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ABSTRACT

This paper proposes a novel approach to discriminative training of
probabilistic linear discriminant analysis (PLDA) for speaker veri-
fication with x-vectors. The Newton Method is used to discrimi-
natively train the PLDA model by minimizing the log loss of ver-
ification trials. By diagonalizing the across-class and within-class
covariance matrices as a pre-processing step, the PLDA model can
be trained without relying on approximations, and while maintain-
ing important properties of the underlying covariance matrices. The
training procedure is extended to allow for efficient domain adapta-
tion. When applied to the Speakers in the Wild and SRE16 tasks, the
proposed approach provides significant performance improvements
relative to conventional PLDA.

Index Terms— Speaker Verification, Probabilistic Linear Dis-
criminant Analysis, Discriminative Training, X-vectors

1. INTRODUCTION

Probabilistic linear discriminant analysis (PLDA) is a likelihood ra-
tio test between same-class and different-class hypotheses in a veri-
fication task, and has become the standard practice for state-of-the-
art speaker verification [1, 2]. By separately modeling across-class
and within-class variability, PLDA emphasizes important speaker-
specific information while de-emphasizing confusable information
such as the acoustic channel. For many years, PLDA scoring was
successfully used in combination with i-vectors [3]. Recently, how-
ever, x-vectors have been proposed as an alternative form of speaker
embedding, and have shown impressive performance particularly in
difficult acoustic channels [4].

Typically PLDA is trained as a generative model, using e.g. the
expectation-maximization (EM) algorithm [5]. However, PLDA can
alternatively be trained to directly optimize a cost function which
may be more relevant to the desired application. Several studies have
explored discriminative training of PLDA (D-PLDA) for speaker
verification [2, 6, 7, 8, 9, 10]. Some of these approaches refor-
mulate PLDA scoring as logistic regression with a non-linear basis
function whose form is derived from the PLDA log-likelihood ratio
(LLR). While showing promise [2, 7, 8], such techniques discard the
two-covariance structure of PLDA, and instead optimize intermedi-
ate parameters. It may therefore be difficult to guarantee important
properties of the underlying covariance matrices, such as being sym-
metric and non-singular. Other approaches to D-PLDA have reduced
the number of trainable parameters, making optimization less prone
to over-fitting [6, 9, 10]. Such techniques, however, may limit the
potential effectiveness of discriminative training.
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In this paper, we propose a novel approach to discriminative
training of PLDA. By first diagonalizing the across-class and within-
class covariance matrices, the method is able to directly optimize
PLDA parameters using the Newton Method without relying on ap-
proximations. In this way, important properties of the underlying
PLDA covariance matrices are easily guaranteed. Additionally, the
approach allows for statistically meaningful regularization and effi-
cient domain adaptation. The proposed technique achieves signifi-
cant performance improvements when used in combination with re-
cently proposed x-vectors [4], when applied to the Speakers in the
Wild (SITW) [11] and SRE16 [12] tasks.

This paper is organized as follows. The statistical framework of
PLDA is reviewed in Sec. 2. Sec. 3 discusses the proposed D-PLDA
model, and Sec. 4 describes the associated discriminative training
method. Experimental results are provided in Sec. 5, and Sec. 6
includes conclusions and future work.

2. PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS

In this section, the statistical framework for PLDA is reviewed in the
context of speaker verification with x-vectors. The additive model is
assumed

x = s + c, (1)

where x ∈ RD is the observed x-vector, and s and c are the under-
lying speaker and channel components. Speaker and channel com-
ponents are drawn from Gaussian distributions:

p (s) = N (s;µ,Σa) , (2)
p (x | s) = N (x; s,Σw) . (3)

Given two x-vectors, x1 and x2, PLDA provides the log-likelihood
ratio (LLR) between the same-speaker and different-speaker hy-
potheses,H1 andH0. The PLDA LLR is given by:

L (x1,x2) = log
p (x1,x2 | H1)

p (x1,x2 | H0)
(4)

= log

∫
N (x1; s,Σw)N (x2; s,Σw)N (s;µ,Σa) ds

N (x1;µ,Σw + Σa)N (x2;µ,Σw + Σa)
,

where the PLDA model is defined by the hyperparameters µ, Σa,
and Σw. Given the LLR, the posterior probability of the same-
speaker hypothesis is expressed as

P (H1 | x1,x2) = (1 + exp (−θ − L (x1,x2)))
−1 , (5)

where θ is the log odds ratio of priors, θ=logP (H1)− logP (H0).
It was shown in [1] that the solution from (4) can be expressed equiv-
alently as:

L (x1,x2) = −
1

2
log f +

1

2
(x1 − µ)T Q (x1 − µ) (6)

+
1

2
(x2 − µ)T Q (x2 − µ) + (x1 − µ)T P (x2 − µ) ,



where: f =
|Σw| |Σw + 2Σa|
|Σw + Σa|2

, (7)

Q = (Σw + Σa)
−1 −

(
Σw + Σa −Σa (Σw + Σa)

−1 Σa

)−1
,

P = (Σw + Σa)
−1Σa

(
Σw + Σa −Σa (Σw + Σa)

−1 Σa

)−1
.

The set {µ,Σa,Σw} parameterizes PLDA, and can be trained as
a generative model using the expectation-maximization (EM) algo-
rithm [5].

3. DISCRIMINATIVE PROBABILISTIC LINEAR
DISCRIMINANT ANALYSIS

Discriminative training typically relies on gradient descent meth-
ods. Therefore, discriminative training of the PLDA model dis-
cussed in Sec. 2 requires differentiation of (6) with respect to the
set {µ,Σa,Σw}, which generally is intractable. We propose to pre-
process x-vectors so that the matrices Σa and Σw are diagonalized,
yielding a simplified form of (6), and allowing for direct differentia-
tion. Note that similar ideas were proposed in [9] and [13].

3.1. Simplifying the PLDA log-likelihood ratio

The expression in (6) can be simplified if the x-vectors x1 and x2

are first transformed so that their within-class and across-class co-
variances are jointly diagonalized. Assume there exists a matrix
U which diagonalizes both Σw and Σa, so that UTΣaU=A and
UTΣwU=W, where W=diag {w} and A=diag {a} (see Sec. 3.2
for a derivation of U). By pre-processing x-vectors according to

yi = UT (xi − µ) , (8)

the matrices Q and P are diagonalized with diagonal vectors q and
p, respectively. The PLDA solution from (6) then reduces to:

L (x1,x2) = (9)

− 1

2
log f +

1

2

D∑
d=1

(
qdy

2
1 (d) + qdy

2
2 (d) + 2pdy1 (d)y2 (d)

)
,

where: f =

D∏
d=1

wd (wd + 2ad)

(wd + ad)
2 , (10)

qd =
−a2d

wd (wd + ad) (wd + 2ad)
,

pd =
ad

wd (wd + 2ad)
,

and where subscripts are used to index elements within vectors. In
this way, the LLR is expressed solely in terms of scalar operations.

3.2. Deriving the U matrix

The matrix U introduced in the previous section can be derived ac-
cording to the following steps, as in [13]:

1. Perform an eigendecomposition of Σw, so that Σw=E1V1E
T
1

2. Define the matrix H=E1V
−1/2
1 , so that HTΣwH=I

3. Perform an eigendecomposition of HTΣaH, so that
HTΣaH=E2V2E

T
2

4. Define U=HE2=E1V
−1/2
1 E2, so that UTΣwU=I and

UTΣaU=V2

In this way, the matrix U jointly diagonalizes Σw and Σa, and the
simplified expression for the PLDA LLR in (9) is obtained.

3.3. Training

From Sec. 3.1 it can be observed that the D-PLDA model is parame-
terized by the set {U,a,w,µ} (in fact it is overparameterized, and
could be fully parameterized by a subset, e.g. {U,a,µ}). It is in-
teresting to note that the original PLDA statistical framework can be
extracted from the D-PLDA hyperparameters using:

Σw = U−TWU−1, (11)

Σa = U−TAU−1,

which is not possible in other approaches to D-PLDA such as [2, 7,
8]. In this way, important properties of the PLDA covariance ma-
trices can be guaranteed. For example, it is clear from (11) that Σa

and Σw are symmetric. Furthermore, Σw and Σa are guaranteed to
be non-singular if w and a are constrained to be positive. Alterna-
tively, a can be constrained to be non-negative, which is consistent
with Simplified PLDA [14].

In Sec. 4, optimization of the D-PLDA model using the Newton
Method will be discussed. Due to the simple form of (10), the LLR
can be differentiated with respect to the set {U,a,w,µ}, and the
D-PLDA model can be trained without relying on approximations.
In our experimentation, however, we found optimization of U to be
prone to over-fitting, and optimization of µ to offer little benefit.
Therefore, in this paper, we focus on training the set {a,w}.

3.4. Relationship to Linear Discriminant Analysis (LDA)

It is interesting to note the similarities between the D-PLDA model
presented in Sec. 3.1 and linear discriminant analysis. LDA is
commonly used in speaker verification to reduce dimensionality
of speaker embeddings prior to scoring. The LDA projection is
trained by solving the eigendecomposition of Σ−1

w Σa, and discard-
ing the dimensions corresponding to the smallest eigenvalues. By
referencing the steps outlined in Sec. 3.2, it can be shown that
Σ−1

w ΣaU=UA, implying that the matrix U is a valid LDA trans-
form with eigenvalues diag {A}. D-PLDA training that leads to
ad=0 for any d corresponds to discarding the associated LDA ba-
sis. Therefore, the proposed D-PLDA approach can be interpreted
as, in part, optimizing the basis selection during LDA dimension
reduction.

4. D-PLDA TRAINING

4.1. The Generalized Cost Function

To optimize the D-PLDA model, we can minimize some discrimina-
tive cost function over a training set of x-vectors. The general form
of the discriminative cost function is given by:

C =
1∑

m=0

∑
(i,j)∈Hm

lm (L (xi,xj)) , (12)

where l0 (L (xi,xj)) and l1 (L (xi,xj)) represent the losses asso-
ciated with L (xi,xj) for labels 0 and 1, respectively. Additionally,
the notation (i, j) denotes a verification trial with inputs xi and xj .
The expression in (12) can be modified to balance the effect of trials
from the two hypotheses via appropriate normalization, but we omit
this for the sake of clarity. We propose to train the D-PLDA model
using the Newton Method, which for ad is given by:

ad ⇐ ad − γ
(
∂2C

∂a2d
+ λ

)−1
∂C

∂ad
, (13)



with an analogous expression forwd, and where λ is a regularization
constant and γ is the step-size.

The update rule in (13) requires the first and second derivatives
of the cost function, C, which can be expressed with respect to e.g.
the parameter ad using the chain rule:

∂C

∂ad
=

1∑
m=0

∑
(i,j)∈Hm

∂lm (L (xi,xj))

∂L (xi,xj)

∂L (xi,xj)

∂ad
, (14)

∂2C

∂a2d
=

1∑
m=0

∑
(i,j)∈Hm

(
∂2lm (L (xi,xj))

∂L (xi,xj)
2

(
∂L (xi,xj)

∂ad

)2

+
∂lm (L (xi,xj))

∂L (xi,xj)

∂2L (xi,xj)

∂a2d

)
.

Evaluation of (14) requires partial derivatives of the loss functions
and log-likelihood ratios, which are derived in Sec. 4.2 and Sec. 4.3,
respectively. The expressions in (14) can be expressed as functions
of statistics accumulated across the training trials. In our implemen-
tation, D-PLDA training first accumulates these statistics, and then
applies the Newton Method update.

4.2. Differentiating the loss function

There exists a variety of loss functions that can be used in the gen-
eralized cost in (12), and the choice of lm can be made based on
the intended application. In this paper the log loss is used, but the
proposed framework allows for other functions, such as the Brier or
hinge loss [8]. The log loss is defined as:

lm (L (xi,xj)) = − log (P (Hm | xi,xj)) . (15)

Using the Newton Method for training D-PLDA involves evaluation
of (14). This requires the first and second derivatives of the log loss,
which can be expressed as [15]:

∂lm (L (xi,xj))

∂L (xi,xj)
= P (H1 | xi,xj)−m, (16)

and

∂2lm (L (xi,xj))

∂L (xi,xj)
2 = P (H1 | xi,xj) (1− P (H1 | xi,xj)) .

(17)

4.3. Differentiating the log-likelihood ratio

The derivatives of the LLR with respect to the parameters ad can be
derived from (9) and (10) as

∂L (xi,xj)

∂ad
=− 1

2

(
1

f

∂f

∂ad
− ∂qd
∂ad

y2
i (d) (18)

− ∂qd
∂ad

y2
j (d)− 2

∂pd
∂ad

yi (d)yj (d)

)
,

and

∂2L (xi,xj)

∂a2d
=− 1

2

(
1

f

∂2f

∂a2d
−
(
1

f

∂f

∂ad

)2

− ∂2qd
∂a2d

y2
i (d)

−∂
2qd
∂a2d

y2
j (d)− 2

∂2pd
∂a2d

yi (d)yj (d)

)
, (19)

with analogous expressions for wd, and where

∂f

∂ad
=

−2adf
(wd + ad) (wd + 2ad)

, (20)

∂qd
∂ad

=
−ad (2wd + 3ad)

(wd + ad)
2 (wd + 2ad)

2 ,

∂pd
∂ad

=
1

(wd + 2ad)
2 ,

∂f

∂wd
=

2a2df

wd (wd + ad) (wd + 2ad)
,

∂qd
∂wd

=
a2d
(
3w2

d + 6wdad + 2a2d
)

w2
d (wd + ad)

2 (wd + 2ad)
2 ,

∂pd
∂wd

=
−2ad (wd + ad)

w2
d (wd + 2ad)

2 .

and
∂2f

∂a2d
=

−2 (wd − 2ad) f

(wd + ad)
2 (wd + 2ad)

, (21)

∂2qd
∂a2d

=
−2
(
w3

d − 6wda
2
d − 6a3d

)
(wd + ad)

3 (wd + 2ad)
3 ,

∂2pd
∂a2d

=
−4

(wd + 2ad)
3 ,

∂2f

∂w2
d

=
−6a2df

wd (wd + ad)
2 (wd + 2ad)

,

∂2qd
∂w2

d

=
6a2d

w2
d (wd + ad) (wd + 2ad)

2 ,

−
2a2d

(
3w2

d + 6wdad + 2a2d
)2

w3
d (wd + ad)

3 (wd + 2ad)
3

∂2pd
∂w2

d

=
−2ad (wd + ad)

w2
d (wd + 2ad)

2 .

The terms in (18)-(21) are required by (14) when performing the
Newton Method during D-PLDA training.

4.4. Maximum Likelihood Regularization

In order to avoid over-fitting, the D-PLDA training process can in-
clude regularization. In the context of learning a D-PLDA model,
conventional regularization methods such as the l2-norm may not be
appropriate, since they do not take into account the statistical dis-
tribution of x-vectors. Instead, we use maximum likelihood (ML)
regularization which offers some probabilistic intuition. The cost
function in (12) is updated to include the ML regularization term:

Cml = −
η

N

N∑
i=1

log p (yi) (22)

= − η

N

N∑
i=1

logN (yi;0,W + A)

=
η

2

D∑
d=1

(
log (wd + ad) +

σ2
y (d)

wd + ad

)
+ const.

where σ2
y (d) is the variance of the dth component of yi and η con-

trols the balance between minimizing the discriminative cost and the
regularization term. Using Cml with the Newton Method requires



first and second derivatives, which are given by:

∂Cml

∂ad
=
η

2

(
ad + wd − σ2

y (d)

(ad + wd)
2

)
, (23)

∂2Cml

∂a2d
= −η

2

(
ad + wd − 2σ2

y (d)

(ad + wd)
3

)
,

and which are equivalent when taken with respect to wd. Using ML
regularization during training ensures that the D-PLDA model re-
flects the true distribution of x-vectors.

4.5. Domain Adaptation

When PLDA-based speaker verification systems are tested on unseen
types of data, performance can be expected to degrade. To combat
this, domain adaptation can be used to adapt the PLDA model to
a typically small set of in-domain data [14, 16, 17]. The proposed
D-PLDA framework can be extended to perform domain adaptation
by adjusting the cost function. Let Cood denote the cost function
from (12) when applied to a rich out-of-domain data set, and let Cid

denote the cost when applied to an in-domain data set. Domain adap-
tation can then be performed by utilizing a total cost function of the
form Ctotal=(1− α)Cood + αCid. Here, α controls the balance
between the data sets during D-PLDA training.

5. RESULTS

This section presents experimental results for the proposed D-PLDA
model. The speaker verification system used x-vectors generated ac-
cording to [4]. Global whitening and length normalization [1] were
performed, followed by an optional LDA dimension reduction. Two
baseline systems were used: the first used original 512-dimensional
x-vectors, and the second used LDA dimension reduction to 150 di-
mensions1.The baseline systems used conventional PLDA for scor-
ing, which was trained using the EM algorithm. The D-PLDA sys-
tem was applied to 512-dimensional x-vectors, and was initialized
using the EM algorithm. All possible combinations of x-vectors in
the training set were used when generating D-PLDA training trials.
The Newton Method was applied for 3 iterations, and used a step size
of γ=0.4. The Newton Method regularization constant was λ=10−3

and the ML regularization constant was η=10−4. Results are pro-
vided in terms of equal error rate (EER) and the minimum decision
cost function (mindcf) with P (H1)=10−2.

5.1. Speaker Verification on the Speakers in the Wild Core Task

D-PLDA was applied to the Speakers in the Wild (SITW) Core Task,
and results are provided in Table 1. The LDA dimension reduction
used by the baseline systems is specified in parentheses. In the first
set of experiments, the PLDA and D-PLDA training set includes data
from the NIST SRE04-SRE10 along with Mixer 6, totaling 63k cuts
(denoted ’SRE’ in the Table). In the case of D-PLDA, this results
in 3.9B training trials. In the second set of experiments, the training
set is extended to use data augmentation with noise and reverberation
from [18], according to [4], resulting in 151k cuts (denoted ’SRE +
aug.’ in the table). For D-PLDA, this results in 22.8B training trials.
In the last set of experiments, domain adaptation is performed with
the development set from SITW, which includes 823 cuts from 119
speakers. For PLDA, Bayesian adaptation was applied [16], and for

1The baseline systems apply length normalization to raw x-vectors. Alter-
natively, applying LDA prior to length normalization may provide improved
performance with x-vectors for certain tasks. Future work includes integra-
tion of the proposed D-PLDA method with the latter system configuration.

D-PLDA, domain adaptation was applied according to Sec. 4.5. In
either case, the whitening matrix was adapted to the in-domain data.

Since D-PLDA was applied to the original 512 dimensional x-
vectors, its effect can be observed in Table 1 by comparing it to the
PLDA (512) baseline. D-PLDA yields significant performance im-
provements in terms of both EER and mindcf for each set of exper-
iments. Specifically, D-PLDA provides 15%-21% and 18%-28%
relative improvement in EER and mindcf, respectively, compared to
the PLDA (512) system. On the other hand, PLDA (150) can be
considered similar to the state-of-the-art system in [4]. Compared
to PLDA (150), D-PLDA provides 5%-13% and 8%-18% relative
improvement in EER and mindcf, respectively.

Table 1. Speaker Verification Results for the SITW Core Task
Training

Data
Adaptation

Data
Model EER (%) mindcf

SRE -
PLDA (512) 10.61 0.959
PLDA (150) 9.10 0.815
D-PLDA 8.42 0.700

SRE + aug. -
PLDA (512) 7.71 0.678
PLDA (150) 6.89 0.606
D-PLDA 6.31 0.548

SRE + aug. SITW
PLDA (512) 6.01 0.611
PLDA (150) 5.90 0.588
D-PLDA 5.25 0.493

5.2. Speaker Verification on the SRE16 Fixed Task

The same experimental design was applied to the NIST SRE16 Fixed
Task, and the results are provided in Table 2. In the case of domain
adaptation, the SRE16 major unlabeled set was used with speaker
labels, totaling 2272 cuts from 1164 speakers. From Table 2, it can
again be observed that D-PLDA provides significant performance
improvements over the baseline systems in many cases. However,
D-PLDA fails to outperform the PLDA (512) baseline in the case of
domain adaptation, which may be due to the small number of cuts
per speaker in the SRE16 in-domain set.

Table 2. Speaker Verification Results for the SRE16 Fixed Task
Training

Data
Adaptation

Data
Model EER (%) mindcf

SRE -
PLDA (512) 23.19 1.000
PLDA (150) 19.30 0.961
D-PLDA 18.24 0.950

SRE + aug. -
PLDA (512) 21.82 1.000
PLDA (150) 18.03 0.953
D-PLDA 15.85 0.882

SRE + aug. SRE16
PLDA (512) 8.48 0.613
PLDA (150) 9.59 0.635
D-PLDA 9.52 0.615

6. CONCLUSIONS

This paper proposed a novel approach to discriminative PLDA for
speaker verification with x-vectors. Pre-processing data to diago-
nalize within-class and across-class covariance matrices allows the
PLDA model to be trained with the Newton Method without rely-
ing on approximations. The proposed method provides significant
performance improvements on the Speakers in the Wild and SRE16
tasks, relative to using conventional PLDA. Although introduced in
the context of x-vectors, the proposed D-PLDA method can likely
be applied to many other types of speaker embeddings.
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