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ABSTRACT 

Privacy-preserving contact tracing mobile applications, such as those that use the Google-Apple 
Exposure Notification (GAEN) service, have the potential to limit the spread of COVID-19 in communities, 
but the privacy-preserving aspects of the protocol make it difficult to assess the performance of the apps in 
real-world populations. To address this gap, we exercised the CovidWatch app on both Android and iOS 
phones in a variety of scripted real-world scenarios, relevant to the lives of university students and 
employees. We collected exposure data from the app and from the lower-level Android service, and 
compared it to the phones’ actual distances and durations of exposure, to assess the sensitivity and 
specificity of the GAEN service configuration as of February 2021. Based on the app’s reported 
ExposureWindows and alerting thresholds for Low and High alerts, our assessment is that the chosen 
configuration is highly sensitive under a range of realistic scenarios and conditions. With this configuration, 
the app is likely to capture many long-duration encounters, even at distances greater than six feet, which 
may be desirable under conditions with increased risk of airborne transmission. 

iii
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1. BACKGROUND

The Exposure Notification (EN) service implemented by Apple and Google in 2020 was intended to 
roughly estimate the aggregate risk of COVID-19 exposure for the individual carrying the phone on which 
the service is enabled. As different communities experience different levels of community spread of the 
virus, depending on factors such as current infection levels, personal mobility, and participation in masking 
and social distancing behaviors, the EN service was designed to be configurable by regional public health 
authorities. In seasons of high transmission and high risk, such as a winter surge, the service could be 
configured to be more sensitive, e.g., alerting a user of exposure after a shorter exposure at a moderate 
distance. In seasons of lower overall risk, such as after a benchmark percentage of the population is 
vaccinated, the service could be configured to provide a lower-level alert for a greater range of exposure 
distances and durations, by raising the bar for issuing high-risk alerts.  

The configuration is composed of several weights and thresholds, which assign encounters into 
“immediate”, “near”, “moderate”, and “other” distances, weighted by the overall duration at each range, 
and assign it a “high”, “standard”, or “none” infectiousness rating based on the date of exposure and the 
date of symptom onset (or test) for the sick person [1], [2]. Designing an EN configuration to have the 
desired sensitivity and specificity is closer to an art than a science, but scientifically estimating the 
effectiveness of a candidate configuration is possible. Our prior EN-prototype testing and data collection 
efforts had formed an essential foundation of testbed infrastructure, data processing tools, and team 
experience [3]. In February and March of 2021, we conducted a series of experiments with the University 
of Arizona’s selected configuration and the CovidWatch app, which is used by faculty, staff, and students 
at the university to reduce the spread of SARS-CoV-2 in the campus community [4]. 

The Exposure Notification service relies on Bluetooth LE messages to estimate distance between 
phones, which causes the accuracy of its estimates to be affected by anything that affects the strength of the 
radio signal. This includes environmental factors, such as the orientation of the phones’ antennas in space; 
the way a person carries a phone, such as in a pocket or backpack; the presence of RF-absorbing objects, 
such as people and furniture; and the presence of reflective surfaces, such as metal or tile walls. Phones 
may experience interference from other signals in the same frequency band, or from noise due to microwave 
ovens and other electromagnetic fields, that cause them to underestimate the duration of exposure. Finally, 
the hardware diversity in the cell phone market contributes to variations in signal strength estimates even 
when all other factors are held constant. The EN implementers included a calibration offset for each phone 
model, but not all models are well calibrated, so the calibration confidence estimate for each model must 
be considered as well [5]. For all of these reasons, it is important to assess the performance of the system 
not only under laboratory conditions, but in a variety of physical environments and physical configurations, 
with a variety of hardware. 
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2. EXPERIMENTAL DESIGN

The design of our experiment needed to accommodate a range of environments, distances, durations, 
phone carriage states, and hardware models, yet be doable in about a month. To strike a balance between 
variables we could not control (such as environmental factors and hardware calibration quality), and those 
we could (phone placement, hardware selection, distance, and duration), we chose nine test scenarios that 
were the highest priority for the University, and ran three trials in each. The trials for each scenario differed 
only in the substitution of different hardware for the sick phone and one of its neighboring phones. (For 
example, if the first trial used an iPhone as its sick phone, the second would swap the iPhone with its nearest 
low-calibration Android neighbor, and the third trial would swap for the nearest high-calibration Android.) 
We would combine the results across all three trials for each scenario. 

The selected scenarios were a mix of learning spaces, public transit situations, and social situations, 
involving as many mannequins and humans as we could physically accommodate in the space with “some” 
social distancing applied. For the classroom and public transit scenarios, we followed spacing and mobility 
guidelines [6] and the class or shuttle schedule recommended by the University. For the social scenarios, 
we modeled two “parties” in a smaller, two-room setting, and in a larger, single-room setting, with more 
moving participants than in either the classroom or transit scenarios. Appendix B: Scenario Configurations 
contains a gallery of test scenario photos, placement maps, and motion notes. Our testing was conducted at 
the Autonomous Systems Development Facility (ASDF) [7] and in lecture halls and conference rooms at 
MIT Lincoln Laboratory, as well as at the Massachusetts Bay Transportation Authority (MBTA) 
Emergency Training Center in Boston, MA. 

Figure 1: RF Mannequins in the ASDF. 

In order to test with an appropriate number of bodies, while complying with workforce COVID-19 
safety requirements, we used mannequins covered in “lossy” foam as stand-ins for actual people. These 
previously were shown to have the approximate RF absorption of a human body, in tests conducted at our 
anechoic chamber facility in April 2020. The mannequins were mounted on robotic platforms to add 
autonomous movement capability (Figure 1).   
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All scenes had a mix of carriage states for phones (in bag, in pocket, in hand, on desk), and this was 
not varied across the three trials. All test durations were capped at about one hour, as that was known to be 
more than enough time to generate an exposure alert if the phones were “close enough” to merit one. 
Although we were constrained by the number of mannequins, humans, and phones we could include in each 
test, we would still be able to conduct realistic exposure scenarios. 

TABLE 1  

Physical Configurations of Test Scenes 

Population Motion Carriage Exposure 
Time 

Learning 
Spaces 

Active Learning 
Space 

9 2 mobile 
Hand, desk, 
bag, pockets 

50 min 

Small Hall 13 All static 60 min 

Auditorium 16 All static 50 min 

Public 
Transit 

Bus Queue 3-6
5 mobile 

 (static sick) 
Pockets 10, 20, 30 min 

MBTA Bus 15 3 mobile 
Hand, bag, 

pockets 

25, 45 min 

MBTA Train 15 3 mobile 15, 30 min 

MIT Shuttle 14 1 mobile (sick) 44 min 

Social 
Small Party 8 1 mobile (sick) 

Hand, bag, 
pockets 

60 min 

Larger Party 16 
4 mobile 
(1 sick) 

60 min 

For these experiments, we used only a single logical configuration of the app; that is, the set of 
weights and thresholds deployed by the University in February and in use by its campus population. The 
CovidWatch app differs from more basic EN apps by its use of two alert thresholds, with different follow-
on guidance for each, tailored to the infectiousness estimate of the encounter [8]. Our analysis considers 
the probability of a low- or a high-risk alert being generated for each phone exposed to the sick phone. We 
did not evaluate the infectiousness estimate or follow-on guidance. 

We included iPhones, although they provided no low-level beacon logs, and for those we relied on 
an intermediate output from the EN Service to calculate risk scores after exposure to the trial’s “sick phone”. 

Because the contribution of infectiousness risk to the final risk score is independent of the 
contribution of duration and signal strength, and can be varied mathematically at a later date, we kept the 
infectiousness constant in all tests. This permitted us to focus on the effects of physical configurations and 
the distance/duration components of the logical configuration. 
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3. DATA COLLECTION PROCEDURE 

Prior to each exposure trial, the phones’ records of previous exposures were erased from the Exposure 
Notification service and from the app. Each phone was placed in position in a mannequin’s hand, pocket, 
bag, or desk area. If a human test operator was participating in the test as a “body”, that person’s phone was 
placed at their assigned location. The beginning of each exposure period was recorded from the phones’ 
system clocks along with the time it took to activate EN on all phones. This activation time took under 5 
minutes in each trial, usually only 1–2 minutes. 

During the exposure period, humans and/or mannequins moved through the test space as scripted for 
each scenario. The overall amount of motion was roughly intended to correspond to reality; because the EN 
sampling rate is on the order of 2–5 minutes, however, it was not necessary to have the phones in near-
constant motion. Classroom scenarios were largely stationary, while transit and social scenarios included 
more motion. We also varied whether the sick phone was mobile or stationary, to generate different 
exposure durations for tests with higher physical constraints (e.g., bus seating). In the transit scenes, the 
total number of phones/bodies increased or decreased during the exposure period, such as when people 
joined or left the bus queue, and boarded or left the bus or train during the “trip”. These changes were 
scripted and performed at the same time for each of the three trials in those tests. 

At the end of each exposure period, we deactivated EN on each phone in the same order in which it 
was activated. We then shared the Temporary Exposure Keys from the sick phone with each of the exposed 
phones, always using a “high infectiousness” date, and recorded whether the phone showed an alert to the 
user. The app vendor, WeHealth, had provided a function to export the ExposureWindows reported by EN, 
in JSON format. We saved the JSON file from each exposed phone and generated a copy of the Android 
system logs, which recorded the low-level timestamps and signal strength measurements of the beacons 
heard by each phone, and the confirmation of the key matching procedure. The iPhones did not have this 
low-level logging available, so on those phones, we saved only the JSON file with ExposureWindows. 
These data files, in combination with our ground truth positional and time data, would inform our analysis 
of the system performance. 

The dataset from this collection exercise is available on GitHub for others to use in their 
research1 [9]. 

  

 

1 Note that the “PACT Exposure Notifications Beacons” database includes data from both this and a prior 
data collection campaign. The data from the experiments described here are labeled with 
test_series=MITLL_UA in the database. 
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4. ANALYSIS

At the end of the data collection exercise, by using a single “sick phone” in each trial scenario, we 
obtained the ExposureWindows, risk score, and alert status of only 333 “exposed” phones in total. Having 
a rich beacon dataset from the Androids enabled us to expand the analysis to consider every phone as a 
potential sick phone. We wrapped the risk scoring algorithm published in Google’s open-source repository 
[10] to build a tool which computes a risk score for all possible pairwise exposures in our dataset. Where
possible, we inferred which RPIs came from an iPhone by process of elimination. Constrained only by the
lack of beacon records for iPhones, and a few cases of beacon logging failure on Android, we achieved an
order of magnitude increase in the number of samples: 2991 of the 4098 potential pairwise exposures.

Figure 2. Phone pair demographics (all scenes combined). 
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As shown in Figure 2, the sample set is heavily skewed towards 2-Android pairs. Among the 
Androids, we tried to have an equal number of high-confidence and low-confidence models in each test. 
This resulted in high-low pairs making up about half the sample set overall. Likewise, the iPhone-Android 
pairs were equally split between high and low calibration confidence. 

Figure 3. Scenario contributions. 

In order to examine the behavior of individual phones and how it related to ground truth observations, 
we found it helpful to build a visualization tool. The tool combined our positional and temporal data with 
the beacon logs and alert reporting from each phone, and allowed us to scan forward and backward in time 
to see how individual signals (or lack thereof) contributed to the overall behavior of the phone. The 
visualization tool is described in more detail in Appendix A: Exposure Visualization Tool, and is available 
on GitHub [11]. 

Our analysis aimed to answer two questions: 

1. Does the system produce the expected alert on an exposed phone, given the record of beacons
heard?

2. Does the system produce an appropriate alert on an exposed phone, given the ground truth
distance and duration of exposure?

To answer the first question, we focused on the 333 experimental exposures for which key matching 
was performed (not predicted in postprocessing). We validated the observed behavior of each Android 
phone (i.e. the presence of a high alert, low alert, or no alert after key matching) by recomputing the 
ScanInstances and ExposureWindows from the beacon data recorded in the system logs. These intermediate 
data structures were used to recompute the expected risk score of each encounter, and the low and high 
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thresholds were applied to determine the expected alert status of each phone. For iPhones, which did not 
have individual beacon data, we fed the reported ExposureWindows into the risk scoring algorithm to check 
the math. We did observe some instances in which the app displayed the incorrect risk level to the user, and 
determined through further analysis and conversation with WeHealth engineers, that these were artifacts of 
the test and export procedure and should not be observable by the real world users. For the rest of our 
analysis, we worked with the mathematically correct risk derived from the phone’s logs, rather than the 
incorrect one, in these cases. 

TABLE 2 

 Percentage of "True" TC4TL Events 

Learning 
Spaces 

Active Learning Space 14% 

4% Small Hall 0% 

Auditorium 5% 

Public 
Transit 

Bus Queue 29% 

18% 
MBTA Bus 12% 

MBTA Train 8% 

MIT Shuttle 39% 

Social 
Small Party 41% 

23% 
Larger Party 19% 

All Scenes Combined 15% 

We answered the second question by interpreting each phone’s behavior in the context of the CDC’s 
“too close for too long” (TC4TL) contact tracing metric, namely: Was the phone really within 6 feet of the 
sick phone for at least 15 minutes during the exposure period [12]? Applying this metric allows us to 
calculate the probability of detection, or P(D), and probability of false alarm, or P(FA). We calculated these 
values for each of the alert thresholds, and for each of the scenarios as well as for the entire set as a whole 
(Table 3 and 4). Note that in the small lecture hall, the sick phone was placed with the “professor” at the 
podium, well over the 6 foot threshold for all students; therefore there are no “true detection” events. 
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TABLE 3 

 Probability of Detection and Probability of False Alarm for High Alert 

High Alert Only P(D) P(FA) Combined 
P(D) Combined P(FA) 

Learning 
Spaces 

Active Learning 
Space 0.850 0.888 

0.875 0.610 Small Hall n/a 0.652 

Auditorium 0.900 0.485 

Public 
Transit 

Bus Queue 0.591 0.109 

0.953 0.569 
MBTA Bus 1.000 0.605 

MBTA Train 1.000 0.438 

MIT Shuttle 0.978 0.897 

Social 
Small Party 0.951 0.830 

0.919 0.707 
Larger Party 0.914 0.691 

All Scenes Combined 0.935 0.610 

TABLE 4 

Probability of Detection and Probability of False Alarm for Low or High Alert 

Low or High Alert P(D) P(FA) Combined 
P(D) Combined P(FA) 

Learning 
Spaces 

Active Learning 
Space 0.950 0.936 

0.950 0.746 Small Hall n/a 0.756 

Auditorium 0.950 0.678 

Public 
Transit 

Bus Queue 1 0.764 

1 0.827 
MBTA Bus 1 0.802 

MBTA Train 1 0.784 

MIT Shuttle 1 0.986 

Social 
Small Party 1 0.886 

0.960 0.876 
Larger Party 0.943 0.876 

All Scenes Combined 0.982 0.809 
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Recall that the EN system can only alert if a sick person exists and has opted to share their keys; the 
“false alarms” are false only in that the exposure did not meet the TC4TL criteria, given that the exposure 
was to a diagnosed person. In reality, the prevalence of disease in the population will also be a factor in the 
perceived false alarm rate, as most encounters will be with uninfected individuals. 

We believe the P(D) and P(FA) analysis is overly reductive, in the context of the broader question of 
whether the “6 feet and 15 minutes” rule is too simplistic to be an appropriate guideline for estimating the 
risk of airborne transmission of SARS-CoV-2. Therefore, we also produced a set of heat maps, showing 
the distribution of the average risk scores (before alert thresholds were applied) across a two-dimensional 
“contact grid” of ground truth distances and durations. We also produced heat maps for the probability of 
high alert, and the probability of low or high alert, for each scenario and across all scenarios. 
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5. RESULTS

To build the contact grid, we assigned each encounter to a bin, using increments of 3 feet for distance 
and 5 minutes for duration. For phones which moved during the test, we assigned them to the (x, y) cell 
that represents the weighted average of their (distance, duration) tuples. For instance, if a moving 
mannequin spent 10 minutes while 12 feet away from the sick phone, followed by 15 minutes while 4 feet 
away from the sick phone, it was assigned to the cell representing (7.2 ft, 25 min). The contact grid, shown 
in Figure 4. Sampling distribution on contact grid (all scenes, all phones), does not have a uniform 
distribution, nor do the different scenarios do not contribute equally to the populated cells. During the 
experimental design phase, the University agreed that was an acceptable tradeoff for variety within the time 
available for testing, and realistic placements within each scene. 

Figure 4. Sampling distribution on contact grid (all scenes, all phones). 

Figure 5 shows the average risk score of each of the phone exposures assigned to the cells of the 
contact grid. The CDC “TC4TL” metric [12] is outlined in blue in the upper left. As we expected, there is 
a general trend of higher average risk scores in the upper left, in the (shorter distance, longer duration) cells. 
Figure 6 and Figure 7, the heat maps of the P(Alert High) and the P(Alert Low or High), respectively, show 
a similar gradient. This confirms that on average, the Bluetooth signal strengths and timestamps, when 
processed through the risk scoring algorithm and the weights and thresholds preselected by Arizona, do in 
fact behave as an approximate measure of cumulative exposure-minutes. 
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Figure 5. Average Risk Scores (all scenes, all phones). All values >= 6000 are assigned the maximum color (white). 

Figure 6. P(Alert High) (all scenes, all phones). 

Figure 7. P(Alert Low or High) (all scenes, all phones). 
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The gradients on these three heat maps are not smooth; for instance, in the (27–36 ft, 55–60 min) 
range, we see low risk scores to the left of a cell with a fairly high average at greater distance. Likewise, a 
discontinuity occurs in the 35–40 minute row at distances greater than about 40 feet. These local variations 
in the gradient are a combination of the non-uniform contributions of phone placement, hardware 
calibration, and sheer bad luck. When we inspected the phone pairs which contribute to these cells, we 
found instances where the exposed phone simply did not “hear” the sick phone, most likely due to 
interference or absorption. We expect that these discontinuities would be averaged out with more samples 
and a more uniform distribution of the physical experimental variables across the contact grid. 

To explore whether the discontinuities could be attributed to a single factor of placement, calibration, 
or mobility, we examined the regions with discontinuities after “slicing” the dataset across those attributes. 
One might reasonably suspect the low-calibration Androids to contribute significantly to noise in the risk 
score and P(Alert). To our initial surprise, the heat maps for the calibration slicing showed that the low-low 
calibration pairs did not contribute to the discontinuity in two of the three regions. When we sliced for 
phone placement, we also could not identify a clear effect from phones in bags or pockets (compared to in 
hand or on desk), although we did see higher overall risk scores in the two-unobscured pairs across the 
entire grid, as expected. Slicing for mobility also showed no clear effect on the discontinuities. We infer 
from this exploration of the data that the risk scores exhibit the combined effect of multiple factors, possibly 
including ones beyond the scope of our measurement campaign, such as hardware variation within each 
calibration confidence level, environmental interference, and multipath effects.  

With respect to contact tracing efforts, we noted large regions on the P(Alert) heat maps showing a 
probability equal to 100%, well outside the blue box representing the strict TC4TL metric. This is a direct 
result of the configuration selected by the public health authority, which includes the relative weights for 
very close, moderately close, far, and very far encounters, and the attenuation thresholds that define those 
ranges, as well as the final alert threshold(s), which are quite low relative to the range of observed risk 
scores. 
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6. DISCUSSION

To judge the appropriateness of the configuration, one must first declare a preference for desired 
behavior of the app with respect to ground truth exposures. If the app should only alert when the exposure 
meets the strict TC4TL metric, these data would show an unacceptably sensitive system, which would send 
“too many” people into testing and quarantine, although it does show an acceptable rate of capture of the 
“true positive” alerts. However, if one is interested in capturing encounters deemed “risky enough” by the 
PHA beyond that strict threshold, these data show a system that is appropriately specific to the scenarios in 
which the community is most at risk. 

Finally, we acknowledge that the experimental constraints mandate some caution. The pairwise 
exposures are heavily skewed towards Android-Android and Android-iPhone pairs, due to the number of 
iPhones in our testbed and to Apple’s decision to hide beacon information, even from users with EN 
developer entitlements. This Android-heavy demographic is not well matched to the general population in 
many regions worldwide. The distribution of low-calibration and high-calibration Androids in our testbed 
may not be well matched to the actual regional distribution in Arizona or elsewhere, and it should become 
outdated as calibration values are updated by Google. Combining our dataset with others’ EN, distance, 
and duration measurements likely would produce a more accurate prediction of system performance.  

The perspectives of our colleagues at the University of Arizona are summarized independently in 
Appendix C: Practice Implications. 
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7. CONCLUSION

A thorough performance assessment of contact-tracing apps must consider not only their system-level 
performance as integrated with the public health and medical communities, nor only the peer-to-peer 
distance metric implemented on hardware, though both of those are important contributions to the 
effectiveness of the EN distributed sensing network. The system performance must also be measured and 
assessed in small- to medium-scale interactions, reflecting the realities of how people interact while using 
EN, including such confounding factors as mobility, interference, absorption, and multipath effects. Our 
data collection efforts significantly reduced this gap in system testing and analysis, by conducting a series 
of realistic, scripted, repeatable experiments, across a variety of phone hardware and physical 
configurations. Although individual exposures showed a high variability in risk scores and the probability 
of alert, the integrated experience of an individual over multiple encounters, or of a large body of users, has 
less variance and a reasonable correlation to ground truth distance and duration of exposure. Our analysis 
showed that the University of Arizona’s configuration makes the EN risk scoring algorithm a highly 
sensitive tool for estimating possible COVID-19 exposure, in common scenarios where anonymous 
contacts are likely and EN-compatible devices are usually present. 
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APPENDIX A: EXPOSURE VISUALIZATION TOOL 

The Exposure Visualization tool is custom software created to help interpret the results of the scenario 
testing. It can also be helpful in conveying the various test settings, relative phone placements, and collected 
data to a general audience. All nine of the testing scenarios can be visualized by the tool to better understand 
the reasoning for the observed alert status of each exposed phone at the end of the testing period. Figure 
provides an example view of the MBTA bus tests. 

When a test scenario is loaded into the visualization tool, the three corresponding tests are displayed 
adjacently in separate panels. Each panel contains multiple components that show information for that test 
which can then be compared between tests. In the center of the panel is a top-down two-dimensional sketch 
of the space in which the test was conducted. Circular sprites representing agents are placed in their ground 
truth positions within the space, with a pointed edge denoting the direction they are facing. The color of the 
agent indicates the alert level observed by the carried phone: gray = “none”, yellow = “low”, red= “high”. 
Green indicates that the phone is carried by the “sick” agent.  

The test ID, number of phones in the test, and information on the sick phone is displayed on the left 
side. The sick phone information includes the phone ID, carrying agent ID, phone model, and phone 
calibration confidence. Additionally, exposed agents can be selected from the scene sketch to display 
similar information for that agent/phone pair, as well as the distance from the sick phone and the alert level 
observed at the end of the test.  

When an exposed agent is selected, the attenuation graph of the carried phone is populated. This 
graph reports the average measured attenuation of each scan that occurred during the testing period and the 
range of attenuation values captured within the scan. The colored regions reflect the configured bins for the 
“Immediate”, “Near”, “Medium”, and “Other” attenuation ranges of the EN service.  

To reflect the dynamic nature of some scenarios, the test time can be stepped through by the user. 
The current time is shown as a red line on the attenuation graph. The positions and rotations of the agents 
as well as the distance information of the selected phone is updated to reflect the test state at the stepped 
time.  

At the present time, the visualization tool only displays data for exposures to the single experimental 
“sick” phone for each trial. However, it would be possible to extend it to display data for all 2991 pairwise 
exposures in the expanded analysis. Scenario data is read in at runtime, so the tool could also be used to 
visualize exposure data from complementary datasets if it is provided in the correct formats.



21 

Figure 8. Example of scenario visualization across three trials. 
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APPENDIX C: PRACTICE IMPLICATIONS 

Logistics: While the University of Arizona had considered conducting their own Beta testing, there 
were serious safety concerns about individuals being asked to be within 6 feet of each other in different 
scenarios and spaces during periods of high community transmission. The MIT facility primarily used 
mannequins, alleviating safety concerns about the testing procedures.  

Primary UAZ objectives: Results from the testing with MIT provided the University of Arizona 
COVID Watch team information that assisted internal and external validation of the deployed system. Prior 
to the testing there were concern about 1) how different model phones interacted, particularly between 
Android and iPhones and among older model phones which were commonly held by lower income students 
attending the University, 2) the ability of the technology to work in different environments such as learning 
environments, public transit, and social settings, 3) the ability of the technology to bin risk level of exposure 
appropriately. The greater concern was that there would be lower sensitivity, whereby individuals who had 
an exposure would be missed or that individuals who were just within the same room would be notified by 
even casual and temporary contact.  

UAZ interpretation and utilization of results: Testing procedures indicated broadly that the exposure 
notification system generated higher risk scores when the duration was longer and the proximity was closer, 
but this appears to vary by multiple factors including model of the phone, positioning and interference.  
These limitations are important to define to temper expectations on the performance and limitations of the 
system. It demonstrated that while EN notification is an excellent complement to the current on-campus 
contact tracing program, they need to be deployed in concert with each other. The variability identified was 
very important to the interpretation of effectiveness. We communicated the results of the testing to partners 
within the state including Arizona Department of Health Services and county health partners.  

Limitations of testing scenarios: The testing scenarios implemented were excellent at developing an 
understanding of system performance within situations where there were low density interactions that were 
modeled off common physical distancing protocols. However, there is some remaining unknown around 
how these systems perform in highly dense crowded environments that we are currently facing now that 
the COVID-19 prevention protocols have essentially been eliminated in most circumstances (as of April 
2022). The performance with interference of signals between people that are close to each other but blocked 
by another body are unknown. Classroom and workplace settings no longer implement distancing making 
it challenging to understand how the results of the previous work might inform the current performance. 
Additional testing under these new operating conditions could be quite useful. 

Kacey C. Ernst, MPH, PhD 
Professor and Program Director of Epidemiology 

Department of Epidemiology and Biostatistics 
College of Public Health 
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GLOSSARY 

 ASDF Autonomous Systems Development Facility 

Attenuation Reduction of signal amplitude 

CDC Centers for Disease Control and Prevention (United States) 

COVID-19 Coronavirus disease caused by the SARS-CoV-2 virus 

CovidWatch University of Arizona’s Exposure Notification-based mobile app 

EN Exposure Notification 

GAEN Google-Apple Exposure Notification 

ID Identifier, implicitly unique 

JSON JavaScript Object Notation 

MBTA Massachusetts Bay Transportation Authority 

MIT Massachusetts Institute of Technology 

MIT LL Massachusetts Institute of Technology Lincoln Laboratory 

P(Alert) Probability of EN alert occurring 

P(D) Probability of detection 

P(FA) Probability of false alarm 

PACT Private Automated Contact Tracing 

RF Radio frequency 

RPI Rolling Proximity Identifier, a short-lived token generated from the TEK 

RSSI Received Signal Strength Indicator 

SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2 

TC4TL "Too close for too long" standard definition 
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TEK Temporary Exposure Key, a cryptographic token generated on the smartphone 
once per day 

UAZ University of Arizona 
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