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and all the TRACON area. The function of CTAS is 
to assist air traffic managers and controllers by en- 
hancing their situational awareness of present and fu- 
ture traffic flow and weather, and by providing them 
with specific and efficient plans for handling large 
numbers of landings and departures to and from mul- 
tiple runways. These plans are displayed in the form 
of continuously updated timelines of scheduled land- 

ings and departures on the en route controllers' plan- 
view displays, together with advisories for turns or 
speed reductions in the TRACON. 

Underlying this planning capability is a set of sofi- 
ware processes for (1) predicting flight times, based 
on flight-plan information or a new proposed trajec- 
tory, taking into account weather, wind, aircraft in- 
formation, and airspace constraints; (2) organizing 

Traffic information; 
Flight plans 
Surveillance reports 

Select routes to candidate runways Airspace structure - Preferred arrival routes 

4 
Predict flight times: Aircraft models 
Construct trajectories (3D, time) 
Calculate estimated time of arrival (ETA) 

- Weather models 

Allocate delay and recalculate trajectorv 
that meets STA and is conflict-free 

I Generate traffic advisories I 
f 

Send advisories to controllers 

FIGURE 1. Principal processes of the Center TRACON Advisory System (CTAS). This system assists 
air traffic managers and controllers by predicting flight times, organizing the traffic flow, selecting the 
best runway for each aircraft and proposing the best landing sequence, and creating timely advisories 
to aid the controller in meeting the proposed landing times. The functions specifically described in this 
article are highlighted inside the dashed lines. 
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the trffic flow to balance the load over the metering 
fmes and select the best runway for each aircraft, 4 1 ! 
within prescribed limitations; (3) proposing the best 
landing sequence and schedule; and (4) creating time- 
ly advisories to the controller to assist in meeting the 
proposed landing times. Figure 1 illustrates these four 
software processes. 

Two important CTAS algorithms are imbedded in 
processes 2 and 3 for allocating arrivals to multiple 
runways, and for creating the optimal landing se- 
quence and schedule, taking into account the wake- 
vortex spacing constraints at the runway threshold. 
This article describes the results of computer simula- 
tions used to evaluate the potential for these two algo- 
rithms to achieve higher throughput with less delay. 

The notions of optimality and performance are 
difficult to quantify. In the next section we define a 
framework for discussing system performance and 
performance improvements. The section entitled 
"Evaluation of Scheduling Algorithms" discusses op- 
timal sequencing and what can be expected in terms 
of increased performance over the common first- 
come-first-served sequencing method. Finally, the 
section entitled "Evaluation of Runway-Assignment 
Algorithms" discusses runway-assignment algorithms 
and their potential for enhancing performance. 

Characterization of Performance 

The stated purpose of CTAS is to assist controllers I I I 
I I 
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port capacity [I]. These stated goals are clearly inter- - Ili i lt - 
FIGURE 2. The operating curve shows relationships be- j: 

tween long-term average throughput and average delay. f e 
(a) A specific combination of throughput rate and delay 

k: ? - 2 
is called an operating point on the curve. The maximum 4 
throughput for a given operating curve is called the ca- 2 j FI) m 
pacify. (b) The operating curve shifts to the right when 1. 2 

I s? capacity is increased. Operating point Po shifts to the ha 
new point PI, P2, or P3, each resulting in a different ex- 
pression for performance improvement: delay reduction, 
throughput gain, or a combination of the two, respec- 
tively. (c) The operating curve shifts downward when 
methods are used to reduce delays (by efficient runway I 
allocation or by allowing aircraft to be expedited to meet 

Throughput :: : 
a scheduled time). -: :i~-~;~ A :.yz:ir-dL t 
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related; for example, reducing delays will increase fuel 
efficiency, and optimal sequencing will reduce delays 
and increase capacity. A more unified measure of per- 
forman-borrowed from queuing theory-is the 
so-called operating cuwe in which average scheduling 
delay is plotted versus throughput. 

Figure 2 shows three examples of operating curves. 
The maximum throughput for each of these curves is 
called the capaciv; it is illustrated by a vertical dashed 
line in Figure 2(a). A choice of desired throughput, 
which is defined as the long-term average landing 
rate, results in an average delay as specified by the op- 
erating curve. Conversely, the specification of a toler- 
able delay limits the sustainable throughput rate that 
is achievable. A combination of throughput rate and 
delay is called an opmatingpoint on the curve. 

We can use the operating curve as a vehicle for 
comparing the performance of different sequencing 
methods or for evaluating the effects of a particular 
runway-assignment algorithm. Figure 2(b) illustrates 
how the operating curve is expected to shift to the 
right when sequencing methods that increase capacity 
are used. Figure 2(c) illustrates how the operating 
curve can be lowered by applying methods that re- 
duce delays (for example, by applying more efficient 
runway allocation). Figures 2(b) and 2(c) show that, 
given a specific operating point on the curve, we can 
speak of performance improvement as a throughput 
increase (for constant average delay) or a delay reduc- 
tion (for constant throughput), or a capacity increase, 
or any combination of increases as long as the two 
operating points being compared are on the appropri- 
ate curves. 

We can make several observations on the use of 
operating curves to express performance; these obser- 
vations relate to (1) long-term stable conditions, (2) 
delay reductions for systems with different capacities, 
(3) the duration of the traffic sample and the quality 
of measured performance, and (4) the degree of ran- 
domness in the traffic sample. Each of these observa- 
tions is explained in greater detail below. 

Long-term stable conditions. Operating curves can 
be used to express only long-term (statistically) stable 
conditions. Under such conditions the average arrival 
rate (or demand rate) ultimately equals the through- 
put rate (because all aircraft eventually land, possibly 

after long delays) and the average arrival rate must 
therefore be less than or equal to the capacity. This 
statement does not imply that for short periods of 
time the arrival rate cannot exceed capacity, as long as 
this excess is balanced by other periods in which the 
arrival rate is less than capacity, so that the long-term 
average relationship holds. 

Dehy reductiom fir systems with dzferent capacities. 
Let us look at a situation in which long-term arrival 
rate can exceed capacity. When we compare two sys- 
tem implementations that result in different capaci- 
ties, we can obtain rather arbitrary delay improve- 
ments, depending on the choice of operating point. 
For example, Figure 3 shows that if the average arrival 
rate is held at value A (below both capacity 1 of the 
first system and capacity 2 of the second system), 
then a finite delay ratio is obtained. If we increase the 
arrival rate to value B (between capacities 1 and 2) 
then the delay ratio becomes arbitrarily large, because 

Arrival rate A B C 

FIGURE 3. Comparing delay performance for two sys- 
tems with different capacities. At  arrival rate A delays 
are finite; at rate B the lower-capacity system will experi- 
ence delays that grow indefinitely with the duration of the 
test since arrival rate exceeds capacity 1; at rate C this 
growth in delay happens for both systems but delays will 
accumulate much more slowly for the higher-capacity 
system. Note that the system with higher capacity does 
not necessarily have better performance over the full 
range of arrival rates. 
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the delay for the first system will increase indefinitely, 
given enough time. At the arrival rate set to d u e  C, 
which is greater than capacities 1 and 2, delays for 
both systems will grow indefinitely, given a perfor- 
mance test of enough duration, but the delays will 
grow much faster for the system with the lower capac- 
ity. For any system, the long-term arrival rate must al- 
ways be less than the capacity if final delay values are 
to be obtained. For more information, we refer the 
reader to the appendix entitled "Illustration of Arrival 
Rates, Scheduling Delays, and Throughput." 

Duration of the trafic sampk and the quality of mea- 
suredpe~mzance. We need to discuss the relationship 
between measured performance and the duration of 
the experiment designed to measure the performance. 
Experiments requiring the participation of controllers 
and/or pilots have limited duration-at most a few 
hours. Depending on the degree of randomness in the 
traffic-arrival sample, that duration could be insuffi- 
cient to measure performance adequately. Let us clar- 

ify this point by using Figure 4, which shows the re- 
sults of one hundred experiments of random arrival 
traffic (modeled by a Poisson process), in which each 
experiment was one-and-a-half hours in duration. We 
measured average delay for two different system de- 
signs; in the first design we used a first-come-first- 
served scheduler and in the second design we used an 
optimized scheduler (which is the topic of the section 
entitled "Evaluation of Scheduling Algorithms"). The 
conditions of the tests are listed in the figure caption. 
In the figure we can observe that the results vary 
greatly from test to test, although for each test the or- 
dering of the performance for the two systems is the 
same. 

What is disturbing about this figure is that the de- 
lay variation from test to test overwhelms the differ- 
ence in performance of the two systems. If we take the 
test results for one system from test a and for the oth- 
er system from test 6, we could easily draw the wrong 
conclusion (i.e., the opposite of the conclusion when 

FIGURE 4. Results from one hundred test runs one-and-a-half hours in duration each for a first- 
come-first-served scheduler and an optimized scheduler. Each test run has a traffic sample taken 
from a Poisson process with an average arrival rate of 36 aircraft per hour. The mix of aircraft weight 
classes equals .18/.71/.11 (heavy/large/small). The calculated capacity is 39.4 aircraft per hour. 
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I f I standard deviation for 1.5-hr run 

f 1 standard deviation for 10-hr run 

Operating curve i 

34 36 38 
Arrival rate (aircraft per hour) 

FIGURE 5. Operating curve and expected variability of measured performance for a first-come-first- 
served sequencing system. These curves are shown as plus or minus one-standard-deviation 
zones around the true mean fortest durations of 1.5 hours and 10 hours. 

the same test is run on both systems). Yet, in real life, this study we typically use twenty-four hours of 
we typically test one system on, say, one afternoon of steady traffic to measure performance, with the addi- 
traffic and the other system on the next afternoon of tion of a prescribed degree of randomness. 
traffic. Although the traffic may look similar to the Degree of randomness in trafic sample. The operat- 
casual observer, we have the situation described ing curve is affected by the degree of randomness in 
above, with test results of relatively little value. the arrival traffic stream. Clearly, if all aircraft arrived 

There are two remedies to this problem; first, use 
identical traffic samples when comparing systems 
and, second, use long-duration tests. These two reme- A I I 

I 
dies can be applied most easily in a computer simula- I 

I 
tion in which the identical traffic samples can be used I 

I 
for both systems, and tests for traffic durations of I 

6 - I 
longer time periods, such as ten hours, can be com- a I 

pleted in a fraction of that time in fast-time simula- m I 
a 
a I 

tion mode. 2 I 

!2 I 
Figure 5 shows the (true or long-term average) op- a I I 

erating curve for a first-come-first-served system; the I 
I 

shaded areas around the curve represent the expected ;/capacity 
spread (in standard deviation) of measured average 
delay for traffic samples of one-and-a-half hours and I 

ten hours in duration. This figure clearly illustrates 
I w 

Throughput 
that if we are going to compare systems based on op- 
erating curves, these curves must be calculated from 
long-duration traffic and the FIGURE 6. The effect of arrival-stream randomness on 
should be used for both systems. In the remainder of the shape of the operating curve. 
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in the terminal area neatly spaced, so that after merg- 
ing onto the find approach path, they all occupied 
their assigned landing slot, then no scheduling delay 
would be incurred in the terminal area. In general, 
the operating curve becomes shallower with decreased 
randomness, as shown in Figure 6.  This dependency 
of the operating curve on the degree of randomness is 
an issue for TATCA, because other FAA systems such 
as flow control or metering with miles-in-trail at- 
tempt to derandomize the traffic flow into the terrni- 
nal area [4]. The computer simulations in this study 
typically used, as input, arrival traffic modeled as a 
Poisson process, although many of the performance 
tests were run by using recorded traffic from the Dal- 
las-Fort Worth or Denver TRACONs as input. 

Simulation Setup 

Figure 7 shows the setup for our performance study, 
which is based on fast-time discrete event simulation. 
Depending on the algorithm to be evaluated, we 

must set up a number of arrival routes and a number 
of destinations (runways). The traffic model consists 
of defining arrival rates and ratios of traffic rates over 
all routes, and selecting the mix of aircraft types. In 
most cases we can describe the aircraft type by its 
weight class; the aircraft are labelled heavy if gross 
takeoff weight exceeds 300,000 lb, large if weight is 
between 300,000 and 12,000 lb, and smallif weight 
is less than 12,000 lb. In other cases we need to be 
more specific about the airframe because it affects de- 
celeration profiles and landing speeds, which in turn 
affect the landing separations to be selected. 

We adopt the Poisson model for the distribution of 
the various estimated times of arrival (ETA), which 
are the inputs to the runway-assignment and schedul- 
ing algorithms. In this model, the ETA events are oc- 
casionally bunched (possibly causing a short-term ar- 
rival rate that exceeds capacity) and they occasionally 
have large gaps (possibly causing an irretrievable 
waste of capacity). 

Airspace environment 
Number of arrival streams 
Ratios of traffic over metering fixes 
Spacing requirements 

f 
Next arrival rate Traffic model + Arrival rates 

Mix of aircraft types 
Next traffic sample Degree of randomness in traffic model 

Duration of test 

Runway-assignment algorithm and 
sequencing and scheduling algorithms - to be evaluated 

I 
$' 

Statistical data processing 

FIGURE 7. Elements in the performance study, based on fast-time discrete event simulation. First the 
airspace environment and traffic model are defined, including a Poisson distribution for the various 
estimated times of arrival, and these elements are then used as inputs to the runway-assignment and 
scheduling algorithms being studied. 
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Evaluation of Scheduling Algorithms 

The most common landing order scheduled by con- 
trollers is first-come-first-served, but other landing 
orders could be more beneficial in terms of reduced 
delays and increased throughput and capacity. This 
conclusion is the case when the landing aircraft repre- 
sent different weight classes (for example, we must 
avoid scheduling a small aircraft after a large aircraft 
because this order would require an extra large separa- 
tion). A scheduling algorithm that fine-tunes the 
landing order with the purpose of minimizing a pa- 
rameter such as the average delay, or of maximizing 
throughput or any similar goal, is loosely referred to 
as an optimalscheduling algorithm. The algorithm per- 
forms sequencing and scheduling, where sequencing 
is referred to as setting up the planned landing order, 
and scheduling is referred to as determining the land- 
ing times, based on the minimum required separa- 

tions. Often, however, we use the term scheduling to 
cover both functions. 

In this section we discuss potential benefits of opti- 
mal sequencing and scheduling. First we establish up- 
per bounds on the capacity increase, independently of 
any specific algorithmic implementation. Next we 
discuss the effect of a specific implementation issue, 
namely, the necessity for using a finite scheduling 
window. The use of a finite scheduling window re- 
sults in a narrower bound on achievable capacity gain. 
Then we discuss the criteria used for selecting an opti- 
mal sequence, and finally we describe some actual al- 
gorithms and express their performance as a full oper- 
ating curve. 

Upper Bound on Gpacity Increase 

Capacity (or maximum throughput) can be defined 
as the inverse of the average landing time interval 
when all aircraft are landing at their legal minimum 

t d i h  H L S  

H 4 5 6 
Distance 

(nmi) L  3 3 4 H, L reduce 175-135 knot 
S reduce 110- 90 knot 

S  3 3 3  i 

I Plus M k n o t  headwind 

Landing speeds 135 knot 

Tim 3 
FlGURELMinimum landing-time intervals between leading and trailing aircraft of types heavy, large, or 
small, as calculated for three scenarios: window A has uniform landing speeds and no wind; window B 
has different landing speeds for heavy and large aircraft than for small aircraft, and no wind; window C 
has the same conditions as in window B but with a 20-knot head wind. These landing-time intervals are all 
calculated from the standard (3,4,5,6) separation matrix, where the numbers 3,4,5, and 6 represent sepa- 
ration in nautical miles between heavy, large, and small aircraft. 
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separations. The notion of capacity is complicated be- 
cause it depends on many variables. The first set of 
variables are those which affect the translation of the 
required minimum landing separation, specified by 
the FAA as a distance, into time units. The translation 
of the minimum separation into time units is neces- 
sary because the separation is used in that form by the 
scheduler. These variables include landing speeds, de- 
celeration profile used by leading and trailing aircraft, 
wind, and the length of the common path of the two 
aircraft. 

Figure 8 shows an example of how the standard 
(3,4,5,6) matrix (where the numbers 3, 4, 5, and G 
represent the FAA-specified minimum landing sepa- 
ration distance in nautical miles between heavy, large, 
and small aircraft) is translated into time separations 
for three choices of values for the indicated variables. 
The average separation (from which capacity is de- 
rived) then depends on the mix of aircraft types oc- 
curring in the arrival stream for which the algorithm 
is setting up a schedule. This frequency of use in- 
volves a second set of variables that describe the mix 
of aircraft type, namely, the percentages of heavy, 
large, and small aircraft. Any aircraft is mapped into 
one of these three weight classes before the required 
separation can be selected from the separation matrix 
on the basis of the type of the present aircraft and the 
succeeding aircraft in the proposed sequence. 

In a first-come-first-served landing order the rela- 
tive frequency of occurrence of certain aircraft pairs is 
determined by the mix of aircraft types, and the ca- 
pacity is therefore easily calculated. In other schedul- 
ing algorithms in which the sequence is manipulated 
to achieve certain goals, the calculation of capacity 
can be difficult. Given a separation matrix and an air- 
craft mix, however, we can calculate an upper bound 
to the smallest average separation distance (and hence 
the largest capacity) independently of the algorithm 
by considering the best possible reordering of aircraft 
(away from first-come-first-served sequencing) that 
achieves the calculated upper bound. 

Figure 9 shows such an upper bound as a function 
of aircraft mix, where the fraction of heavy aircraft is 
plotted on the x-axis. The separate curves represent 
specific choices for the fraction of small aircraft. The 
separation matrix used for the calculation of this up- 
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Fraction of heavy aircraft 

FIGURE 9. The upper bound on increase in capacity, de- 
termined by the ratio of best capacity over first-come- 
first-served capacity, as a function of the mix of aircraft 
type. The choice of separation parameters is shown in 
window B of Figure 8. For a realistic mix of heavy/large/ 
small aircraft equal to .18/.71/.11 (as shown by the dashed 
lines), which is representative of Logan Airport in Bos- 
ton, the upper bound indicates there can be no more 
than a 10% gain in capacity. 

per bound is the one shown in window B of Figure 8. 
Figure 9 shows that, given the choice of matrix, the 
gain in capacity will be less than 20% even for the 
most favorable mix of aircraft, whatever the optimal 
scheduling algorithm. In fact, for a more realistic mix 
of aircraft equal to .18/.71/. 1 1 (heavy/large/small), 
which is a representative mix of aircraft weight classes 
for Logan Airport in Boston, the upper bound indi- 
cates there will be no more than a 10% gain in capac- 
ity. And most of that gain will be whittled away when 
some real-life constraints are taken into consider- 
ation, as discussed in the following section. 

The Effect of Finite Scheduling- Window Size 

Unlimited reordering of aircraft is allowed in the cal- 
culation of the upper bound for capacity, as described 
above, but in practice the set of aircraft that can be 
considered for reordering is limited. The CTAS sys- 
tem accepts an aircraft as a candidate for scheduling 
when it enters a zone of approximately 200-nmi radi- 
us (or about forty-five minutes of flying time) from 
the airport, and the aircraft's position in the landing 
sequence is fmed when it crosses the freeze horizon 
(about thirty-five minutes before landing). This win- 
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dow of some ten minutes of flying time before the air- 
craft crosses the freeze horizon is called the scheduling 
window, and it determines the set of aircraft consid- 
ered for reordering at any given time. This practical 
restriction implies that only a fraction of the benefits 
achievable by unlimited reordering can be realized in 
an actual scheduling environment. 

That achievable fraction of benefits can be estimat- 
ed, as shown in Figure 10 for a specific example of air- 
craft mix and separation matrix (window B of Figure 
8). For a ten-minute scheduling window the upper 
bound on improvement from any scheduling algo- 
rithm is approximately one aircraft per hour over the 
first-come-first-served capacity of 39.2 aircraft per 
hour, or a gain of 2.7%. 

Sequencing Constraints 

Other constraints exist that can reduce the achievable 
gain further. For example, we usually cannot allow 
aircraft that follow a common approach path to over- 
take one another in order to achieve a proposed se- 
quence, or for another example, the controller, for 
whatever reason, might have imposed a particular 
landing order on some aircraft. While the former 
constraint can easily be made part of the search algo- 
rithm, which in fact greatly limits the number of se- 
quences to be evaluated, the latter must be accepted 
by the automated algorithm as a given. Such con- 
straints diminish the potential benefits of an optimal 
sequencing algorithm, but these constraints could 
also make the automated sequencing solutions more 
acceptable to controllers. The effect of these con- 
straints on performance depends heavily on the num- 
ber of converging traffic streams, and is therefore de- 
pendent on the particular airspace configuration 
around the airport. The more streams and the more 
similar their volumes of trafEc, the less the effect of 
the constraints and the greater the value of the se- 
quencing algorithm. 

Dynamic Aspects of Optimal Sequencing 

Aircrafi are sequenced and scheduled while their ETA 
is within the scheduling window. This sequencing 
and scheduling operation in CTAS is repeated nomi- 
nally every twelve seconds, during which time any 
aircraft might leave the window or a new aircraft 

Upper bound on capacity 
Capacity with optimal schedulin 

39 
0 10 20 30 40 50 

Scheduling window size (min) 

FIGURE 10. Upper bound on capacity as a function of the 
size of the scheduling window. The values chosen for 
minimum separations are those shown in window B in 
Figure 8. The mix of aircraft types is equal to .18/.71/.11 
(heavy/large/small). First-come-first-served capacity is 
39.2 aircraft per hour, and the upper bound on capacity is 
42.3 aircraft per hour. Upper bound for a ten-minute 
scheduling window is 40.3 aircraft per hour, as shown by 
the dashed lines. Capacities realized by optimal schedul- 
ing algorithms (shown as red triangles) are slightly less. 

might enter the window. In general, the sequencing 
algorithm considers each aircraft numerous times (as 
many as fifty) to determine its relative position in the 
landing sequence. While the static optimal sequenc- 
ing problem is easy to visualize, the end result of 
scheduling with a sliding scheduling window, in 
which the set of candidate aircraft slowly changes in 
time and the optimal solution of the present window 
can undo the optimal solution from a previous win- 
dow, is more difficult to envision. The end effect of 
optimizations is reflected in the sequence of frozen 
positions of aircraft when they leave the scheduling 
window, one at a time. This sliding-window mecha- 
nism introduces some difficult algorithmic issues on 
whether to base the set-inclusion-and-freezing deci- 
sions on estimated landing times, first-come-first- 
served scheduled times, or optimally scheduled times. 

We might also see the expected performance gain 
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reduced by this dynamic aspect of scheduling reflect- 
ed in the sliding-window mechanism. Simulation re- 
sults, however, show that this decrease in performance 
does not occur. When the results of using a static 
(stepping) window were compared with the results of 
using a sliding window, only a very minor improve- 
ment, on the average, was noticed. 

Objectives of Scheduling Optimization 

Up to this point we have focused on scheduling 
methods and their potential for capacity increase. The 
upper-bound algorithm was based on unlimited re- 
ordering that could be done only in a fully saturated 
condition. In normal operating conditions long-time 
saturation rarely occurs, so there are practical limits to 
the possible ultimate improvements in capacity. 
Long-term observations over busy afternoons at Dal- 
las-Fort Worth Airport have shown that the average 
long-term (five hours) throughput rarely exceeded 
80% of capacity. Under those conditions the perfor- 
mance of the scheduling algorithm is better described 
by the operating curve, rather than just its upper limit 
(which describes the capacity). 

If we focus on a specific scheduling window, with 
Naircraft to be scheduled to a single runway, we can 
in principle consider N! possible sequences, most of 
which would not make any sense operationally. The 
computer must quickly search through the possible 
sequences and identify the feasible ones, and out of 
these feasible sequences identify the optimal one ac- 
cording to some criterion. Many criteria have already 
been mentioned, including highest throughput, min- 
imum total scheduling delay (possibly with delays for 
some aircraft types weighted more heavily than oth- 
ers), minimum value of a function of delay (e.g., qua- 
dratic), and minimum fuel burn. Even if these criteria 
are not completely independent (because the operat- 
ing curve shows the interdependency of average delay, 
average throughput, and capacity), for a specific 
window the resulting sequences can be significantly 
different. 

Figure 11 illustrates the variety of resulting se- 
quences for a particular scheduling window. In this 
example we assume there are three arrival streams 
with no scheduled overtakes allowed within a stream. 
The figure shows three schedules: one resulting from 

a first-come-first-served (at the runway) scheduling 
discipline, one in which optimality is defined in terms 
of the minimum of the sum of the delays, and one in 
which optimality is defined in terms of the minimum 
of the sum of the squares of delay. 

The choice of optimization criterion matters, espe- 
cially when the dynamic aspects of scheduling are in- 
cluded in the consideration. For example, a linear cri- 
terion (sum of delays) could easily result in aircraft of 
certain types (e.g., heavy) being delayed inordinately 
through consecutive scheduling windows. The qua- 
dratic criterion would prevent this kind of excessive 
delay, as would the imposition of additional outside 
constraints-for example, an additional term in the 
criterion when the scheduled delay for an aircraft 
reached a threshold of some multiple of the average 
delay. 

Figure 12 shows an example of a meaningful opti- 
mization criterion. The dependent variable (y-axis) 
represents scheduling cost, while the independent 
variable (x-axis) represents scheduling delay. The 
curve is called the costfinction. The optimization cri- 
terion consists of finding a landing sequence that 
minimizes the total cost of all aircraft being sched- 
uled. Delay here is defined as the time difference be- 
tween the time an aircraft could have landed if no 
other aircraft were around and the time the aircraft is 
scheduled to land in the presence of all other aircraft 
(minimum required separations are maintained). 

A negative delay means that an aircraft will land 
earlier than it would nominally; for example, the con- 
troller instructs the pilot to keep up approach speed 
or to cut short the usual downwind-upwind trom- 
bone-shaped path. Even negative delay costs a little 
because the procedures involved are not fuel-optimal 
or nominal, and they may not be conducive to pas- 
senger comfort, even though expediting one aircraft 
might save time on all other aircraft in the queue. A 
positive delay small enough to be implemented by 
slowing the aircraft somewhat earlier than is nominal- 
ly the case contributes quadratically until it reaches a 
value at which speed controls no longer suffice and 
path stretching must be invoked. An additional cost 
penalty is then imposed. Finally, when positive delay 
reaches a second threshold at which the scheduling 
delay exceeds what the repertoire of path-stretching 

VOLUME 7, NUMBER 2, 1994 THE LINCOLN LABORATORY JOURNAL 225 



VANDEVENNE AND LIPPERT 
Evaluation of Runway-Assignment and Aircraft-Sequencing Algorithms in Terminal Area Automation 

FIGUREII. Example showing how aircraft in three different arrival streams are scheduled by using three different sched- 
uling disciplines. The first discipline is a first-come-first-served (FCFS) scheduler, the second is a linear scheduler de- 
fined in terms of the minimum of the sum of the delays, and the third is a quadratic scheduler defined in terms of the 
minimum of the sum of the square of the delays. 

techniques can accommodate, an additional cost term 
is added. This cost term is added when the delay ex- 
ceeds the controllability of the terminal airspace. 

Controllability is defined as the delay that can be 
achieved by speed reductions along the nominal path 
and by well-defined path-stretching procedures. The 
notion of controllability is crucial in an aspect of ter- 
minal automation not discussed in this article; name- 
ly, the automation must propose not only a landing 
time but a new trajectory (in time and space) that de- 
livers the aircraft to the runway at the proposed land- 
ing time, and the automation must produce timely 
advisories to be relayed by the controller to the pilot 
to make the new landing time and trajectory happen. 
When delay exceeds controllabiiity, the automation 
can no longer propose a trajectory solution and it 
must signal to the controller to exercise "extraordi- 

nary" measures, such as holding maneuvers, to meet 
the scheduled time. The implication here is that the 
automation is relied on to propose solutions for rou- 
tine operations and the controller intervention is rare- 
ly called upon to solve unusual cases. Clearly, a pro- 
posed landing sequence that would require a 
particular aircraft to be delayed to such an extent 
would be undesirable, hence the second penalty term. 

Comparing Peformance of Several 
Scheduling Algorithms 

The special-purpose simulator, which was built to 
study scheduling and sequencing algorithms and the 
effect on the algorithms of such parameters as cost 
functions, size of the scheduling window, and over- 
take constraints, was run in fast-time mode, in which 
all important parameters could be varied at will. The 
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FIGURE12. Example of scheduling delay as a meaningful optimization criterion; the 
curve showing the resulting scheduling cost is called a cost function. The optimiza- 
tion criterion consists of finding a landing sequence that minimizes the total cost of 
all aircraft being scheduled. 

simulation was run on a Sun workstation in the 
TATCA laboratory at Lincoln Laboratory. 

Rather than provide an elaborate report on all our 
performance tests of all the algorithms, we illustrate 
the results for a single choice of parameter settings. 
The scheduling was done for a single runway, for a 
time period comprising one thousand arrivals. Three 
independent arrival streams were examined, with a 
combined average arrival rate varying from 32 aircraft 
per hour up to capacity, with interarrival times having 
an exponential distribution (Poisson process). The 
minimum time-separation matrix was derived from 
the standard (3,456) distance matrix with the as- 
sumption that all aircraft have the same deceleration 
profile and land at 135 knots (as shown in window A 
of Figure 8). The average mix of aircraft type was 
fmed at .181.7 11.1 1 (heavy/largelsmall) . The size of 
the scheduling window was chosen to be twelve min- 
utes. The optimal schedulers (with linear or quadratic 
cost functions, and no expediting) operated with the 
constraint that no overtakes within a particular arrival 
stream are allowed. The scheduler searched over all 
possible sequences to find the optimal sequence, irre- 
spective of computation requirements (which never- 

theless turned out to be a critical issue for the CTAS 
scheduler). Figure 13 shows the resulting operating 
curves for the three scheduling algorithms at these pa- 
rameter settings. 

The most striking feature of these curves is that 
their upper limit, which is the capacity achieved by 
the system design represented by the operating curve, 
stays far below the upper bound. Given the parameter 
choices made to produce these curves, the upper 
bound for capacity was 42.4 aircraft per hour versus 
39.4 aircrafi per hour for first-come-first-served 
scheduling, or a scant 7.6% gain. Imposition of a fi- 
nite time for the scheduling window (here twelve 
minutes) reduced the capacity to 40.3 aircraft per 
hour, or a 2.7% gain. 

Observe how the operating curves for optimal 
schedulers with linear or quadratic cost functions are 
hardly distinguishable, even though we have shown 
that the actual sequences produced in every schedul- 
ing window can be significantly different. These oper- 
ating curves clearly show that only in a condition of 
protracted saturation, in which the arrival rate equals 
or exceeds the capacity for a long time, would there 
be a great difference in average delay between a first- 
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come-first-served scheduler and an optimal scheduler. 
For most operating conditions, saturation of short 
durations (half an hour or so) is insufficient to pro- 
duce large differences in the delay. In fact, long-term 
throughput rates during so-called heavy traffic seem 
to average 80% of capacity. 

The operating curves show that we would be hard 
pressed to observe any difference in performance over 
the range of 32 to 37 aircraft per hour, which covers 
the 80% to 94% range of first-come-first-served ca- 
pacity from a single comparison test. Even at 32 air- 
craft per hour, where the delay difference is 8.9%, we 
must remember the warning given earlier on the vari- 
ability of test results, which can invalidate the accura- 
cy of any given measure of performance difference. 

Evaluation of Runway-Assignment Algorithms 

At large airports such as Dallas-Fort Worth Airport, 
as many as four or more runways can be simulta- 
neously active for landing operations. Although as a 
general rule aircraft from a certain sector nominally 

land on a corresponding runway, the controllers often 
assign them on an individual basis to other runways 
to equalize the load. This act of load balancing clearly 
does not increase runway capacity, but it can reduce 
delays considerably. In fact, if we go beyond merely 
equalizing the rates to runways, and focus on mini- 
mizing flight times for individual aircraft, the average 
delay reduction becomes proportional to the number 
of active runways even when all runways initially had 
equal arrival rates. 

The consequence of such algorithms to land air- 
craft as soon as possible is that short-term through- 
puts are maximized, but only at the price of heavy 
crossover traffic (i.e., aircraft that no longer go to a 
nominal or preferred runway). And this maximized 
throughput exacts another price in terms of increased 
controller work load, especially if executing crossovers 
involves sending aircraft through narrow corridors 
over the top of the airport, as is the case, for example, 
at Dallas-Fort Worth Airport. An algorithm for run- 
way allocation must therefore aim at minimizing de- 
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I I I 

- FCFS 39.4 - 
+ First come first served (FCFS) 

- + Linear cost function 
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FIGURE 13. Performance curves for first-come-first-served scheduling versus optimized schedul- 
ing. The mix of aircraft types is .18/.71/.11 (heavy/large/small); separations are defined as shown in 
window A in Figure 8, and the scheduling window is twelve minutes. The traffic model is three ar- 
rival streams (interarrival times for each stream have a Poisson distribution) with identical fix load- 
ings and mix. No overtakes or expediting is allowed. 
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lay while at the same time holding down the crossover 
rate. 

Theoretical Bound on Peformance Improvement 
from Runway-Allocation Algorithms 

Obviously, when arrival traffic is unbalanced, shifting 
the extra load to other runways greatly reduces overall 
delays. Less obviously, even if the arrival traffic is 
more or less balanced (i.e., the long-term average rates 
are the same), allowing individual aircraft to land on 
whichever of the n runways they could land on the 
earliest can further reduce the average delay by a fac- 
tor proportional to n. We show results from two the- 
oretical models, which are discussed in greater detail 
elsewhere [4]. 

First, with the interlanding times modeled by an 
exponential distribution with mean llp, where p is 
the capacity of the individual runway, we obtain a re- 
lationship between the average delay Wl, without 
crossovers, and Wn, with crossovers, to n runways: 

where P,, is the so-called Erlang C formula, which 
represents the fraction of time all n runways are busy 
(and also the fraction of all aircraft that will experi- 
ence delay), and A is the total arrival rate. 

The quantity P, depends strongly on how busy 
the airport is through the relations 

and 

where 

For an airport with two runways at 90% capacity 
(p  = 0.9), P, = 0.853 and W21 Wl = 0.472. Similarly, 
for three runways, P, = 0.817 and W3/ Wl = 0.3026. 

In this exponential interlanding time model the aver- 
age delay is given by 

In a second model with constant interlanding time, 
we put the interlanding times equal to the statistical 
average obtained from the matrix of time separations 
and the appropriate aircraft mix. We can then prove 
that 

which is virtually the same relationship as the one 
shown above. In this case, however, the average delay 
is 

i.e., half of what it was with the exponential model. 
The important result is that, whatever the distribu- 

tion of interlanding times, roughly the same perfor- 
mance improvement can be obtained when aircraft 
are allowed to land at their earliest convenience on 
any available runway. The price for this improvement 
is that, for the example above for two runways, ap- 
proximately 50% of the aircraft will execute cross- 
overs. In the next section we discuss algorithms that 
attempt to strike a balance between delay reduction 
and crossover-rate increases. 

A Runway-Assignment Algorithm 

We propose a simple runway-assignment algorithm 
based on the following premises: (1) for each aircraft 
the set of candidate runways and the ETAS to these 
runways are known, and (2) for each aircraft there is a 
preferred runway The mechanism for limiting cross- 
overs is a simple time threshold T When an aircraft 
has its turn to be assigned a runway, it is tentatively 
scheduled at first on all its candidate runways. The 
aircraft is then assigned its preferred runway unless 
the schedules indicate it could land at least Tminutes 
earlier on an alternate runway. If several such options 
exist, then the alternate runway with the earliest 
scheduled time is assigned. 

Figure 14 shows a simple three-runway example 
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FIGURE 14. Demonstration of the runway-assignment algorithm with a three-runway example. (a) The bottom 
time axis shows the earliest landing times of a sequence of arriving aircraft. The top three time axes show these 
same inputs on the three separate runways. In this figure, aircraft A, is ready for runway assignment. (b) Air- 
craft A, and competing aircraft are preliminarily scheduled (by a first-come-first-served scheduler) on each of 
the three runways before CTAS makes the final assignment decision. 

that clarifies the proposed runway-assignment algo- 
rithm. The bottom time axis of Figure 14(a) shows 
the inputs to the algorithm in the form of a time line 
of ETA, where A! in the figure refers to aircraft Aj 
on runway j. Time is being counted down continu- 
ously. When some arrow reaches time zero, as is the 
case for aircraft Al, the runway-assignment decision is 
made by CTAS. The first three time axes show the 
same inputs but on the three individual runways, 
along with an indication of the time of the last sched- 

uled aircraft. ETh of aircraft on their preferred run- 
way are marked with an asterisk. We assume here a 
time threshold Tof 120 sec. Figure 14(b) shows how 
aircraft Al would tentatively be scheduled on all run- 
ways. For simplicity we assume a required minimum 
separation of 70 sec for all aircraft. The resulting 
scheduled times of Al are now compared to see if Al 
could be advantageously scheduled on a non-pre- 
ferred runway (i.e., whether it could be scheduled to 
land Tminutes earlier on the non-preferred runway). 
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FIGURE 15. Operating curves for the two-runway balanced traffic case in a first-come-first-served scheduling system. 
Capacities are40 aircraft per hour per runway. (a) These curves show the effect of delay threshold on performance when 
a policy of "reluctant" crossovers is used. (b) Crossover rates as a function of the crossover delay threshold. 

In this example, that is not the case and the aircraft is 
assigned to its preferred runway. 
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To evaluate the performance of these algorithms we 
consider two traffic cases, and we show results for a 
simple case of two runways. In the first case the aver- 
age flow rate to both runways is the same. We label 
this case the balanced tra,tf;c case. In the second case 
we consider a 64/36 ratio in the average flow rate to 

the two runways. We label this case the unbalanced 
case. Obviously, we expect heavy crossover rates in the 
second case. We assume that the chosen conditions 
(balanced, unbalanced, arrival rates) do not change 
for the duration of the tests. The tests simulate real- 
life traffic duration exceeding eight hours, so that we 
have repeatable performance results. 

First we discuss the balanced traffic case by exam- 
ining the operating curves in Figure 15. The top 
curve in Figure 15(a) represents the operating curve 
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for a first-come-first-served scheduling system in 
which the ETAS constitute a Poisson process and no 
crossovers are allowed. The bottom curve is the oper- 
ating curve for a system in which crossovers are al- 
lowed. The expected factor of two for improvement 
in the average delay rate is clearly visible. The operat- 
ing curves in between result when crossovers are re- 
stricted by the use of a threshold in the delay gain in a 
crossover. The greater the required delay gain (the 
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threshold) the less the overall delay improvement, i.e., 
the greater the average delay as expressed by the oper- 
ating curve, although all operating curves keep hug- 
ging the lowest curve. By looking at Figure 15(b), 
however, we observe that the crossover rate is drarnat- 
ically reduced when even a small threshold value is 
chosen. The conclusion is that, with increasing 
thresholds, performance deteriorates slowly but the 
crossover rate reduces rapidly. Because crossovers rep- 
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resent increased controller work load, these should be 
kept low (i.e., below lo%), which implies an actual 
working threshold on the order of two minutes. 

For the unbalanced case the improvements in aver- 
age delay rate are in principle even greater. The run- 
way-assignment algorithm goes beyond balancing 
traffic rates to runways; it also reduces individual de- 
lays (and therefore the overall average delay). For ex- 
ample, Figure lG(a) shows a series of operating curves 
similar to Figure 15(a), but for a 64/36 ratio of traffic 
to two runways. The capacity per runway was chosen 
to be 36 aircraft per hour. These choices match a traf- 
fic situation obtained from recordings made on G Jan- 
uary 1992 at Dallas-Fort Worth Airport between 
noon and 5 p.m. The average throughput rate was 
54.7 aircraft per hour and the average delays observed 
were 92 sec with a 19% crossover rate (i.e., aircraft 
over the easterly corner posts Blue Ridge and Scurry 
were landing on the more westerly runway 18R and 
aircraft over the westerly corner posts Bridgeport and 
Acton were landing on the more easterly runway 17L; 
the traffic was a south flow pattern). That measured 
operating point is shown on Figure lG(a) as a large 
black dot. 

From a cursory examination of these data, com- 
pared to the operating curves obtained from simulat- 
ed data, it would seem that manual operations result- 
ed in excellent performance that would be hard to 
improve. One of the reasons is that the simulated traf- 
fic inputs used to obtain the operating curves were 
Poisson processes and more random than the actual 
traffic on G January 1992. On that day a metering 
program was in effect in the Dallas-Fort Worth cen- 
ter that helped smooth traffic going into the TRA- 
CON. Figure lG(b) shows the comparison when the 
recorded traffic was replayed through the algorithm. 
Clearly, a comparable delay performance could have 
been obtained with a five-minute threshold, but this 
threshold choice would have resulted in only 4% 
crossovers instead of the 19% crossover rate observed 
in actual operations. Or the two-minute threshold 
could have been used, which would have reduced 
both the delay (by a factor of four, to sixteen seconds) 
and the crossover rate (by a factor of better than two, 
to 8%). We could argue that in the regime of traffic 
where delays are already less than two minutes, a fur- 

ther delay reduction is of little value. The reason we 
had such small average delay, however, is that in the 
recorded traffic sample some delays were absorbed in 
the en route area (by metering) and the utilization 
rate of the airport was only 75% (i.e., throughput was 
54 and capacity was 72). The improvement ratios 
from runway-allocation algorithms hold over the 111 
range of utilization rates. The operating curves ob- 
tainable with a system with runway-allocation algo- 
rithms operating suggest that when the airport is busy 
(average arrival rates are at 90% capacity), the payoff 
in reduced crossovers and lower average delay will be 
considerable. 

Synergism between Optimal Sequencing 
and Runway Assignment 

Because the availability of several runways would al- 
low controllers to group landings of aircraft by weight 
class, optimal runway assignments should reinforce 
the process of optimal sequencing. Simultaneously 
optimizing runway assignment and runway sequenc- 
ing should lead to greater benefits than performing 
these functions separately and sequentially. Simula- 
tion results have indeed shown such a conjecture to 
be accurate. The incremental performance improve- 
ment is small, however, and the costs in terms of algo- 
rithmic complexity and computational overhead are 
too great to warrant this approach. 

To illustrate this point, we present Figure 17 as an 
example of a balanced traffic situation. In this exam- 
ple we have two runways with a capacity of 42.5 air- 
craft per hour each, a traffic mix of .09/.87/.04, and a 
sliding scheduling window containing no more than 
eight aircraft at a time. Figure 17(a) shows four oper- 
ating curves for this example: the top curve represents 
simple first-come-first-served sequencing and all air- 
craft go to their preferred runway (no crossovers). The 
next curve represents first-come-first-served schedul- 
ing with crossovers. The third curve shows optimal 
scheduling separately for each runway after runway 
assignment has been done, which is known as sequen- 
tial implementation. The fourth curve employs an al- 
gorithm that considers all possible ways to divide the 
set of candidate aircraft among the runways and all 
possible ways to sequence these aircraft, and selects 
the division and sequences leading to the lowest cost. 
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FIGURE 17. (a) Performance comparison of several implementations for the two functions of runway allocation and se- 
quence optimization: (1) neither function, but first-come-first-served scheduling to the preferred runway only, (2) run- 
way allocation only, (3) both functions but applied sequentially, and (4) both functions but applied simultaneously. 
Choice of parameters: two arrival Poisson streams of equal average rate; the mix of aircraft weight type is heavy/large/ 
small =.09/.87/.04; optimization window is restricted to eight aircraft; capacity is 42.5 aircraft per hour per runway. 
(b) The processing time for simultaneous implementation of runway allocation and optimal sequencing for a scenario 
with balanced arrival traffic exceeds the processing time for sequential implementation by a factor greater than ten. 

This fourth curve is indeed the lowest (i.e., the best) algorithm that simultaneously performs runway allo- 
operating curve. Figure 17(b), however, shows the cation and sequence optimization is not only a com- 
corresponding computational burden; now the lowest plicated task but is very computationally intensive 
curve (which is significantly lower by a factor of more and the improvement over a design in which these 
than 15) is the curve for sequential implementation. tasks are performed sequentially is minimal. In fact, 
Synergism? Yes. Worth the price? No. Designing an most of the improved performance derives from run- 
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way allocation (based on first-come-first-served 
scheduling on candidate runways), with only a minor 
improvement attributable to optimal sequencing. 

Conclusion 

During the design and early implementation phase of 
a large and complex system such as terminal automa- 
tion we must be guided by a vision of where the per- 
formance payoffs are most likely to occur. Automa- 
tion is capable of making decisions based on a more 
global awareness of traffic converging from all direc- 
tions to a number of runways, and at the same time 
taking into account localized and time-changing 
weather conditions and individual aircraft character- 
istics. Runway-assignment algorithms not only fulfill 
a strategic role by equalizing tr&c loads, but they 
also play a tactical role by exploiting opportunities to 
fill otherwise irretrievable gaps in landing sequences. 
This increases efficiency by increasing the throughput 
and reducing average delays. 

Whereas optimal runway-assignment algorithms 
merely exploit existing runway capacity more effi- 
ciently, optimal sequencing algorithms reduce the av- 
erage separation and therefore increase capacity. Sev- 
eral factors conspire to undermine the potential of 
these algorithms, however. These factors are the fol- 
lowing: (1) the number of aircraft in the scheduling 
window whose landings can be rearranged is usually 
limited; (2)  in most real traffic situations there is a 
preponderance of a single aircraft type, usually large 
aircraft (the statistical occurrence of potential heavy- 
small ordered pairs with which the greatest potential 
savings could occur is too small to make any great 
impact); and (3) the implementation costs of optimal 
sequencing algorithms are overwhelmingly high in 
terms of the complexity of the code and the computa- 
tional resources needed. 
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A P P E N D I X :  
I L L U S T R A T I O N  O F  ARRIVAL RATES,  

S C H E D U L I N G  D E L A Y S ,  A N D  T H R O U G H P U T  

We present Figure A to illustrate the meaning of some 
important variables discussed in this article: arrival 
rate (short-term and long-term averages), scheduled 
delay (short-term and long-term averages), and 
throughput (and its relation to arrival rate and capac- 
ity). We present these variables for the final five hours 
out of a ten-hour simulation of traffic. Only the last 
half of the traffic is used in order to avoid initial tran- 
sients that arise at startup. 

The arrival process shown is Poisson with an aver- 
age rate of 36 aircraft per hour. Each individual arriv- 
al event is represented by a vertical line in frame 1 of 
the figure. We can observe the occasional bunching 
and the occurrence of large separations (gaps) in the 
arrival stream. Frame 2 shows hourly averages varying 
between 24 and 43 arrivals per hour (sometimes ex- 
ceeding the capacity of 40 aircraft per hour) and a 
longer term five-hour average arrival rate that settles 
down to approximately 36 aircraft per hour. Even 
though the long-term (five hour) average rate was 
close to 36 aircraft per hour, the hourly arrival rate 
fluctuates quite a bit. This assertion is often used to 
justify the use of Poisson processes to simulate the 
varying daily arrival rate observed at airports, even 
though the fluctuations in the arrival rate are predict- 
able and the fluctuations occurring in the Poisson 
process are not. 

Frame 3 and frame 4 show the results of a schedul- 
er imposing minimum separations at landing (here 
simplified to ninety seconds between all aircraft). In- 
dividual scheduled delays shown in frame 3 vary be- 
tween zero and ten minutes. The hourly average, as 
shown in frame 4, varies considerably less. Observe 
how the bulge in the hourly average delay occurs later 
than the bulge in the curve of the hourly average ar- 

rival rate. This observation occurs because delays con- 
tinue to build up as long as high arrival rates persist, 
and the delays peak at the very end of the high-arriv- 
al-rate period and then, when arrival rates are low- 
ered, dissipate only slowly. Such lags are typical in 
queuing systems. 

Frame 5 shows so-called busy and idle periods of 
runway usage. During busy periods all aircraft are 
landed as closely spaced as legally allowed. Idle peri- 
ods consist of the "excess" spacings between landings. 
If we are allowed to do violence to the definition of 
arrival rate by restricting the interval over which we 
average the landings to the busy and idle periods, we 
could say that the throughput rate has only two val- 
ues: equal to capacity during the busy period and 
equal to zero during the idle period. The busy peri- 
ods, when added together, form a fraction of the time 
line equal to a variable that is called the utilizationfac- 
tor of the runway. 

Frame G shows the hourly average throughput rate 
that fluctuates much like the hourly arrival rate, ex- 
cept that the average throughput rate never exceeds 
capacity, while the average arrival rate can and occa- 
sionally does exceed capacity. Delays build up rapidly 
during periods when the hourly throughput rate 
equals or is close to capacity. The long-term through- 
put rate, shown as a dotted line in frame 6, equals ap- 
proximately 36 aircraft per hour, which closely equals 
the long-term arrival rate (because all aircraft must 
ultimately land) and the ratio of long-term through- 
put rate to capacity equals the utilization factor 
(which here is 90%). The utilization factor, some- 
times referred to as the degree of busyness of the run- 
way, plays a crucial role in the analysis of performance 
and performance improvements in this article. 
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FIGURE A. Illustration of the relationship among salient variables in the scheduling problem, shown for an arrival pro- 
cess that is Poisson. (a) Frames 1 and 2: aircraft arrival times and hourly average (sliding window) and long-term aver- 
age arrival rates. (b) Frames 3and 4: scheduled delays for individual aircraft and hourly average delay. (c) Frames 5 and 6: 
throughput busy and idle periods and hourly and long-term average throughputs. 
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