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ABSTRACT

We are on the cusp of a computational renaissance in space, and we should not
bring past terrestrial missteps along. Commercial off-the-shelf (COTS) processors—
much more powerful than traditional rad-hard devices—are increasingly used in a
variety of low-altitude, short-duration CubeSat class missions. With this new-found
headroom, the incessant drumbeat of “faster, cheaper, faster, cheaper” leads a
familiar march towards Linux and a menagerie of existing software packages, each
more bloated and challenging to secure than the last.

Lincoln Laboratory has started a pilot effort to design and prototype an exem-
plar secure satellite processing platform, initially geared toward CubeSats but with
a clear path to larger missions and future high performance rad-hard processors.
The goal is to provide engineers a secure “grab-and-go” architecture that doesn’t
unduly hamstring aggressive build timelines yet still provides a foundation of secu-
rity that can serve adopting systems well, as well as future systems derived from

them.

This document lays out the problem space for cybersecurity in this domain,
derives design guidelines for future secure space systems, proposes an exemplar
architecture that implements the guidelines, and provides a solid starting point for
near-term and future satellite processing.
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1. INTRODUCTION

Satellite systems provide a great many services to everything that lives and works beneath
them. Some extend our understanding of the universe around us, voyaging to the edge of our solar
system and beyond. Some provide valuable data about our own planet, serving civilian, intelligence,
and military purposes. Some provide communications capabilities, both broadcast and point-to-
point. Some are commercial, and some are government-owned. We almost take them for granted;
it is increasingly difficult to remember life before the 32 satellites of the Global Positioning System
(GPS) changed the way we navigate. Space systems are now part of our critical infrastructure.

For all their value, satellites come at a high cost. They must operate unattended in a harsh and
unforgiving environment for extended periods of time. The European Space Agency’s Envisat Earth
observation satellite, for example, weighs more than eight tons and cost almost $3 billion to build. 
Getting the satellite from the ground to space is not cheap, either; launching one kilogram to low
Earth orbit (LEO) costs several thousand dollars at the low end, and launching to geosynchronous
orbit (GEO) is far more expensive. Clearly the operational utility of these satellites must be
tremendous to justify such costs.

Not every satellite needs to weigh eight tons and cost $3 billion. Technological advancements 
are continually increasing what can be done with smaller satellites, and many missions may find
that a smaller system or constellation is a more cost-effective method of meeting the mission need.
A surprising amount of functionality can be packed into those small form factors. TacSat-4, for
example, demonstrates smaller communications satellite technologies [4]. On the smaller side, the
tiny “Dove” satellites developed by Planet, shown in Figure 1, will supply overhead imagery for
commercial purposes in a tiny launch envelope—on the order of 10 lbs each. It was not that long ago
that overhead imagery of this sort would include special reentry vehicles to deliver film canisters from
the satellite back to the ground for development.

The most common small satellites are CubeSats. CubeSats are measured in industry standard

units that are 10×10×10 cm3 in size and weigh roughly 1 kg — a cube called simply a “U.” Common 
CubeSat sizes include 1U, 3U (10 × 10 × 30 cm), 6U (10 × 20 × 30 cm), 12U, and 27U. Developers 
are working to make ever more agile and composable development strategies to streamline concept-
to-flight, e.g., [5, 6]. Launch services have evolved to support easy integration and deployment of 
standard-sized CubeSats, where rockets carrying multiple satellites each drive down launch costs
by a substantial factor [7].

Due to their increasing popularity, a variety of commercial off-the-shelf (COTS) vendors (e.g., 
[8]) now sell components suitable for use on small satellite programs — a departure from the more
bespoke nature of large satellites. Readily available COTS parts enable more aggressive acquisition
timelines and budgets. The accelerated and leaner development environment leaves less breathing
room for development that does not directly benefit reliability (to environmental threats) or
functionality. However, as these smaller satellites become increasingly operationally relevant, they
also become increasingly attractive targets to adversaries who may wish to deny satellite owners
unfettered access to the capabilities they provide.
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Figure 1. “Flock” of Planet “dove” satellites.

Securing small satellite platforms against cyber attack by these adversaries poses challenges
unique to the space domain. Once in orbit, software updates to the satellite (both security-related
and otherwise) become more difficult and expensive. Any update must be highly assured with
respect to software bugs. A crashed process can have dangerous physical effects if it manages
a hardware device, such as causing an orientation failure that results in a thermal imbalance or
inability to charge via solar panels. Should control of the satellite be lost due to a cyber attack,
the lack of physical access to the system’s hardware makes it much more difficult for legitimate
operators to reassert control than in an enterprise environment. Finally, the physical constraints of
the space environment make it very difficult to recover from the result of a successful cyber attack,
even if control can be regained. For example, if an attacker can cause orbit changes via firing of
thrusters, that satellite may have insufficient fuel to recover even if the legitimate ground station
is able to reassert control.

1.1 CONTRIBUTIONS OF THIS REPORT

This document contributes to the solution space by positing a series of security-relevant
design guidelines for satellite systems, an analysis of the challenges in securely implementing these
guidelines, and a reference architecture demonstrating the feasibility of securely applying them to
a representative small satellite. The design guidelines often go beyond what may at first appear as
security guidance (e.g., compliance with security controls). They instead focus on aspects of system
design that can make a system foundationally securable, in contrast to traditional approaches where
security is added on to a pre-existing architecture.

We begin by discussing secure system design in general terms in Section 2 and satellite
design in Section 3. In Section 4, we bring the two disciplines together and discuss secure satellite
system design, reviewing related work and applying the design strategies from Section 2 to the
space environment. The discussion leads to and motivates a small handful of threat scenarios in
Section 5, which in turn drive the development of a set of secure satellite design guidelines in
Section 6 that, if followed, will provide useful improvements to satellite designs from inception to

2



insertion. In Section 7, we analyze several of the challenges faced by system architects in securely
implementing our design guidelines.

Our project seeks to realize the guidelines in at least one representative architecture. The ini-
tial architecture and some of the implementation challenges we encountered working to instantiate
it appear in Appendix A.

3
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2. OVERVIEW OF SECURE SYSTEM DESIGN

This section offers a whirlwind tour of related work on secure system design, with a heavy bias
towards cybersecurity. There is deliberately little to no tailoring to the space environment here.
Instead, we talk generically about cyber protections here, generically about the space environment
in Section 3, and bring the two aspects together in Section 4.

2.1 THREATS AND THREAT MODELS

The majority of threats that space systems face (space junk strikes, radiation, EMI, etc.)
remain obedient to the laws of physics. The capabilities of an adversary or the environment can be
reasonably understood, accounted for, bounded, and mitigated.

Unfortunately, the cyber threat is far more challenging to quantify. The “space of cyberspace”
is not well understood, nor is a “physics” of cyberspace sufficiently developed. Researchers are still
discovering entirely new classes of attacks, and systems have ample room to hide as yet undiscovered

vulnerabilities.

Although it’s tempting to view “cyberspace” as a completely man-made, unreal environment,
it is nevertheless rooted in reality. However, the path from JavaScript to transistors is too complex
to trace, and the abstractions built up to address the complexity do not often remain true in
the face of adversarial activity. Despite lacking a hard physics, the cybersecurity community has
nevertheless pursued several approaches to characterize the threat.

The Common Attack Pattern Enumeration and Classification (CAPEC) resource [9] provides
a “comprehensive dictionary and classification taxonomy of known attacks”, in theory providing a
way to clearly name the slings and arrows that are hurled at computer systems. The dictionary
enumerates hundreds of attack mechanisms, including attacks against networks (“258: Passively
Sniffing and Capturing Application Code Bound for an Authorized Client During Dynamic Up-
date”), applications (“190: Reverse Engineer an Executable to Expose Assumed Hidden Func-
tionality or Content”), supply chains (“539: ASIC With Malicious Functionality”), humans (“163:
Spear Phishing”), and facilities. The hierarchical structure of CAPEC helps to “future-proof”
the dictionary somewhat by covering both the broad strokes of a potential adversary action (e.g.,
“525: Execute Code”) and the narrow strokes of currently known tradecraft (e.g., “579: Replace
Winlogon Helper DLL”).

The Defense Science Board (DSB) opted to back away substantially from a catalog of
techniques and instead categorize the adversary by a very coarse-grained view of available
resources [1], dividing the threat into three broad categories, as shown in Figure 2:

• Tier I–II: independent actors with modest means that use existing public exploitation tools
and tradecraft or develop modest tooling based on known vulnerabilities;

• Tier III–IV: criminal or state actors with substantial funding that can develop and use their
own tools, often for financial gain or espionage; and
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Figure 2. Cyber threat taxonomy [1].

• Tier V–VI: “full spectrum” state actors capable using cyber attacks in concert with other
non-cyber military and intelligence techniques to carry out specific desired outcomes.

The first tier of adversary should be defeatable by proper application of existing defensive
techniques—so-called “basic hygiene”—which has itself proven to be a challenge for many systems.
The upper tiers rely on a rich stew of deterrence, deception, obfuscation, and research and
development to survive that sea of troubles. The next section reviews schemes devised to identify and
select appropriate mitigation techniques for a system.

2.2 RISK MANAGEMENT AND MITIGATION TECHNIQUES

This section reviews three approaches for selecting cyber defenses and assigning them to spe-
cific parts of a system for implementation. The Risk Management Framework (RMF) is worth
careful review simply because it’s the mechanism of choice for a variety of real systems, the organi-
zations that fund their development, and the organizations that permit them to enter service. The
MATRIX approach, described in Section 2.4, is a brainstorming technique that pulls in broad views
of adversary techniques with an implicit consideration of adversary resources (a blend of CAPEC
and DSB), adversary goals, and mitigation strategies. Finally, the STAMP suite of processes, de-
scribed in Section 2.5, takes lessons from safety engineering and pivots them to security in a largely
adversary-agnostic manner.
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Figure 3. RMF sample control.

2.3 RISK MANAGEMENT FRAMEWORK

In the world of government security standards, the RMF is at present preeminent. The Risk
Management Framework (RMF) is the current standard by which Air Force systems are secured,
and the rest of the DoD is moving toward it as well [10]. The RMF process is based on the NIST
800-53 set of security controls [11]. Engineers review all 900+ controls and enhancements (sub-
controls), select those appropriate to the system, tailor them to the system’s needs, and use those
selected controls to generate requirements for the acquisition process. An example control from
800-53 is presented in Figure 3.

RMF has been subject to its share of criticisms. One is that RMF predicates its control selec-
tion based on a “characterization” of the target system’s confidentiality, integrity, and availability
needs judged against mission impact [12], but it doesn’t really speak to the system’s deployed envi-
ronment, mission lifetime, adversary capabilities and motivation, etc. This is largely a side effect of
RMF’s roots as a successor to the Federal Information Security Management Act (FISMA) check-
lists and its focus on enterprise computing, where aspects of the environment and mission lifetime
are fairly standard.

RMF also succumbs somewhat to a “checklist” mentality and, like any other option out there,
requires a complex series of judgment calls by engineers to weigh acceptable risks. These judgment
calls can become bogged down in concerns between the system builder, the acquisition office, and
the accrediting authority, all of whom may have different ideas of what’s really necessary. They
can get further bogged down as the project goes through the complicated DoD acquisition process
and can become more of a paperwork exercise than a security exercise. For all these difficulties,
however, it can still be a useful technique.

There have been many efforts to further refine and expand upon RMF. MITRE’s Cyber
Resilience Engineering Framework (CREF) works on the front-end problem of understanding how
one should go about selecting security controls in the first place [3]. It lays out a series of cyber
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Accesses Effects Techniques

Supply chain Data loss/exfiltration Securely parse and ingest data
Physical tamper Data corruption Component isolation
Malicious insider Denial of service Surface/component minimization
Credential theft Data protection (at rest, in transit, in use)

Sandbox breakout Authentication and secure control
Control hijack Randomize, diversify, adapt

Rapid replacement and reconfiguration

TABLE 1

MATRIX Brainstorming: Accesses, Effects, and Techniques.

resiliency goals, objectives, and techniques, and then works to map the controls to those techniques.
The list of techniques is replicated in Table B.1 in Appendix B.

2.4 MATRIX STRUCTURED BRAINSTORMING

MIT Lincoln Laboratory (MIT LL) develops far more than just cybersecurity technology.
Among other things, Lincoln designs and builds RADAR systems, bioagent detectors, optical sen-
sors, advanced microelectronics, and sometimes the systems that those components go into as well.
These designs and subsequent prototype systems may occasionally get fielded directly, and thus be
subjected to cyber threats.

MIT LL is internally developing methods to properly manage cyber risk for these prototypes.
Our goal is systems that are secure now, and and easily securable in the future as new defensive
capabilities are developed and new offensive capabilities are discovered. The process, termed the
MATRIX process, discusses when and how MIT LL security expertise can be usefully brought in at
each stage of the underlying prototype’s development.

We will not cover the entirety of the “Securable Mission Systems” MATRIX method here.
We instead focus on the structured brainstorming it proposes as a way to explore the problem
space. MATRIX uses a three-dimensional space with attacker access, attacker effect, and mitigation
strategy as the axes. By pairing up one value from each axis, defenders can consider the likelihood
of a given attacker access–effect pair and the efficacy of a given mitigation strategy to thwart it.
Designers can explore the solution space and work to develop the best “set-covering” approach to
mitigate the threats.

We review the attacker access, attacker effect, and mitigation strategy lists in the remainder
of this section. They are summarized in Table 1.
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2.4.1 Adversary Accesses

Here we list a handful of common cyber threats that one could imagine being applicable to
any cyber system, space-related or otherwise. We do not attempt to reduce to any specific system
here, nor do we discuss specifics of any techniques or weapons that an adversary could use. Pairing
threats with architectural elements provides basic “threat vignettes” that we can then seek to
mitigate.

The means by which an adversary can gain unintended or unauthorized access to the system
can include the following:

Supply chain. Hardware, firmware, and/or software components of the system were compromised
prior to delivery and integration, providing unintended functionality that an adversary can
exploit. Supply chain compromises can trivially enable other access means (e.g., by provid-
ing an easy “breakout” method, or by adding unexpected, adversary-controlled credentialed
access, etc.).

Physical tamper. An adversary is able to gain physical access to some component of the system
and uses information gleaned from the system to achieve access elsewhere. This can be, for
example, a means to conduct credential theft.

Malicious insider. A trusted insider with authorized access to the system acts adversarially.
Malicious insiders are extremely dangerous, especially if they are unconcerned with capture
and are able to carry out their effect completely before they are identified and stopped.

Credential theft. An adversary that successfully steals (or guesses) credentials can assume the
identity and privileges of an intended user of the system. The adversary may not have the
expertise of the user being emulated.

Sandbox breakout. An adversary is able, via technological means, to move through a bound-
ary designed to isolate or limit the scope of a subcomponent’s actions. The boundary the
adversary moves through may be an externally facing boundary; this may be a means of
initial compromise as well if an externally facing software service is vulnerable to attack, for
example.

Control hijack. An intended control channel is taken over by the adversary. This access vector
may be achievable in the analog or digital domains.

2.4.2 Adversary Effects

Adversaries generally don’t break into systems with no further objective in mind. Broadly 
speaking, the effects an adversary could carry out, once access is obtained, are as follows.

Denial of Service. The adversary prevents the system from working. This can involve complete, 
permanent denial, or it can be more nuanced—partial degradation and/or temporary denial. In the 
non-cyber world, the former can often be achieved with well-placed explosives and the
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latter by well-placed jammers. This can also include subjugation if the adversary is able to
not only deny the owners access, but also gains access to the system and repurposes it for
their own use.

Data Corruption. The adversary alters data that the system generates, stores, and/or transmits.
The corruption’s extent and goals vary widely based on the system. An adversary may simply
wish to degrade trust in the system’s integrity. In the case of sensor systems, the adversary
may wish to inject false positives or false negatives into the data feed and/or the processed
results.

Data Loss/Exfiltration. The adversary simply deletes data that the system is supposed to pro-
cess and/or makes unauthorized copies of the data for their own use. Data loss can be viewed
as a more obvious form of data corruption and/or as a more permanent form of denial of
service.

An adversary may seek only to project an overt, credible threat, without actually carrying 
out one of these effects. If an adversary convinces the United States that a denial of service effect is 
feasible, for example, then the United States has effectively lost its ability to rely on the asset—even 
if the adversary never actually carries out the effect.

2.4.3 Mitigation Strategies

Broadly speaking, these are the mitigation strategies that should be considered when en-
gineering a system. There are as many ways to enumerate the strategies as there are strategies 
themselves—indeed, we’ve already discussed both RMF and CREF—but we offer our own list for 
consideration as well. Our list of techniques seek to be very broad, general-purpose best practices 
that work to prevent unauthorized access and minimize damage should unauthorized access be 
achieved.

Securely Parse and Ingest Data. Mistakes will be made when code is written, and larger code-
bases have room for more mistakes. Mistakes on the “edge” of a program where it interacts 
with data from other programs are particularly harmful. Designers should minimize and sim-
plify interfaces between components of a system. This leaves less room for a data consumer to 
make a mistake that could lead to vulnerability. This includes message-, network-, and ap-
plication programming interface (API)-level interactions. Several of the following strategies 
build upon this basic concept.

Surface/Component Minimization. In the spirit of secure parsing and ingestion, the overall
size and complexity of the system should be minimized. Remove unneeded features, libraries,
modules, and other code that is not necessary for the system. Identify and aggressively mini-
mize “trusted” components without which the system will fail to operate. These components
should receive intense scrutiny during the design process to understand and limit the effects
of their failure if compromised.

Component Isolation. Software generally has two types of interfaces: customer-facing interfaces
through which it sends/receives commands and data to other software, and system-facing
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interfaces through which it manages the accesses and resources needed to get its work done.
The system-facing interfaces are often library APIs and operating system APIs. Those
libraries and operating systems can be viewed as “sandboxes” designed to contain the software
and ensure it doesn’t disrupt other functions on the system. The principles of secure parsing,
ingestion, and surface minimization apply when interacting with the system-facing world as

well.

Data Protection (At Rest, In Transit, In Use). Designers should protect data as they move
through mission systems. Protections typically focus on confidentiality, integrity, authentic-
ity, “freshness” (including replay protection), and non-repudiation. These data include key
material, credentials, the communications to/from the terminals and metadata about those
transfers, such as the geographic locations of terminals. Some data that may not require
protection for mission needs could nevertheless benefit security if protection is implemented.

Authentication and Secure Control. Developers should provide means to remove unautho-
rized data flows and ensure that command/control (C2) messages are only accepted from
authorized entities. Authentication and secure control are important components of a sys-
tem and of all of the other systems that interact with it. Ensure the system can accurately
measure and report its internal state to appropriate parties for monitoring and remediation.
This is a blend of surface minimization and data protection, used to “bind” data to specific
entities and enforce relationships between them.

Randomize, Diversify, and Adapt. Where possible, create system diversity without increasing
configuration and management burden. Diversity makes it more difficult for an adversary to
achieve a “break once, break all” attack and requires the adversary to use more complicated
attack vectors to overcome the moving-target nature of the system under attack. Ideally,
engineer the system to automatically recognize which moving-target options are vulnerable
to observed attacks, migrate to an immune option, and eschew the vulnerable options in
the future. In the electromagnetic (EM) world, adaptive frequency hopping is the canonical
example: the system automatically adapts to the EM spectrum by avoiding noisy channels,
and it randomly jumps between clear channels to make it more difficult for the adversary to
target the transmission.

Rapid Replacement and Reconfiguration. Ensure the system can be easily reconstituted in
case of compromise, failure, or discovered vulnerability. When a vulnerability is discovered,
ensure that the vulnerable component(s) can be rapidly and safely replaced. When an attack
succeeds and mitigation is attempted, adjustments need to be made to ensure that the attack
that took the system down won’t succeed a second time, and it must then be brought back
into service as rapidly as possible.

2.5 STAMP, STPA, AND STPA-SEC

It is tempting, but incorrect, to conflate reliability engineering with security engineering.
Reliability engineering seeks to mitigate the impact of an arbitrary, capricious, uncaring universe.
Reliability engineering considers metrics such as mean time to failure (MTTF) and mitigation
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strategies such as redundancy. For example, redundant array of inexpensive disk (RAID) technology 
is commonly used to ensure that a single hard drive failure will not cause data loss.

Security engineering, however, concerns itself with malicious attack, where an active adver-
sary effectively gets to choose a highly improbable stimulus. A system designed to provide only 
traditional reliability is unlikely to fare well when faced with adversary actions; RAID does not 
save you from deliberate, malicious data deletion, for example.

Designers may also conflate safety engineering with security engineering in the same way. 
These systems are generally more robust from a security perspective because they may consider 
mitigating external forces that are actively malicious, but they still lack a complete threat model.

However, safety engineering can still be an excellent place to start working on security en-
gineering. Researchers at the MIT campus have been working on this very hypothesis and have 
yielded a trio of processes as a result: STAMP and STPA, which focus on safety, and STPA-Sec, 
which extends them to security.

2.5.1 STAMP

Professor Nancy Leveson is at the helm of MIT’s System Safety Research Laboratory. She 
asserts that in the past, systems were sufficiently simple that the reliability and safety of individual 
components composed in a reasonably straightforward manner to inform the overall safety of the 
system as a whole. However, modern systems with their microprocessors and their corresponding 
unfathomable plethora of machine states do not lend themselves to this piecemeal analysis. Prof. 
Leveson’s model, Systems-Theoretic Accident Model and Processes (STAMP), proposes that safety 
is increasingly a control problem, not a component problem.

In general, STAMP proposes decomposing a system into control-flow loops and then reasoning 
about the loops. The simple power of the approach is that it can be applied at almost any layer of 
abstraction and refined into arbitrary granularity as the exploration of the space and maturation 
of the system’s design dictates. (We will put it to use in Section 4.2.3.)

Once the control structure is established, designers can examine potential deviations from 
the norm in a structured manner. STAMP encourages the consideration of four classes of unsafe 
control actions. The following description is excerpted directly from [13]:

• An unsafe control action is provided that creates a hazard (e.g., an air traffic controller issues
an advisory that leads to loss of separation that would not otherwise have occurred).

• A required control action is not provided to avoid a hazard (e.g., the air traffic controller does
not issue an advisory required to maintain safe separation).

• A potentially safe control action is provided too late, too early, or in the wrong order.

• A continuous safe control action is provided too long or is stopped too soon (e.g., the pilot
executes a required ascent maneuver but continues it past the assigned flight level).
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STAMP also makes several assertions about software that are controversial on the surface.
First, software does not “fail” in the sense that a physical part can fail. Rather, software always
does exactly what it says it does unless the hardware that it’s running on fails. Second, that
software’s role in (non-malicious) accidents is almost always a result of bad requirements, not bad
coding, so making the software better or more reliable will not necessarily improve safety.

For greater detail on STAMP, the brief overview [14] and the full-length book [15] are both
available to interested readers for free. The book is also available in hardcover.

2.5.2 STPA

The STAMP work was further extended to Systems-Theoretic Process Analysis (STPA),
[13]. STPA further explores component interaction accidents, where a set of normal or expected
operations between components in a system can yield an unexpected or unsafe behavior. STPA
takes the STAMP process and works to better determine which unsafe control actions may be
problematic. The component interaction view takes into account the system-level phenomena
that can give rise to accidents, above and beyond the reliability or failure modes of an individual
component.

STPA starts by identifying hazards, which are combinations of a given system state and a
worst-case set of environmental (external) conditions, that lead to an accident or loss. The key
observation is that a hazard must include an aspect of the system that can be controlled as well
as a set of conditions that may not be in the system’s direct control. This helps to reframe each
hazard as a requirement that the system must satisfy. A handful of worked examples are presented
in [13].

2.5.3 STECA

STAMP and STPA are generally applicable to all levels of design. However, in the earliest
stages of design, systems are often described predominantly in prose, and little is yet set in stone.
The Systems-Theoretic Early Concept Analysis (STECA) technique is proposed in [16] to address
this case as well. The paper provides guidance on how to systematically disassemble paragraphs
of text describing a system design, convert them to pieces of the STAMP/STPA model (control
flows, actuators, sensors, etc.), and then reason about them at that level of abstraction. The paper
suggests that such an approach can derive more useful, finer-grained safety requirements than
traditional approaches. To make its case, the paper uses an air traffic control system document
as an example and supplies partially worked output of their approach vs. a more traditional
preliminary hazard list and analysis approach.

2.5.4 STPA-SEC

Colonel William “Dollar” Young Jr. has worked to refine STAMP and STPA to address
security concerns in an approach termed STPA-Sec [17, 18]. Among his foundational assertions
regarding cybersecurity, he advocates for:

• Identification and control of undesired functionality, not just desired functionality;
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• A focus on operational approach (strategy) rather than on engineering (tactics);

• A de-emphasis on protection (“shell” defense), instead favoring mitigation and elimination;

• Early, “left-of-design” assurance work, based on the flexible levels of granularity afforded by
STAMP; and

• Mission assurance as the “gold standard of success,” not cyber security.

This seems deceptively simple, and perhaps it is. STPA considers the threat posed by an
uncaring environment and tragically errant humans. STPA-Sec uses the same analytical structure,
but adds the threat of a deliberately malicious human. The basic analytic flow remains largely
unchanged.
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Figure 4. Diagram of typical SV and ground components, including the optional terminal and payload com-
munications components.

3. OVERVIEW OF SATELLITE DESIGN

A satellite system comprises at least two, and sometimes three, basic architectural compo-
nents: the space vehicles (SVs), which go to orbit; the ground control, and—for communications 
satellites, at least—the terminals capable of directly using the SV’s capabilities. The ground control
task is often split between a spacecraft operations center (SOC) that focuses on orbit main-tenance
and maneuver and a payload operations center (POC) that focuses on payload control and
management of payload-generated data. Different organizations may break those tasks down in
different ways. Large and expensive ground components, like antennas, are often shared between
missions via a control network. These components are summarized in Figure 4. The remainder of
this section begins with the operational environment, then considers all of the components in turn.

3.1 SPACE ENVIRONMENT

The ground and payload control systems are often traditional enterprise computing environ-
ments, with traditional enterprise computing risks [19]. Terminals can exist in a wide variety of
environments: forward-deployed, CONUS-based, mobile, fixed, manned, unmanned, on land, on
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sea, undersea, and airborne—all environments more hospitable than the one the spacecraft must
endure.

The space environment is a harsh place to park a machine [20]. Beyond the Earth, the
magnetosphere offers no protection from the solar wind and background radiation. In high LEO
orbits and above (anything higher than 1,000 km or so) satellites often must fly through, and survive,
the Van Allen radiation belts. In lower LEO orbits, satellites must contend with atmospheric drag,
damage from elemental oxygen, and charged particles that get past the magnetic field’s protections.

The harsh environment takes its most serious toll on electronic components. Integrated circuits
are particularly susceptible to radiation damage. There are two basic threats to circuits: total ionizing 
dose (TID), a gradual build-up of damage that eventually causes failure of the part, and single event 
effects (SEEs) caused by individual, high-energy particles that cause transient glitches and latch-ups 
in parts [21].

3.2 SPACE VEHICLE

The satellite, or SV, receives a great deal of scrutiny and engineering care, and for good
reason. The SV must undergo the harsh rigors of depressurization and shock during launch, survive
the temperature and radiation vagaries of space, and (with any luck) avoid strikes from space junk
and other satellites long enough to accomplish its mission and survive for the duration of its design

life.

A satellite is usually separated into two segments: the payload and the bus. The payload
is the portion of the satellite present to carry out the overall mission—collecting sensor data,
relaying communications, etc. The bus is the portion of the satellite dedicated to supplying the
payload with what it needs to carry out the mission—proper orientation and orbit, electrical
power, and communications.

The bus and the payload may be built by different organizations and may be owned and
operated by different organizations as well. Sometimes a single bus carries multiple payloads—built,
owned, and operated by multiple disparate entities—within the same physical satellite. This hosted
payload model can be quite cost-effective for some users, but it brings with it a complicated set of
additional security concerns. Hosted payloads are not addressed further here, though we return to
the concept to motivate some of our single-payload recommendations.

3.2.1 Sensors

A satellite bus has some responsibility to sense its environment: without any ability to know
where it is, where it’s going, and what it’s looking at, it risks being demoted to space junk in short
order. Typically, the satellite cares about its handful of orbital parameters describing where it is
and where it’s going along its orbit (in Euclidean geometry, x, y, z, and deltas for each), along with
the six angular measurements describing where it’s looking and how it’s rotating (pitch, yaw, roll,
and the deltas for each). Satellite buses therefore routinely carry a smattering of sensors in order
to maintain awareness of these parameters.
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To sense its orientation, a satellite tends to use a set of coarse sun sensors to get an initial fix on 
the brightest object it's ever likely to see and at least one star tracker that surveys a small keyhole-
shot of the heavens in an effort to identify known constellations. Position is often determined by GPS 
in concert with an inertial measurement unit (IMU). Position and orientation are critical 
knowledge for pointing communications antennas and solar arrays for optimal performance, 
among other things.

The speed of rotation is also important: too fast and one risks damaging spacecraft systems via 
excess centripetal force; too slow and one may be unable to carry out the mission. To sense rotational 
speed, the star tracker can be used once more, along with inertial measurement units. Difficulties can 
arise when multiple instruments measuring the same phenomenon disagree: inconsistencies between 
the IMU and the star tracker contributed materially to the loss of the Japanese Hitomi satellite [22] 
and may have also caused the problems observed with the NASA STEREO-B satellite [23].

Beyond knowing where it is and where it’s pointing, a satellite must also understand its inter-
nal state. A satellite that is too hot or too cold risks damaging or destroying sensitive components. 
Satellites that can’t sense overvoltage or undervoltage situations can’t detect and react to compo-
nent failures or latchups, and risk failures cascading throughout the system. Satellites therefore tend 
to fly a robust set of health and status sensors, and the data from these sensors are routinely 
transmitted to the ground as part of the satellite’s telemetry feed. Particularly well-instrumented 
craft may even generate more data than the downlink can support, and fretful engineers on the 
ground must decide which sensors they wish to monitor and when.

3.2.2 Orientation and Maneuver

The vast majority of satellites require at least some ability to move in order to accomplish 
their missions. The simplest type of movement is orientation, or adjusting the satellite’s facing. 
Almost all satellites possess this capability to some extent. The more complicated capability is 
maneuvering, or adjusting the satellite’s orbit. Maneuvering can be optional for short-lived missions 
in LEO, but almost all other regimes require at least a modest maneuvering capability.

Satellites orient themselves in flight by stabilizing and controlling pitch, yaw, and roll as they 
travel along their orbits. If a satellite remains in a low orbit and only needs to stabilize in relation to 
the Earth, designers can use torque rods, or magnetorquers, to dump the satellite’s angular 
momentum into the Earth using the Earth’s magnetic field. Satellites that need to stabilize in all 
three axes or satellites that need to occasionally point themselves away from Earth will add a on each 
axis. The satellite can change its rate of rotation about an axis by counter-rotating the corresponding 
reaction wheel.

Orientation capabilities give satellites little to no opportunity to alter their orbits, however. In 
LEO, orientation can allow a satellite to “fly” somewhat through the extremely thin atmosphere, but 
there is very little control and “flight” of this sort can hasten the satellite’s eventual reentry and fiery 
demise. Anything more sophisticated generally requires some amount of maneuvering capability. 
Satellites may need to maneuver for a variety of reasons, including:
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• performing basic station-keeping to counteract drift and keep a satellite exactly positioned 
within a known and expected orbit;

• carrying out specific mission goals that may require orbit alteration—e.g., a satellite that 
propels itself from a geosynchronous transfer orbit (GTO) to GEO;

• dodging an imminent collision (e.g., with space junk on an intersecting orbit);

• intentionally deorbiting or boosting to a “graveyard orbit” when the spacecraft reaches end 
of life.

These maneuvers are carried out via steadfast obedience of Newton’s Third Law: by forcibly 
ejecting some of the spacecraft’s mass in one direction, the spacecraft can move in the other 
direction. There are a variety of technologies used for this purpose, from solid rockets to cold-
gas thrusters, warm-gas thrusters, or ion engines [24]. All of these are generally measured in terms 
of delta-V, the total amount of velocity change that they can impose on the satellite. Designers 
also must weigh the maximum acceleration the propulsion system can impart as well as the mass 
required. Ion drives, for example, are extremely efficient, but can provide only a very small amount 
of force.

Sometimes a satellite must use propulsion for orientation as well. Reaction wheels can only 
“soak” so much angular momentum; they can only spin so fast. Satellites in LEO can use their 
torque rods to dump excess angular momentum. Satellites in higher orbits don’t have this luxury 
and must use thrusters to bleed off the excess if something causes a gradual buildup.

3.2.3 Communication

It’s a rare satellite that can accomplish its mission without ever communicating with anything 
else. As a result, satellite buses tend to carry at least one radio used for telemetry, tracking, and 
command (TT&C). Communications from Earth are “uplinks”, to Earth are “downlinks”, and from 
satellite to satellite are “crosslinks.”

The data rates required for basic command/control (C2) are generally modest; some satellites 
get by with 1200 bps up and 9600 bps down, for example. Most communications is done via radio 
frequency (RF) links. The engineering tradespace includes not only the data rate requirements, but 
also the available size, weight1, and power (SWaP) for the antennas and amplifiers, the encoding 
properties, the distance from the satellite to ground stations, and the “steerability” of the commu-
nications beam (by rotating the satellite itself, putting the antenna on a gimbal, or electronically 
steering an array of antennas).

3.2.4 Power

Satellites require electrical power for almost everything they do. RF amplifiers and receivers, 
propellant control valves, reaction wheels, processing units, and thermal management systems

1 For spacecraft, this should be mass, not weight, but sadly, SMaP is not a standard acronym.
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(survival heaters, active radiators) all require power. Satellites are on their own when it comes to
power generation.

Solar panels are by far the simplest and most common approach to provide power to a
satellite. The power system can be as simple as a set of panels on the surface of the spacecraft,
or as complicated as deployed solar arrays on steerable arms that keep them optimally oriented
for maximum collection. Onboard batteries are used to power the spacecraft while it is in eclipse,
traveling “behind” the Earth and out of view of the Sun. The power budget for a CubeSat is
generally very modest, and substantial effort is made to minimize power consumption (and thus
simplify the power subsystem and reduce overall SWaP).

The rare SVs that don’t use solar panels are usually interplanetary probes that may travel
so far from the sun that solar panels can no longer generate sufficient power. For these satellites,
a radioisotope thermoelectric generator (RTG) is used. An RTG uses a hot pile of plutonium and
a thermocouple to generate electrical power. Plutonium is not cheap. As a catastrophic launch
failure that scatters chunks of RTG far and wide would be pretty unpleasant, these systems are
very carefully over-engineered, further adding to their cost and weight. They are therefore used
only when nothing else will do. There are exceptions, of course, even some within Earth orbit [25].

3.2.5 Processing

As described in Section 3.1, the space environment does not make traditional computing easy.

Certain “rad-hard” processors have been carefully designed to resist large amounts of radi-
ation damage (e.g., the BAE RAD750™ and its relatives [26]), and these processors are often the 
only choice for missions that require either a very long duration or a particularly inhospitable envi-
ronment (GEO or beyond Earth orbit). These processors, while effective, are very expensive and 
underpowered/inefficient compared to commercially available parts.

Many SmallSats (and especially CubeSats) operate in LEO and have short mission durations. 
For these satellites, COTS processors are an increasingly viable choice. COTS parts can often resist 
fatal TID damage for several years and careful design of rad-hard “watchdog” circuits and other 
engineering choices can provide for efficient reset and recovery of a part that’s been hit by a SEE.
(See Section 3.1 for discussion of the threat of TID/SEE.) As a result, SmallSats have an almost 
unprecedented amount of onboard processing power that can be brought to bear.

With great power frequently comes great bloat—these COTS processors are often called upon 
to run COTS operating systems, bearing COTS libraries and software stacks. Variations of Linux, 
including real-time versions, are increasingly frequent choices. At least one amateur satellite flew 
using Windows CE .NET as its operating system (OS) of choice [27]. As a result, small satellites are 
increasingly subjected to many of the same issues as any other computer running a commodity OS.

3.2.6 Payload

The previous sections documented the various components of the bus, but buses do not drive
for the bus’s sake. The payload is the bus’s (and thus the satellite’s) raison d’être. Payloads have
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their own demands on the satellite, chiefly SWaP requirements. Payloads may require the satellite to
perform various physical maneuvers to ensure the payload can operate optimally—in some cases, the
payload’s desired orientation may not be sustainable and the satellite must routinely switch between
an operational mode (charge-depleting) and a sun-facing mode (for recharge). The payloads may use
bus communications capabilities to reach the ground or it may have its own, either because the
payload requires higher bandwidth or because communication is the payload’s actual mission.

3.2.7 Integration

Often a payload is “bolted on” to a suitable (but not custom) bus, and many vendors sell buses
or bus-oriented “mix-and-match” components for these purposes. However, some payloads are
tightly integrated with and around the buses that support them. Such an approach may add design
complexity, but it often yields payoffs in terms of launch mass and size, enabling a more powerful
payload to fly in a smaller form factor than it could otherwise inhabit.

The integration of bus components is itself a complicated task, spanning a variety of disci-
plines. Most relevant to cyber are the various hardware and data interfaces used to manage the
various components of the satellite (see Section 3.2). Efforts have been made to standardize these
interconnects [28,29], but industry is still largely in a “Wild West” period and has not settled down
to these sorts of standards. In addition, the onboard processor may have its own surrounding sup-
port structures, such as hardware watchdogs, and associated board support packages to integrate
into the control software.

3.3 GROUND CONTROL

There are several terrestrial roles involved in the care and feeding of a spacecraft:

• Command authority of the bus

• Telemetry processing from the bus

• Command authority of the payload

• Telemetry processing from the payload

• Orbit awareness (tracking) and maintenance

• Mission data processing (of data from the payload)

• Cryptographic operations for communications security (COMSEC) purposes

• Free-space communications

The first five tasks — collectively termed “Telemetry, Tracking, and Command” or TT&C
—are typically computationally simple and can be handled by modest resources. Orbit awareness
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can be challenging, depending on the satellite. Some designs may be able to use ranging signals to 
discern its location via triangulation, and others may need to rely on other sensors external to the 
system to identify location.

Mission data processing can be very demanding, depending on the payload, and may require 
large amounts of dedicated (or bursty) processing power on the ground to crunch raw data from the 
satellite into actionable information in a timely manner. Bursty processing needs lend themselves 
to a cloud-based processing model, with all of the traditional risks and rewards of such an approach.

COMSEC is a very common technique in space systems, so common that we document it here 
as well as in Section 4. Cryptographic operations are typically handled via dedicated, purpose-built 
hardware. From a design standpoint, it is often easiest to buy and use well-understood 
hardware and protocols for these tasks. Existing solutions ease accreditation paths, leverage 
extensive work on correctness of implementation, and reduce the risk of incompatibility between 
the ground and SV implementations.

Communication likewise requires special purpose hardware, usually RF amplifiers, modems, 
satellite dishes, and the like. The size of the dish required is a function of frequency, desired 
bandwidth, and the power of the satellite’s own transmission and reception capabilities. Some of 
these dishes can be quite large—the UHF dish at NASA’s Wallops Island facility is 18 meters across 
[30]—in order to minimize the on-orbit SWaP. (Naturally these trades differ substantially for 
satellites that have communications to less-advantaged ground stations as a mission objective; one 
cannot expect a warfighter to carry a handheld radio and use it with an 18-m dish.)

For especially high-speed communications, optical transmission is increasingly viable at dis-
tances far greater than LEO [31]. Optical may be an increasingly tractable option for smaller 
satellites. Because optical transmission requires precise pointing, it is likely that a low data rate 
RF link will still be maintained for TT&C purposes.

All of these tasks must be accomplished to properly fly and use a satellite, but it is not 
necessarily the case that all of these tasks are performed by a single organization. There are a 
few factors that motivate consolidation and outsourcing of some of these tasks: orbit deconfliction, 
outsourcing, and cost of RF equipment.

First, the organization that pays for a satellite typically cares most about the payload and the 
tasks that the payload is able to carry out. The POC therefore focuses heavily on care and use of the 
payload. They may not necessarily be interested in also having the expertise, staffing, and equipment 
on hand to fly and manage the bus.

As an additional task and responsibility, a satellite with the luxury of maneuvering will 
want to execute burns as needed to maintain their intended orbit. The ground support must 
maintain awareness of collision threats and execute evasive maneuvers if needed. This is a lot of 
work for an organization that is principally interested in the payload.

For these reasons, some mission owners outsource these tasks to aggregated ground stations 
like the Blossom Point Satellite Command and Tracking Facility. These SOCs “fly” multiple 
satellites, handling most of the bus-related tasks. 
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The POC issues commands through the SOC2. The SOC adds necessary commands for orbit main-
tenance and other bus-related tasks, performs any necessary COMSEC, and sends the commands
to the satellite.

There is also a great benefit to aggregating the RF hardware necessary to actually communi-
cate with a satellite. First, the hardware is often expensive. Second, for LEO missions, the dish can
only contact a given satellite for a small portion of its orbit (when it passes overhead), meaning the
antenna and gear would otherwise be idle for the remainder of the pass. Lastly, for LEO missions that
need frequent contact, multiple antennas dispersed across the globe are necessary. All of this adds a
lot of cost without a very high duty cycle. Organizations like the Air Force Satellite Control Network
(AFSCN) thus serve as “antennas for hire,” in a sense, providing a global network of antennas that
can be leveraged as needed to command various satellites. AFSCN can also fulfill the SOC role for
many missions.

In short, many of the ground systems used to execute TT&C tasks are geographically dis-
persed and shared resources.

3.4 TERMINALS AND CROSSLINKS

For satellites that communicate with entities other than their ground networks, the hard-
ware and cryptographic concerns largely remain. We generically refer to these non-SOC/non-POC
endpoints as “terminals.”

“Terminal” generally evokes the image of an antenna on the roof of a HMMWV, a handheld 
antenna employed by a dismounted user, or an intrepid explorer wielding a large iridium satellite 
phone. In all cases, the terminal hardware is far more SWaP-constrained than the ground station’s
hardware, and the terminal is often at greater risk of compromise or capture. Communication with
terminals is almost always a payload task, not a bus task.

Satellites may also communicate with other satellites, via crosslinks. A constellation of satel-
lites cross-linked together might be able to get by with fewer ground stations, as a satellite not in
view of a ground station can use crosslinks to reach a satellite that is in view. Heterogeneous satellites
able to communicate with one another could enable even more elaborate (and convoluted) paths for
data flows. Crosslinks may be bus- or payload-provided features.

2 We use the terms in the Department of Defense (DoD) sense, but the U.S. Government is not always consistent
with them: NASA, for example, uses SOC as “Science Operation Center” and attributes POC-like functionality to it,
whereas the NASA “Mission Operation Center”, or MOC, is much like the DoD SOC. Commercial providers may have 
completely different terms on a per-company basis. We apologize to readers accustomed to those or other definitions,
but short of coining our own terms, we are stuck.
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Terrestrial Space

easy very difficult
power surges, sprinkler systems radiation, thermal

low very high
IT professional rocket launch

wired intermittent wireless
low high
low high

Physical access
Environmental threats

SWaP concerns
Installation method 

Communications
User specialization

Platform specialization
Duration of unattended operation days to months months to years

TABLE 2

Differences Between Satellite Processing and Traditional Ground-Based Processing, 
Adapted from [2].

4. SECURE SMALLSAT DESIGN

There are a great number of ways to think about the process of engineering secure space
solutions. Many start with approaches that apply to generic computing problems and work to tailor
them to the space environment. The cybersecurity approaches one might prefer for a terrestrial
system may be highly unsuitable in the space domain.

Design for spacecraft processing is especially challenging, and has a very different set of
demands compared to traditional enterprise computing. Table 2 contains a summarized version of
the differences between the two environments as documented in [2].

The ground segment, at first blush, is an ordinary enterprise network. The processing power
necessary to manage satellite TT&C is often quite modest, but the infrastructure required to execute
the communication itself—the dishes, modems, amplifiers, etc.—is not. As observed in Section 3.3,
the communication resources may not always be co-located with the ground station, either.

The SV demands very different considerations. In general, satellites must place an extremely 
high premium on reliability and failover, as in-orbit maintenance is all but impossible. Spacecraft are 
not usually afforded the luxury of “detect and react”, because of the difficulty in reacting to a 
compromised system: troubleshooting usually cannot include pushing a reset button or toggling the
power switch. The spacecraft must take care of itself.

4.1 RELATED WORK

There are many existing works on security for space systems, especially the spacecraft them-
selves. We touch on a few of them here, and revisit as appropriate through the remainder of the

document.
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The RMF, as described in Section 2.3, is biased toward enterprise computing: there is, for 
example, an entire section on physical security that covers everything from visitor access policies to
water shutoff valves. RMF provides for the concept of an “overlay” that tailors the RMF control set
to a specific environment, so engineers working in that environment can begin their work with a set of
controls and associated language that are better adapted to that environment. This standardizes the
wheel somewhat and reduces the wheel-reinvention rate. The Committee on National Security

Systems (CNSS) has released a “Space Overlay” for RMF use [2], and it includes a good description 
of the differences in design between enterprise and space systems in addition to its tailored control set 
(see Table 2).

Aerospace chaired a report that focuses largely on getting spacecraft acquisition through the
necessary paperwork wickets (while also doing proper engineering, of course) [32]. The report’s
thorough writeup of process builds on some of the ideas from CREF [3]. The remainder of [32] details
the space environment, offers a handful of recommended near- and long-term changes to effect
greater security, and provides its own concept of the appropriate selection of RMF controls for the
problem space. Although the path taken to get there is basically useful, the majority of the
recommendations made are very high-level (e.g., mission level performance monitoring) or verge on 
platitudes (e.g., define and prioritize goals).

The Consultative Committee for Space Data Systems (CCSDS) has performed surveys of the
threat [33] and made broad statements about architecture [34] and key management [35]. The
architecture document focuses almost exclusively on cryptography at various layers of the
network stack, but also has a section covering emergency C2 and safe mode considerations.
The key management document does a good survey of the space, including sections for group-
keying scenarios for disparate ground receivers, but doesn’t necessarily go beyond what the
RMF space overlay provides. The threat document motivates the cyber problem and proposes a 
coarse assessment of risks.

The Air Force Research Laboratory’s Space Vehicles Directorate (AFRL/RV) authored a pair
of “State of Space-Cyber” reports that identify a handful of high-level recommendations to improve
security for space systems and drive those to more detailed cybersecurity technology development
goals [36, 37]. The reports are excellent, but focus more on techniques than guidelines, and do not
feature a companion instantiation at this point.

A report from Chatham House serves as a further call to action [38]. The report highlights the
use of space systems by other critical infrastructure such as financial, weather forecasting, air travel,
maritime traffic management, and communications. Their report proposes lightweight government
regulation coupled with industry-led standards, asserting that this approach will yield the most rapid
response. Although the document’s carefully considered motivation is beneficial and the policy
scaffolding it focuses on is a necessary consideration, it doesn’t directly provide security solutions. We
do, however, echo their desire for “future-proofing” designs to account for the typically longer
development and operational timelines of satellite components and systems compared to most
terrestrial technology.
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4.2 EXPLORING THE PROBLEM SPACE WITH MATRIX AND STPA-SEC

We have surveyed a few techniques for targeted brainstorming of the cybersecurity space,
and we have surveyed the general environment surrounding space-faring computer systems. In 
this section, we strive to bring them together as a way of developing the most interesting and
underserved threat vignettes impinging on these systems and use them to motivate design
guidelines that will improve the overall security of space systems built with them in mind.

4.2.1 Ground Rules

Exploration of the cybersecurity problem space is a dangerously overwhelming business.
Numerous vendors, reports, and papers, including this one, offer their own maps that cover some
portion of the wilderness. In an effort to further constrain the scope to something tractable, we
propose the following assumptions and ground rules:

• The threat cannot break standard encryption algorithms (but the threat can try to steal keys,
perform side-channel attacks. etc.).

• Specifics of a remote attack against a ground segment are irrelevant—at this level of abstraction, 
there is no difference between a successful spear-phishing attack vs. a client-side browser
exploit vs. a misconfigured server, for example.

• The threat is not routinely mitigated by basic cybersecurity best practices that would be
expected of normal enterprise operations or the appropriate mitigations for the space envi-
ronment are substantially different from those chosen in more traditional enterprise environ-

ments.

• The threat is not impossible to mitigate by some amount of sensible defensive cybersecurity

engineering. (This rules out things like kinetic strikes.)

In general, given standard best practices to encrypt C2 links, hacking directly into a satellite

is not easy. The adversary’s best option is to obtain access to the keying material for the COMSEC
channel (either by getting the keys themselves or by gaining access to ground station equipment
able to send data to/through the COMSEC device). The adversary may also be able to compromise
the satellite’s software load by persuading the ground station to upload corrupted software.

As a further reduction in scope, we deliberately neglect basic hardening techniques that are
not unique to the domain. We will not talk to the screensaver passwords on ground systems, for
example. We largely neglect hardening any one component of a satellite system for the sake of
hardening. Instead, we focus on ways that the components can help to secure each other. Rather
than working exclusively to secure a ground system from cyber threats, for example, one can also
work to secure a ground system with the satellite’s help.

4.2.2 Applying MATRIX

The MATRIX approach described in Section 2.4 has, as its core, a three-dimensional “space”
of attacker accesses, effects, and techniques, summarized in Table 1. When the approach is applied
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prse supp Supply chain
isol tmpr Physical tamper
smin mali Malicious insider
prot cred Credential theft
auth sbox Sandbox breakout
rand hjck Control hijack
redo

Securely parse and ingest data 
Component isolation
Surface/component minimization
Data protection (at rest, in transit, in use) 
Authentication and secure control 
Randomize, diversify, adapt
Rapid replacement and reconfiguration

TABLE 3

Abbreviations for MATRIX Elements Used in Table 4

at a more granular level — e.g., by specifying roughly which segment of the system is being 
attacked—it rapidly becomes challenging to consider all of the possibilities.

To manage the complexity, we neglect security solutions that are by and for the ground 
segment alone. Although there is certainly a large amount of useful work to be done there—more 
than enough for another report—this report focuses instead on the space vehicle (sv) and on 
interactions between the SV and the ground (sv+g) that can be mutually beneficial (or detrimental).

We further reduce complexity by reducing scope on the “effects” axis somewhat, lumping data 
corruption with denial of service (deny) and leaving data loss/exfiltration (xfil) as our two effect 
categories.

Given those restrictions in scope, we considered each of the 6 × 7 × 2 × 2 = 168 possible cases, 
as shown in Table 4. The handful of cases identified with solid boxes were deemed interesting for 
further exploration. The remainder of this section touches on each in turn.

We emphasize again that cells in Table 4 that are not highlighted are nevertheless important for 
system security. This document seeks to identify and explore promising areas that may benefit from 
nonstandard, domain-relevant mitigations. The vast majority of unmarked cells are still 
important to overall system security, but may be largely solvable using established techniques and/
or using new techniques that require minimal tailoring to the system. We cover many of the 
unmarked boxes in a few broad strokes and then dive more deeply into the marked boxes.

There is little highlighting in the sv+g domain. To a large extent, issues with ground 
station security are not aided by spacecraft participation—for example, there’s not much a 
spacecraft can do to help a ground system quickly reconstitute itself. There are a few exceptions 
where the satellite may be able to aid the ground station in its security, and we highlight them 
below.

Traditionally, COMSEC is used between the ground system and the spacecraft, and its 
practice essentially removes control hijack from consideration at that level. Hijack within the 
ground system itself is still a threat, but there is there is little unique about that threat here. 
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Brainstorming Figure for MATRIX Approach, Using Abbreviations from Table 3 
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Hijack within the SV could be a possibility, but the mitigation strategies (e.g., star topologies for 
C2) are not unusual.

We will revisit these and other areas of overall spacecraft security in the Appendix, where we 
describe the instantiation we seek to build and describe techniques chosen to honor many of the 
defensive rows in Table 4 and the techniques in Table B.1.

The marked cells, however, offer opportunities for defense that are more specialized to the 
domain. We next summarize a few scenarios that cover the marked cells and propose solutions 
that could reduce their impact. We assume that perfect protection is not possible and focus on cases 
where an adversary has already achieved some level of undesirable access and we are working to 
mitigate the impact. The focal points remain the SV and areas where the SV and ground can work 
together to strengthen the system as a whole.

Supply Chain vs. Spacecraft. This scenario covers an adversary that has made an unautho-
rized modification to the satellite. This could be pre-launch hardware modification, pre-launch 
software modification, or post-launch software modification (a malicious software update). The 
adversary intends to use the supply chain compromise to trigger a denial of service at a later date by 
temporarily or permanently disrupting the spacecraft’s function.

Unlike terrestrial systems, a successful hardware supply chain attack is effectively impossible to 
mitigate—the damage remains for the entirety of the SV’s lifetime. Additionally, certain types of 
software may be unalterable after launch, or there may be types of malicious post-launch activity 
that can subvert the onboard software in an unrecoverable manner. In general, the fact that the 
defender can’t physically access the system to recover it to a known state can motivate different 
engineering choices.

Malicious Insider/Credential Theft vs. Ground System. This scenario assumes an adver-
sary is either a malicious insider or has obtained equivalent levels of access and information via 
other attacks. The adversary wants to “pivot” their access and gain a foothold on the SV.

There is ample work on insider threat mitigation for terrestrial systems of all types. The 
complication is the interaction between the ground system and the SV. Any malicious action that 
the insider can take on the spacecraft may be challenging to mitigate. These actions could include 
dangerous or unintended commands or the actual execution of a supply chain attack (uploading 
unauthorized software or firmware).

Sandbox Breakout vs. Spacecraft. This scenario assumes an adversary has obtained access 
to some part of the spacecraft. That access is not sufficient to accomplish the adversary’s ultimate 
objective, but it is sufficient to permit pivoting attacks to take place that seek to gain further access 
on board. In this environment, this may be an adversary that has compromised a payload and is 
attempting to take control of the bus as well, as an example.
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Figure 5. STAMP model of generic control loops—first cut.

Again, there is plenty of existing work on adversary footholds, and many of the common 
techniques (surface minimization, etc.) are therefore not marked in the table. However, the process 
for restarting a satellite to recover control can be a complicated matter. In particular, even if a 
satellite can evict the undesired access by rebooting the system, the sheer amount of time required 
to execute the reboot may itself jeopardize the mission.

4.2.3 Applying STPA-SEC

The STPA-Sec process lends itself very well to the level of abstraction with which we are 
working. We begin by breaking the system down into its five basic pieces described in Section 3, and 
then add further detail until we reach a point of diminishing returns.
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Figure 6. STAMP model of generic control loops—second cut.
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The first cut at a control diagram for an SV is shown in Figure 5. Where “health and status” 
is shown, the implication is that the given spacecraft node is reporting on its own health and status in 
full detail—for example, the “maneuver” subsystem will report on reaction wheel speeds, propellant 
levels, valve positions, exhaust bell temperatures, etc. Where “C2” is shown on the spacecraft, it is 
intended to represent C2 for that specific recipient only. On the ground side, C2 is an aggregated 
quantity, insofar as the comms network gets all of the C2 destined for both itself (which dish to use, 
which frequency, etc.) and for the satellite it’s speaking to.

There are a number of things to dislike about this first figure. Some of them are by design: for 
example, the common COMSEC solutions used to protect traffic between the comms network on 
the ground and spacecraft comms are not shown. This is by design. For STAMP-style evaluation, 
we will posit the impact of incorrect control flow over the link from the ground to the spacecraft, 
generate requirements about that control flow, and then see how COMSEC may satisfy those 
requirements.

The difference between C2 paths and C2 authorities is also key. Figure 6 attempts to overlay the 
control authorities picture. The clear disconnect between the flows in Figure 5 and Figure 6 informs 
the needed data protections to ensure that entities that should not command the spacecraft are 
denied that ability.

STAMP analyses do not provide a hard limit to just how far one can peer into a system design
—the diagrams can get arbitrarily complicated and tend to grow in size and scope as a system’s 
design matures. At this level of abstraction, we can develop the broad-brush guidelines and insights 
that we seek. Implementers should continue to expand and refine their analyses as they dive more 
deeply into their builds. Even if the security benefits were nonexistent, STAMP is considered a useful 
safety tool and should be seriously considered on that merit alone.

An even broader control authorities picture could explicitly take into account the owners of the 
spacecraft (bus), the payload, and the mission—i.e., the ultimate user of the payload’s functionality. 
We don’t show them explicitly or “wire them in” to the picture because the interplay between those 
offices is an organizational challenge solved different ways by different people. The one nod we make 
to this complication is in the dotted command path in Figure 6, acknowledging that a POC often 
has some direct command authority of the bus as well as the payload, e.g., if the payload and bus 
are owned by the same entity.
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5. SELECTED THREAT SCENARIOS

There are many threats one can imagine against cyber systems. In theory, the MATRIX

brainstorming method produces 5 × 6 = 30 hypotheses to consider, and those are coarse-grained.
Table C-1 in [32] lays out more than 50 combinations of attack vector, direction, medium, and 
method. STPA-Sec can produce anywhere from a tiny handful at a high level of abstraction to an
overwhelming quantity as one dives more deeply into a specific system.

The MATRIX brainstorming from Section 4 highlighted three basic threats: supply chain
attacks against the spacecraft, insider/credential attacks against the ground station, and “sandbox
breakout” from a malicious beachhead on board the spacecraft. In this section, we further refine them
into scenarios that we feel are potentially survivable or mitigatable.

The observations made via STPA-Sec regarding command structures motivate the use of
cryptography to enforce authorities despite the typical differences between C2 hierarchy and com-
munication hierarchy. STPA-Sec also helps users identify critical portions of the system, the ways the
adversary could reach them, and the ways an adversary could spread—touching on the “Sandbox
Breakout vs. Spacecraft” MATRIX scenario. We do not explicitly address the STPA-Sec findings or
the sandbox breakout scenario here, but consider them throughout the development of the
guidelines, as they color the pre- and post-attack environment for all of the other scenarios we do
discuss below.

5.1 SCENARIO: TRANSIENT LOSS OF CONTROL OF A GROUND STATION

This corresponds to an insider threat vs. the ground station. We further restrict the threat to a
transient loss, i.e., we assume that the threat is eventually identified and removed and that ground 
control systems can be restored to proper state. If we cannot regain control of the ground station
promptly, then there are larger problems to contend with, and there’s little point to engineering a
secure spacecraft.

If C2 to a satellite is properly encrypted and authenticated, then there are a limited number
of ways that an adversary could expect to inject legitimately formatted, yet maliciously intended,
commands into the satellite itself. The adversary must either obtain some access to the COMSEC
keys or obtain access to the ground network authorized to format and transmit commands through
the legitimate COMSEC to the satellite.

If the adversary succeeds, then they can launch properly formatted commands to the satellite
to carry out their own desired ends. This runs the full gamut of potential effects, from temporary
disruption of service to subversion of the system or destruction (by issuing commands that 
permanently disable the satellite).

The keys to surviving this scenario are:

• minimizing the attack surface with respect to malicious commands,

• identifying that malicious commands are being sent,
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• promptly evicting the adversary and recovering C2 authority, and

• surviving the malicious commands long enough for on the ground to recover C2 of the satellite
and issue proper commands to restore safe operation.

5.2 SCENARIO: PRE-LAUNCH SUPPLY CHAIN ATTACK AGAINST THE SATEL-
LITE

An adversary able to manipulate the software or hardware in the satellite before it reaches
orbit could potentially install a backdoor that they could later take advantage of from the ground. 
There are many ways this could happen. Hardware- or software-based supply chain attacks against
the satellite’s components or the tools used to design and implement those components
(compilers, synthesis tools, etc.) are perhaps the most obvious. Substitution attacks during the
time between satellite completion and satellite launch are also a possibility, depending on the path
the satellite takes from assembly to orbit.

This is a portion of the supply chain threat from MATRIX, but we’ve broken out the pre- and
post-launch scenarios due to rather substantial differences between them. The post-launch scenario is
covered in Section 5.3.

This scenario is challenging to survive if the adversary succeeds. The keys to surviving this
admittedly difficult scenario are:

• minimizing critical components,

• focusing supply chain risk management efforts on those components,

• engineering for and rehearsing the on-orbit identification of non-critical components that do
behave badly, and

• engineering for and rehearsing the on-orbit remediation of those misbehaving components.

The guidelines we propose and solutions we implement to address this concern will naturally
need to take into account the control flows identified in the STPA-Sec brainstorming process and
shown in Figures 5 and 6.

5.3 SCENARIO: POST-LAUNCH SUPPLY CHAIN ATTACK AGAINST THE
SATELLITE

Once the satellite is in orbit, software updates may still be delivered. (Indeed, this is common
practice for satellites that take a long time to get from launch to their operational location.) These
software updates could be subject to many of the same attacks that were plausible pre-launch.

The keys to surviving this scenario are similar to those for a pre-launch attack. Software
certification and authenticated flow from vendor to spacecraft reduce the risk, but do not eliminate
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it. If the satellite is engineered to detect misbehaving (non-critical) software and is able to regain
control and reimage the software upon direction from the ground, then this threat can be largely
mitigated.

35



This page intentionally left blank.



6. DESIGN GUIDELINES

We leverage the brainstorming done on the scenarios in Section 5 to inform our proposed
design guidelines. In all cases, we largely omit basic security practices (screen savers, 
password change requirements, badges for ground station personnel, etc.) and instead focus on
design aspects that are either unique to satellite environments or unusually critical (for
security) and rare (in implementation).

The result is eight design guidelines that can inform both satellite engineering and future
research and development of defensive techniques specifically tailored for and responsive to the
needs of satellite systems.

6.1 FAIL SLOWLY

Not all satellite commands are created equal. Some commands are fairly benign, from a
satellite survivability standpoint, and some are particularly damaging. From the very 
beginning, satellite designers should work to minimize the set of damaging commands, and (where 
they are unavoidable) work to maximize the amount of time between when the command is issued
and when the damage is unavoidable.

There are two types of damage to consider: mission damage and spacecraft damage. It is pos-
sible to damage a mission without actually harming the satellite itself—for example, commanding
the satellite to turn its payload off will certainly disrupt the mission, but it is unlikely to have any
impact on the satellite’s longevity or ability to carry out its mission in the future. Designers need
to have both mission needs and satellite needs in mind; we focus on the needs of the satellite, as
they are more generic in nature.

Unfortunately, there are a great many ways to harm a satellite, largely as a side effect of their
location in the void of space. Designers should consider the following, for example.

• Choosing propulsion systems that have a maximum propellant flow rate as small as possible,
which correspondingly increases the amount of time it takes for the satellite to deplete its
propellant.

• Choosing a C2 antenna with as wide a receive beam as practical so it’s harder for the satellite
to point away from the ground station.

• Choosing reaction wheel rates as small as possible, which correspondingly increases the
amount of time it would take the satellite to point its C2 antenna in a bad direction.

• Including safety interlocks—in hardware where possible, and in software otherwise—to prevent
combinations of unintended operation. For example, a satellite should not be capable of firing
multiple opposed thrusters at once, nor should it be able to perform constant high-frequency
changes to a reaction wheel’s RPM (needlessly reducing its service lifetime).
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• Queuing hazardous commands for as long as possible before execution, ensuring the queued
commands are clearly reported in telemetry, and providing the C2 capability to rescind queued
commands.

Many of the above suggestions are decidedly non-cyber design decisions. Solid engineering
will generally minimize these variables anyway, but the additional reinforcement is beneficial.

It is impossible to eliminate dangerous commands. Some satellites may by their very design
have “disposal” command sequences that may be irreversible—for example, once a satellite executes
a deorbit burn, there is little to do but watch for the streak in the sky as it’s incinerated. However,
engineering to minimize these commands and minimize the immediacy of their effects will make the
remainder of the security engineering easier to do—at a minimum, it reduces the urgency of any 
detect-and-react options that defenders may be able to employ.

6.2 GO BEYOND COMSEC

Communications Security (COMSEC) is the first step most space systems take for security’s
sake. An encryptor is placed at the ground station and on board the satellite, and all traffic between
the two points is encrypted—essentially creating a VPN between the ground system and the
satellite. Depending on operational need, transmission security (TRANSEC) and anti-jamming 
strategies may also be used.

COMSEC is a good idea, so it’s no wonder that it’s a commonly required feature and that there
are multiple solutions available to implement it, including Innoflight’s Space HAIPE product and
Raytheon’s KI-55 Gryphon. There are also efforts to standardize space-specific interfaces [39] and
cryptographic formats at other layers [40] as well, but uptake is unclear. COMSEC provides a well-
understood mechanism to largely eliminate the threat of a rogue ground station establishing a
connection with the satellite or eavesdropping on legitimate communications.

However, COMSEC is generally very coarse-grained, providing authentication only to the
level of granularity of the endpoints. In the simplest configuration, anything capable of talking to
the red side of the COMSEC device can command the satellite. It’s possible to construct a properly
isolated ground system in that environment, but due to the increasing push for internet-
functionality, isolated systems rarely stay as isolated as the initial design would indicate.

The coarse-grained environment that now exists is effectively equivalent to giving every entity
on the ground station root/superuser access on the satellite. It is certainly possible to be more
nuanced than this. We propose the common security paradigm of role-based access control (RBAC)
to improve the granularity of control on the ground by specifically declaring which entities are
permitted to issue which commands, and when they are permitted to do so.

Importantly, we need the RBAC policy to be enforced either on the spacecraft itself, behind the
COMSEC, or on the ground as close to the COMSEC device as possible. Placing the RBAC on the
ground means that some ground entity must be wholly trusted—with essentially no modification to 
the satellite, this is merely a restructuring of the ground station that puts all its trust in both the
COMSEC and in the RBAC arbiter. Placing the RBAC on the spacecraft means that the ground
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systems’ trust can be distributed to the various people, credentials, and devices with which those 
people use those credentials, but it also means that the satellite itself becomes more complicated 
in design and construction.

To support spacecraft-based enforcement, we advocate for crypto beyond COMSEC, namely, 
cryptographically enforced RBAC. In this model, the entities possess cryptographic tokens that 
identify them and bind them to the roles they are permitted to exercise—and there are entities 
with the privileges necessary to change the access control policy itself.

Different systems may choose to do this in different places based on their own risk aversion 
and requirements. Systems that could be commanded from only a small handful of highly secure 
locations may choose to place the enforcement on the ground. Systems that could be commanded 
from a variety of locations may choose to place the enforcement on the satellite. In the extreme 
case, it may be possible for some systems to dispense with traditional COMSEC altogether and 
opt to directly leverage the cryptography mechanisms and associated key management to provide 
secure communication to and from the spacecraft.

RBAC implemented in this way will permit a wide variety of security options:

• Manifold entities can be authorized to safely perform non-hazardous commands, potentially 
more than would otherwise be possible in a COMSEC-only scenario.

• Hazardous but routine commands could require two or more people to use their associated 
tokens and collaboratively issue the command. This could cryptographically implement two-
person integrity.

• The portions of a ground station that must actually be able to issue commands can be more 
easily isolated from other portions of the network, reducing the sheer size of equipment that 
must be air-gapped.

• Satellite owners could hand out sets of keys to ground controllers: a routine set, used in day-to-
day operations, and an emergency set, stored offline in a physical safe (thus reducing the 
likelihood of compromise). The routine set could permit, e.g., consumption of a small fixed 
quantity of propellant per 24 hours, but in case of emergency, the ground station could quickly 
retrieve and employ the emergency credentials to expend additional propellant. The satellite 
would log the emergency use and report it in telemetry3.

One example of this approach is shown in Figure 7. This example shows separate credentials 
(shown as keys) for several different roles. The ground system is broken into “Restricted Bus C2” 
for routine commanding, “Full Bus C2” for extraordinary commanding and non-routine tasks, and 
“Payload C2” for separate command and control of the payload resources. It also shows a “root of 
recovery” (RoR) key stored offline. These keys could be used for a variety of purposes discussed in 
Sections 6.3 and 6.5.

3 This is usually termed “break the glass” RBAC, in which someone is permitted to exceed their normal rights in
an emergency, with the knowledge that they’ll be held accountable for their actions. Secure auditing is essential for
these schemes.
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Figure 7. Notional key distribution for crypto-enforced RBAC approach.

We argue that the simple “if the COMSEC key is good you have full control” access control
model is too coarse-grained. However, designers shouldn’t overcorrect: when it comes to access
control, it’s entirely possible to make too much of a good thing. An RBAC scheme that accurately
and precisely implements a least-privilege design may be too inflexible to accommodate slight
variations in system needs, and even if it is sufficiently limber in that regard, a complicated design
is harder to get right both in design and in implementation.

6.3 ABLATIVE DEFENSES

On a terrestrial system, if the complicated RBAC-based security solution proposed in Sec-
tion 6.2 goes awry, operators could potentially disable some of the security system, accepting
increased risk, to avert mission failure. This typically presumes some level of “superuser” access,
which may be achieved with credentials but is more often achieved with physical access.

On a satellite system, a flaw in a complicated security solution runs the risk of loss of control
of the satellite in its entirety. The likelihood of this result can be minimized by careful engineering,
of course, but the consequences are so high that designers are naturally reluctant. It is very common
for satellite designers to balk at components that have established no space heritage, an unfortunate
Catch-22 that prevents components from flying in space unless they’ve already flown in space.

Bias against implementation risk is very sensible for spacecraft design, so any security solu-
tions would do well to respect that bias and work within it. To that end, it may be prudent to
include a way to turn the complicated RBAC system off and fall back to a COMSEC-only approach.
Although this is arguably less secure, it may be preferable to the total loss of the satellite.
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We therefore propose that all security systems onboard—not necessarily just the crypto—be
designed in ablative layers, such that a ground controller could order the outermost (most
complicated and effective) layer to be jettisoned for the sake of operational need, leaving the
remaining layers intact. This dovetails nicely with the general principle of defense-in-depth design.

Another way of looking at this is as a deliberately engineered backdoor that can disable some
security systems. This is an unattractive view, of course, but it may be an acceptable design
decision when weighing the risk of having the security vs. the risk of not having the security.

As a method for implementation, we propose a set of jettison codes that can be transmitted 
directly to the satellite. These codes would be very tightly secured on the ground. If the decision
were made to employ one, it could be transmitted to the satellite to deactivate the given layer.
Designers must weigh the merit of transmitting this via the COMSEC channel (more complex) vs.
sending it in the clear (less complex, but irreversible due to the increased replay attack risk).

Ideally, as security solutions for spacecraft mature and earn increasing hours of space heritage,
the need for ablative design may itself abate.

6.4 FIELD AND LEVERAGE TELEMETRY

Satellites routinely collect and transmit extensive health and status measurements. These
measurements are typically taken for environmental resiliency purposes, so ground controllers can
preemptively alter operations to avoid hazardous conditions as they develop but before they can
cause damage.

From a security standpoint, it is attractive to have measurements taken by something other
than the measured volume. For example, one would not trust a list of processes from the oper-
ating system itself, as malware can and does easily doctor the list to hide its existence. Satellite
designers should take advantage of the many sensors and processors on board to implement cross-
measurement approaches.

To further secure the measurements, a satellite design will ideally use cryptographic pro-
tections at the point that the measurement was taken to prove to the ground station that the
measurement was not elided, duplicated, or altered along the way from the measuring subsystem
through the satellite’s main processor and radio to the ground.

This practice can more generally be thought of as secure audit of aspects of the satellite’s
state, both of telemetry and of commands issued to the spacecraft and queued for execution.
Ideally, every command should be automatically acknowledged/recorded in a write-only 
manner. Keeping and transmitting a full audit log could be impractical, so opportunities for
clever engineering await.

6.5 INCLUDE A ROOT OF RECOVERY

Table 2 highlights many ways that spacecraft processing differs from traditional ground-based
systems. Chief among them is the fact that the spacecraft is all alone. For a terrestrial system,
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the ultimate root of trust—and root of recovery—is a human being with a screwdriver. The
human can always unplug, reimage, replace, or otherwise take over a computer, given physical
access. With a satellite, the human cannot be the root of recovery because the human can only
exert control via the satellite itself.

The spacecraft must be its own root of recovery.

A root of recovery is not the same thing as a root of trust. A proper root of trust can do
its job by ensuring that a system only starts up in a known approved state, and if that is not
possible, the system doesn’t start at all. If the system fails to start, a human (the root of recovery)
is expected to reimage, repair, or replace the computer as appropriate. Spacecraft can’t be treated
this way.

From an engineering standpoint, this requires identifying a minimal subset of the satellite that 
can be trusted to faithfully carry out its mission, no matter what. The SV must be engineered such
that its ground control station can remotely access, actuate, and rely upon the SV’s built-in root
of recovery to:

• know that the satellite is behaving incorrectly, either by its own means or by communications
from the ground;

• assert control over a misbehaving element by resetting and/or disabling the element; and

• where appropriate, provide a misbehaving element with a different software/firmware pack-age
(from the ground or from a previous onboard copy).

As documented in Section 3.2.7, there are critical touchpoints between a bus and the payload
that it supports. We suggest that the bus should also be the root of recovery (RoR) for the payload,
and indeed with a control flow breakdown like that in Figure 5, this is plausibly enforceable. We
propose that bus designers should design their buses with the assumption that the payload may be
hostile. This is a prudent choice in a hosted payload scenario, where a bus is called upon to manage
multiple disparate payloads at once, each with different ownership, C2, and provenance. However, it
is also a prudent choice in a single-payload system. The bus must be able to survive any attack
staged from the payload and (if necessary) sever power from the payload to stop the assault.

A payload with no power is probably not very good at accomplishing its mission. The bus must
be the RoR for the payload. Not only must the bus be able to cut power, but upon restoration of 
power, the payload must come up “clean” and accept software and configuration updates from the 
bus before resuming operations. These updates could be cryptographically signed by trusted sites on
the ground before upload to the bus for use, for example. The payload could contain a “ratchet” value 
that prevents inadvertent reuse of old or outdated updates.

Beyond just a payload compromise, components of the bus itself may suffer from malicious
faults. Engineers should aim to make the RoR as small as possible, certainly smaller than the entire
bus. To a certain degree engineers already think this way: they routinely build in a safe mode for
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satellites. In the safe state, the satellite shuts down all non-essential components, orients itself for
maximum solar power, and awaits further instructions from the ground. This is an excellent design
principle to ensure survivability in the face of faults or non-malicious issues, and it is an excellent
starting point when designing for attack survival within the bus.

A bus safe mode could be engineered to presume malicious attack rather than merely pre-
suming that bad luck has caused a part to fail prematurely. Thinking adversarially will motivate 
different decisions regarding the redoubt executing the survival-critical functions and how they are
connected to other satellite systems. The designer must engineer ways to reimage software on
components that may not want to be reimaged. All non-volatile storage must be accounted for, and a
procedure for scrubbing it must be identified and employed—any data that could persist across a
reset are potential mechanisms for continued mayhem.

Engineers should consider a potential recovery mode level that may demand even fewer func-
tional parts than safe mode. Perhaps the recovery mode does not enable any orientation capabilities
—no star tracker, no reaction wheels—relying only on the magnetorquers to orient roughly to-ward
Earth—and does not power up any communications except for the barest minimum low-gain
antenna and necessary crypto. The recovery mode might use more power than is generated and
thus is not be survivable long-term, and the satellite may be forced to try for safe mode in case
of eventual starvation, but it may be able to further shrink the required root of trust and thus
concentrate defenders’ efforts on a smaller surface area.

Not only must the RoR exist and be essentially uncompromisable, but to the greatest degree
possible, everything not in the RoR must actually be recoverable. The RoR must be able to retake 
control of these other components, scrub their non-volatile and volatile memories, load new software
and/or firmware as needed, and restart. Any vital components that can’t be recovered are necessarily
part of the root of trust, at a minimum, because there is no way to carry on or recover should they fail
or be subverted.

6.6 MONITOR THE PRE-LAUNCH ENVIRONMENT

Satellites exit an integration facility, ready for launch, and eventually enter orbit. They
pass through many months and many hands between those two points and during that time, the 
satellite may be vulnerable to manipulation by those entrusted to its care. A variety of anti-tamper
techniques are used to protect systems that may be placed in physical danger of alteration, but
these techniques may add unacceptable levels of fragility, weight, and cost to the satellite. Novel
approaches may be needed.

6.7 SUCCEED QUICKLY

Recovery from an anomalous situation may require restarting or rebooting some subset of the
satellite’s systems. During this recovery process, the satellite is not accomplishing mission goals. If
the satellite’s restart process is particularly lengthy, simply trying to recover may itself jeopardize
or thwart mission objectives, even if recovery succeeds.
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There are periods of a satellite’s life where recovery can and arguably should be very slow and
very cautious. When satellites first reach orbit, they frequently undergo an extensive “check-out”
period during which systems are methodically tested and baseline performance is established. It
makes good sense to be very patient and careful during checkout.

During operation, however, satellite systems should be built to reboot quickly whenever pos-
sible—ideally within seconds. Systems can be designed to differentiate between a serious hardware
fault (which merits a careful system check on reboot) and a commanded or autonomous reboot
(which could opt to skip hardware checks in exchange for speed). As needed, various subsets of self-
check could be reenabled if repeated reboots occur or if a reboot evaluates stored state data and finds
them wanting.

6.8 SECURITY AS A FEATURE

Proper security measures increase the likelihood of mission success, and are therefore valuable
contributions to a system’s design. However, engineering pressures often prioritize functionality
over security. The resulting system works, but may not work acceptably under fire. It is important to
ensure that security survives managers’ prioritization processes and that we field systems that can 
operate when we need them to—or not bother fielding them at all, lest they give a false sense of

capability.

In general, security solutions are better accepted when they also improve other aspects of the
design, e.g., by including a new feature. Secure Shell (SSH) has overwhelmingly taken over Telnet as 
the remote login technology of choice, but it did not necessarily do so because it is more secure than
Telnet (although it certainly is). Instead, its rapid acceptance was also due to a feature that SSH 
provides—namely, effortless tunneling of X Windows connections. We should attempt to identify and
highlight “dual benefit” applications of security technology whenever possible.

For example, the increased use of COTS processors on satellites has increased the risk of
SEEs disrupting processing. Faults could occur as frequently as two to three faults per day, with 
many more possible as the feature size of the COTS parts shrinks [41]. Mitigation strategies
exist for these scenarios, but often require “soft cores” in the field-programmable gate array (FPGA) 
and triple redundancy, causing greatly diminished performance [21]. For Zynq-based systems
using the built-in advanced RISC machine (ARM) cores for high performance processing, however, 
there’s nowhere to hide.

One common technique to mitigate SEEs, even on systems that attempt to internally mitigate
them, is to include a simple rad-hard “watchdog” circuit that reboots the COTS part if the part
locks up or otherwise appears to have a fault. However, watchdogs may not catch all errors, and
particularly subtle or troublesome disruptions may cause cascading malfunction and spacecraft risk.

Engineers may therefore prefer approaches that make faults easier to find – a noble security
goal as well—and mitigate faults by recovering functionality as quickly as possible once the watchdog
triggers a reboot. TMR solutions such as [21] can do so in many cases, but not all, and higher-
performance solutions using the dedicated ARM cores may require additional consideration in the
way the code is compiled. The “Succeed Quickly” goal in Section 6.7 serves a valuable
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security purpose, but it also improves the spacecraft’s ability to function in the face of expected
environmental damage.
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7. CHALLENGES TO SECURING SMALLSAT ARCHITECTURES

Many of the design guidelines discussed in the previous section are intended to allow the
legitimate operators of a satellite to (re)assert control over the bus or payload in the presence of
an active cyber attacker. This ability is clearly of interest to any attacker aiming to assert
their own control over the satellite. Therefore, improper implementation of these design
guidelines has the potential to completely undermine their intent.

In this section, we discuss key challenges to the secure architecture and implementation of 
cyber defenses on small satellites. In order to avoid platform-specific concerns (e.g., vulnerabilities
of specific processors), we will concentrate on challenges that apply to securing any small satellite,
regardless of specific bus configurations or payloads. This is not intended to be an exhaustive list, but
rather an exemplar of the kinds of concerns that a secure architecture engenders and that satellite 
designers should be prepared to confront. To demonstrate how these challenges will influence the
implementation of specific guidelines, we also consider a notional case study implementing an RoR
on a small satellite.

7.1 ARCHITECTURAL CHALLENGES

7.1.1 Real-Time and Safety-Critical Software Systems Have Unique Constraints

Real-time software systems are those that must meet strict timing deadlines with respect to 
the processing of data. These applications generally govern physical systems, such as heating
elements or reaction wheels. Control loops implemented in software receive sensor data about the
physical system (e.g., temperature) and emit commands to an actuator (e.g., a heater) to bring
the sensed state closer to the intended state.

A related class of software (frequently also real-time) is safety-critical software. Faults in a 
safety-critical application, such as a flight controller, can lead to mission failure and unrecoverable
kinetic effects.

These requirements impose unique constraints on any attempt to secure them from cyber
attack. First, any delays or overhead added to the system must still allow all real-time deadlines 
to be met, all of the time. Critically, any additional delay must be highly deterministic and
mathematically proven to not cause deadline misses. Unpredictable added latencies, even if
small (e.g., from cache misses), may lead to unrecoverable destabilization of physical systems.

Second, these software systems must be constantly available and running correctly. Many
traditional cyber defenses crash a program upon detection of an attacker, effectively converting an
attack on integrity or confidentiality into one on availability. This is acceptable for general-purpose
software (e.g., web servers), but not for safety-critical or real-time applications. Any attempt to 
secure such systems must maintain the same reliability guarantees that the unsecured system has.

Third, real-time systems have a unique attack surface not shared by general-purpose 
software: timeliness. If an attacker can successfully delay incoming or outgoing data from a
real-time system, even for a very short period of time, they may be able to cause a mission or 
platform kill.
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For example, consider a software controller for a thermal management system. A thermometer 
periodically measures the temperature of a hardware subsystem and sends those data to the con-
troller. In response, the controller actuates a heating/cooling element based on a calculation of how 
much heating or cooling, applied for how long, will most rapidly bring the system back to its safe 
operating range.

An attacker seeking to damage the system may delay either messages from the thermome-
ter to the controller or from the controller to the heating/cooling element (e.g., via peripheral 
bus contention attacks). The system will begin oscillating between increasingly extreme temper-
atures. This is due to the controller inadvertently overcompensating, either because it is acting 
on old information from the thermometer or because its commands are not promptly acted on by 
the heating/cooling element. System designers are thus presented with the challenge of isolating 
real-time components from such attacks,while still meeting SWaP constraints.

7.1.2 Attacks Exploit Economies of Scale

The increasingly common use of COTS hardware and software components brings a 
phenomenon to the satellite world that attackers have leveraged for years in the world of general-
purpose computing: economies of scale. It is common for a swarm of satellites to all run the same 
software and use the same hardware, especially if they share a common bus. Unfortunately, this 
also means that the entire swarm shares the same set of hardware/software vulnerabilities. If 
an attacker can exploit one of these, they can attack the entire swarm (albeit not necessarily 
simultaneously) for almost the same cost as attacking a single satellite.

This problem is exacerbated by the common reuse of a small number of operating systems 
across many satellites and missions (e.g., Linux, FreeRTOS). Vulnerabilities in these operating 
systems can let attackers compromise multiple bus configurations, payloads, and missions due to 
their widespread deployment. As operating systems typically operate in a very privileged mode, 
attackers are highly motivated to find vulnerabilities in such systems.

As a result, designers attempting to secure their satellite are presented with a challenge: how 
can one maintain equivalent functionality of software across multiple installations while still dis-
rupting attacker economies of scale? Previous approaches have included mathematically proving 
the absence of vulnerabilities and  automatically transforming the low-level representation of 
code used in exploitation while maintaining its high-level semantics. The former prevents certain 
classes of exploitation at all, while the latter ensures that a vulnerability on one system cannot 
leveraged to attack another. However, proving the absence of bugs has traditionally been extremely 
labor-intensive and has not been scaled to large, complex systems. (In Appendix A, we nevertheless 
adopt this approach for key components.) Low-level code transformations do scale, but may in-
terfere with real-time constraints or provide more limited security guarantees. In general, 
solutions developed for the world of general-purpose computing should be seen as a starting point, 
but may not be directly applicable to the space domain without substantial adaptation.
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7.1.3 Attacks Do Not Obey Abstractions

Modern computer languages do not provide developers with direct access to hardware as part 
of the language model. Rather, they work in concert with the operating system to provide an 
abstract model of a computer against which programs can be written. Abstraction is useful, as it 
can eliminate many common kinds of bugs (e.g., memory corruption in memory-safe languages). 
Even low-level languages such as C provide some degree of abstraction. Memory in C is treated 
as something directly accessible rather than the reality of memory as a subsystem interacted 
with through a complex array of microprocessors and buses. In many applications, the operating 
system also provides the abstraction of virtual memory. This isolates processes in separate memory 
regions, and allows the operating system to enforce permissions and constrain the behavior of 
potentially buggy or malicious applications.

Attacks, however, do not need to obey the abstractions offered by programming languages. A 
designer attempting mitigate some class of vulnerability (e.g., memory corruption) must consider 
the fact that attackers may be able to bypass the defense entirely by acting outside of the machine 
model presented to legitimate developers.

In the memory corruption domain, for example, an attacker could corrupt an otherwise 
memory-safe program by accessing memory outside of the channels monitored by operating sys-
tem. One avenue that has been leveraged in the past is direct memory access (DMA). DMA 
is a technique used by high-bandwidth peripherals (e.g., network, storage, and video devices) to 
read/write memory directly, without requesting the operating system to do so on their behalf (as 
is the case with conventional user-space applications). This enables improved throughput, but 
could also let an attacker bypass memory permissions and process isolation if they can induce a 
DMA-capable peripheral to operate on their behalf. Other options available to the attacker include 
architectural side-channels such as speculative execution vulnerabilities [42] and hardware bugs 
such as Rowhammer [43], all of which act outside the abstractions presented by the language and 
operating system.

A similar challenge arises with respect to protection of data in transit. Despite the abstrac-
tions afforded by the language and operating system, an application is not running in isolation on 
a machine. Many other applications are simultaneously executing, some of which may be executing 
on separate processors on peripheral devices from the main CPU. If encryption/decryption is done 
when data leaves/enters the computer system, it may be passing in plaintext over internal hardware 
buses connecting the communications system to the target process. Malicious processes with access 
to these buses could intercept or modify such messages despite the perception of security afforded 
by the cryptography.

Even if encryption is truly end-to-end, malicious processes may still be able to disrupt the 
target process. Denial-of-service attacks on shared communications buses can cause message loss 
and prevent critical commands from being executed. Alternatively, data, including key material, 
may be vulnerable to exfiltration via side-channels in shared hardware (e.g., timing of executed 
instructions).
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Therefore, in order to securely implement a cyber defense, designers must be aware of the
larger context that defense operates in, especially with respect to the lower-level system components
whose operational details are abstracted away. In order to actually provide the guarantees they
hope to, it may be necessary to implement defenses working at multiple levels of abstraction.

7.1.4 Shared Resources Amplify Attack Impact

Software designers for SWaP-constrained environments must make as efficient use of resources
as possible. This frequently leads to a software base with substantial resource sharing and acces-
sibility. For example, NASA's Core Flight System (cFS) is (as of 2018) implemented as a single 
process, with each service running in its own thread. This enables common state to be shared among
services rather than needing to be duplicated and taking up more memory. (We address this specific
issue in Appendix A.1.)

Unfortunately, resource sharing also provides opportunities to attackers to further cement
their hold on a system or cause denial of service. Consider the cFS mentioned above. If any
individual service is compromised by an attacker, all other services are now at risk due to their
shared address space. More generally, any resource shared between a compromised component and
a target component is an attack surface that must be considered and mitigated. This includes not
only shared memory, but also the operating system managing bus and/or payload software, the
hardware executing that software, and any hardware peripherals that could modify system state
(e.g., main memory or data on a bus).

This poses a challenge to system architects. Ideally, all software processes should be as
isolated from one another as possible, with minimal ability to affect one another outside of carefully
monitored channels. However, this is not only difficult in SWaP-constrained environments, it is
often physically impossible due to a shared hardware substrate. That substrate may be able to
be leveraged by an attacker to leak information (e.g., side channels), deny availability (e.g., bus
contention), induce kinetic effects (e.g., firing of thrusters), and so on. Since total isolation is often
unachievable, it should be seen as a necessary, but not sufficient, component of a secure architecture.

Another challenge to shared resource access is that the need to access a resource is not
static, and may change over time based on a variety of factors (e.g., satellite operating mode).
For example, if a hardware or software component is compromised and the attack is detected, it
should be quarantined and unable to access the resources that the uncompromised system. Even
absent a detected attack, sensitive resources that are only accessed in exceptional circumstances
(e.g., thrusters) should only be accessible by software during such exceptional circumstances, in
order to minimize what an undetected attack could achieve. Therefore, system architects must
consider how resource access by bus and payload software can be dynamically adjusted over time
without impacting the ability of the satellite to conduct its mission.

7.2 CHALLENGES IN BUILDING A SECURE ROOT OF RECOVERY

The challenges enumerated above are deliberately general and not tied to a specific design
guideline from Section 6. In this section, we demonstrate how those general challenges distill into
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challenges specific to a particular guideline. The RoR described in Section 6.5 is a natural target for 
attackers. If built incorrectly, it may serve as highly privileged backdoor into the satellite that allows 
an attacker to upload and execute malicious code. Securing it is paramount, and must go beyond 
simple software testing.

Although the exact architecture and implementation may be platform-specific, any RoR im-
plementation will likely include a combination of software (an updater capable of receiving, storing, 
and loading a program image), hardware that that software depends on (including the radio, em-
bedded power supply, etc.), and the firmware drivers supporting that hardware. All of these must 
be architected in a secure way in order to protect the RoR from use by an adversary. This imposes 
several platform-independent challenges on satellite designers. More challenges will arise when 
considering platform-specific details. The following are intended as examplars, not an exhaustive 
list.

7.2.1 Attackers Will Try to Persist Across Software Updates

An attack may persist even if the malware used to launch that attack has been purged. For 
example, an attacker may corrupt stored data that will cause a legitimate process to make decisions 
chosen by the attacker, or may spread to an accessible resource or other program. The designer 
must ensure that all dataflows out of a compromised process, at all levels of abstraction, are within 
the scope of a recovery operation.

7.2.2 Malicious Software and Hardware Will Try to Corrupt or Disable the Root
of Recovery

The RoR is uniquely able to overwrite the stored program image of every software application 
on the satellite. Depending on platform and implementation details, it may also be able to write 
to the memory image of every running process (e.g., to support live patching). Simultaneously, 
it must itself be immutable and impervious to an already-compromised applications attempt to 
corrupt it. Thus, designers must consider how to architect the system so that the RoR can securely 
write to every process, while not being writable by any process.

In addition to isolation from malicious software, malicious hardware (e.g., introduced during 
the supply chain) may attempt to disrupt or disable the RoR. This includes not only corruption 
of the program, but also denial of service via attacks on shared resources such as hardware buses. 
Designers must consider how to isolate the RoR from malicious hardware while still meeting SWaP 
constraints.

7.2.3 Remote Attackers will Target the RoR

By definition, the RoR must accept input from the ground station (i.e., the software image), 
parse that input (even prior to decryption), and process it. Input handling logic is notoriously 
difficult to write, and in many languages involves bug-prone operations such as casting memory as a 
user-specified type, copying to/from/between buffers, manipulating pointers, and so on. Attackers 
are well aware of this and will likely target the RoR with maliciously formatted inputs. Any 
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successful exploitation of a bug on the RoR will have devastating impacts on the security of the 
satellite and the ability of the legitimate operator to re-assert control.

As a result, designers must seek to make RoR code as highly assured as possible. Ideally, 
the code should be formally verified to be free of security-critical bugs such as memory corruption. 
Lacking the time or budget to do so, designers should find ways to leverage memory-safe languages 
that provide compile-time guarantees about bug-freeness.

In the unfortunate event that an attack on the RoR succeeds, attackers will try to exploit 
economies of scale and leverage that attack against other satellites. Designers must seek to disrupt 
this asymmetric advantage. RoR code should not afford attackers economies of scale and should be 
diversified at compile time, randomized (with respect to memory layout) at run-time, or otherwise 
made unique such that an attack on one satellite cannot become an attack on all.

7.2.4 Attackers May Target the Update Authorization Mechanism

The cryptographic key to communicate with the satellite should not be the same key used to 
sign software updates, as these are much more sensitive than other operations. Should attackers 
obtain the key material to enable communication, they can attempt to exploit bugs in any autho-
rization mechanism used by the RoR to determine whether an update is from a trusted source. 
Designers must therefore have highly assured authorization verification mechanisms, ideally a 
formally verified algorithm for validating cryptographic assurances on signed updates.

7.2.5 The RoR Cannot Violate Realtime Constraints

The purpose of the RoR is to allow remote code updates to satellite subsystems. Many of 
these systems are safety-critical and/or real-time and must therefore adhere to stringent 
timing requirements for message processing. This presents designers with two challenges to 
implementing a safe RoR.

First, they must consider how to handle intermediate program state (e.g., values of variables 
on the stack) at the time of update/reboot. If purging this state would result in a fault or real-
time violation, the RoR must have some mechanism to securely mitigate or prevent such a fault, 
while also ensuring that an attacker cannot cause a persistent attack by leveraging this state 
information.

Second, systems being modified by the RoR need to continue meeting real-time requirements 
during update/reboot. Periodic processing deadlines (e.g., from a sensor feed) are often specified in 
terms of microseconds, while software update/reboot operations could range from milliseconds to 
seconds. Loss of availability during an update could result in unrecoverable kinetic effects and so 
must be avoided in any safe RoR implementation.
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8. CONCLUSION

Satellite design already demands a substantial and diverse set of engineering disciplines, and
the evolving ecosystem of small satellite developers, vendors, and buyers are applying increased
pressure on the design timelines for these systems. The need to protect against benign faults and
the threats of the hostile orbital environment consume engineers’ attention, and security can fall
by the wayside.

We do not seek to solve that problem in the general sense. There will be a need for “standard”
security engineering practices, and their evolution continues on the ground and in space. However,
we posit that a small set of guidelines and design principles, carefully tailored for the space en-
vironment, can further improve the efficiency of satellite design and the efficacy of the resulting
system. It remains for us to prove it by example, and we fully intend to do so in our continuing
work.
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Figure A.1. Processing flow for a notional bus design.

APPENDIX A: ARCHITECTURE SKETCH

We intend to realize our guidelines in the form of a sample satellite processing architecture
that could provide a useful starting point for a variety of new designs. The basic layout of the
processing flow for our notional bus design is shown in Figure A.1.

Our goal is to provide a familiar model at the ends of the stack (application and peripheral)
while fostering an improved security foundation in the middle of the stack. Doing so would allow
us to provide the key underpinnings for the RoR guideline and provide a suitable foundation for 
system designers to pursue the rest of the guidelines.

As a representative middleware-and-adapter stack, we have chosen the NASA Goddard cFS. 
The cFS suite is already in use for several missions, so designers are familiar with it. cFS 
includes an operating system abstraction layer (OSAL) adapter that allows it to run on a 
variety of full-featured operating systems, namely POSIX4, FreeRTOS, and VxWorks.

We leverage the increasingly ubiquitous Xilinx Zynq System-on-Chip as the processor. The
Zynq is a very powerful device, featuring two ARM CPUs and a generous amount of FPGA recon-
figurable logic. It is far more powerful than the more traditional RAD750 processor. Although it is
not suitable for extended mission durations or higher orbits, it is being used in LEO designs. We
anticipate that future rad-hard processors will also target the ARM architecture.

The Zynq is packaged into boards suitable for space use. For our testing, we employ a simple 
ZedBoard test fixture. For a fielded system, something like the CHREC5 Space Processor (CSP) 
would be appropriate. The CSP adds a watchdog circuit and other necessary hardware to handle the 

4 POSIX is not an operating system; rather, it’s a set of APIs that several operating systems support. Practically
speaking, NASA uses this for varieties of the Linux OS.

5 CHREC is now named SHREC, but the name of the processor remains unchanged at this time.
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SEEs that occur in orbit. CHREC continues to develop and integrate additional firmware and 
software to this end, including techniques for mitigating SEEs in the FPGA logic itself. The CSP is
being sold as a commercial product by at least one vendor, so there is a path to fielding for systems
based on this board.

There are a variety of onboard communications buses in use on satellites, and the variety

increases all the time. For our initial instantiation, we are targeting the Inter-Integrated Circuit 
Bus, or I2C bus, as it is of representative speed and complexity.

The final pieces of the puzzle are the operating system and the board support package. To
support the RoR guideline, we need to build the core of the system on a foundation of utmost security. 
For this purpose, we have opted for the seL4 microkernel [44]. seL4 has been formally proven to
faithfully implement its specification. This means that the microkernel is proven to have no buffer
overflows, deadlocks, or livelocks, among other undesirable conditions. That isn’t perfection, but it’s 
far closer to enlightenment than its informally architected brethren.

Sections A.1 through A.3 will describe three key hurdles that we overcame in our effort to 
provide the NASA cFS software stack on top of the seL4 microkernel instead of the feature-rich
kernels upon which it is typically employed. Section A.4 will describe next steps for our specific
implementation, and Section A.5 will conclude with next steps for a system implementation on top of
the seL4 + cFS foundation.

A.1 PREPARING CFS FOR SEL4: PROCESSES

As described in Section 7.1.4, the NASA cFS employs multiple simultaneously executing 
agents. The OSAL provides a taskCreate method to spawn additional concurrent tasks. At present

and across all supported operating systems, this method creates threads, not processes. As a 
result, any cFS task has complete read/write access to all memory belonging to all tasks, as 
shown in Figure A.2a. cFS takes advantage of this access to share state via an extensive collection
of global variables.

NASA has tested cFS extensively, and indeed, spacecraft engineers often embark on extensive
testing regimes. Although that may give good assurances of safety, it does not necessarily warrant
any confidence in the system’s security.

We have created a patch for cFS that, on POSIX, modifies taskCreate to create separate pro-
cesses, rather than threads. As part of this switchover, we adjusted the inter-task communication 
mechanism to provide cross-process access. We additionally identified all global variables, isolated
them in a shared-memory region, and then provided that region and associated pointers to all cFS
processes.

The result, shown in Figure A.2b, is that a compromised or corrupted task can still damage
arbitrary amounts of global data, but it can no longer read or write the private data of other tasks.
This reduces the attack surface of an individual task and also arguably improves safety, as a bug
is now unable to damage task-private state.
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Figure A.2. Memory structures: (a.) thread-based, (b.) process-based, (c.) getter–setter based.

This work aids us in our effort to move cFS onto seL4, as the seL4 microkernel is better suited
to process-based isolation. However, the shift from threads to processes in this case should also
improve security across all operating systems.

In the future, it would be better still to implement proper access control on the global vari-
ables, as illustrated in Figure A.2c. If individual processes had access only to getter and setter
functions instead of raw access to global state, then the opportunities for both mistakes and 
for compromise are reduced. Such an approach also provides the groundwork for the dynamic
isolation suggested in Section 7.1.4.

A.2 INTERFACING I2C WITH SEL4

To connect the seL4 operating system to the satellite’s peripherals, as shown on the right-
hand side of Figure A.1, we developed an example device driver for the combination of the seL4

kernel and the Zynq system-on-chip. Our initial effort, focusing on the I2C bus, provides sufficient 
realism to prove that a reasonable path forward exists.

In seL4, all device drivers are processes, just like any other process. The best mechanism
available to isolate device access to a single process is to use memory-mapped input and output
(MMIO) to the device in question and then limit access to that memory-mapped region to only
the device driver’s process. The driver can then provide inter-process communication (IPC) calls 
for other processes to use to actuate the device, and proper access control can be set up to ensure
that only authorized control processes can access the driver and thus the device.

Implementing this in practice requires a careful synchronized dance between seL4, the Zynq
part, and the Xilinx Vivado development environment with which the Zynq is programmed. The
Vivado environment is used to autogenerate several pieces of the puzzle:
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Figure A.3. “First light” communicating via I2C on seL4.

1. An I2C physical layer (PHY) implementation, in the FPGA fabric

2. A set of I2C functions in C, for use within the Zynq’s ARM cores

3. The necessary Advanced eXtensible Interface (AXI) bus configurations and MMIO regions to
bridge the FPGA physical interface layer (PHY) to the ARM-based functions

The Xilinx code, intended for use on a more feature-rich operating system, is nevertheless
amenable to seL4. The key is connecting the Vivado dots appropriately. The Vivado file system.hdf
contains the base and limit addresses for our MMIO interfaces. Those values need to be carried over
to the seL4 driver process.

Within seL4, the function sel4platsupport new io mapper() is used to create a structure
for performing the mapping. The function ps io map can then be used to map the MMIO’s physical
address range into the virtual address space of the driver process.

To test the driver concept, we connected a ZedBoard development board to a PC and drove the

I2C bus from the PC to emulate a target device. The resulting “Hello World” exchange, shown in 
Figure A.3, is visually underwhelming, but represents an important first step.
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To further test the driver concept, we used an Arduino board provided by NASA IV&V.
The Arduino was programmed to emulate a power supply subsystem by Clyde Space. We were
able to connect the Arduino to the same ZedBoard and perform basic C2 of the subsystem from 
seL4.

Our goal was to simply prove the concept. Future work could easily incorporate other bus
types (e.g., SPI), increase the realism, and build out APIs by which applications could command
the drivers.

A.3 PORTING THE CFS OSAL TO SEL4

The cFS’s OSAL contains roughly 100 operating system-agnostic calls. They are grouped into 
the following categories:

• Miscellaneous (time management, debug printing)

• Message queues

• Timers

• Semaphores and mutexes

• Networking

• File system (generic Network File System-like methods)

• Interrupts

• Exceptions

To properly emulate cFS on seL4, the entirety of the OSAL API needs to be emulated. Some
portions of the API are reasonably tractable—notably, the file system can be emulated in a fairly
generic fashion—but other aspects are more intimately tied to operating system features. For our proof 
of concept, we opted to focus on aspects of the semaphore API, as synchronization is something
that the operating system needs to supply.

Implementing mutexes and semaphores on seL4 is nontrivial. As seL4 provides isolation, IPC,
and processes, in the seL4 model. a mutex or semaphore is effectively a process that offers the lock 
and unlock operations. Rather than construct this from scratch, we leverage a seL4 toolset called

caMKes, or component architecture for microkernel-based embedded systems. caMKes—and the
mutex primitive it provides—has the added benefit of being formally verified, so the code it generates 
carries similar guarantees to that of the kernel upon which it executes.

The one caveat is that caMKes is statically focused; it’s designed for systems that know at
compile-time which mutexes exist and to which processes they are tied. This directly conflicts with
the cFS runtime model for mutexes, wherein they are named and established in a dynamic

fashion. For example, see Listing 1, which shows how mutexes are created in the OSAL POSIX
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layer. Note that under the hood, it dynamically creates an ordinary POSIX mutex and assigns it 
to a dynamically provided name sem name. Under the hood, OSAL maintains a statically allocated

array of potential mutexes and “slots” a given mutex into that array, indexed by C string name,
for later lookup in calls that use the semaphore.

This contradicts the caMKes model—OSAL is dynamic, and caMKes is static. We work around
this difference in a reasonably straightforward manner: we instrument the OSAL methods related to
semaphore usage, execute the test suites for a satellite’s control software on a POSIX OS, and record 
the creation and usage patterns for the application’s semaphores. Given those patterns, we are
able to statically create (via caMKes) everything that the application will dynamically request
and satisfy the (dynamic) API using seL4’s established (static) mutex techniques.

This method—dynamic instrumentation to provide static resources—is in general a poor
approach; if the dynamic testing is not exhaustive, then an on-orbit corner case could yield a mutex
operation for which the statically allocated resources are not prepared. However, satellite designers
are typically extremely rigorous in their testing. We are relying on that property to ensure that the
dynamic instrumentation approach is sufficient to garner correct and complete coverage.

Listing 1: OSAL OS BinSemCreate for POSIX

int32 OS BinSemCreate ( u int32 ∗ sem id , const char ∗sem name ,
u int32 s e m i n i t i a l v a l u e ,
u int32 opt ions )

{
int Status ;
pthread mutexatt r t mutex attr ;
pthread mutex t mutex ;
pthread cond t cond ;
/∗ . . . ∗/
Status = pth r ead mutexa t t r i n i t (&mutex attr ) ;
Status = pthr ead mutexa t t r s e tp ro toco l (&mutex attr ,

PTHREAD PRIO INHERIT ) ;
Status = pthread mutex in i t (&mutex , &mutex attr ) ;
Status = p t h r e a d c o n d i n i t (&cond , NULL) ;
/∗ . . . ∗/

}

A.4 NEXT STEPS FOR THE ROOT OF RECOVERY

The work described in Section A.1 through Section A.3 work to establish some of the foun-
dation for an eventual root of recovery (RoR) for satellite systems. Three challenges remain:
completion of the OSAL, construction of the RoR on the processing element, and establishment of
the RoR on critical subsystems.

First, the OSAL has a large repertoire of features beyond the semaphores we have thus far 
implemented. Intelligent Automation has built a “POSIX-like” layer [45] that could be leveraged
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to more easily complete the OSAL layer on seL4. Evaluation of this layer’s suitability and
implementation of same remain as future tasks.

Second, the work described thus far only provides the foundation for an actual RoR. A true 
RoR, built atop seL4, must be able to either reboot to a known prior state or to receive a new state
(software update) from ground control and reboot to it. The software update mechanism itself must
be well understood and invulnerable, lest a flaw in the update mechanism cause spacecraft loss.

Lastly, as observed in Section 7.2, the RoR comprises more than just the operating system and 
associated processes. Indeed, the RoR relies on everything used to command the recovery process. 
This includes inline cryptographic processing, the radio by which the recovery command is received,
and the Flash memory and power control components used to re-image and reboot the remainder of
the satellite. Any or all of these components may be software-defined, which further blossoms the
RoR’s scope and influence. In this work, we neglect consideration of a software-defined radio’s 
software and firmware; in a complete system, it must be within scope and fully considered.

These are substantial challenges. It is work enough to build them at all and it is substantially 
more work to build them to the formal verification standards to which seL4 is held. Yet this is work
that must be undertaken in order to ensure our satellites are recoverable should something befall
them. Such a scheme provides benefits absent an adversary as well, of course; coupled with a verified
software update mechanism and a “root of survival” that sees to the spacecraft’s basic power,
communications, and thermal needs no matter what, the satellite’s owner can be far freer with
new and experimental software loads knowing that the satellite can be recovered if they go awry.

A.5 NEXT STEPS FOR AN ADOPTING SATELLITE

All of the above work has operated on pieces of the puzzle in isolation, but a full proof of
suitability requires a more extensive satellite environment. Ideally, we’d demonstrate a seL4-
based cFS environment, with an application, driving a bare-bones set of representative satellite
peripherals (radio, power, etc.) within the context of a simple, realistic physics model and ground

system.

To achieve those goals, we would turn to the NASA NOS3 suite and STF-1 test satellite [46].
NOS3 includes environmental modeling, orbit modeling, a sample ground station, and robust mod-
els of various satellite infrastructure (a GPS receiver and a radio, among others). The NOS3 suite
ensures that we can interact with representative satellite hardware and establish a cost-effective
testbed for further development and demonstration.

At present, the NOS3 suite is not able to emulate non-Linux spacecraft operating systems.
This is an artifact of how NOS3 currently models peripherals; they are instantiated as Linux
libraries rather than as true virtual peripherals. The NASA IV&V team that maintains NOS3
is interested in supporting diverse spacecraft operating systems, as NASA does leverage the non-
Linux operating systems that cFS supports. We therefore anticipate that future versions of NOS3
will easily support a seL4-based environment as well.
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On top of this design, we intend to honor the basic mitigation strategies described in Sec-
tion 2.4.3 as well as our design guidelines.

Securely Parse and Ingest Data. Satellite C2 traditionally operates in a fairly data-starved 
environment, with limited bandwidth and minimal interactivity. The data are therefore reasonably 
easy to restrict to a simple set for ingestion, largely dictated by well-worn CCSDS standards. The 
ingestion and validation of the commands and their parameters may still be challenging, however.

Surface/Component Minimization. Satellite designers have traditionally done a good job 
here; the challenge is going to be maintaining that parsimony in the new land of plenty afforded 
by the Zynq’s capabilities.

Component Isolation. The “system-facing” interface is minimal. seL4 has only a few function 
calls, and we’re highly confident of its correct operation. Each “customer-facing” interface (device 
driver) can be separated into individual seL4 tasks for effective isolation.

Data Protection (At Rest, In Transit, In Use). We will leverage the MIT LL 
LOCKMA library to perform cryptographic operations as needed for data at rest and in transit. 
We rely on seL4 for compartmentalization of data in use.

Authentication and Secure Control. Both terminals and C2 should have strong access con-
trol. This principle requires fine-grained access control; for example, a terminal should specify who 
can send data, how much, and to whom.

Randomize, Diversify, and Adapt. We are unlikely to pursue dynamic approaches here, even the 
more common approaches such as address space layout randomization (ASLR), in our initial version. 
We could perhaps investigate its inclusion in future work, but it would be challenging to implement 
without touching the operating system. Other automatic diversity techniques such as multi-compilers 
could be leveraged as well, especially if custom compilers are already being used for other purposes 
(such as software-based insertion triple modular redundancy [TMR] in the application code) and the 
customizations are compatible (e.g., cascading LLVM intermediate representation [IR] 
modifications).

Rapid Replacement and Reconfiguration. Traditionally, satellite operators do extensive test-
ing before applying a software update on orbit due to the danger involved and the risk of an 
unrecoverable mistake. The “safe” software update scheme we envision should reduce the risk of 
patching and thus reduce the time necessary to validate a patch before deployment.
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Our initial work does not address the size of the patch. Replacing the entire boot image is 
a painful proposition due to the typically low C2 data rates. Future work should address more 
bandwidth-efficient incremental patching.

Not every problem is a software problem; the problem could also be corrupted or invalid data 
being processed by otherwise adequate software. The RoR abstraction enables efficient and effective 
scrubbing and reconstitution of local data storage as well.
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APPENDIX B: CREF TABLE
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Adaptive Response Respond appropriately and dynamically to specific situations using

agile and alternative operational contingencies to maintain min-

imum operational capabilities in order to limit consequences and

avoid destabilization, taking preemptive action where appropriate

Analytic Monitoring Continuously gather, fuse, and analyze data to use threat intelli-

gence, identify vulnerabilities, find indications of potential adverse

conditions, and identify potential or actual damage

Coordinated Defense Coordinate multiple, distinct mechanisms (defense-in-depth) to

protect critical resources across subsystems, layers, systems, and

organizations

Deception Confuse, deceive, and mislead the adversary

Diversity Use a heterogeneous set of technologies, data sources, processing

locations, and communications paths to minimize common mode

failures (including attacks exploiting common vulnerabilities)

Dynamic Positioning Distribute and dynamically relocate functionality and assets

Dynamic Representation Support mission situation awareness and response by using dy-

namic representations of components, systems, services, adversary

activities and other adverse situations, and the effects of alternative 
courses of action

Non-Persistence Retain information, services, and connectivity for a limited time,

thereby reducing exposure to corruption, modification, or usurpa-

tion

Privilege Restriction Design to restrict privileges assigned to users and cyber entities

and to set privilege requirements on resources based on criticality

Realignment Enable resources to be aligned (or realigned) with core mission

functions, thus reducing the attack surface, the potential for unin-

tended consequences, and the potential for cascading failures

Redundancy Provide multiple protected instances of critical information and

resources, to reduce the consequences of loss

Segmentation/Separation Separate (logically or physically) components based on criticality

and trustworthiness to limit the spread of damage

Substantiated Integrity Provide mechanisms to ascertain whether critical services, infor-

mation stores, information streams, and components have been

corrupted

Unpredictability Make changes frequently and randomly to make the attack surface

unpredictable

TABLE B.1

Cyber Resiliency Techniques from Table 3 of [3]
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GLOSSARY

AFSCN Air Force Space Control Network

C2 Command and Control

CAPEC Common Attack Pattern Enumeration and Classification

CCSDS The Consultative Committee for Space Data Systems

CNSS Committee on National Security Systems

CNSSI Committee on National Security Systems Instruction

CONOPS Concept of Operations

CONUS Contiguous United States

COTS Commercial Off-The-Shelf

CREF Cyber Resilience Engineering Framework

DSB Defense Science Board

FIPS Federal Information Processing Standards

FPGA Field-Programmable Gate Array

GEO Geosynchronous Orbit

GTO Geosynchronous Transfer Orbit

HEO Highly Elliptical Orbit

ISR Intelligence, Surveillance, and Reconnaissance

LEO Low Earth Orbit

LL Lincoln Laboratory

MIT Massachusetts Institute of Technology

NIST National Institute of Standards and Technology

POC Payload Operations Center

RBAC Role-Based Access Control

RF Radio Frequency

RMF Risk Management Framework

RMF Risk Management Framework

RoR Root of Recovery

RTG Radioisotope Thermoelectric Generator

SEE Single Event Effects
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GLOSSARY
(Continued)

SOC Spacecraft Operations Center

SoC System-on-Chip

STAMP Systems-Theoretic Accident Model and Processes

STECA System-Theoretic Early Concept Analysis

STPA Systems-Theoretic Process Analysis

SV Space Vehicle

SWaP Size, Weight, and Power

TID Total Ionizing Dose

TRANSEC Transmission Security

TT&C Telemetry, Tracking, and Command

WGS Wideband Global SATCOM
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