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1. ~TRODUCTION

M- vdocity(i.e., firat spectral moment) estimation ismntrd topulwd-Doppler weather-
radar pro=sing. However, some radars, such as the Termirrd Doppler Weather Radar (TDWR)
and Airport Survdance Wdar (ASR), operate under conditions that test the fimits of current
upablhties. For example, high scan rate and fine (azimuth) samptirrg requirements yield a smd
number of prdse samples per gatel (i.e., small-sample size) while clear-air conditions result in low
signd-t~ noise levds. Hence, coupled with general interest for optimal velocity estimation, specific
needs motivate an investigation of improved performance under the constraints of small-sample size
and low signal strength.

As is often the case, the issue of practicability Umits the degree to which optimal perfor-
mana can be attained. hrther comphcating matters in this report is an assumed smd-sample
constraint that makes the definition of optimdity itself problematic. Indeed, the natural appeal
to the (asymptotic) optimfllty of maximum likehhood (ML) could fail; verification is clearly re-
quired. The Cram&r-Rao (CR) performance bound could be too optimistic, hkely unattainable by
any wtimator and therefore useless in gauging what room there is for improvement. Because few
thenreticrd results exist to serve M guides, numerical methods typically must be re~ed upon for the
relevant anrdysis.

This report presents a study of the velocity estimation problem and provides arguments for
frequenc~domtin smoothing (autocorrelation-lag weighting) as a means of achieving improved ve-
locity estimation performance. Although the emphaais is on smdl-sarnple anrdysis, the results are
not restricted to the small-sample caze. Note that the Bayes (ccmditiond mean) estimator (defined
by the usual formulation) minimizes the mean-squared estimation error over W estimators. This
property holds regardlas of sample size and hence ratimrtizes the use of Bayes performance w a
benchmark for optimcdity in this smrdl.sample case. Unfortunately, even assuming the conventional
Gaussian signal model, the conditional mean is computatimrdly impractical. It nevertheless pr-
vidw useful insight to the development of improved (and practicable) frequency-domain velocity
atimators.

At the heart of this study is a Monte Carlo analysis examining smaH-sample performance for
selected mean-frequency estimators. In addition to the pulse pair (PP) estimator and a typical
Fast Fourier Trasform (FFT) estimator fi.e., a periodogram based estimator derived from wind-
profiler (WP) literature], maximum Ukefihood (ML) and Bayes estimators (these two baaed cm a
Gaussian sigrrd model) are examined and compared. Sample size is fixed to a small (M = 20)
value, and performance at low signal-t-noise ratios (SNR) is dso a point of focus. The results of

]For TDWR, on the order of 40 pulse samples are coherently processed per output velocity estimate;
for ASR-9, cm the order of 18 (dthcmgh data sharing has been used to extend this value to 27).



these andym are used to recommend an optimal smoothing (weighting) strategy for periodogram
(autowrrdation-lag) based estimation.

As stated, the motivating iuterest is improved velocity estimation for Doppler weather radars,
and the content of ttis report is clearly oriented toward weather-radar processing. However, the
radts of Section 6 should be of a more general interest, presenting a new and novel method for
dedng with the fundamental problem of nuisance parameter removal under the constraint of a
Utited sample size.
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2. BACKGROUND

2.1 Statistical Model

For this report, it is sssumed that a frequently adopted Gaussian model (for sin~e-source
weather returns in additive noise) is appropriate (see, for example, Doviab and Zrnit [1]). This
modd is tiarwterized by the sample covariance relation

~m=~e-S(fi..mr/A)2 e-~4”cm’1~ + N6m, (1)

where the modcd parameters w and o. represent mean Doppler velocity and spectrum width, A
is the radar wavelength, and S and N respectively represent signal and noise power magnitudes.
Complex-valued rtiar returns, ZT = [zOzl . .. ZM-1].2 cOrrespOnding tO a singe range cell me
assumed to represent M equally-spaced samples (separated in time by pulse separation r) of a

mmplex Gaussian process with covariance matrix R = E[ZZt]. In view of Equation (1), R can be
given the parametric representation

R = D [SG tN~D* = SDGDD t NI, (2)

where

D = D(u) = diag[l e-JW . . . e-~(M-l)W],

[ P(o) p(1) . . . p(M- 1) 1

I ;
p(1)

G= G(u)= : p(o) . . . p(M-2)

. . . .

P(M - 1) p(M -2) . . . p(o)~ 1’

I = diag[l 1.. .1],

p(m) = e-*(*m”)2,

2Notationdly, a superscript “T” will be used to indicate a matrix tmnspose, a superscript “*” win
be used to indicate complex conjugate, and a superscript “t” will be used to indicate conjugate
transpose.
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It is ~sumed that N cm be reliably estimated and treated a3 known, and for convenience
S ad N me mmbined into an unknown SNR q = S/N. The complex data vector Z is therefore
governed by the probabfity density

p(Zl@) = z-MIR]-’e-ztR-lz, (3)

and wtimation of the Doppler velocity u must be done in the context of the unknown parameter
vector @T = [u 0 q].

2.2 Experimental Design

2.2.1 W=ther-Radar Simulation

Weatherhke Doppler signals were simulated m described by Zrnit [2]. For rdl simulations,
digitd sampUng of Gaumian shaped power spectra was emulated, including Nyquist folding, until
d tail values with power greater than 0.01 were accounted for. Given an M point input power spec-
trum, Zrnid’s method generates a random vector of M consecutive process samples. A brief study
of sample estimator performance wa3 made to examine (and thereby ensure bmits for) uncertainties
due to power spectral sampfing and Monte Carlo sample size. As a result of this investigation, a
1024 point power spectrum representation w= used and, from the corresponding output process
vector, a block of 20 contiguous samples wa3 extracted for use w a data sample (the remaining
1004 points were discarded). Also, a total of 10,000 (independent) realizations were used for each
assessment of sample mean and standard error.

Error results are presented in both normalized and unnormdized form, In view of the defini-
tions in ~uatimr (2), spectrum width and standard error values we normrdized to the magnitude
of the Nyquist velocity UNvg. Biw errors are normrdized to the magnitude Of the true underlying
signal velocity. Unnormdized vrdues are presented in the context of weather-radar processing us-
ing a 10.4 cm radar operating with a pulse repetition frequency of 1000 s-l. (The unambiguous
Nyquist velocity therefore equrds 26 m/s.)

Provided also, for reference, are curves corresponding to the CR bounds that were computed
using the well-known result3

{ }
fi,j = tr R-’ ~ R-’ ~ , (4)

3A derivation is provided as an appendix.
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where F = [~iti] represents the Fisher information matrix

The diagond entries of F provide the desired hrmnds:

E[(di - Oi)z] z 7i,i, (5)

where F-l = ~iti] md ii is arry unblmed estimator of component 0; of e.

2.2.2 Test-Signal Parameters

Performance evaluations/comparisons are based on estimation error that clearly carr v~y as
a function of the true parameter value. Error quantification for dl possible values of the (true)
parameter is not feasible, Evacuations are bwed, therefore, on comparisons for selected parameter
values.

Target velocities of O, 5 (0.192 v~vq), and 13 m/s (0.500 o~vq) are used in the present evdu-
atirm. Preliminary studies obtsined similar error profiles for velocities in the range O to 0.5 UNYg.
Velocities greater than 0.5 UNv~are not examined to avoid the added complexity of spectral folding.

Values for weather spectrum width can rarrge from O to UNVq.For coherent Processing, Only
a small range is of interest. A further simphficatimr is made by considering only extreme points of
this range providing two classes of input signal: narrow ad wide spectrum width. Table 1 conttins

TABLE 1

Model Sample Correlation vs Spectral Wdth

the correlation values for the first three lag indices in the model [Equation (2)] corresponding

5



to thrm vdu= of normrdized spectrum width. For a normalized width of 0.2, there is significant
decorrelation betw~n samplw separated by two or more places. (Improved estimation using hlgher-
order lagproduct statistics wotid seem unfikely beyond this point.) The normtized value 0.2 is
used to repr=nt wide spectrum width si~ds. Given the setting of the simulation, this sign~
mrresponds to a weather signal with a spectrum width of 5 m/s. At the other end, the value 0.038
(mrresponding to a 1 m/s spectrum width) is representative of narrow spectrum width siqds.

6

Mltidy, performmce mmparisons are made for discrete SNR values in the r~ge -10 to 10 dB.
Thwe (initial) rmults are the basis for a later shortening of the examined range to -4 to 10 dB.



3. ESTIMATOR EQUATIONS

3.1 ML and BAYES Formulations

The ML solution corresponding to Equation (3) is obtained, in principle, from joint maxi.
mization of the “Ukehhond” function

L(e) = - h IRI - Zt R-l Z, (6)

but this has tirnited prmticd apphcation because the resulting system of equations is neither
exphcit nor aepmable with respect to the components of ~. The Bayes estimator that minimizes
the mean-squared emor E[(d - w)*] is the mean of the condition (posterior) density p(@lZ) (see,
for example, Van Tres [3]) where the posterior density is derived from application of the Bayes
fommla

p(z[e)p(e)
P(@lz) = Jp(zl@)p(@)d@. (7)

This too has hmited pruticd use U, notationdly, “do * = “~ da dqm; the resulting estimatOr

requires substantial numerical integration to cover the parameter space volume. Approximations
of some form ace clearly required in order to proced further. The approach considered here first
steps b~k and examines a simpler model for which pr~ticd (ML and Bayes) solution is possible
and, later, examines adaptation of the resulting solutions to the model of Equation (3).

Examirdng the (somewhat) degenerate situation wherein one aasumes the spectrum width
(u) and signaf-tenoise (q) parameters known is, of itself, very useful. Under these conditions the
aforementioned computational blocks are largely avoided, and one ~h]eves optimal estimators that
fom a foundation for further mdysis.

In the caae of ML estimation, knowing u and q reduces Ukelihood function, Equation (6), to

the term ZtR-iZ defining the ML solution

(8)

In the above, the coefficients 7i,~ are the elements of the matrix r resulting from the convenient
redefinition

r = r(O, q) = [SG t NI]-]. (9)



~uation (8) is not expUcit for w; however, a change of variable and remrmgement results in an
interwting frequency domtin form:

(lOa)

where fir) is the r-weighted autocorrelation estimate defined by

(lOb)

M-m-1
f(r) = ~ Z: ~i,i+~ Zi+~. (11)

i=O

From inspection of Equation (10) it is clear that a solution to this ML equation can be obttined

by implementing a standard FFT transform of the weighted autocorrelation estimates f:). The
transform smnples Equation (10) with a resolution of 2T/NFFT (NFFT is the FFT size) and thus,
by zero filfing, computes bML to a desired resolution.

A similar computational reduction occurs for the Bayes formulation. If one aasumes a uniform
prior4 for U, the (one-dimensiond) Bayes estimator cm be written w

(12)

The above FFT computation, which yields the ML solution, dso provides the exponent in Equ&
timr (12) and therefore a starting point for computing the posterior mean.

Comment 1. If, in Equation (11),~i,i+mz 1, then f$) is equivalent tO the (biwed) sam-

ple autocorrelatimr estimate, and an FFT implementation of Equation (10) is equivalent to the
(windowed) power spectral density estimate obtained using the Bartlett window. Hence, there is

4For this report only noninformative priors are considered, which, for w, can be stated w p(w) =

lf2rr, -% s w < T.
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&an eqrdvdence between the FFT computation for Equation (10) and the periodo~am spectral
wtimate

(13)

The rescdting ML estimator would therefore be equivalent to the Periodogram Maximization esti-
mator considered by Mahapatra and Zrnit [4]. (The apparent contr,?diction in which a minimization
of the power spectrum in Equation (10) defines the ML estimate is accounted for by the sign of the
weights ~i,i+~. )

Comment 2. If ~i,i+m s ~m, then Equation (10) implements a cl~sic smoothed periodoaam
atimate. However, r (the inverse of a TnepHtz matrix) is only ~ymptoticaOy Twplitz (though r
is persymmetric: ~i,j = ~M_jM_i). This nevertheless does suggest an alternative frequency domain
solution and approximation based on implementation of a smoothed periodogram estimate.

S.1.1 Smoothed Periodogram Approximation

For this report, the weighted autocorrelation, Equation (11), is viewed ~ posing no computa-
ticmd difficulty (the results presented here assume such an implementation). However, a Toeptitz

aPPrOfimatiOn tO r prOvides a useful heuristic within which to view the relevance of the paracrce-
ters u and q. This, in turn, may suggest approaches to the more general case where u and q are
unknown.

b treating r aa ToepUtz, one can compute smoothing weights by tM1ng averages rdong the
diagonrds Of r:

(The minus sign is introduced here so that the ML solution of Equation (10) can be associated with
finding the maximum of the power spectral density estimate.) This maximum hkehhnod window
function, indexed by v and u, can be used to define rm approximate ML scdntion

(14)

where fm represents the rrormd (unweighed) autocorrelation estimate.

The rdaticmship between Tm and the parameters u md o is documented by Figure 1 where
frequency-domain smoothing windows (Fourier transforms of the coefficients Tm; interpolated for

9



1

0

1 I 1
1 SNR = -10 dB

o
4 0 n
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Figuwf. MLma[chedfilier windows: uandq dependence. Frequency domoin smoothing
windows obtained by Foum’er tmnsfoming the weighting coeficienis Tm am plottedjor
ihme values of weother SNR and a mnge o]weatherspecimm width values.
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clarity) are presented for three SNR values: .10, 0, and 10 dB, and a range of norcntized spectrum
widths. At 10 dB SNR and for low to moderate spectrum widths the smoothing windows appear
to be, przctidy speaking, square-window averagers. This suggests the genertized view that the
spectrum width parameter u primarily affects window width. As SNR decreasw, the dominant
f-ture change is a scdng of the windows to smder magnitudw (although shape rounding and
bandwidth broadening, as measured by 3 dB width, are clearly evident). It is helpful to add
to the generdzation by stating that the windows are scaled according to the SNR parameter q.
Predictions that result from these simplifications are as follows. Clearly [from tiuation (10)],
sdng the window does not affect ML estimation, and hence the value of the SNR parameter
v wotid not be expected to have a strong effect on the performance of an ML implementation.
However, in the case of the Bay= implementation, scaling coupled with exponentiation implicitly
introduces a form of signal isolation. That is, by its nmdinear nature, the exponentiation in
~uation (12) enhmces (isolates) large spectral fines in the smoothed periodograrn, and scd,ng of
the window (by q) modulates this isolation by adjusting the power of expmrentiatirm. Hence, one
would anticipate that, at least, the biw of the Bayes algorithm would be affected by the v value
used.K

s.2 Time-Domain Processing: Pulse Pair (PP)

The PP estimator is stadard in weather radar apphcations, and its formulation can be
obttined from many sources. Originally proposed in the context of the independent samphng of
PP measurements (for example, see Miller et d. [5], time-domain formul~ for PP estimators have
been routinely apptied to vector me~urements such as those represented by the sample Z. For the
purpose of this report, the PP estimator is defined by the equation

M-2

&pp = arg ~ Z; Zi+].
i=O

(15)

When M = 2, this dso defines the ML estimate, u can be seen by comparison with Equation (8).
Clearly, as u increases and the correlation between samples decreases one would dso predict Opp

to approach the performance of OML.

S.S Prequency-Domain Processing: Wind Profiling (WP)

Among the various pubtished frequenc~domain methods is one that has been developed for
use in WP networks—a t-k with inherently low SNR vdrres (see May and Strauch [6]). The WP

‘The prewnce of a uniform noise floor in the spectral density estimate induces a b]as toward the
value zero when the mean of the density is computed.
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wtimator of May and Strauch [6] is periodogram derived and has led to general claims of improved
Doppler mean atimation in the case of low SNR; hence, it is of interest for the present report.

The ~timator, WP, was derived with one major departure from the description given in May
and Strauch [6] (their F]rst Moment or FM algorithm). Computaticmd aspects of this algorithm
are pr-nted bdow hy way of a comparison with the proposed (rme-dlmensiond) ML and Bayes
~orithms. Note, however, that there is one important difference between the WP algorithm defined
here and the algorithm described in May and Strauch [6]. The WP network makes generous use of
periad~mm averaging as a means of stabihzing the periodogram estimates (Bartlett’s procednre;
see the next section). Because the emphaais of this report is on estimation using a fixed smdl-
sample size, no such averaging is possible. (This report does not consider the possibility of data
averaging across range gates or neighboring radids.)

Estimate Stabilization. At the heart of the WP algorithm is an implementation of Bartlett’s
procedure for estimating the power spectral density. That is, the data segment for anrdysis (length
M data segment corresponding to a single range ceU observation) is divided into g equrd length sub-
segments, each of which is used to obtain an M/q-length periodogram estimate. The g power spec-
tral =timates are averaged to improve the stability of the power spectral estimate. The Bayes im-
plementation [Equation (12)] dso can be viewed as having a power spectral estimator—a smoothed
periodogram-at the heart of its procedure. Because Bartlett’s method per se is not appropriate for
the smaH sin~e.sample case (the primary interest here) it may be argned that smoothing windows
therefore are necessary to stabifize the estimates. (It should be remarked that, generdy speaking,
the gods of mean Doppler velocity estimation and power spectral density estimation are not one
and the same. Hence, general arguments for improving power spectral estimation do not necessarily
carry over to improved velocity estimation.)

Signal Isolation. After obtaining an estimate of the power spectral density, the WP method
proceeds with an ad hoc attempt to isolate signal from noise. A noise floor for the spectral estimate
is determined, and censoring (zeroing) of d spectral coefRcients beyond the first crossing of the
noise floor, when proceeding from that frequency index with maximum power, is performed. The
noise power level is dso subtracted from the remaining interval of ncmzem values, and a mean
frequency value is computed by constructing a density from the remaining spectral coefficients and
computing its mean. As previously mentioned for the Bayes implementation, the combination of
window sc~ng md expcmentiaticm can be given the heuristic interpretation of signd-from.noise
isolation.

12



4, PERFORMANCE WITH KNOWN a AND q

This -tion presents a bastilne analysis corresponding to a one-dimensiond parameter space
(i.e., u and q assumed known). These Monte Carlo results provide optimal performance measures
for each method. In the c~e of the Bayes implementation, results for known u and q dso provide
a ~~twt lower bound for the standard error of estimating mean Doppler velocity.e In later
sections, the Bay- curves determined here are employed with the label “Bayes Bound” for velocity
cztimation.

4.1 Zero Mean Velocity

Figure 2 praents the simplwt comparison: estimation of a zer-mean Doppler weather target
(&minating, for the moment, the contribution of bias7 in standard error comparisons). The figure
plots standard error vs input SNR for two ewes: a narrow input spectrum width (o = 0.038 UNuq)

and a wide input spectrum width (u = 0.192 VNv~). The corresponding CR lower bounds are
included in each panel.

4.1.1 Narrow Spectrum Widths

ML, PP, and WP. For narrow spectrum widths ML, PP, and WP estimates d exhibit
similar functional relationships with rezpect to SNR. A uniform ranking of these estimators (across
SNR) cannot be deduced from the data ML is clearly best at high SNR (7 to 10 dB) values but
the WP method appears relatively better at low SNR values (less than O dB).

CR Bound. For narrow spectrum widths, the CR bound is well below the error curve of
any of the above three estimators—lower by nearly a factor of two at the high SNR end. This
discrepancy between CR bound and observed performance, which is even more substantial for low
SNR values, could erroneously lead to speculation that much improved performance is possible.

Bayes Bound. The curve for the Bayes standard error shows the CR bound to be overly
optimistic. However, the Bayes estimator clewly exhibits a performance gain for SNR values in
tbe range O to 10 dB (at 10 dB, the Bayes standard error is respectively 0.72, 0.66, and 0.52%

8Comparisons involving the ML, Bayes, and WP performance statistics must concede an error (hiss)
that results from the finite length FFT implementation. For these frequency domain estimators, the
samphng resolution of 2/NF~ UNyq is exhibited = a bim in the range+ l/NFFT UNvq (and therefore
maps an interd about the error values reported here). All frequency domain computations in this
report were computed using an FFT length of 64.

‘For this zero mean Doppler signal, each of the three frequency domain methods was found to
exhibit an estimated bias below the resolution defined by the 64 point FFT implementation (i.e.,
< 1/32), regardless of the q value.
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that of the ML, PP, and WP wtimators; at O dB, the Bayes standard error is r=pectively 0.58,
0.60, and 0.54% that of the others). For SNR values less than OdB, adequate separation of signal
from noise becomes more diffimdt and the Bayes standard error drops as its estimate bemmes
increaain~y biased toward zero. Comparisons among the estimators for SNR values below O dB
shordd therefore include hiss error, and this is included in the sections to fo~ow.

4.1.2 Wide Spectrum Widths

For wide spectrum widths rdso, the general observations of tbe previous section apply, but of
particular note for these input signals is the following. ML and PP performances are predictably
dew, dthougb ML is better at higher SNR vafues and appears to approach the CR bound (as SNR
increas-), whereas the PP curve appears to plateau at a level distinctly above the CR bound. From
inspection of Table 1, one may surmise that at a normtized spectrum width of 0.2, the decorrelation
between sampl~ is such that very httle improvement can be realized from using higher lag terms
in the estimation process. In confirmation, there is less difference between performance of PP and
ML and the CR and Bayes bounds; however, note that WP stands done as a clearly suboptimd
estimate. This exceptionally marked degradation in WP performance persists to high SNR values
and confirms a wide-spectrum-width weakness identified by other investigators. The ML estimator
aPPears to achieve the lower Bayes bound for SNR values in the 5 to 10 dB range, and both ML
mrd Bayes improve upon PP performance over this range (at 10 dB, the Bayes standard error is
respectively 0.98, 0.81, and 0.37% that of the ML, PP, and WP estimators). For SNR vdrres O to
5 dB, ML and PP performances are essentirdly equivalent, and both depart appreciably from the
Bayes bound M SNR approaches dB (at OdB, the Bayes standard error is respectively 0.83,0.83,
and 0.64% that of ML, PP, and WP).

As a secondary note, one should observe that there is no conflict in the fact that the CR
bound and Bayes error curves cross (there is an impfied crossing of these two curves for the narrow
spectrum width case as we~). This only serves as a reminder that the CR bound appfies to the
performance of unbi~ed estimators, which the Bayes estimator, generally spetilng, is not.

4.2 Nonzero Mean Velocity

Standard error and bias results for nonzero mean velocities (V= 5 m/s and v = 13 m/s) and
narrow and wide spectrum width c~es, as above, are presented in F)gnre 3. Standard error results
are summarized in the upper hdf of emh panel, and hiss results are summarized in the lower.

4.2.1 Standard Error

For SNR vafues greater than O dB, there is general agreement (within the resolution of the
Monte Carlo parameterizatirm) with the results of Figure 2. Below OdB, there is a notable departure
(most evident for the Bayes results) due to inclusion of bias error.
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4.2.2 Bias

For both narrow and wide spectrum widths there is a breakdow of dl four methods w SNR
decreases bdow O dB. For SNR values greater thm O dB, the hi= of each estimator appears to
be wittin acceptable fimits and generaRy near zero. A large proportion of tbe improved (standard
error) performance of the Bayes method, for SNR <0, is at tbe cost of increaaed bias (toward zero).
GenerWy, the PP estimator appears to have the best (i.e., smdest) bi= performance. Departure
from zer~bias performance in the narrow spectrum width caae occurs eartier (i.e., at higher SNR
vdrrw) in comparison to the wide spectrum width c~e.

PP and ML resdts do not appear to change appreciably when the weather velocity is changed
from 5 to 13 m/s. Although the theoretical CR bound does not depend on weather velocity, this
is not true for the bound provided by the Bayes estimate. Performance for the Bayes and WP
mtimators, which botb compute a spectral mean, deteriorate when weather velocity is incremed to
13 m/s—a performmce loss due to spectral folding. (Interestingly, moving weather velocity from
5 to 13 m/s has its most significant bias effect in increming that of the PP estimator.)

4.9 Summary

4.3.1 Narrow Spectrum Widths

For narrow spectrum widths ML, PP, and WP methods d have similar performance charac-
teristics (over the range of SNR values examined). Nevertheless, it can be argued that ML provides
better performance at higher SNR values. Clearly, the indication is that higher SNR values are
required to bring out a decisive advantage here from the ML implementation; a more extensive
Monte Carlo anrdysis (including higher SNR values) would be needed to measure the extent of
these improvements. As SNR decreases away from O dB, aU methods begin to fail although the
blm performance of PP is uniformly best. The CR bound is much lower than the performance of
d, but the Bayes results show the information bound to be overly optimistic for this small-sample
(M = 20) case. The asymptotic optimtity of ML estimation w= dso demonstrated to be of no
consequence for this smfl-sample case. The Bayes estimator demonstrates a markedly improved
performance, but for SNR values below zero, this is at lemt in part, at the expense of increaaed
bias. Bias does not appear to contribute appreciably to estimation error for SNR values above
O dB. Ml four methods, however, do exhibit notable biw for SNR values in the range -5 to OdB.
Bi= comparisons appear to always favor PP estimation.

4.3.2 Wide Spectrum Widths

At wider spectrum widths ML and PP are for the most part similar, but the ML results
show a slight improvement at higher SNR vafues (greater than 5 dB). Although Bayes performance
represents the optimum, ML and PP are close to its bound (compare to the narrow spectrum case);
d three estimators perform near the CR bound (again, in comparison to the narrow spectrum
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-e). However, the WP method clewly has an undesirable performance at wide input spectrum
widths. An aplanation for this is offered in Section 5.2.



5. PERFORMANCE WITH ARBITRARY u AND q

The previous section indicated that a small performance improvement (as measured by etan-
dard error) might be obttined using an ML formulation (relative to PP and at high SNR values
ordy), and that a much improved (and optimal) performance might result from a Bayes implemen-
tation. The task at hand, now, is to preserve these performance gtirrs while addressing the issue
that u and q are never known exactly.

h the remainder, the Bayes and ML algorithms will process data using approximate values
for the parmueters u and q aud, in that sense, represent suboptimd algorithms. (However, for
convenience, the labels Bay= and ML will stiU be used.) Before evaluating practical approaches to
=timating o and q it is useful to examine the effect of arbitrary u and q values cm Bayes and ML
performance. h other words, for velocity estimation, first consider whether it is important that
either u or ~ be known at dl. This examination is made by keeping one parameter fixed at its
known value while varying the other among appropriate candidate values,

6.1 Sensitivity to Incorrect q

Figures 4 and 5 continue tbe narrow/wide spectrum width anrdysis of before by exarrcining
perform~ce when data are processed assuming either one of two fixed q vrdues: Oor 10 dB. These
cboicw represent logical test cases in the sense of asking whether reasonable performance cm be
obtained by categoricdy treating tbe data as either low or high SNR data. Fjgure 4 considers
ML estimation for the narrow and wide spectrum width case; Figure 5 repeats the arrdysis for
the Bayw estimator (comparisons for Doppler weather targets of 5 m/s (0.192 VNV*) and 13 m/s

(0.500 VNvg)are presented). In this, and dl following figures, the Bayes performance curve for tbe
case of known u ad rf (Section 4) is repeated as the “Bayes Bound.” The results for PP estimation
are dso reproduced for continued comparison.

5.1.1 ML Algorithm

In tbe case of narrow spectrum width weather [Figures 4(a) rural 4(b)], tbe parameter q as
predicted (Section 3.1.1 ) h= no apparent effect cm ML performance. This is not quite the cue,
however, for wide spectrum width weather [Figures 4(c) arrd 4(d)] where mismatch between assumed
and actual SNR results in increased estimation error. As will be seen dso in the case of the Bayes
dgoritbm, using a 10 dB vrdue for tbe SNR parameter results in a performance loss (relative to
PP) for input SNR values below 6 dB. Hence, tbe view of a smoothing window shape independent
of q is, in places, an oversimplification.

5.1.2 Bayes Algorithm

From Figures 5(wd), it is clear that the Bayes implementation, using an arbitrary fixed q, has
a substantidy altered performance. In neither case (O or 10 dB window) did performance match
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the optimum Bayes Bound for d input SNR values; nor did it, at least, unifody improve upon
PP performance.

For the narrow spectrum width case of Figure 5(a), there is au (apparently) anomdmrs
crossing of the Bayes Bound curve by the performance curve assuming q = OdB. TMISis not a
contradiction because the Bayes Bound optimrdity appties only in the sense of average performance
against the tottity of d possible weather target velocities. Hence, it is possible to obtain lower
standard errors for this purticufnr weather velocity of 5 m/s. (Clearly, tbe estimator O = 5 m/s,
an extremdy degenerate case, has zero standard error and him at this test point.) With the OdB
window, note the severe compromise in estimator bias. This bias is reflected in the (standard error)
performance loss, which is most notable at higher velocities [see Figure 5(b)]. Hence, for narrow
spectrum width weather, processing the data with M assumed SNR of O dB incurs the penalty of
increased bias restiting from inadequate signal isolation.

Assuming an q of O dB does make sense for wide spectrum width weather [Figures 5(c) and
(d)]. For low input SNR values, the optimal Bayes Bound is matched, and at higher input SNR
vduw, performance appears to be no worse than that of PP. The bias of this implementation is
dso very sitilar to that of PP.

At the other extreme, processing tbe data assuming q = 10 dB appears to better PP perfor-
mance in the cwe of narrow spectrum width signals but at the cost of a performance loss (VSPP)
at low input SNR values and wider spectrum widths [Figures 5(c) and 5(d)]. The bias performance
with a 10 dB window, if anything, does improve upon that of the ided (q known) case.

6.2 Sensitivity to Incorrect o

For this series, the known values for q were used in the algorithm and a set of values for the
parameter u, ranging above and below the true value, were tested. In contrast to varying V, the
range of u values tested did not appreciably change tbe bim results. Therefore, bias curves for this

set are not presented. Figures 6 and 7 summarize the standard error results for ML and Bayes
dgoritbms respectively.

For the narrow input spectrum [Figures 6(a), 6(b), 7(a), and 7(b)], u values ranging from

Utrue/4 to 5Utru.8 Were tested; fOr the wide input spectrum [Figures 6(c), 6(d), 7(c)) and 7(d)l~
Ivalues ranging from 0,,., 5 to 9/5uir.eg were tested. In plotting the results, the performmce

region spanned by underestimating o is marked in white; the performance region spanned by
overestimating u is indicated with dark shtiing. Performance curves for euh of the tested values
are included as thin fines; the lowest curve in each panel always represents the performance when

‘Values 0.25, 0.5, 1.0, 2, 3, 4, and 5 m/s (u~,., = 1 m/s) were examined.

‘Values 1, 2, 3, 4, 5, 6, 7, 8, ad 9 m/s (u,,., = 5 m/s) were examined.
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there is a perfect match between the assumed u value and that of tbe weather. The heavy curve
in =h panel is PP performance for reference.

h general, signifiwt deviation from optimal performance occurs for o parameter values
grossly in error (using values 3, 4, and 5 m/s when et,., = 1 m/s, and using values 1 and 2
m/n when at,= = 5 m/s). Because ML performance, assuming u md v known, is close to PP
performance, not knowing the correct value for o generaUy results in a significant performance loss
[Figura 6(&d)]. For narrow spectrum widths and SNR vd.es in the range O to 5 dB, a marked
performance gtin stiU exists for the Bayes estimator, regardless of the value used for the parameter
u. The potential compromise at larger SNR values, however, indicates that the algorithm does not
perform weU with a u value that is too distant from the underlying true value.

Comment. The WP method, prior to noise subtraction md censoring, can be viewed as
a Bayes rdgorithm wherein the parameter o is assumed to have an arbitrary narrow width (no
frequency domain smoothing is done). The plots in figure 7(c) and 7(d) confirm this notion as it
can be seen that the Bayes performance curves approach those of the WP method (see Figure 3)
when a nmrow u is assumed but the weather possesses a wide spectrum width.

6.S Summary

It is unclear whether arbitrary fixed values for u and q can guarantee an estimator performance
that is consistently better thao that of PP. Bayes performance relies heavily on knowledge of both
u and q, ML performance, more appreciably on o

In the smoothing window view of Section 3.1.1, it is not enough to smooth arbitrarily. It
is important that the data be processed with an amount of smoothing that matches correlation
strength between samples. Treating the data as being highly correlated (low u) demonstrated a
severe performance loss when weather signals in fact had wide spectrum widths. This explains
why periodogram b~ed rdgorithms, such as WP, do not perform we~ given wide spectrum width
weather (too much weight is given to higher lag products). Unfortunately, treating the data as
being largely uncorrelated (high u) resulted in a corresponding performance loss with input signals
having narrow spectrum widths and high SNR values. Nevertheless, the indications are good that
improved performance (relative to PP) is possible with a smoothing methodology requiring less
than perfect knowledge of u and q.

The ML implementation at best only matches PP performance; any performance gain at
higher SNR levels would clearly be compromised by inaccurate knowledge of u. (Hence, the ML
implementation wiU not be considered further in this report.) A successful Bayes implementation
will require an adaptive selection of smoothing (weighting) coefficients, which is the focus of the
next section.

37



6. PE~ORMANCE WITH ADAPTWE u AND q

With an emphasis on the estimation of w, one can adopt the view whereby u and q are
treated as nuisance parameters. Here, there exists a natural Bayesian method of treatment: removal
through expectation. This lo@cd recourse unfortunately does not lead to algorithm simplification
(in the present case), requiring as much computation w that n~ded for solving the vector parameter
problem. (It appears that the integrations required for nuisance parameter removal must be done
numerically and dso require the data vector to be in band.) Coupled with this observation, the
results of the previous sections motivate an approach that s~ks to adapt the computaticmd form
of Equation (12) using (suboptimd) estimates for o and V. Simple estimation of u and q (using
method of moments estimates described below) and direct substitution into Equation (9) and (12)

(smple by sample) were found to yield a performrmce clearly worw thw that of PP. This is not
(entirely) unexpected because, Uke w, u and q are being estimated from a small sample and (u-

performmce) sensitivity to large deviations from the true u and q values csn, on average, do more
harm than good. Clearly, an approach is n~ded whereby the estimated values d and fi, substituted
into Equation (12) via Equation (9), are suitably constrained to minimize penalties that result from
their inaccuracy. This section describes one such approach that was found to be successful.

The general processing strate~ considered is as follows. Given a data sample Z, suboptimd
estimates of o and q are first computed and used to select a weighting coefficient array (matched
filter) r from a small, fixed, and predetermined family of matrices; the chosen matrix is used to
process the data as per Equation (12) and provide a velocity estimate. The number of matrices
required, their coefficient specification, and the criteria used to choow from among them is the
subject, then, of this present section.

6.1 Constrained Inverse Filter (r) Select ion

This section focuses on the nuisance pair (u, V) as an element of a (parameter) set Q that is
assumed to be partitioned into K disfilnt pieces, i.e.,

K-1

V= UV&, where ~in~j=O(i#j).
k=o

Each region ~k is assigned an optimal representor (o, q)k c V, and a corresponding weighting
matrix rk is computed as per tbe definition [~uation (9)]. A representor for a given ~k is
determined by mems of a minimization involving the directed divergence [7] (i.e., KuUback-Leibler
information)

[1I(p:q)=EP logs .
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The divergence 1(P : g) has a useful interpretation as a tistarrce~o me~uring ~ a~lity tO dis-
criminate probablhty density p (and, hence, its corresponding model) from alternative g (note:
1(P : g) ~ O and 1(P : g) = O # p s g). Furthermore, the divergence [Equation (16)] is e~ily
mmputed for the Gaussian case [Equation (3)]: if rl and rz correspond, respectively, to densities
PI and M, then

l(P1: ~) = 10g [rll - 10glr21 t tr(rzrl-] - 1).

A somewhat natural approach, then, is to define the optimal representor for Vk as that pair (u, V)
whose corresponding density [Equation (3)] minimizes the discrimination information (divergence)
averaged over W densities g corresponding to parameter pairs in the set Wk:

(17)

where Fk is the density corresponding to ~k and ( is an index to pairs (u, q) in wk. In words,
as mpreaentor for the set Wk, select that density (model) which, in an average sense, is lemt
distinguishable from the feasible densities (models) in wk. Note, no restriction is made that the
point ~k must be conttirred in wk.

Ezample. Consider tbe (trivial) case where it is assumed that W = (O,0.25] x (0,20] arrd
K = 1. That K = 1 is specified ~sumes dl data can .be processed with the weighting coefficients
corresponding to one (arNJtrary) set point (~. FOr t~s cme it is an e~y matter tO sOlve Equa-
tion (17)?] and one obtains the solution (u, q). = (0.165, 8.4). figure 8 shows the Performance
of the resulting estimation algorithm. Al”tbmrgh performance is near optimal for wide spectrum
widths and high SNR levels (locations new the set point), uniform improvement for the entire range
of parameter values in V is absent, and performance is severely compromised in places as weU. One
must conclude that this V is too large to be represented by one set of weighting coefficients.

Figure 9(a) is a plot of the divergence for the above example. Divergence is near zero in the
vicinity of the set point and cnrves upward (away from zero) as weather spectrum width and SNR
deviate from tbe set point. Note, also, that the curvature is not uniform in direction—the most
acute curvature occurs with respect to spectrum width as weather SNR becomes large. Clearly, the
gnrd is to devise an adaptive method that has a composite divergence surface as flat and as nem

]oTe&njc~lY, the divergence f~ls w a true distance because it does DOt SatiSfY the tri~~e jneqU~-

ity. Th]s faitirrg, however, dries not prevent its use in the present application.
]] OPtjmjzat ion w= ac~fieved bY means of an implementation of the Nelder-Mead modified POlytOPe

(direct-search) algorithm (see, for example, Gill et rd. [8]).
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mm as possible. The logical extension, of course, is to swk improvement by solving the situation
for K > 1. Two simple extensions, a two and thrw compartment model, are dso tilustrated in
Figure 9(&c). Here, the divergence surface for each compartment is computed as per Equation (17);
dthcmgh not yet striking, the notion of flattening the composite surfwe is clear.

There is, however, a problem with the simple extension of Equation (17) to K > 1; Equ&
ticm (17), as written, has the imphcit assumption that one would (could) distinguish perfectly
between the opposing hypotheses w to whether data Z were more consistent with parameters from
the set ~k vs rdternatives from its complement Vi = V – wk. clearly, for }{ >1, Equation (17)
must be modified to ucmrnt for the accur~y of the decision process that matches the data to one
of the subsets V&:

~k =
(Csv)tv . . . .

t Pr(SeleCt ~k I ~kc). ~kc ~(q( : ~~)ti} . (18)

In this way, the desire to optimally match (u, q)k to ~k is balanced against the probability that
the data will be incorrectly matched with Wk.

6.2 Suboptimal Estimation of u and q

The cdculatimrs for Equation (18) require specification of a set of decision rules and the

correspondlcrg statistics (estimators) to be used; however, once this is done dl information required
to solve ~uation (18) is present and the selection of rk! (k = 0,.. ., I{ - 1), can be completed

prior to the processing of any data. Therefore, atthough computaticmdly formidable, the solution of
~uatimr (18) is quite achievable. This section will focus on decision rules using essily computable
suboptimd estimates for a and V. For suboptimd estimates, an appeal to the assumed correlation
structure of Equation (1) and (method of moments) estimates for & and O, derived from a weighted
least-squares fit to the data, can be used. The le~t-squares equations

(19a)

and

M-1 M-1 1 * *M-l
~ urmm21n I?m] = ~ wmm21rr[S t~~m] - ~rr u ~ wmm4 (19b)
m=o “=0 m=o

@n be used to solve for o ad S (which provides an estimate for q); the lag estimates ?~ are
unweighed here and the (least-squares) weights w~ can be used to weight or select the lag estimates
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to be used. M w~ = 6~-1, for example, 6 becomes equivalent to the common single-lag spectrum
width estimator [see Zrni6 [9], hls Equation (5.1)]. For the results of this report,

{

1 f0rm<4~m d=~
O otherwise

was used for wtimation of u and q.

ME PARAMETER SPACE W

0,2!

c

(

Y,

0

0

1000+
20

Figure 10. A partition design using simple decision wles

6.S Decision Rules and a Partition for W

At this point it is necessary to be more specific regarding the description of the ~k’s. For the
remainder, it is =sumed that V is the pardlelepiped of the previous example: (O,0.25] x (O,20]. To
simphfy definition of the ~k’S and to provide decisions b~ed on simple rules, consider a partition
derived from a sequence of threshold tests—first, for O and second, for ~. The general design is
illustrated in Fjgure 10. A threshold test of Oagainst (yet undetermined) SNR values divides V into
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columns of (yet undetermined) tidth. Ewh column is further subdivided along spectrum width
values (rdso to be detemined ) and a requirement is imposed whereby increased petitioning of a
column with respect to spectrum width requires comespondin~y high values for SNR. (The sufiace
curvature of Figure 9(a) suggests that more detailed representation is desired for high SNR values
than low.) To simphfy implementation, each new column to the right is allowed core addltiond
division with respect to spectrum width. The placement of SNR and spectrum width thresholds,
the selection of (u, q)k values, and specification of K are rdl unknowns to be determined.

For K fixed, Equation (18) can be used to identify optimal values ford threshold boundaries
and rdl (u, V)k pairs. A K-compartment summed divergence error can be defined by summing the
divergence emor in Equation (18) over each set in the partition of V. The K-comp=tment summed
divergence is monotonic (ncmincreaing) in K. Certairdy adding extra compartments in Figure 10
can only lower the total divergence error. For example, optimrd threshold placement would force
new compartments to become degenerate (collapse to nothing) if they could not improve the overaH
error vduq lower resolution compartments to the left would get squeezed by higher resolution
compartments from the right if the data and estimators for o and q could support finer levels of
partition. Hence, az K increaaes, the K-compartment summed divergence error (bounded below by

zero) must converge. A stopping criteria can be established for selecting K by arguing diminishing

returns with further incremes in K. In this way, K, optimal threshold placement, and optimal set
point values can be obtained.

Figure 11 plots the K-compartment summed divergence for the pmtition scheme illustrated
in Figure 10. Evduaticm of Equation (18) waz approximated by using a Monte Carlo simulation
to obtain a mean and standmd deviation characterization for the ~ and * of Equation ( 19), and
a Gaussian approximation was used to evaluate Pr( select Vk[~k ) and complement. Based on the
results presented in Figure 11, K = 15 waz selected for continued analysis. The corresponding
thresholds and set point values for K = 15 are summarized in Table 2 and illustrated in Figure 12.

In Fjgure 12, optimal set point locations are indicated by a labeled (squwe) dot. The convex
hu~ of the set points in Wis illustrated by shading. The most striking result of the optimization is
that the best set point for a region Vk is not necessarily contained within ~k. The convex huU of the
set points represents the constraint required of 6 and Oto hrdance the effect (cm velocity estimation)
of their uncertainty. F1grrre 13 plots the zequence of convex hulls for the values of K considered
in Figure 11. As K incre~es, the convex hull expands but there is a fundamental hmitation to its
eventual extent. To increaae the extent of the limiting hull requires more precise estimators for o
and q or, equivalently, more data. The hmiting hull will rdways be strictly contained within V: for
the hu~ to be equivalent to (ie., cover) W impfies that perfect estimation of u md q is possible.

6.4 Adaptive Estimator Performance

The adaptive procedure defined by Table 2 (Figure 12) was used to process simulated data as
in the previous sections. The results for narrow and wide spectrum width weather are presented
in Figure 14.
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Figure 11. K-Compartment summed divergence.

For narrow spectrum width weather, Panels a and b, the adaptive method demonstrates a near
uniform improvement on the performance of PP. The performance is not only better than that of
PP, it is much closer to the optimum bound established in emlier sections. The slight deterioration
at the higher SNR values may be due, in part, to the decision to use the 15 compartment pwtition.
Figure 13 indicates that the 21 compartment partition added refinement specific to higher SNR
values; therefore, some further improvement at higher SNR values may be possible. Note, also,
that in parallel with approaching the standard error bound for velocity estimation, the adaptive
estimator dso approaches the bias performmce of the optimal Bayes (bound) estimator.

For wide spectrum width weather, Panels c and d, the room for improvement was not =
evident (except at low and very high SNR values). Nevertheless, the tiaptive method demon-
strated performance improvement relative to PP at low and high SNR vdues—thrrse regions where
improvement relative to optimrd performance was most likely.
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TABLE 2

Optimal Thresholds and Set Point Values (K = 15)

Compartment
Upper q Upper u

Set Point Threshold Threshold

o (0.0983, 2.386) 1.367 -

1 (0.1095, 3.892) 3.545 0.0909

2 (0.1659, 3.794)

3 (0.1041, 6.440) 7.047 0.0549

4 (0.1452, 7.082) 0.1279

5 (0.1921, 6.960)

6 (0.0907, 9.554) 12.006 0.0380

7 (0.1317, 9.723) 0.0903

8 (0.1667

9 (0.203$9, 10.916)

I in I (n nnll 17 n07\ I I 0.0354.“ ,“,. ”.., .“....,

E
....

11 (0.1186, 13.822) 0.0821

12 (0.1554, 13,927) 0.1252

13 (0.1848, 15.( ,

14 (0.2155, 15.438)

m I 0.1844

The data of the previous figure was combined with measurements at additionrd weather
spectrum widths to produce Rgure 15, which illustrates estimator performance as a function

of weather spectrum width for fixed levels of SN R. There is an almost uniform improvement in
performarrce relative to PP and this improvement for a fixed SNR level is seen to apply across the
range of spectrum widths considered. The improvement is most striking for the two low SNR levels
(Panels a and b). Improvement does not require a corresponding performance loss at Mgher SNR
levels—the adaptive method continues to improve performance there u well.

6.5 Summary

Applying adaptive procedures to situations with small-sample sizes is a difficult t=k. This
sectimr h~ shown that by adopting suitable constraints, an adaptive methOd cOuld be develOped
for the smaB sample velocity estimation problem.

Performance for the adaptive (Bayes) estimator is close to the optimal performance bounds
established earlier. Significant improvement relative to PP wu estabhshed.
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7. CONCLUSIONS

Ewh of the previmrs sections included a brief summary and these statements will not be
repeated here. Some concluding remarks are, nevertheless, in order.

This report’s primary objective h= been to examine the challenge of Doppler velocity esti-
mation when confronted with a small-sample size. Applying a generally accepted model for the
measurement of (metmrologic~y generated) Doppler signals, lower bound performance Imitations
were first wtabhshed. These bounds were shown to be clearly different (greater) than those pr-
vialed by standard CR analysis, but room for improvement (relative to the standard PP estimator)
ww nevertheless indicated. Optimal velocity estimation, under the aasumed model, by definition
requires the joint estimation of a vector parameter. Previous attempts at such optimal estimation
have been hampered by the technical difficulties that arise in solving the comphcated system of
equations that result. The potential of approximate methods that seek to treat some of the vector
parameters = fixed quantities w= explored. Sensitivity to these approximating usumptions w=
studied md insight into the relative importance of these nuisance parameters ww provided. An
adaptive method w= proposed. The new method does not require excessive computations—nothing

more extensive than previously proposed FFT methods. The find adaptive estimation scheme w=
shown to provide near optimal performance for a span of SNR and spectrum widths likely to be

associated with meteorological signals.
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APPEND~ A

Proof of Equation (4).

Preposition A.1 kt ZT = [zOZI . . . ZM-1] be a complez mndom vector with Gaussian demity

P(ZIG) = rr-MIRl-le-z+R-’z,

where R = R(O) is the M x M covan’ante matm’z and @T = [00 0, . . . 0“-]] is a rwl. valued

Parumeter vector. Then, the Fisher Information matriz F = [ji,j] dejned by

can be abtained equivalently jrom

Pwfi Define the unit vectors of order n as

1

0 l:!
o
1

,e~= ,.. ., en=

o

and the elementary matrix Eiti (of order n x n) as

Ei,j = e<e~.

(Al)

For an arbitrary matrix A = [ai,j], the following identities are standard (MC Graham [10], for
example):

aii = e~Aej, (A,2a)
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ij ij

trA = ~ e~Aei.
,

(A.2b)

(A.2c)

To prove ~uation (Al), begin by taking the logmithm of the density,

lnp(Zl@) = -Mlnz -lnlR[ - ZtR-]Z,

and compute the derivative, term by term, with respect to @. Only the latter two terms are of

importance. For the first of these, Oin ]R1/~@,

= ‘r{R-’%}
where the l~t tine fo~ows from application of Equation (A.2):

For the second term, note that

ZtR-]Z = tr{ZtR-’Z) = tr{ZZtR-l)

from which it follows that

~zt R-12 Otr{ZZtR-’)

~= O@ .
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Continuing,

&r{ ZZtR-l)

88k =

=

=

F?tr{*}$
~~-t~{ZZtR-l Ei,jR-’}~,

ij

where the last Ene fo~ows from the result

Additionrd reamangement results in

8tr{ZZtR-’)

{ }
10R R-1 zzt ,

86k
= -tr R- —

~ok

Combining Equations (A.3) and (A.4) provides the intermediate result

Olnp(Zl@)
~ek {

= tr R-l ~ R-l (ZZt - R)}.

(A.4)

(A.5)

The next step is to evaluate the expectation. From the definition of the Fisher Information matrix
and Equation (A.5),

Fid = E
[

81np(Zl@) 81np(Zl@)

08i 89j1
=

[{ t }{ }1E tr R-’ ~ R-l (ZZt -R) tr R-l ~R-] (ZZt -R) .
>

Worting with the terms inside the expectation and again using (A.2):

{ , }{
tr R-l ~ R-l (ZZt -R) tr R-l ~ R-l (ZZt -R)

J }
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Now,

(ZZt - R)e~e~(ZZt - R)

is an M x M matrix with ninth entry given by

(z”zI- r“,k)(ziz%- Ti,m)

for which the expectation is commonly known (see Miller [11], for example):

E {(znz~ - r~,k)(zlz~ - rl,m)} = r~,mrl,k.

Therefore,

E {(ZZt – R)e~e~(ZZt - R)} = Rri,~. (A.7)

Flndly, using Equations (A.6) and (A.7) one obttins

wh]ch is the desired result.
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