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ABSTRACT

The problem of scattering of electromagnetic waves by a small number

of closely spaced dielectric spheres is considered as a boundary value prob-

lem. The solution to this problem is obtained in a series form using partial

sPherical vector waves. An approximate solution is also obtained for spheres

separated sufficiently far for waves scattered by one sphere and incident on

another to be considered plane waves with an amplitude given by the solution

to the single scattering problem. The use of both solutions is discussed.
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Cooperative Scattering by Dielectric Spheres

PART I - THEORY

INTRODUCTION

The solution to the problem of multiple scattering by an ensemble of

dielectric spheres is important to the understanding of the propagation of

millimeter electromagnetic waves through a rain environment. Attempts at

solving the problem have been made using the incoherent, geometrical optics

formulation of radiative transfer theory (Chandrasekhar, 1950), a coherent

physical optics formulation as applied to scalar fields by Fikioris ( 1966), or

using a coherent, full-wave treatment as applied to scalar fields by Fikioris

and Waterman (1 964). The problems of using a full-wave solution are formi-

dable. This study is an investigation of the conditions under which a physical

optics solution is valid. The method of investigation is that of comparing the

results of both a full-wave and a physical- optics computation of the bistatic

scattering cross section for a fixed configuration of a small number of spheres.

The examples chosen for analysis were picked to be compared with the results

of the experimental bistatic scattering cross - section measurements published

by Moe and Angelakos (1961).

The problem of computing the backscatter cross section of a pair of

spheres using a full-wave formalism has been considered by Trinks (1 935)



for small spheres and by

wavelength in diameter.

the experimental data.

Liang and Lo (1 966) for spheres of the order of a

The results of Liang and Lo compare favorably with

The physical optics technique for solving the multiple scattering problem

consists of using the bistatic scattering cross section (far-field value) to re-

late the incident and scattered waves and of assuming that the incident fields

can be represented by plane waves. The full-wave technique refers to methods

that use the full solution to the boundary value problems of multiple scattering.

This technique as referred to above and as used in this study entails the ex-

pansion of the incident and scattered waves in partial spherical vector waves

(Psvw). The expansion coefficients are determined so that the boundary con-

ditions on the multiple spheres are satisfied. The basic difficulty in the use

of this technique is in handling the translation addition formulas required for

expressing the wave scattered by one sphere in the coordinate system of

another.

This report is devoted to the derivation of the full wave and physical

optics solutions to the multiple scattering problem for a fixed configuration

of scatterers. Either solution is obtained in terms of a set of simultaneous

equations for the determination of the coefficients of’ an infinite PSVW series.

The conditions for obtaining a solution of the infinite set of equations by trun-

cating the set of equations are investigated. The results show that for the

.
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physical optics case a solution is always possible using a truncated set of

equations. The solution by truncation is also always possible for the full-

wave case if only two spheres are used. For the full-wave case and more

than two spheres the solution may not be possible. This case must be investi-

gated further using the computer.

Review of the Mie solution for a single sphere

Time harmonic electromagnetic fields in source free space may be re-

presented by a summation of partial spherical vector waves (Stratton, 1941)

with the time dependence taken as
iut

.~(:j, t) = j~(:j) e ,
J

The partial vector wave expansion is given hy

(i)

(2)

in the j coordinate system using the notation given in Appendix A. The partial

vector waves are related to those used by Stratton by

i(v) =
j~~j = v x [0(”)(rj, ~j, Pj) ~jl

jhn nm
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where

+

imp.
(~) = ~(”) (kr ) pm (cos#j)e ‘, Zn (v)

are spherical Bessel
nm n jn

functions and P; are associated Legendre functions of the first

kind.

e(V) ~SVW form ~ complete orthogonal ‘et.
For the. source free problem the .V

J-inn

The fields, .H and j~ can
J-

expansion coefficients

{}

e.a =
J– jamn

be formally represented by a column matrix of the

{}
;$= e

jbmn “

Using this representation, the Mie solution to scattering by a dielectric sphere

is found as a diagonal matrix relating the matricies for the incident and

scattered fields.

The problem of scattering by sphere “j” “1s. solved by using the boundary

conditions to determine the Mie scattering matrix. The field exterior to the

sphere is separated into an incident and scattered wave as

where p. = radius of sphere j, the super prefix i represents the incident field
.l .

with a radial function denoted by ( 1 ) that is finite at the origin, the super pre-

fix s represents the scattered field with a radial function denoted by (4) that #

represents outgoing waves as required by the Sommerfeld radiation condition.

4
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The internal field is given in a similar way by

,E. tE= $3f, te e(t)

J- j-
r.~ p.

jamn nXmn2
(4)

JJ
~“=r) +.n ~.

with a radial dependence that is finite at the origin, The boundary conditions

for the fields at the surface of the sphere are given by

(5)

where ;. is the unit outward normal to the surface of the sphere at coordinate
J

(pjs Jj, $j). The boundary conditions reduce to a set of equations for the PSVW

amplitudes.

where the 1, 2 subscripts on ~ denote the wave number required for use in the

radial function, k exterior to the sphere and k interior to the sphere. Using
i 2

the orthogonality properties of ~ as given in Appendix B, the boundary condition

equations can be reduced to a set of algebraic equations
*
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[

[ 1& r.j (k”” r.)

\aZ j
jplj

J qP ‘trj

a

J
r h(z)

~jp 1(kirj) ~ r.j (kzrj) “

_:a2 arj [’p I
+ ~az

J qP ‘1 ‘j
J qp kzrj

. 0

r.=p. .
JJ

The bO~ndary conditions for .H yield identical equations with a replaced by b.
J-

The equations can be further reduced by the relationship between .E and j~.
J-

From Maxwell’s equations for a source free space,

By the basic properties of .m and .n as given in Stratton,
J-inn y-inn

3-e(v) _ 1
-Xvxv

e(v)

~mn .-inn

therefore,
‘“P ~. $.n$:

Using the orthogonality properties of ~,

iw~ .be = - k ja~~
J mn

(6)



or

e ik 3-e.—
jbmn w jamn “

From this, four sets of simultaneous equations

the Mie scattering matrix elements. Using the

ik
1s2 h(2) (k

WI jaqp P

are available for determining

equations for .b, find~–

ik
2t2. ‘ki i 2 j ~kipj)

‘j) - ~ jaqp ‘p(k2pj) = -~” jaqp P

r. P;
J

The equations for . a can be restated as~–

:a2

[[

18 ‘h(2)——
1]

p (klr) – !az A
J qpkipj ~’ J qP k2pj

[~ ~jp(k2r)]]=

‘=p , r= .

._

xpif-ij[+[~jp(k’’)]] . ‘J
l.= p

j
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St
These equations can be solved for . a by Cramer’s rule with pi = P.z

J qP

– jp(kipj) – jp(kzpj)

[
- $- [rjp(ki r)]

1[
– ~ [rjp(k2r)]

1
~= P.

r.
S1

P. ii
. = Mi(k ,k ,p. )!ai

j aqp ~(z)(k ~,, jaqp pi2JJClp

P iJ
– jp(k2Pj)

[ 1[ 1

(7)

& [rh~)(ki r)] - ~ [rjp(k2r)]

r=pj r= Pj

+ljp(kipj) – k2jp(L#j)

1——
[~ [jp(kir)]-+ [~ [ rjp(k2r)]]

‘1 2
r= P.

r=
:az

P. i2
. = M2(k ,k ,p. ) ~a2 .

J qP
kih:)(kipj)

– kzjp(kzpj) jaqp P 1 2JJqp

< [~irh~~kir)ll-~ [~[rj$k2r)l]
(8)

~=p, r=p.
J J

The matrix equation for the single sphere is formed from the Mtp(kl, k2, pj)

. elements.

s i (9)
j–

a=j~j~

where
-( )

M is a diagonal matrix j~ = M~(kl, kz. pj) 6et6np6mq .
j=

9



The Mie scattering matrix can be used for any incident field ~~ to generate

the scattered field ?a. This relationship holds only in the coordinate system~–

j for any azimuthal index. The values of Me given above are related to those
P

of Vande Hulst (i957, Chapter 9) by

lvf2 .-a .
P P

Multiple Sphere Boundary Value Problem

The multiple sphere problem is solved by extending the solution for a

single sphere to a configuration of spheres. Consider a fixed configuration

of J spheres. Let the scattered wave from each sphere be expressed in par.

tial spherical vector waves in a coordinate system centered on that sphere.

The total electromagnetic field exterior to each sphere is given as a sum of

the incident wave and the waves scattered by each sphere.

(lo)

This total exterior field must obey the boundary conditions on each sphere

simultaneously. The solution is obtained by identifying the waves scattered

by all spheres other than j with the incident wave on sphere j. In the region

exterior to the scattering sphere, the scattered wave can be represented

using partial vector waves in another coordinate system since the scattered

wave satisfies the s ource free vect Or wave eqy.ati On.



This relationship called a partial spherical vector

(11)

wave addition theorem is

given by Cruzan (i962) and by Stein (i 96i ) and is valid for radial distances in

the new coordinate system less than the translation distance. The addition

theorem may be decomposed into two parts, a rotation as given by Edmonds

(1957) and a transformation of the coordinate system along the # = O azis.

These two specialized operations can be combined to give the general one

above

where – p s s s p and – n 5 s s n and the summation is over all allowed

values of s.

~eqP (a, ~, ~) describes a rotation of the coordinate SyStem with Origin at j
j esp

j eSp(~) ~kd) describes a translation Of the
through the Euler angles a, ~, Y and ~~tsn

coordinate system through a distance d along the directiOn $. = O. The two
J

. addition theorems are given in Appendix C. The transformation can be con-

sidered as a matrix operation as

11



where the interchange of summation is justified by Friedman and Russek

(1954). The boundary value problem then reduces to

1# j

(12)

The solution is obtained by a simultaneous solution of the J matrix equations

to determine the J scattered waves given by ~~.

The final solution to the multiple sphere, fixed configuration scattering

problem is best given by the ~: all expressed in a single coordinate system

.



so that the bistatic scattering cross section can be readily identified. The

‘a can be converted back to a single coordinate system using the PSVW addi -~–

tion theorem for radial distances greater han the translation distance

t(v)

jzmn

which as for ~ above can be reduced to a rotation and a translation. Using
—

addition theorems

‘J’he solution to the scattering problem then is given by

(i3)

a single column matrix representing the total scattered field of the configuration

of spheres.

Solution of the Boundary Value Equations – Two-Sphere Case

The solution of the multiple scattering problem depends upon the simulta-

neous solution of the J matrix equations. The elements of these equations

form semi-infinite matrices since they represent the coefficients of infinite

sets of partial spherical vector wave solutions to the vector wave equations.

These equations must be solved by approximate techniques. The criterion

13



for.. obtaining a solution by truncating the matrices and solving the truncated

linear equations using algebra is given in Appendix D. To apply this technique

of reducing the problem to an algebraic one which can be solved on a large

scale computer, the behavior of the elements of the matrix equations must be

ascertained.

For the two sphere scattering problem, the simultaneous matrix equations

(f2) are given by

The se equations can be combined to give

This set of equations may be solved by using a truncated set of equations if

the conditions on Sij and Bi, as specified in Appendix D, are met. TO examine

the applicability, the behavior of the i~ ~Q matrix elements must be deter-



mined.

The Mie coefficients can be investigated using the forms given above

[ 1“ (k r)] – jn(kzp) ~ [rjn(ki r)]jn(klp) ~ [rJn ~
[ 1

~=
M1=-

r=p

n

[ i[
h~)(kif) ~ [rjn(k2r)]– jn(k2P) ~ I rhn ‘Z)(kir)ll

~= P
~=p

k j + ~ (kid jn(k.-j) – kzjn+l (k2d jnkip )_-in

‘Z)(kip) “klhf+)l (kid jn(kzd – k2jn+ ~ (kzp) hn

The behavior of M: for large n and fixed kip, kzp can be estimated from the

asymptotic forms of the spherical Bessel function.

jn(kip)
-L E(2Y(2n+l)

n-m

h(z)
(klp) --

n
~-p g (~)-ninn(klp) - — n-.

‘2) (kip) > h:) (kip).Using these forms, jn(kip) > jn+i (kip) and hn+i For

Ikzl’l’l’

(2)
the terms in jn(klp) and hn+ ~ (ki p) contribute most to the asymptotic

form of M1
n
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M:.
kzjn+l (kzp)jn (kiP) ~ ek~p (2n+i)n+i jn (klp)

kl jn (k2P)h~+)i (kiP) kl (2n+3) ‘+2h~)i (kip)

IM:I -
(ek2p)2(ekiP)

2(2n+3)
2“+’ = (-)2(%)2”(%)2n+2

7

(i5

In a similar fashion, the asymptotic form of M“
n

IM:
l-— - Wz)(%r(%

()

(n+t) ‘1

2(2n+l k2

s given as

n 2n+i

~ (Il+i)%p)
(i6)

2(2n+i)n+i (2n+3)n+i

In both cases, for large n the Mie coefficient terms decrease as

()
2n+ 1

ek p
i

Mcc —
2n

n >> kip .
n

The elements of the C matrix can be estimated using the formulas given

in Appendix C. For two spheres, the only addition theorems to consider are

izg=~;z~Q = ~~(o,lr, o) ~ Zg(o,lr, o) .

The elements of the ~ matrix are given by

tmn(K) _ ~(m K) +
kid (u+m+i)

T(m, K) +
kid (u-m)

a
T(m, K)

emu - un (2u+3)(u+1)
~=t

u+tn U(2U- i ) u-in

ikid T~~’ ‘)
. e+t .

U(u+i) ‘

16



The dependence of Q can best be studied using T as

n+u

~(m, K) =

1

.u+p. n ~n nO ~nm Z(K)
1

un pu ‘pu pu p
(kid)

p=ln-ul

G* =
(2p+ l)(2u+l)

pu (2n+l [

(y+n-u)! (p-n+ u)! (-p+n+u)!

(p+n+u+~)! 1

The maximum of the H~~ H
nO

product is given as
pu

nm nO

()

2n
HH -

pu pu n

for p= n+u, n= u, both n+u large, and m=O

p=n, n>>u and m=n

or p=~ u>>n and m=n

For all other cases, this product is less. The resultant T then is given by

T(0,4) ~

()

(n+u)!2 (2n)!(2u)! 2n h(2)

un 2 (2n+2u)! x
n+u(kid); n=u>> f

(n!)2(u!) .

t7



~(n, 4) ~
2

‘2n)i ‘:) 2U h!) (kid);
un

(n!)

- (Zn)! 2U h2 :) (kId);

By Sterli”iig’s formula

“ = @““ ‘-n

~(o,4) ~
Therefore, Un

~(n, 4) ~

un

n>>u

u>>n

n.u>>i

n>>u

u>>n .

By using the asymptotic expansion for hn+u‘2) (kid) for n+u>> 1 and

press ion for m=O since, for a fixed maximum n and u this gives

taking the ex-

the largest

(m, 4)
value, the estimate of magnitude of the elements of T can be given by

un

The express ion for $2 has the same order of magnitude as T, therefore the

asymptotic expression for the ~ elements for large order can be given by

18



I2cemn =
12

e mn 2 esn tsu

t tpn
R (O, T, O) Q

1 ~~n
R(O, T,O)

i tsu 2 tpu
s

_ (n+m)j 2Qe.mn (n-m)! ~
= lCe-mn 6

(n-m)! 1 t-inn (n+m)! mp 2 t-mu m~ “

The dependence of the magnitude of the ~ elements on the index n is given by

i emn
the expression for 2Ctmu The magnitude of the ~ elements can now be es-

timated from the ~ Q product elements as

~lcimn ~

n lmn

For the maximum value,

~lCimn -

n imn

_(~~n+’(.?&S~+”/i.iE&i,.,<<noru .

n=u and the above product reduces to

(ek2p)2
47)

2n+ i
——s?2 e

n i6n ~n d
[ml <<n

19
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The elements of the ~ matrix are less than or of the order of S
2mn

p mn
given

by

(Zi)

The elements of the ~ matrix show that, for large separations between the

two spheres, the elements decrease rapidly due to the factors in Zpl /d and

2p2 /d. If both spheres are of equal size and touch, these ratios are unity

and the decrease in magnitude of the S elements with increasing n is much

slower. This indicates that the multiple scattering contributions are much

stronger for closely spaced spheres than for widely separated spheres. For

the worst case of two equal touching spheres, the values of S elements will

decrease with increasing n and, with a large scale computer the problem can

be solved.

The analysis to be complete must also consider the Bn elements before a

firm estimate of the behavior of the solution is obtained. The B matrix depends

20



upon the ~ ~ product and the standard Mie solution. The values for . al are—. ~–

presumed to be known, For a plane wave they are given by an inverse n de.

pendence (see Appendix B). The values of Bn for the plane waves therefore

are less than the equivalent Mie matrix coefficient for the same n and the con-

clusion about the validity of the solution is unchanged.

The above considerations show that the requirements for solution by

truncation of the multiple scattering matrix equations for two spheres are met

for all possible sphere separations. Both the Mie coefficient and the translation

matrix elements depend on the azimuthal index as a parameter only. This is

due to the azimuthal symmetry of the problem when the translation is along

the 4 = O direction. The matrix equations can be partitioned into sub-matrix

equations one for each allowed value of m, the azimuthal index. The equations

for each value of m can be solved independently of those for the other values of

m. The reduced matrix equations then can be represented as

(22)

where the index m represents the parameter m and N is the

largest n used in the truncated matrix and m, n are the indices

s se

‘f ‘he i: ‘lement lam%”

The solution then is found by solving 2N + i sets of simultaneous equations,

one for each value of m. For a plane wave incident along the axis of symmetry,

Zt



only two sets with m = + 1 are required.

Solution of the Boundary Value Equations – Multiple Sphere Case

The multiple sphere case is solved in the same manner as the two-sphere

problem. The set of matrix equations must be reduced to a single equation

with one unknown set of scattering coefficients. Unless the configuration of

spheres has azimuthal symmetry, the general vector addition theorem for

translation must be used.

The addition of more spheres doubly complicates the problem, one by requiring

a simultaneous solution for all the n, m elements of the matrix instead of only

n elements for a given value of m as in Eq. (22), and, two by increasing the

number of matrix products required to specify ~~ and ~~. For three spheres,

these matrices are given by

M2C M3C M2C MiC
+ 1= 1= 2= 2= 3= 3= 2= 2=

– M2C M3C M2C MiC
3= 3= 2= 2= 1= 1= 2= 2=

(23)
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and

total number of spheres.

Once the ~~ and ~~ matrices

The effect of the general rotation

are evaluated, the solution proceeds

matrix elements on the magnitude of

elements must however be considered before the truncation procedure

applied. From Appendix C, the rotation addition theorem is given by

.(cotf3/2)2u+m+~

as above.

the C.

can be

The magnitude of R~~ can be readily estimated for particular values of m,

as

lR~~l ~ lR~~n\ = (2n)! (sinF/2)2n - (Znsin(3/2)2n ~ne-2n

P

23



A special case of interest occurs when m or P - 0 since, fOr this case the

~epn element is largest.
e~ u

~ (sin~/2)n-q(COE@/2 )n+q
1%: I = (n+q):

- ‘, (sin~/2)n+m(cos/3 /2)n-m
lR~~n I - (n-m).

IR’”nl = IR::I = * (sin~/2)n(c0s~/2)n

- * (4n sit@/ 2)7c0sf3/”2)n””6-n . --& (4 sin~/2 cos(3/2)nn! .

The value for both m = ~ = O gives

lR~Sl ‘l; (~w~ $) (-i)n-’’(sin2)2 (n(u) (cos~s2)2ulul

[1n!
2

.— (c0s(3/2)n (sin(3/2)n for n even

(;)!(;)!

24



The ~ elements depend upon both the values of the ~ and ~ elements. The

largest possible products come from the following combination

1%:1 - IR:I 1%:1 F’::1

.

2n - 2n
- 2(4n sin(3/2) e

c
: & (#~2n (cos(3/2)2”

i 1

2G
- 2n

( )

i6sin[~/2] cOs@/2] 2n ~n~n.—
kid ~n ek d

~

(25)

The dependence of this element on the index n increases much too fast to be

compensated by the dependence of, j~e on the same index. This means that

the use of the truncated matrix for solving the full problem of many spheres

using the partial vector wave formalism is in doubt. The study of this problem

can be continued on a large-scale computer using two spheres not along the

8 = O axis, The result of truncating the rotation matrix then can be directly

compared with a solution that does not require a general rotation operation.

The Eqs, (23) and (24) for these spheres illustrate the difficulty encountered

in using the full-wave s olution for more than three spheres in a configuration.

For more than three spheres the matrix equation is far too cumbersome for

use on present computers. A reasonable method of solution must do away

25



with representing each of the possible coordinate transformations with separate

matrices. Approximate techniques must be applied to solve the many sphere

problems such as described in the next section or by Mathur and Yeh (1 964).

The Physical Optics Solution

The physical optics solution to the multiple scattering problem is based

on the approximations that the scatterers are far enough apart both for the

use of the far-field solution to the single scattering problem and to conside r

that the scattered wave incident on a second scatterer can be represented as

a plane wave. The region of validity of these assumptions can be checked by

comparing the physical optics formulation of the problem with the full-wave

formulation as developed above. The far-field solution to the single scattering

problem is found by examining the asymptotic expansions for the radial func-

tions valid at large values of kr with k = kl (see Appendix B).

(
mY

S2 nm
+i. a—–

Sal

)1

~ Ynm t
j mn sinj j mn El$ v“

(26)

The representation of the scattered field in cartesian coordinates is given by:

26



()(
‘k

sinilcosq cos~cosq - sinq O

sin9 sin@ c0s9 sin+
‘Y =

)()

Cosq
‘8

u c0s19 - sin9 Ou
z

~ . COS$COSq u — sinp u
x 9 v

‘join+iJn]jaL[cOs’cOs”+y.m--‘in’]

[

mY
S1 nm a

— cOs JcOsq —— isinq —Y
j amn sin$ 1~8 nm

(n+m) Yn-i, m-i+ nb-m+z)yn+ ,m-i
}

{
– (n+l)yn-i, m+i+ ‘Yn+i, m+l}]

S1

[
1} ~

jamn (n-m+f) (n+m) yn, ~ 1 + ‘n, ~+i

u . c~sgsinfo U8 + COS~ U
Y

=Join+’ $ {~a~n[c:.sin,+ynm+ -COS~]

m=-n

[

mY
sat

— cos~ sinq ~+ icosq$ Ynm
j mn sin9 II
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‘y=jo($)mjn{&[(.-m+4){(n+,)(n+m)yn.i,m,+n(n-m+2)n+,,mi

{
+ (n+l)Yn-i, m+i +nYn+i, m+i

}]

[
~a~n (n-m+l) (n+m) Yn, ~-i – Yn, ~+i II

=< .+1 n
~,i ~{& [(n+~)(n+m)yni,m-n( n-m+l)yn+i,m]

m=-.

‘i
—.a mY

}
Jmnnm”

For the two-sphere problem the far-field solution to the single scattering pro-

blem is evaluated at the center of the first sphere and the Cartesian represen-

tation of this field is taken as an incident plane wave on the other sphere. The

plane wave amplitude is evaluated by taking r = d and J = O. For this case,

only terms in Y are non-zero.
p, o

28



co

12

n+ 1
i

u=—
x

~=On-O 2

S2 S1

-“a-in
+ n(n+l)~a2 – .a-in–n(n+i)~a~

J Jin J n 1

(27)

u =0
z

8= o

The wave given above incident on another sphere is represented as

-ik (d+z)

(1
jE=eikd ~

A A

l’-
U i+u i

Y
J.O x ‘J=o1)

in the coordinate system of the new sphere. This expression maybe expanded

in a PSVW series (see Appendix 2) as

where

-ikdi-(n+i~(~n+l) -(-l)e Ux .- iuy 6m, 1
jae - e

1 mn - ikd 2n (n+i) [(l 1)* 8= o $.0

(1+n(n+i) ux + iu
1) 1

6
Y m,-1

~. o J.O

29



The incident waves scattered by the first sphere can be expressed using the

operator notation as

(28)

m

‘1
p-n -ikd...
Ie (2n+l)

[(2ikdn(n+l) -
p(p+l) ?a2

)
~ ~p–p(p+l) ~ai 6

J ip ~,l(-’)e
@o

(s2+sal— n(n+l) .a
.-Ip )1

6
J j -lp me-l

Therefore ~~tqp ‘-i;~;;;:f:;~+i) [P(P+i) ~m, , 6q, , (-i)e+t +
emn

+ n(n+i) 6
m,-16q, -l 1

(29)

The coordinate translation matrix ~for the physical optics case is far
.

simpler than that for the full wave case, Q . The only azimuthal terms that con.
.

tribute to the multiple scattering solution are for m = + 1 as required by the

assumption of a plane wave incident on the second sphere. The translation

theorem in this form is useful for comparison with the full wave case but is

still cumbersome for use in the many sphere multiple scattering problem.
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The elements of~z vary inversely with kd and are nearly independent of n
—

and p for both large. This means that the combination of the ~ elements with
—

the M elements as required for the multiple scattering problem always yield

a matrix equation that can be truncated for solution. This holds true for the

general case where rotation operations as well as translation operations are

used to generate the multiple scattering equations.

The physical optics solution can be made more useful by reformulating it

in terms of plane wave amplitudes. A plane wave incident on sphere j of a

multiple sphere configuration as shown in Fig. 1 is represented by its PSVW

coefficients

P
:at =

L

Ot
Rpq (0,6, Y) jaWp

J qP Pv
p.. p

Ot
where are the PSVW coefficients for a plane wave traveling along

j ‘PP

the ~ = O axis.

Ot
Using the expression for . a given in Appendix B,

J PP

:at “-(p+’)(2p+i)[-(-l)t(&,-i@@;(cI,P,Y)
1

J qP = 2p(p+l)
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where (i*, iq, ki) is the coordinate system of the incident wave and

a, ~, y relate the incident wave coordinate system with a Cartesian

sYstem with the z axis along $ = O as shown in Fig. i.

The expression for the field scattered by ‘Phere 1 and ‘ncident ‘n 2 ‘s given’

in this formulation by

co

l-z

i
p+ 1

u
Y- ---Z-

~=o P=o
(i,M2 ~a2

~ lP)+ ‘j”:(~a:in-p(p+’)~a:p)~:
+ p(p+i) la2

JPJ-l P

The elements of the rotation matrix used to express ~ are required for q= + i

only. These elements may be expressed in terms Of the Jacobi POlynOmial

p(a’~)(cos~) as shown in Edmonds (i957, pg. 58).
n

‘0’2)(Cosp)Rpi (a, ~,y) = e i(Q-+’f)c Os?p/z)Pn-i
pi

R~-; (a, ~,Y) ‘“ e ‘0’ 2) (Cosp)-i(a+~) cos2(p/2) Pn-i

(2’0)(Cosp)R~li(@,P,Y)=&e ‘(Q-V)sin2(~/2) Pn ~

R$i (o, (+, y) = P(P+f) e ‘2’ 0) (Cosp) .‘i(a-y) sin2((3/2) Pn-i
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The expression for u can then be simplified to

01
u

x

IJ=u = cos2(,/z)[$o~(-jM: -jM:)p:;)(cos6)]4

8=0 Oy

“(
cos(cz+y) sin(a+y) O

-sin(a+y) c0s(c2+Y) O

0 00 )

“(
cos(a-y) –sin(@-y) O C%C

-sin(a-y) –cOs(Q-Y) O

)1( )

C%q e ’30)

o 00 0

This expression can be expressed as

1,LJ= &Y,(LY) “(-f (31)

9-o

“ jd?e-ik’”sjwhere the incident plane wave is given by ~~ = .ikrjcos~.
J

and the scattered wave at the se cond sphere by ;g = ,~(a, p, Y).. e
ikd “

In the coordinate system of the second sphere the incident wave scattered by the

first sphere is given by
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which is the first order scattered wave in a system of multiply scattered

waves. All higher order scattered waves from sphere 1 incident on sphere Z

would have originally come from sphere 2. This can be represented as

where ~ ~ is the plane wave amplitude originally incident on

sphere 2 from the direction of sphere 1.

The multiple scattering problem can be solved directly by computing the

incident field for many higher ordered scattering. This system eventually

terminates because each scattering returns less energy to the other sphere.

The problem can also be formulated in a “self consistantf ’ manner using un-

determined plane wave amplitudes for the path connecting the two spheres.

As was done for the PSVW matrices above, The solution can be formulated by

considering the plane waves incident on each sphere. If, ~ denotes the plane

wave amplitude of the plane wave incident on sphere 1

34
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which is analogous to Eq. (i2) for two spheres. This has as its solution with

r
i$– z~(”, ‘, 1O)igo, 11,o) J$J= #’(WT-&Y)2& + @I,@)i&,(3,Y)i& .

For the incident plane wave, the plane wave amplitudes at each sphere are

related by

26. ,& e-%i”s!

The resultant equation for ~~ is given by

which expresses a multiple scattering equation analogous to Eq. (14) above

but with only three dimensional vectors and matrices. The total

solution to the problem then is found using the solution ~ together with the

single scattering amplitude & for the angles given on Fig. 1 with the observa-

tion point at (rj, $j, ~j).
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where the



q. = Cos
[ 1-ity” (?zx$j)

J

A A
i=d
z

~
and is arbitrary

‘Y

Conclusions

The full-wave and physical-optics solution to the two and three sphere

multiple scattering problem as derived above are amenable to solution using

a large scale computer. The full-wave solution can be used for up to three

spheres whose single scattering solution lies in the Mie range. For more

than three spheres, this solution becomes extremely complicated. The physical

optics solution suffers from the same problems of complication for more than

three spheres if used in the PSVW coefficient matrix form given above. This

solution can however be cast in a simpler form that can be used for more

spheres as was done above.

The full-wave solution requires a consideration of all the azimuthal index

terms in the series for a general multiple scattering problem. The validity

of the truncated series solution is in doubt in the general case. To ascertain

the validity of such a solution, the. problem must be considered using the corn.

puter. For the two-sphere problem, a solution using the full-wave treatment

can always be obtained.
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The full-wave solution can be programmed to provide a check on the

simpler approximate solutions to the multiple scattering problem. A check

on the full-wave solution can also be found in the body of existing experimental

results for fixed configurations of two and three spheres. The physical optics

solution generated above has the advantages of directly using the single

scattering solution to the plane-wave problem and in providing an operator

equation that relates incident and scattered plane-wave amplitudes. The de-

tails of this approximate solution can be varied by using the full near-field

expression close to the scatterer or by taking the scattered wave from one

sphere incident on the other as a series or integral function of plane waves

propagating either in different directions or at different velocities. These

more complicated approximate solutions may be valid over more of the space

available to the scatterers and provide a better basis for solving the many

sphere multiple scattering problem. Each of “these solutions can be prepared

for the two and three- sphere configurations for comparison with the full-wave

solution. The usefulness of the full-wave solution is not in providing a basis

for the solution of more complicated multiple scattering problems, but in

providing a yardstick against which approximate solutions can be compared,
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APPENDIX A

NOTATION

The partial spherical vector wave (PSVW) functions and their coefficients

can be expressed in a compact form using the following notation.

PSVW function:
e(K)

~mnl

where e refers to the vector wave function with e = 1 specifying ~ and e = 2

specifying ~ (Stratton notation)

K refers to the radial function used with K = 1 specifying the spherical

Bessel function and K = 4 specifying the spherical Hankel function of

the second kind.

j refers to the coordinate system centered on sphere j.

m refers to the azimuthal index of the spherical harmonic function

Y (~, q) = P~(c0st9) eimq;
nm

m—n=m=n.

n refers to the polar index of the spherical harmonic function.

1 refers to the wave number to be used in computing the wave function.

se
PSVW coefficient: a

J mn

where j, e, m, n have the same meaning as above

s refers to the part of the electromagnetic field represented by the

product of the coefficient and the partial vector wave function. The

letter s is used for a scattered wave, i for an incident wave, t

for a transmitted wave, and O for a plane wave directed along the

t!= O axis,
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With this notation, the position of the index is important. When the particular

index is not important as with a discussion about ~ for any sphere, the index

is omitted.

Matrix operator element: ;Q?uqp
emn

where j, e, m, n refer to one set of PSVW coefficients with the meanings

above and 1, u, q, p refer to a second set of PSVW coefficients. The

matrix operator is used to transform one set of coefficients to another

as for the coordinate transformation formulas,

40

—



APPENDIX B

PROPERTIES OF PSVW FUNCTIONS

Vector fields with zero divergence may be expanded in two types of partial

spherical vector waves, the m and n waves of Stratton.

Let Y nm(~) = Y ~m($, q) = P~(cos8) eimp

(i)= j , ~(a _
where z - nn, .:)= h:),

n nn

are spherical Bessel functions

Then the partial spherical vector waves are defined as

1(K) = m(K) = ‘K)(kr)
[

im Y
rim(r) A

~mn
v x [+(~)~ = Zn

. mn 1
i~ –+ Ynm(l)$q (B-1)

sin$

2(K) = ~(K) _ i- ~vxvx[+(~):] = ~ .&)(kr) Y (4) ?
~mn .-inn nm r

( )[
im Y

rim(r) A ~B-2)
‘K)(kr)] & Ynm(~)$8 ++ ~ ~ [rzn

kr 8r s in~ 1lV.

The PSVW functions have the following orthogonality properties
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= 4rn(n+i) (n+m)!

(2n+l) (n-m)!

( )(1(K) 2(U) = 2(K) l(u) =

‘inn’ ~v ‘m. ‘ ‘pv
)

Z(K)*
~ (kr) z~)(kr) 6mp 6nv . (B-3)

o (B-4)

( 2(K)

)

l(u)

[ 1
- 4mn(n+~) ‘n+m)! (.+1 ) z~-)~ z~)i + nz~~~ z~)l 6mW 6nv .

‘mn
,V

‘-pv -
(2.+1) (n-m)!

(B-5)

The asymptotic properties of the PSVW functions depend upon the form of the

radial function used. For scattered waves, the spherical Hankel function of

the second kind is used to represent spherical outward traveling waves

Z(4)
- ikr - ikr

~ (kr) = h~)(kr) - – in=+ in+2&

(4) )
Zn (kr

& & [r~~lkr)] = (.+1) ~- z$)i(kr) w in+i ~

1(4)
-ikr im Y

.n+2 e

[

m-n(r)
-1—

18 :J ml(r) ‘p.
i——y

~mn ikr s in9
(B-6)
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2(4) rl+i e-ikr
-i—

~mn ikr
(B-7)

The expansion of a plane wave incident along the J =

as

“-=(8$,+&$y)e-i”iE . &e-i~l. r
. .

oat _(&@’e -’$

mn

(

t(i) , “t(1)

~m n -mn
)

O direction is expressed

. m.(d)d:))=~.j’jn(kr)[-i;lim ‘.-~yih’y]-Oai
. .

[~“( ~c.sv+ &ysiw) (~JsinJ+ $Jcos$)

— 1(&xsinq – &ycosq) $Y e-ikr C“s$ sint?d~dp

co
-ikrcos@ .

I

.-v.
now e 1 Jv(kr) PV(COS8) (2v+ i)

“=”
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k23.L]““a:n(~~:!‘::)=‘Zmn(n+’)i-n+’‘:(kr)l@x-i~)’ml+‘(n+i)

Oal
.-(n+l)(2n+i)

mn = 1 .?n(n+l) [(&x-i&y)6m,i + n(n+l) (&x+ i~)~m,-il .

In a similar manner

(v2.(i) &e-ikzj= i-(n+i)(~n+i)[ (~ 6)6

0a2 . -inn’

(

2n(n+i) - X–l y m,l
+ n(n+l) o

mn “2(1”/ “2(1)

.mn mn
)

(&x+ @y)6m,i] o

Hence

Oat = i

mn
‘(n+’~2n+’)[-(-1~(~ -i~)6m,i + n(n+i)(gx+ i~y~6m,i10 (B-8)
2n(n+i)
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APPENDIX C

PSVW ADDITION THEOREMS

The general addition theorems required for a combined translation and

rotation operation are given by Curzan (i 962) and Stein (1961). The general

addition theorem may be decomposed into two special operations, one a rota-

tion of coordinates and the second a translation of coordinate system center

along the special, J = O axis. Both addition theorems use as a start the

addition theorems for scalar spherical harmonics. The rotation addition

theorem for scalar spherical harmonics is given by Edmonds (1 957) as

: ,, r,, ,,, ,,71/2

Ynp(i9’, @)

o [cos(f3/2)]2dp+ m[sin((3/2)]2n-2’’-m-m

a, (3.Y are the Euler awle% describing the rotation = shown in F% 1.

Y nm(~t q) = p: (COsI$) eimpare unnormalized spherical harmonics.
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Using this additional theorem

n

(c-9)

where

[ 1

1/2

R~~(c@,y) = 6np(-i)
q-m (n-q)! (n+m)! ~lqa ~(n)

.(n+q)! (n-m)!.
qm (~) eimy

= —ei(qdm’)z(-i)”(:’ux:rn)‘cOs(’’2)]2dq[(n-q)!

(n-m)!
u

10 [ sin(@/2)]2n-2u-q-m 6np

and since

(l(w) (r, #,q) = Vx 4Jnm )‘p)(r, J, q)~
‘mn
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co P
“2(W) (r, J,q) = v’ x v’ x

(x 1

—.

R
.mn

‘)

~~ (~,p,y) $~~ (~, ~’, p’)r’

~.l) q.. p

m

.

XT
R ;; (cl, p,’i) v:$) (r, J’, q’) .

p.(1 q.. p

.
Therefore the rotation transformation is given in full as

m 2

#J) (r, J, q) =
L$l

Rtnm
epq (0, (3, Y) ;y) (r,8’, @) (c-to)

~.o ~=<p e. i

Rtnm
where = 6te R;: (a, ~,y) .

epq

A special case of the rotation matrix is useful in problems with a trans-

lation axis along # = n.

= (-1)
[ 1

n-m (n+m)! (n+m)! “2 ~

(n-m)! (n-m)! q-m6np

n-m (n+m)!
= (-i) —

(n-m)! 6m-q6np “
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The rotation of coordinate system transformation affects only the azimuthal

t(w)
index m of v

-nm”

The translation addition theorem for scalar spherical harmonics is given

by Friedman and Russek (i 954) as corrected by Cruzan

*W= ~ i z‘-i)wiv+p-n(’”+‘)a(mDnl-~vlp’z!)(kd’”
“=0 p=-” p

.

. ~-~
i(m-p)t9

(cosJo) e
0 *(1) (r, )

(c-ii)
P Vp -

PW (COSJO) e
‘W8CI O(K)

v pm-p ‘~’) “
(C-12)

where

[

(n+m)! (v-p)! (p-m+ p)! 1’2 .
a(m, nl–~, v lp)= (-l)m-p. (2p+ 1)

1,.(n-m)! (v+ I.L)! (p+m-p.)!.

( )(nvpnvp

)
“000 m-p-m+~
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()nvp = (-i)n-”-~

m
(nmv~ lnvpq) = Wigner 3-j symbol (see Edmonds)

m~q

6

[ 1(2P+1) (p+n-V)! (p+v-n)! (n+v-p)! “2°.
m+p, -q (2v+l)(p+n+v+i)!

o [(n+m)! (n-m)! (v+p.)! (v-p)! (p+q)! (p-q) !]i/2 o

P+lql

I

(-1)
u+n-v-p

u!
[(~+v-p-a)! (n-m-a)! (v+p-r)! (p-v+ m+u)! (p-n-m+ u)!]-i

u= o

‘oifln-vlspsn+v “

For the simple case of translation along 80 = O,

m

$K)
~m (~) =

Ix
(-i)mi”+p-n ‘K)(kd) $~i~ (~’)(2v+ l)a(m, nl–m, vlp) zp

V=o p

m

n (-i)” iv+p-n
(k) (,,)

. (2v + i) a(m, n 10, LIP) jv(kd) XPm ~

V.o p
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The evaluation of T
(m, K)

(d) starts with the properties of the Wigner 3-j sym-
vn

bols

s ~-i)p-n-m

[

(2v+l) (p+n-v)! (p-n+ v)! (-p+n+v)! “2 .

(2n+i) (p+n+v+i): 1

“x (-l)sp! [(n+m)! (n-m)! (v+m)! (v-m) !]i’2

s! (p+n-v-s)! (p-s)! (n+m-s)! (v-n+ s)! (v-p- m+s)!
s

[

(2vti)(p+n-v)! (p-n+ v)! (-p+n+v)!
-112 1/2

= ~.l)p-n-m -

1[ 1

(n-m)! (p+m)! .

(2n+t) (p+n+til)! .(n+m)! (~-m)!

‘“d (:~:)=‘-i)p-n[=2V+i (p+n-v)! (p-n+ v)! (.p+n+v)!

(p+n+v+i)! 1 ;..(-’)sg)(:s) (v:).).

Therefore

a(m, n[-m, vlp)= (-i)
[.

m (2p+l) (2v+1) ‘(p+n-v)! (p-n+ v)! (p+n+v)! 1 ,

(2n+l) (p+n+v+i)! I
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a(m, n I-m, v /p) = (-l)%n Hn’mH~~O
pv pv

(C-13)

where

Gn =
(2p+l) (2v+l) (p+n-v)! (p-n+ v)! (-p+n+v)!

pv (2n+l) [ (p+n+v+l )!
1

‘;m= ~ (-’)s~:m)(”;:)(v-:+s) ~

Then ~(mD K)(d) =

I
Gn Hn’ m H$ Z~)

vn pv pv
(kd) iv+p-n . (C-14)

P’

In this case, U~n (d) is found from T~~’ ‘) (d) by renaming p and v due to the

symmetries of a(m, n l–p, v ]p) as

U:;) (d) = T:;’ i

The PSVW addition theorems :

(d) . (C-15)

t(K)
‘e found using the definition of v as

-mn



m
i(K)

[2
=V’ x:’

~(m, K

“ “ j~mn vm
“.0

~(m, 1

vm

co

LL+V$xd
~(m, K)+(i) ~r,

vn vm .
- “=0

from Stein, the expansion for the second term

1(:’) +

1

m the right-hand side is given

as

03

I ~(m, K)

[
e .m(q,)]=.~oTj;gK)[~l~~)+V’x d $’)

vn
V=o

● kd

(

v+m l(l) + v-m+l l(l)——
2v+i v Ih-l, m V+i )11%+1, m

~ ~(m, K)kdim ~kd) T(m, K)

I

vn 2(i) ~

[

V+in (v+m+i) kd T~~~~) (v -m)
.

1

i(l)
Iyvm

+
V(v+i) (2v+3) (V+i)

V.1)
(2v-i) l~v m

.

(C-16)

kd (v+m+i )

1

(m, .) + kd (v-m) T(m, K) ~Y~~)+

(2v+3)(v+1) ‘v+in v(2v-1) v-in

ikd ~(m, K)

i-
vn 2(1)

V(v+i) l~m
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where

?Q
(m, K) +

‘mn(’)(kd) = ~Tpn
kd (p+m+ i ) ~(m, K) +

1

kd (p-m) ~(m, K) ~

J iqp (2p+3)(p+l) p+ln p(2p. i) p-in qm

From Curzan find that

eQ2mn(K)
= ~ ~;qn(”) (kd)

j lqp

and
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(C-i8)

The translation of coordinate system transformation affects only the polar

t(K)
index n and the type index t of ~mn .



APPENDIX D

CONDITIONS FOR TRUNCATING THE MULTIPLE SCATTERING EQUATION

The multiple scattering equation is given by

where ~= {an---} n,j= O,i, ---m

j = (6 .---) n,j= 0,1, ---m
nJ

g= (s .---)
nJ

This multiple scattering equation, to be solved must be truncated at some

n, j = N. The system of equations can be truncated only when the elements of

~ and ~ satisfy certain requirements. These conditions may be determined

by considering a formal solution of the equations.

Let

$=4–$= (f..) ‘I,j-.a
lJ

If the system is truncated at i = j = N then the solution is given by Cramer’s

rules as

N

z (N)B
lf(N)la~) = ,=i=in i

where If(N) I is the determinant of the truncated matrix

F(N)
IS the cofactor of the element of the truncated matrix.

in
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I

This can be expressed as

N

For a:) to be a solution to the problem it must be related to a the exact
n

solution as

(IV) = ~(N+l) = a(N+J)for some N.
a =a
n n n n

The criterion for truncation then can be expressed by considering the solution

a(N+l)
in terms of a~).”

n

N+ 1

L
F(N+l)B

(N+i).= i=l ‘n 1
a

n N? i

L

F(N+l)f

in in
i= t

now

N+ f

1F(N+i) = f ~(N+i)
in jN-!-i j N+l, in

j= 1

where
~!N+l)

1S the cofactor of j, k excluding rows i, n computed using
Jk, in

the N + 1 extent matrix.
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In this form,

~(N+i)

N+i N+l, in
= F:;) .

Therefore

N+i N+i

U fjN+i FjN;;: inB.
,1

(N+i) = i=l j=l j#i
a

n N+i N+l

~?

f.
~!N+i)

J N+l JN+i, in fin
i=l n= j#i

N NN

L~(N)B +v ~(N+i) ~,

‘N+l N+l
F

in i
1= i

j N+i jN+l, in 1
j= 1 j= j#i

N

2

F(N)f +

22

F(N+I)

‘N+ 1 N+ 1
f.

in in JN+l j N+i, in fin
~= 1 j= 1 j=i j#i

Now, if we require that fN+f N+i > f.
“ ‘N+l N+l ‘fN+l j;J N+l’

fij > f
N+l, j; ‘in> fjN+l and bj>fN+l, j

OSi, jSN

then the error in truncation is made evident.. Let the inequalities be expressed

as
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and
,

+.6M ; +=6(.)
in m

~(N+l)

~ =(@’(E) then
jN+l, in

F(N)
=@(t)

in in

‘I’he equation for the a~’) element of the solution is given as

z~!N)
In B. +

i n f.
F~N+l) ~,

1
‘N+l N+i j=ii=ij#j

~N+l JN+l, in 1

~(N+i) = i=i

n
N N+i

1

~fN)f i

xl
f

F\N+i)

m in ‘f
N+l N+i j=l i=ii#j

j N+l jN+i, in fin

1 F(N)f +@2)
in in

=a (N) +fj7(,5
n

HI the inequalities are obeyed by successive value Of N, the sYstem can be

57



truncated at some value of N + J with the error less than @(c’J) or less than

some predetermined value. The matrices ~ and B obey these requirements if
—

+ <,, ~<c,,~d ‘~<cforj?N.
B.

ij lj J

If the conditions on Sij and Bj are met, the system of equations as truncated

represents the solution to the problem and the problem can be solved by tbe

classical techniques for a large number of simultaneous equations. Two basic

solutions are available, one the iterative technique that depends upon S. < 1
IJ

for all i, j and the basic matrix inversion technique. The iterative technique

is desirable if possible since the errors that may occur in inverting large

matrices are minimized. The iterative solution is given by rearranging the

matrix equation as

a=B+sa
——= —

and taking the interated solution as

(i)= ~+ sa(i-~)
a— — .—

and using successive i until the results converge. This system converges if

the scattering contribution is small compared with the rest. The criterion is

given as
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.

If this criterion holds, the system of equations can be solved by iteration. If

not, the system must be treated by matrix inversion.
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