporary Exposure Key, a cryptographic token generated on the smartphone 
once per day  
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